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Preface

Before studying applied quantum mechanics, reviewing elements of mathematics that support the ideas
and concepts can be helpful. Quantum mechanics is a vast topic with many specialized sub-fields. Applied
quantum mechanics is about practical things of value that can be put to work and contribute to economic
activity. Naturally, such applications are a subset of what quantum mechanics offers. However, some
mathematics, such as the linear algebra of non-commuting operators, is common to both applied quantum
mechanics and the broader field of quantum mechanics. Other mathematical techniques, such as optimization,
linear regression, and machine learning, are numerical tools often best suited for applications and quantum
engineering.
The following is a brief review of mathematical techniques that you should already be familiar with and will
find helpful if you attend the USC ECE class Applied Quantum Mechanics. 1 The material is organized in
such a way that if you wish to explore a topic in greater depth, you can do so easily via the "Explore more"
sections and, of course, by solving the homework problems.
Please note, this primer is not a substitute for the EE 539 experience!

1A. F. J. Levi, Applied Quantum Mechanics, 3rd ed. Cambridge: Cambridge University Press, 2023.

https://www.cambridge.org/highereducation/books/applied-quantum-mechanics/EA5247786AE1F496B5A6E33A3826B2AD
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1 Numbers

Learning objectives:

• Understand the importance of abstraction and various number sets.
• Understand the algebra of imaginary and complex numbers.

A practical application of positive integer numbers described by the set of natural numbers N is counting
classical physical objects. Experiments can be performed in which real objects are added or subtracted, and
the result is observed as a measurement. If all the objects are taken away, nothing will be observed. Clearly,
the idea of zero and negative integer numbers is not directly related to physical objects whose presence can be
measured. These useful concepts are an abstraction - different from a physical object’s measured presence.2

1.1 Real numbers

More than 2,400 years ago the Babylonians counted in base 60 and made use of a zero symbol when writing
numbers, but it did not represent a zero in the same way it is today. Similarly, the Ancient Greeks and
Romans did not use zero as an actual number. The first use of the number zero in the modern sense is
documented in India in 628 AD. This is important because it requires a level of abstraction that allows the
representation of a concept that cannot be observed in an experiment that, for example, counts physical
objects. Negative numbers, such as the solution to the algebraic expression 4x + 32 = 0, are likewise an
abstraction that allows calculations of practical importance and development of predictive models. Positive
and negative integers belong to the set of numbers labelled Z. Division and multiplication, including division
and multiplication by zero, add to the ability to develop predictive models. Rational (Q) and irrational
numbers (I) follow. These various categories of numbers make up the set of real numbers (R).

Explore More: Sets of real numbers

1.2 Complex numbers

In Euclidean geometry, calculating the area of a square of side a, where a is a positive number, gives
A = a · a = a2 in which A is a positive number and a = A1/2 =

√
A. However, if the area is a negative

number, −A, then a = i
√

A where i =
√

−1 so that −A = i2
√

A
√

A = −1 · A = −A.3

Notice, for two imaginary numbers a and b the order in which they are operated on matters so that, for
example,

√
a
√

b ̸=
√

ab since
√

−1
√

−1 = i2 = −1 which is not the same as
√

(−1) · (−1) = 1. Imaginary
numbers such as iy may be combined with real numbers such as x to form complex numbers (C) through
addition:

z = x + iy = Re(z) + i · Im(z) (1)

where the real part of the complex number z is Re(z) = x and the imaginary part is Im(z) = y, where x and
y are purely-real numbers. A schema of the various types of numbers is visually depicted in Fig. 1, in which
the set of complex numbers C includes the sets of purely-real numbers R and purely-imaginary numbers iR.
Various mathematical objects can be constructed from the set of complex numbers, allowing higher-level and
often more helpful forms of abstraction. We explore these and their corresponding algebra in the following
sections.
Complex numbers play a key role in the mathematical structure supporting quantum mechanics. However, it
is worth noting that in contemporary quantum mechanics, the results of any physical measurement can only
be real numbers. This means that the number i, and hence the set of pure imaginary numbers (iR), cannot
be the result of a physically measured observable.

Explore More: Other generalized number systems

2For example, in semiconductor devices, the concept of positively charged holes is the absence of physical electrons
with negative charge in the valence band.

3Carl Friedrich Gauss introduced the symbol i for the square root of minus one in 1831.
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Complex (ℂ): (1 + 2i, 3 − 4i, 1 + 5i, e𝑖𝑖 ⁄π 3, etc.)
Imaginary (iℝ): 
(−1i, 2i, ⁄5 7 i, etc.)

Real (ℝ): (− ⁄1 2 , ⁄π 3 , 17, etc.)
Rational (ℚ): (− ⁄3 2 , 1/2, etc.) Irrational (𝕀𝕀):

( 2, e,π, etc.)Integers (ℤ): (−1, 0, 1, etc.) 

Natural (ℕ): (1, 2, 3, etc.) 

Figure 1: Classification schema of numbers with respect to their properties.

A helpful and intuitive tool for visualizing and understanding complex numbers is the complex plane, which is
a 2D representation of the space of all possible complex numbers. The complex plane is similar to a standard
graph or coordinate system but splits the real and imaginary numbers into two orthogonal4 axes, as shown in
Fig. 2. The horizontal axis is called the real axis, and for a complex number z = x + iy, it represents the real
part x. Likewise, the vertical axis is called the imaginary axis and represents the imaginary part y. Thus, a
point in the complex plane can represent every complex number with a unique set of coordinates (x, y).

Re

Im

x

y
𝑧𝑧 = 𝑥𝑥 + i𝑦𝑦

0,0

𝑥𝑥, i𝑦𝑦

Figure 2: Visualization of a complex number z = x + iy in the complex plane.

With complex numbers comes a rich extension of algebra and, therefore, mathematical capabilities. An
important concept associated with complex numbers is the complex conjugate. This plays a role in simplifying
the division of complex numbers and computing the magnitude of a complex number. The complex conjugate
operation has widespread applications in physics and engineering, including signal processing, control theory,
quantum mechanics, optics, and electrical engineering. In alternating current (AC) circuits, for example,
impedance can be represented as a complex number. The complex conjugate can determine power flow and
voltage drop across different circuit elements in this context. In addition, the concept of time reversal may
be represented by taking the complex conjugate of a complex signal.5

The complex conjugate of a complex number z, denoted as z∗, is defined as

z∗ = (x + iy)∗ = x − iy (2)

and may thus be viewed as the mirror image of Fig. 2 about the real axis. Several important properties are
associated with the algebra of complex numbers and their complex conjugates. The sum and product of a
complex number and its conjugate yield real numbers:

4The concept of orthogonality plays an important role in linear algebra and quantum mechanics, and is explored
further in section 5.1

5In signal processing, particularly with systems described by linear time-invariant (LTI) theory, the time reversal
of a signal x(t) is represented by x(−t). If x(t) includes complex components, its time reversal can also involve taking
the complex conjugate, especially when dealing with signals represented in the frequency domain.
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z + z∗ = (x + iy) + (x − iy) = 2x

zz∗ = (x + iy)(x − iy) = x2 − ixy + ixy + y2 = x2 + y2 = |z|2
(3)

These properties can be used to divide complex numbers, as shown below. Assume we have two complex
numbers w = u + iv and z = x + iy. We can straightforwardly divide w and z by multiplying the numerator
and denominator by z∗, resulting in a real number in the denominator since zz∗ is guaranteed to be real:

w

z
= w

z
· z∗

z∗ = (u + iv)(x − iy)
(x + iy)(x − iy) = ux − iuy + ivx + vy

x2 − ixy + ixy + y2

= (ux + vy) + i(vx − uy)
x2 + y2 =

(
ux + vy

x2 + y2

)
+ i

(
vx − uy

x2 + y2

) (4)

Furthermore, the complex conjugate has the distributive property such that the conjugate of a sum or product
of a set of complex numbers equals the sum or product of their conjugates. That is,

(z1 + z2)∗ = z∗
1 + z∗

2
(z1z2)∗ = z∗

1z∗
2

(5)

Finally, the complex conjugate is involutive, meaning that the conjugate of a conjugate returns the original
complex number. That is, (z∗)∗ = z.

2 Combinatorics

Learning objectives:

• Understand factorials and how permutations represent a generalization of factorials.
• Understand the difference between counting distinguishable and indistinguishable objects by respec-

tively using the permutation and combination formulas.

Combinatorics is associated with counting and the properties of finite structures such as binomials, which
are polynomials of the form axm + bxn. It plays an important role in computing probabilities and building
different configurations out of a defined set of parameters.

2.1 Factorials

The factorial of a non-negative integer n, denoted by n!, is the product of all consecutive positive integers
(whole numbers greater than zero) less than or equal to n.6 This corresponds to counting the number of ways
to arrange a total of n distinguishable objects in which the order of the objects is not important. It is defined
as

n! = n · (n − 1) · (n − 2) · . . . · 3 · 2 · 1 (6)

For example, 4! = 4 · 3 · 2 · 1 = 24. As will be shown later, a mathematically consistent definition for 0! is
necessary. Since the factorial definition can be written as n! = n · (n − 1)!, we may consider the case where
n = 1. Thus,

1! = 1 · (1 − 1)! = 1 · 0! = 1 ⇒ 0! ≡ 1 (7)

which agrees with the logical notion that there is only a single way in which zero objects can be arranged:
arrange nothing. This convention ensures that expressions and equations involving factorials are consistent

6The earliest known mention of factorial-like calculations can be traced to ancient Indian mathematics in the work
of scholars like Pingala around 300-200 BC, where counting permutations was involved in studying poetic meters.
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and meaningful even when no objects are present, a necessary feature of combinatorics. Finally, the factorial
of negative integers is undefined, requiring that n ∈ Z+ where “∈” means “is an element of.” 7 In the next
section, we explore the concept of permutations, which generalizes factorials for counting arrangements of a
subset of k distinguishable objects from the total set of n.

Explore More: Rising and falling factorials

2.2 Permutations (k distinguishable objects selected from a total of n distinguishable objects)

As a means to quantify the ways in which distinguishable objects from a set can be uniquely arranged or
selected, factorials are a necessary ingredient in permutations and combinations. Permutations involve the
arrangement of all or part of a set of objects, with the order of arrangement being important. The number of
permutations P (n, k) of n distinct objects taken k at a time is given by

P (n, k) = nPk = n!
(n − k)! (8)

which corresponds to the number of unique ways k distinguishable objects can be ordered when chosen from
a set of n objects. If we select all n distinguishable objects such that k = n, then P (n, n) = n!/0! = n!
and we recover the factorial definition. Since negative factorials are undefined, this requires that k ≤ n for
(k, n) ∈ Z+.
Example 1: Suppose you have three available sensors for respectively measuring temperature, pressure,
and humidity, and you are designing a prototype device for optimizing performance. If the device can only
measure the output of two sensors, what are the unique configurations of selected sensors if the order in
which the data is extracted makes a difference? What is the complete set of possible configurations?
Here, we identify n = 3 as the total set of sensors available and k = 2 as the set of selected sensors. Since the
order in which the sensor readout matters, we calculate P (n = 3, k = 2):

P (3, 2) = 3!
(3 − 2)! = 3 · 2 · 1

1 = 6 (9)

Using the corresponding sensor labels, the unique set of possible configurations are {temperature, pressure},
{temperature, humidity}, {pressure, temperature}, {pressure, humidity}, {humidity, temperature}, and
{humidity, pressure}.

2.3 Combinations (k indistinguishable objects selected from a total of n indistinguishable
objects)

Combinations involve selecting items from a group without regard to the order of the items. The number
of combinations C(n, k) of n objects taken k at a time, stated as “n-choose-k,” is given by the binomial
coefficient,

C(n, k) = nCk =
(

n
k

)
= n!

k!(n − k)! (10)

We can use this to determine how many unique groupings of k objects can be formed from a larger set of n
objects, in which the selected k objects are indistinguishable and therefore their ordering does not matter.
Permutations and combinations can, therefore, be related by

P (n, k) = k!C(n, k) (11)

Since the type of counting associated with permutations involves distinguishable arrangements of a set of
chosen objects, imposing order introduces additional information when arranging objects, thereby increasing

7Daniel Bernoulli developed the complex Gamma function Γ(z) in 1729, which extends the domain of the factorial
function to include non-integer and negative values; however, negative integers remain excluded from the extended
domain of the factorial function.
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the number of countable possibilities. Thus, P (n, k) ≥ C(n, k), and P (n, k) = C(n, k) only when k = 0 or
k = 1.
Example 2: Suppose you need to analyze the pattern distribution in an 8-bit binary signal. Specifically, you
want to determine how many different signals can be formed if you have exactly three bits set to ‘1’ and the
remaining five bits set to ‘0’. Calculate the number of different 8-bit binary signals that can be formed with
exactly three bits set to ‘1’.
This problem requires determining the number of combinations of 8 bits taken 3 at a time where order does
not matter since any ‘1’ bit is indistinguishable from any other ‘1’ bit. Since we are choosing 3 bits to be ‘1’
out of 8 possible positions, we straightforwardly use the combination formula, where n = 8 and k = 3:

C(n = 8, k = 3) =
(

8
3

)
= 8!

3!(8 − 3)! = 8 · 7 · 6 · �5!
(3 · 2 · 1) · �5!

= 56 (12)

Thus, there are 56 different 8-bit binary signals that can be formed with exactly three bits set to ‘1’. This
means that if you are dealing with a system that signals special modes or errors using three specific ‘on’ bits in
an 8-bit code, there are 56 unique ways those error or mode signals can be configured. This information could
help design error-checking algorithms and coding schemes or even help understand potential configurations in
networked devices where limited signal variations are used for efficiency.

Explore More: The binomial theorem

Homework Problems: Combinatorics

3 Real functions

Learning objectives:

• Understand the definition of a function, including different types.

3.1 Definitions

Functions are mathematical expressions that describe the relationship between a set of inputs and outputs.
In engineering, they are, for example, used to model physical phenomena, signal processing algorithms, and
control systems. Functions can be linear or nonlinear, as well as discrete or continuous. Linear functions have
the form

f(x) = a0 + a1x (13)

where the constant coefficients a0 and a1 respectively represent the y-intercept and slope. Nonlinear functions,
such as the Nth-order polynomial

f(x) = a0 + a1x + a2x2 + . . . + aN xN (14)

generally exhibits more complex properties such as local extrema and complex roots. The broad utility of
polynomial functions is ubiquitous in electrical engineering. Their applications include filter design, control
systems, analog circuit design, signal processing, antenna design, power electronics, motor control, digital
circuit timing, transmission lines, and optimization. Common examples of non-polynomial functions include
exponential, logarithmic, trigonometric, and power functions. More details on these functions, including their
general form and common applications, may be found in the supplementary information section below.

Explore More: Common functions with applications

In general, a function may be viewed as a mapping between a domain of numbers X corresponding to a
set of independent variables {xi} and a codomain Y corresponding to the dependent variable y ({xi}), as
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Domain X Codomain Y

Map Rx1   x2 …
1 1
2 2
3 3
4 4
5 5

y(x1, x2) 
y(1, 1)
y(1, 2)
.
.
.

Figure 3: Diagram of a function y(xi) with domain X, codomain Y , and graph relation (mapping) R.
Generally speaking, functions can represent one-to-one or many-to-one mappings.

shown schematically in Fig 3. This mapping R is a relation between X and Y that satisfies two conditions,
by definition:
(i) for every independent variable xi in X there exists a single value y in Y such that (xi, y) ∈ R,
(ii) if (xi, y) ∈ R and (xi, z) ∈ R then this directly implies y = z.
Therefore, one-to-one and many-to-one mappings may be described by functions, however a one-to-many
function, strictly speaking, does not exist within the framework of standard mathematics as it would violate
the second condition. There are circumstances in both mathematics and physics, however, where concepts
resembling one-to-many relationships may be useful.

Explore More: Examples of one-to-many functions

Explore More: Coordinate systems

4 Calculus

4.1 Differentiation

Differentiation in calculus involves computing the derivative of a function. The derivative measures how a
function changes as its input changes and thus represents the rate of change or the tangential slope of the
function at any given point.

4.1.1 Differentiation of continuous functions

The derivative of a continuous function f at x is the slope of the line tangent to the curve of f(x). It is
defined as

df

dx
≡ f ′(x) = lim

∆x→0

f(x + ∆x) − f(x)
∆x

(15)

where the limit ∆x → 0 is taken.

Explore More: Limits and asymptotic behavior

More generally, the derivative of a function f(x) with respect to variable x is another function f ′(x) that
provides the slope (degree of change) of f at every point x. Crucially, in order for f(x) to be differentiable
at a point x = a, f ′(x) must be well-defined in the neighborhood of x = a. That is to say, f must be
continuous and smooth. Continuity requires that a small variation of the function argument x must induce a
small variation of the function value f without any abrupt changes, known as discontinuities. Smoothness

10
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requires that the derivative of a function f(x) must be continuous in the neighborhood of x = a, such that
for variation δ,

lim
δ→0

f ′(a + δ) − f ′(a − δ) = 0 (16)

As some examples of differentiation, we can consider linear, polynomial, and exponential functions. For a
linear function f(x) = a0 + a1x, the definition of the derivative can be applied straightforwardly:

f ′(x) = lim
∆x→0

(a0 + a1(x + ∆x)) − (a0 + a1x)
∆x

= lim
∆x→0

a1∆x

∆x
= a1 (17)

Thus, the constant a1 represents the slope, or rate of change, of the linear function f(x). For a higher-order
polynomial such as the quadratic function f(x) = a0 + a1x + a2x2, the derivative is f ′(x) = a1 + 2a2x which
represents the function of the line tangent to the quadratic curve at any point x.
In describing certain systems, some models might involve functions composed of two or more other functions.
Such function composition may involve multiplication, division, or nesting of two functions. For each scenario,
there exist differentiation rules:
• The Product Rule

If a function f = f(x) is formed from the multiplication of two differentiable functions g = g(x) and
h = h(x), the derivative of f = g · h may be taken by using the product rule:

f ′ = (g · h)′ = g′ · h + g · h′ (18)

Example: Given f(x) = x2 sin(x), find f ′(x). We identify the first function as g(x) = x2 and the second
function as h(x) = sin(x). Thus, g′(x) = 2x and h′(x) = cos(x), resulting in f ′(x) = 2x sin(x) + x2 cos(x).

• The Quotient Rule
In the case of rational functions where a function f = f(x) is written as a function g = g(x) divided by
another function h = h(x), the derivative of f = g/h may be taken using the quotient rule:

f ′ =
( g

h

)′
= g′ · h − g · h′

h2 (19)

Example: Given f(x) = x3/ cos(x), find f ′(x). We identify g(x) = x3 and h(x) = cos(x). Therefore,
g′(x) = 3x2 and h′(x) = − sin(x) so that

f ′(x) = ((3x2)(cos(x)) − (x3)(− sin(x)))
(cos(x))2 = 3x2 cos(x) + x3 sin(x)

cos2(x) (20)

• The Chain Rule
In describing certain systems, some models might involve functions of functions. Consider the case in
which the argument, or input, g of the function f is itself a function of a variable x so that g = g(x).
The derivative of the composite function f(g(x)), alternatively denoted (f ◦ g)(x), with respect to x is
performed using the chain rule:

f ′ = (f(g(x)))′ = (f ◦ g)′(x) = f ′(g(x)) · g′(x) (21)

This rule can be repeatedly used for multiple function nestings and in conjunction with the product rule,
it can also be used to derive the quotient rule, an exercise left to the reader.
Example: Given f(x) = Ae−x2 , find f ′(x). We begin by identifying h(x) = Aex as the outermost function
and g(x) = −x2 as the nested, or inner, function. Thus, we can compute the derivative as

f ′(x) = h′(g(x)) · g′(x) = Ae−x2
· (−2x) = −2Axe−x2

(22)

This illustrates that the rate of change of the exponential function is proportional to its current value at
any point x.

11
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4.1.2 Partial vs. total differentiation

In many cases, functions can have multiple variables, requiring a distinction between total and partial
derivatives. A total derivative of a function f(x), denoted as df(x)/dx, refers to the derivative of a function
with respect to one variable (x, in this case) when the function depends on that variable either directly or
indirectly through other variables. Total derivatives are used when dealing with functions where variables are
interdependent or when the function is implicitly defined. It provides a measure of how a function changes as
all variables change, considering their interdependence.
A partial derivative refers to the derivative of a function with respect to one variable while holding all other
variables constant. Partial derivatives are used in the context of multivariable functions to examine the rate
of change in one direction (with respect to one variable) while ignoring the others. It is denoted using the
partial derivative symbol ∂, such as ∂f/∂x which represents the partial derivative of function f with respect
to variable x while keeping any and all other variables constant.8 The partial derivative operator can be
efficiently expressed in terms of a variable by using the variable as a subscript, and the partial derivative of
a function can also be efficiently written by using the explicit independent variable as a subscript. These
conventions can be equivalently used to denote the partial derivative of a function f(x) with respect to the
variable x:

∂f

∂x
≡ ∂xf ≡ fx (23)

Example 1: Consider the function f(x, y) = x2 + 3xy − y2, where x and y are independent variables. To
find the partial derivative of f with respect to x and thus show how f changes as x varies for a fixed value of
y, we treat y as a constant:

∂f

∂x
= ∂

∂x

(
x2 + 3xy − y2)

= 2x + 3y (24)

Example 2: We now consider the case where y is not independent of x, but is itself a function y(x) = 4x.
To compute the total derivative of f(x, y) = x2 + 3xy − y2, we can substitute y = 4x into f , resulting in
f(x) = x2 + 3x(4x) − (4x)2 = x2 + 12x2 − 16x2 = −3x2. Thus, the total derivative of f with respect to x is
now simply the derivative of −3x2 with respect to x:

df

dx
= d

dx

(
−3x2)

= −6x (25)

Thus, the total derivative reflects the cumulative effect on f as x changes, which includes changes induced in
y. By rewriting the function purely in terms of x, this is also an example of dimensionality reduction.

Explore More: The gradient

Explore More: Taylor series expansion

Explore More: First-order differentiation of discrete functions

Explore More: Higher-order differentiation of discrete functions

Homework Problems: Differentiation

8For this reason, the momentum operator in quantum theory is formally defined in terms of a partial derivative for
the sake of consistency, even in one dimension (p̂ = −iℏ ∂/∂x), since the wavefunction can generally depend on time t.
Generalizing to three dimensions results in defining the momentum operator in terms of the gradient (p̂ = −iℏ∇).
More information on the gradient may be found in the corresponding Explore More appendix.

12
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4.2 Integration

Integration is the sum of infinitesimal elements to calculate areas, volumes, and other quantities. Essentially,
it may be viewed as the reverse process of differentiation, and in 1D, the integral of a function may be referred
to as an anti-derivative. Calculating the integral of a function f(x) within an interval of x corresponds to
determining the total value of the function over this interval. Such a function may either be continuous or
discrete with respect to the integration variable x. Overviews of each are provided in the following Explore
More appendices along with examples and exercises left for the reader.

Explore More: Integration of continuous functions

Explore More: Integration of discrete functions

4.3 Complex functions

Complex functions are mathematical expressions where the independent and dependent variables are generally
both complex numbers. These functions contribute to various fields of science and engineering, where they
are used to describe phenomena such as electromagnetic waves and alternating current (AC) in circuits.
Both the input (domain) and output (codomain) of a complex function are complex numbers, typically
expressed as f : C → C, where f(z) = u(x, y) + iv(x, y) for a complex variable z = x + iy. As with purely
real functions, a complex function is considered analytic at a point if it is differentiable at every point in
some neighborhood of that point. Analytic functions have derivatives everywhere in their domain, allowing
them to be expanded using the Taylor series.
By plotting complex numbers in the complex plane, it is possible to visualize how the real and imaginary
components of a complex function are related through Euler’s formula9, and how they can be represented by
respectively projecting onto the real and imaginary axes. Euler’s formula states that for any real number θ,
the complex exponential function z(θ) = x(θ) + iy(θ) can be generally expressed as

z(θ) = Aeiθ = A (cos(θ) + i sin(θ)) = A cos(θ) + iA sin(θ) (26)

where i is the imaginary unit and A is the amplitude (a real positive number), or magnitude, of the
complex number z(θ). This formula shows that the exponential function with an imaginary exponent
results in a complex number whose real and imaginary parts are respectively proportional to the cosine
and sine components of the original exponent, scaled by the amplitude A. Thus, for z = x + iy = Aeiθ,
x = x(θ) = A cos(θ) and y = y(θ) = A sin(θ). This is visually depicted in Fig. 4.

Explore More: Introduction to plane waves

Explore More: Introduction to the Fourier transform

Explore More: The Fast Fourier Transform (FFT)

Explore More: Complex differentiation

Homework Problems: Complex differentiation

9Euler’s formula, established by the Swiss mathematician Leonhard Euler in 1748, is an equation in complex
analysis that establishes a relationship between trigonometric functions and exponential functions. It finds use in
fields that involve complex numbers, such as electrical engineering, physics, and applied mathematics.
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Figure 4: Visualization of a complex number z = x+iy in terms of the complex phase angle θ. The amplitude,
or magnitude, of the complex number is given by A. This magnitude is the radius of the circle traced out by
varying 0 ≤ θ ≤ 2π.

5 Linear algebra

Linear algebra is a field of mathematics that focuses on vector spaces and linear mappings between them. It
plays a central role in both pure and applied mathematics, representing linear systems through the use of
matrices, efficient methods for solving problems in such systems, and the ability to quantify the behavior
and stability of systems. Linear algebra has applications in many fields including circuit analysis, signal
processing, control systems and control theory, communication, and power systems. Generally speaking, the
utility of linear algebra in physics and electrical engineering cannot be overstated, as it enables the design,
analysis, and optimization of a variety of complex systems. In this section, we will explore several elementary
mathematical concepts and operations necessary to work with and understand linear systems.
Familiarization with software designed for numerical linear algebra and fast, numerically robust, matrix
calculations will be indispensable moving forward. In particular, downloading and installing MATLAB is
recommended, as well as completing the onramp tutorial course. GNU Octave is a compatible open-source
alternative that can execute any MATLAB script which uses base MATLAB function libraries.
As an optional alternative to MATLAB or GNU Octave, standardized software libraries for numerical linear
algebra can be used for popular high-level scientific programming languages such as Python or Julia. In
the case of Python, the NumPy, SciPy, and Matplotlib libraries are very helpful for scientific programming
and data visualization, for which installation and syntax documentation is provided through their respective
hyperlinks. Through the linear algebra library package LAPACK, Julia provides native implementations of
basic and common linear algebra operations with high-level syntax.

5.1 Vectors

Learning objectives:

• Add, subtract, scale, and translate vectors.

• Calculate the inner product of two vectors and understand the concept of projection.

• Relate the concept of vectors and complex numbers to the complex plane, including projecting out
real and imaginary components.

• Understand and apply the concept of unit vectors.

• Understand linear superposition, including several examples and applications in signal processing.

In an N -dimensional Euclidean RN space, vectors consist of a magnitude and direction in which each
dimension is orthogonal to all other dimensions. As such, they are useful for representing a variety of physical
quantities such as electrical fields, currents, or forces.
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5.1.1 Vector notation and algebra in RN space

Using Cartesian coordinates in the RN space, a vector in a N = 2 dimensional space can be represented as
v = [x y], and in a N = 3 dimensional space as v = [x y z], where x, y, and z are the components of the
vector in each dimension. As with numbers, the concept of operations carries over to vectors though with
some modifications. Key operations include but are not limited to transposition, addition, subtraction, scalar
multiplication, and the inner product.
Vectors can either be an 1 × N row vector in which there is a single row of N elements (N columns),

v = [v1 v2 · · · vN ] (27)

or an N × 1 column vector in which there are a single column of N elements (N rows),

v =


v1
v2
...

vN

 (28)

By convention, we will default to describing vectors as column vectors.10

Transposition in RN space
The transpose operation on vectors involves converting a row vector into a column vector, or vice versa,
denoted by the superscript ⊺ on the vector symbol. If v is an N × 1 column vector, its transpose v⊺ is then a
1 × N row vector. Conversely, if v is a 1 × N row vector, its transpose v⊺ is an N × 1 column vector.11 This
is visually depicted in Fig. 5. Sequentially applying the transpose twice gives the original vector, (v⊺)⊺ = v.

𝐯𝐯⊺ =

v1
v2
v3
⋮
⋮

v𝑁𝑁

⊺

= v1 v2 v3 ⋯ ⋯ v𝑁𝑁 𝐯𝐯⊺ ⊺ = v1 v2 v3 ⋯ ⋯ v𝑁𝑁  ⊺ =

v1
v2
v3
⋮
⋮

v𝑁𝑁

= 𝐯𝐯

(a)      (b)

Figure 5: (a) The transpose of an N × 1 column vector may be viewed as rotating the array of numbers
anticlockwise by 90◦ such that it becomes an 1 × N row vector. (b) The transpose of a 1 × N row vector may
be viewed as rotating the array of numbers clockwise by 90◦ such that it becomes an N × 1 column vector. If
the transpose operation is performed twice as done in this example, the original vector is recovered.

Addition and subtraction in RN space
The addition or subtraction of vectors requires that the dimensionality of all vectors being summed is equal.
For example, adding or subtracting vectors a, b, and c require they all either be row or column vectors with
the same number of N elements:

a ± b ± c =


a1
a2
...

aN

 ±


b1
b2
...

bN

 ±


c1
c2
...

cN

 =


a1 ± b1 ± c1
a2 ± b2 ± c2

...
aN ± bN ± cN

 (29)

Multiplication in RN space
10By default, vectors are represented as 1 × N row arrays in MATLAB.
11To convert a row array into a column array in MATLAB, the function transpose() is used. Thus, v⊺ = transpose(v),

where v is by default an 1 × N row array and therefore v⊺ is an N × 1 column array.
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Vectors may also be multiplied by numbers, an operation known as scalar multiplication since the number
scales the vector by stretching or shrinking its magnitude without changing its orientation, or direction, in
the N -dimensional space. Thus, multiplying a scalar a with a vector v results in each of the vector elements
scaled by a:

av = a


v1
v2
...

vN

 =


av1
av2

...
avN

 (30)

Finally, element-wise or Hadamard multiplication of two vectors results in a vector in which each element is a
scalar product of the respective elements of the original two vectors:

u ⊙ v =


u1
u2
...

uN

 ⊙


v1
v2
...

vN

 =


u1v1
u2v2

...
uN vN

 (31)

In MATLAB, this is expressed as u.*v in which .* takes the role of the symbol ⊙ in Eqn. (31).

Magnitude in RN space
The magnitude, or length, of an N -dimensional vector v is described by its Euclidean norm ∥v∥2, also referred
to as its 2-norm. In RN space, it is calculated as

∥v∥2 =
√

v2
1 + v2

2 + v2
3 + · · · + v2

N (32)

The formula may essentially be viewed as the Pythagorean theorem extended to N dimensions. The 2-norm
gives a direct measure of the distance of the vector from the origin of the coordinate system, and has the
properties of being non-negative as well as satisfying the triangle inequality, ∥u + v∥2 ≤ ∥u∥2 + ∥v∥2, which
asserts that the magnitude of the sum of two vectors is less than or equal to the sum of their individual
magnitudes.

Unit vectors in RN space
A unit vector is a vector that has a magnitude of one. This makes unit vectors very useful for specifying
space directions and normalizing vectors. As such, unit vectors are often used in linear algebra to define the
axes of coordinate systems and can, therefore, be used as a geometrical basis. Each component is divided by
the vector magnitude to calculate the unit vector of any given vector. The unit (magnitude) vector v̂ in the
direction of v is then given by

v̂ = v
∥v∥

(33)

resulting in ∥v̂∥ = 1, in which we suspend use of the 2-norm subscript for notational convenience.
Unit vectors are widely used in vector calculations, including vector projections, cross and dot product
operations, and when defining coordinate systems in both two and three dimensions.

Inner product in RN space
If θ is the angle between two vectors, then the inner product may be defined as

a · b = ∥a∥ ∥b∥ cos(θ) = ab cos(θ) (34)
where ∥a∥ and ∥b∥ are the respective magnitudes of vectors a and b. This procedure is visualized in Fig. 6,
where the inner product between vectors a and b may be viewed as a projection of one vector onto the other.
The inner product also satisfies the Cauchy-Schwarz inequality12,

12The Cauchy-Schwarz inequality, also known as the Cauchy-Bunyakovsky-Schwarz inequality, is named after
Augustin-Louis Cauchy, Viktor Bunyakovsky, and Hermann Schwarz. Augustin-Louis Cauchy first published the
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𝐛𝐛

𝐚𝐚

𝜃𝜃

𝐚𝐚 � 𝐛𝐛
𝐛𝐛

= 𝐚𝐚 cos 𝜃𝜃

𝐛𝐛

𝐚𝐚

𝜃𝜃

𝐜𝐜 = 𝐚𝐚 × 𝐛𝐛

Figure 6: The inner product between vectors a and b involves the concept of projecting one vector onto
another.

In terms of the set of (purely-real) vector elements ai and bi with i ∈ {1, 2, . . . , N} for real column vectors a
and b respective, the inner product can be computed by multiplying the transpose of a with b and is given as

a · b = a⊺b = [a1 a2 · · · aN ]


b1
b2
...

bN

 =
N∑

i=1
aibi (35)

Thus, we see that the inner product may be regarded as a multiply-accumulate, or MAC, operation. In
addition, the inner product can be used to determine whether two vectors are orthogonal.

Orthogonality and completeness in RN space
Orthogonality refers to the idea that two vectors are perpendicular to each other in a vector space. By
definition, two vectors a and b are orthogonal if their inner product is exactly zero so that a⊺b = b⊺a = 0.
Example 1: Consider two vectors in R2:

u =
[
1
2

]
and v =

[
2

−1

]
The inner product of u and v is

u · v = 1 · 2 + 2 · (−1) = 2 − 2 = 0

proving u and v are orthogonal in R2 space. Geometrically, this means there is an angle of exactly 90◦, or
π/2 radians, between them. The concept of orthogonality generalizes the notion of perpendicularity from 2D
or 3D Euclidean space to N -dimensional spaces.
An orthogonal basis for a vector space is a set of vectors that are mutually orthogonal and span the vector
space. If these vectors are also unit vectors (i.e., have a norm of 1), the basis is called an orthonormal basis.
Example 2: Consider the standard basis vectors in R3 space:

î =
[1

0
0

]
ĵ =

[0
1
0

]
k̂ =

[0
0
1

]
(36)

These vectors can easily be seen to be mutually orthogonal since î · ĵ = î · k̂ = ĵ · k̂ = 0, and furthermore they
each have norm

∥∥∥̂i
∥∥∥ =

∥∥∥ĵ
∥∥∥ =

∥∥∥k̂
∥∥∥ = 1. Thus, the set {̂i, ĵ, k̂} forms an orthonormal basis in R3.

inequality for sums in 1821, while the corresponding inequality for integrals was published by Viktor Bunyakovsky in
1859 and Hermann Schwarz in 1888.
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Completeness refers to a set of vectors being able to represent any vector in the space through a linear
combination. In other words, a set of vectors is complete if it spans the entire vector space. If a set of vectors
{v1, v2, . . . , vN } spans the vector space V , then any vector w ∈ V can be expressed as a linear superposition
of this basis:

w = c1v1 + c2v2 + · · · + cN vN

where c1, c2, . . . , cN are real scalar numbers.

Example 3: Consider the orthonormal basis vectors î and ĵ in R2 space. Since any vector w in this space can
be written as a linear combination w = âi + b̂j where a, b ∈ R, the set {̂i, ĵ} is complete in R2 by definition.
When a set of vectors is both orthonormal and complete, it is considered an orthonormal basis. This provides
a convenient way to express any vector in the space with straightforward computation of coefficients using
inner products.

Example 4: Given the orthnormal basis {̂i, ĵ, k̂} in R3 space from Example 2, any vector w =
[

a
b
c

]
in R3

can be written as

w =
[

a
b
c

]
=

[
a
0
0

]
+

[0
b
0

]
+

[0
0
c

]
= a

[1
0
0

]
+ b

[0
1
0

]
+ c

[0
0
1

]
= âi + b̂j + ck̂.

The coefficients a, b, and c can then simply be extracted using the inner product:

a = w · î = [a b c]
[1

0
0

]
= a

b = w · ĵ = [a b c]
[0

1
0

]
= b

c = w · k̂ = [a b c]
[0

0
1

]
= c

These properties carry over to complex vector spaces and are useful in quantum mechanics, where states are
often expressed in terms of orthonormal basis functions.

5.1.2 Vector notation and algebra in CN space

Additional algebra must be introduced if the vector elements are complex. By convention, a complex vector
u is written as a column vector of complex values ui ∈ C (in the CN space):

u =


u1
u2
...

uN

 (37)

Hermitian adjoint in CN space
We define the Hermitian adjoint of the complex vector u by taking the complex conjugate and transpose of
this vector:

u† = (u∗)⊺ = (u⊺)∗ = [u∗
1 u∗

2 . . . u∗
N ] (38)
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Note that for a purely-real vector v ∈ RN , the Hermitian adjoint is equivalent to just taking the transpose
since v∗ = v and therefore v† = v⊺.

Binary vector operations in CN space
The same RN space algebra of Eqns. (29)-(31) carries over to the CN space, in which the binary operations
of addition, subtraction, and multiplication are performed on the respective real and imaginary scalar
components of each vector element. Corresponding examples are provided below in Eqns. (39)-(41), for
(generally complex) scalar α and complex vectors u = a + ib and v = c + id where vectors a and c are the
real parts of u and v respectively, and vectors b and d are the imaginary parts of u and v respectively.
Addition and subtraction may be performed by separately adding the real and imaginary components of each
complex vector:

u ± v = (a + ib) ± (c + id) = (a ± c) + i (b ± d)

=


a1 ± c1
a2 ± c2

...
aN ± cN

 + i


b1 ± d1
b2 ± d2

...
bN ± dN

 =


(a1 ± c1) + i(b1 ± d1)
(a2 ± c2) + i(b2 ± d2)

...
(aN ± cN ) + i(bN ± dN )

 (39)

Scalar multiplication:

αu = α


u1
u2
...

uN

 =


α(a1 + ib1)
α(a2 + ib2)

...
α(aN + ibN )

 =


αa1 + iαb1
αa2 + iαb2

...
αaN + iαbN

 (40)

Hadamard multiplication:

u ⊙ v =


u1v1
u2v2

...
uN vN

 =


(a1 + ib1)(c1 + id1)
(a2 + ib2)(c2 + id2)

...
(aN + ibN )(cN + idN )

 =


(a1c1 − b1d1) + i(a1d1 + b1d1)
(a1c1 − b1d1) + i(a2d2 + b2d2)

...
(aN cN − bN dN ) + i(aN dN + bN dN )

 (41)

Inner product in CN space
Using the concept of Hermitian adjoint, the complex inner product of two complex vectors u and v is
computed as

u · v = u†v = [u∗
1 u∗

2 · · · u∗
N ]


v1
v2
...

vN

 =
N∑

i=1
u∗

i vi (42)

Magnitude and unit vectors in CN space
Whether a vector is purely real or complex, its magnitude is strictly a real number. Similarly to the case of
RN space, we can compute the 2-norm for a complex vector by first taking the complex inner product of the
vector with itself. This is done by taking Eqn. (42) and setting v = u:

u · u = u†u = [u∗
1 u∗

2 · · · u∗
N ]


u1
u2
...

uN

 =
N∑

i=1
u∗

i ui =
N∑

i=1
|ui|2 (43)
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where the definition of complex number (scalar) magnitude in Eqn. (3) is used. Thus, the 2-norm formula
given in Eqn. (32) is modified accordingly for complex vectors:

∥u∥ =
√

u†u =
√

u∗
1u1 + u∗

2u2 + · · · + u∗
N uN =

√
|u1|2 + |u2|2 + · · · + |uN |2 (44)

Finally, normalization of a complex vector u requires that ∥u∥ = 1. Normalization is performed in the same
manner as Eqn. (33), which involves dividing the complex vector u by its magnitude,

û = u
∥u∥

(45)

resulting in a unit vector û in the direction of u within the CN space.

Orthogonality and completeness in CN space
As with RN space, orthogonality and completeness are incredibly useful properties when working with complex
vector spaces. Just like purely-real vectors, two complex vectors are considered orthogonal if their (complex)
inner product is zero so that u†v = v†u = 0. A set of complex vectors is considered complete if any vector in
the space can be expressed as a linear combination of that set. This can manifest, for instance, as a set of
purely real vectors simply multiplied by complex coefficients. The orthonormal (real) vectors {̂i, ĵ} form a

basis for C2, for example, since any complex vector z =
[
z1
z2

]
can be expressed as

z = z1 î + z2ĵ

where z1 and z2 are complex numbers. In general, any orthonormal basis in CN consists of vectors that are
orthogonal, normalized, and complete.
Example 4: Consider the complex vectors v1 and v2 and determine whether they form an orthonormal
basis:

v1 = 1√
2

[
1
i

]
, v2 = 1√

2

[
1
−i

]
We verify orthonormality by checking normality (v†

1v1 and v†
2v2) and orthogonality (v†

1v2):

v†
1v1 = 1

2 [1 −i]
[
1
i

]
= 1

2(1 + 1) = 1 ✓

v†
2v2 = 1

2 [1 i]
[

1
−i

]
= 1

2(1 + 1) = 1 ✓

v†
1v2 = 1

2 [1 −i]
[

1
−i

]
= 1

2(1 − 1) = 0 ✓

Thus, complex vectors v1 and v2 span the C2 space and the set {v1, v2} forms an orthonormal basis for C2.

Homework Problems: Vectors

Homework Problems: The Poynting vector

5.2 Matrices

Learning objectives:

• Become familiar with matrix notation.
• Add, subtract, and multiply matrices.
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• Compute the determinant of a matrix.
• Calculate the cross product of vectors.
• Take the inverse of a matrix.
• Understand the properties and algebra of linear operators, including commutativity, complex conju-

gate, transpose, and Hermitian adjoint.

5.2.1 Matrix notation and algebra

Matrices are rectangular arrays of numbers, symbols, or expressions arranged in rows and columns, widely
used to solve systems of linear equations and to perform linear transformations. A matrix is typically
denoted by a bolded capital letter and can be represented as A = [aij ], where i and j indicate the row and
column positions of an element in the matrix. Common matrix operations include addition, subtraction,
multiplication, and finding the determinant and inverse in the case of square matrices. Matrix multiplication
is particularly useful for performing linear transformations and solving linear systems. As with numbers
and vectors, matrices may be added, subtracted, and scaled. However, as with vectors, the multiplication of
matrices involves special rules. In this section, we provide a brief review of matrix arithmetic along with
examples.
As in the case of vectors, we begin with the concept of transposing a matrix, which is a basic operation in
linear algebra. Transposing a matrix involves rearranging the rows of a matrix into columns (or vice versa),
which can be best visualized by flipping the matrix over its diagonal in the case of a square (m = n) matrix
as depicted in Fig. 7(a) or in general, swapping the row and column indices such that each row becomes a
column and vice versa as depicted in Fig. 7(b) for a non-square (m ̸= n) matrix.

𝐀𝐀⊺ =
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

⊺

=
𝑎𝑎11 𝑎𝑎21 𝑎𝑎31
𝑎𝑎12 𝑎𝑎22 𝑎𝑎32
𝑎𝑎13 𝑎𝑎23 𝑎𝑎33

(a) (b)

𝐀𝐀⊺ =
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23

⊺
=

𝑎𝑎11 𝑎𝑎21
𝑎𝑎12 𝑎𝑎22
𝑎𝑎13 𝑎𝑎23

Figure 7: (a) The transpose of a square matrix (in this case, a 3 × 3 matrix) may be viewed as swapping
the upper (highlighted in blue) and lower (highlighted in red) triangular submatrix elements by rotating the
matrix about its diagonal, resulting in the swapping of off-diagonal matrix elements. (b) Example of the
transpose operation on a non-square 2 × 3 matrix, resulting in a 3 × 2 matrix. The transpose operation may
be performed on matrices of arbitrary dimension and essentially swaps the matrix element indices. In this
example, the first-row elements (highlighted in blue) become the first column, and the second-row elements
(highlighted in red) become the second-column elements.

Given a matrix A of size m×n, where m is the number of rows and n is the number of columns, the transpose
of A, denoted as A⊺, is a new matrix of size n × m. In particular, the elements of A⊺ are defined such that
the element at row i and column j in A⊺ is the element at row j and column i in the original matrix A.
Thus, for A = [aij ], we can define the transpose as

A⊺ = [aji] (46)

There are several important and useful properties of transposed matrices. If A is a symmetric square matrix,
then A⊺ = A. In addition, the transpose of a transposed matrix is equal to the original matrix; that is,
(A⊺)⊺ = A. Furthermore, the transpose operation is distributive, meaning that the transpose of the sum of
two matrices is equal to the sum of their transposes so that

(A + B)⊺ = A⊺ + B⊺ (47)

Finally, the transpose of a product of matrices is equal to the product of their transposes in reverse order;
that is,

(AB)⊺ = B⊺A⊺ (48)
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The addition of matrices is commutative, that is, for two matrices A and B, A+B=B+A. However, whether
two matrices are added or subtracted, they must have the same dimensions. That is, the number of rows m
and columns n must match. Thus as an example, for a set of 2 × 2 matrices A and B,

A ± B =
[
a11 a12
a21 a22

]
±

[
b11 b12
b21 b22

]
=

[
a11 ± b11 a12 ± b12
a21 ± b21 a22 ± b22

]
(49)

One type of multiplication of matrices is known as the Hadamard, or element-wise, product, which is also
defined for two matrices of identical dimensions. As with multiplication of numbers, the Hadamard product
is commutative. Using the 2 × 2 matrices above, the Hadamard product would be computed as follows,

A ⊙ B =
[
a11 a12
a21 a22

]
⊙

[
b11 b12
b21 b22

]
=

[
a11b11 a12b12
a21b21 a22b22

]
(50)

This element-wise operation can be quite useful when performing numerical operations on large arrays of
numbers.
The more common type of matrix product is a multiply-accumulate (MAC) operation which is not commutative
and requires that the number of columns of the left matrix match the number of rows of the right matrix. In
general, for an m × n dimensional matrix A and an n × p dimensional matrix B, the matrix C resulting
from the product C = AB will have dimension m × p. As an example, consider a 2 × 2 matrix A and a
2 × 2 matrix B. The matrix product AB is then calculated by taking the first row of A and multiplying the
various column elements with the respective set of row elements of the first column of B. These products are
then added to obtain the first row, first column element value of the resulting product matrix. Thus, we have

AB =
[
a11 a12
a21 a22

] [
b11 b12
b21 b22

]
=

[
(a11b11 + a12b21) (a11b12 + a12b22)
(a21b11 + a22b21) (a21b12 + a22b22)

]
(51)

5.2.2 Outer product

A matrix can also be formed from two vectors by computing the outer product. As opposed to an inner product
in which a row vector is multiplied with a column vector, the outer product is performed by multiplying a
column vector with a row vector, resulting in a matrix. For an m × 1 complex vector u and an n × 1 complex
vector v where

u =


u1
u2
...

um

 and v =


v1
v2
...

vn

 (52)

the outer product is defined as:

uv† = u (v∗)⊺ = u (v⊺)∗ =


u1
u2
...

um

 [v∗
1 v∗

2 . . . v∗
n] =


u1v∗

1 u1v∗
2 · · · u1v∗

n
u2v∗

1 u2v∗
2 · · · u2v∗

n
...

... . . . ...
umv∗

1 umv∗
2 . . . umv∗

n

 (53)

Thus, we see that the resulting matrix has dimensions m × n.

5.2.3 Tensor product

Tensor products, also known as Kronecker products, are mathematical operations that extend the concept of
an outer product of vectors to matrices. Such an operation is widely used in the description of quantum
information processing as well as classical signal processing. The tensor product combines the dimensionality
of two vectors to create a higher dimensional space.
If column vector a has N1 elements (a1, . . . , aN1) and column vector b has N2 elements (b1, . . . , bN2), the
product state a ⊗ b is also a column vector of length N1 × N2,
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a ⊗ b =


a1b
a2b

...
aN1b

 =



a1b1
a2b2

...
a1bN2
a2b1
a2b2

...
aN1bN2


(54)

For example,

[
a1
a2

]
⊗

[
b1
b2

]
=

 a1b1
a1b2
a2b1
a2b2

 .

If a matrix A = [aij ] with dimensions N1 × N1 and matrix B = [bij ] with dimensions N1 × N2, then the
tensor product is

A ⊗ B =

 a11B . . . a1N1B
...

...
aN11B . . . aN1N1B

 (55)

For example,

[
a11 a12
a21 a22

]
⊗

[
b11 b12
b21 b22

]
=

[
a11B a11B
a21B a22B

]
=

 a11b11 a11b12 a12b11 a12b12
a11b21 a11b22 a12b21 a12b22
a21b11 a21b12 a22b11 a22b12
a21b21 a21b22 a22b21 a22b22


5.2.4 Matrix determinants

For a 2 × 2 matrix A, the determinant is given by

det(A) ≡ |A| =
∣∣∣∣a11 a12
a21 a22

∣∣∣∣ = a11a22 − a12a21 (56)

For a 3 × 3 matrix A, the determinant is given by

det(A) ≡ |A| =
∣∣∣∣∣a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣ = a11

∣∣∣∣a22 a23
a32 a33

∣∣∣∣ − a12

∣∣∣∣a21 a23
a31 a33

∣∣∣∣ + a13

∣∣∣∣a21 a22
a31 a32

∣∣∣∣
= a11M11 − a12M12 + a13M13

= a11(a22a33 − a23a32) − a12(a21a33 − a23a31) + a13(a21a32 − a22a31)

(57)

where Mij is the minor of the matrix element aij . These three minors (determinants) are computed from
2 × 2 submatrices which do not share the row and column indices of each element in the first row. This
procedure can be generalized to larger N × N matrices, in which a negative sign is used for every other
column. Thus in general, the determinant |A| of a square N × N matrix A = [aij ] may be computed in
terms of a sum involving the minors:

|A| = det ([aij ]) =
N∑

j=1
(−1)1+jM1j (58)
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where, for A = [amn] with m, n ∈ {1, 2, . . . , N}, the minor Mij = det ([am ̸=i,n̸=j ]) is the determinant of the
submatrix in which i ̸= m and j ̸= n.

Explore More: Cross product

5.2.5 Inverse of a matrix

Understanding how to find the inverse of a matrix is an important concept in linear algebra, with extensive
applications in engineering. While the inverse of a matrix is not guaranteed to exist, it can be a powerful tool
used for solving systems of linear equations, analyzing electrical circuits, optimization of a variety of systems,
and many other applications. The inverse of a square matrix A is another square matrix, denoted as A−1,
such that when A is multiplied by A−1, the result is the identity matrix 1 (sometimes written as I or 1̂),
such that

A−1A = AA−1 = 1 (59)

The identity matrix is defined for any size n × n and consists of ones on the diagonal and zeros elsewhere. Its
general form is given as

1 =



1 0 · · · · · · 0

0 1
...

... . . . ...

... 1 0
0 · · · · · · 0 1

 (60)

Importantly, the identity matrix serves as the multiplicative identity in matrix multiplication. For any n × n
matrix A,

1A = A1 = A (61)

Thus, multiplying any matrix by the identity matrix leaves the original matrix unchanged. Two conditions
required for a matrix to have an inverse are that it must be square and the determinant of the matrix must
be non-zero. If the determinant is zero, the matrix is referred to as singular with no defined inverse. There
are several methods that may be used to compute the inverse of a matrix, including Gaussian elimination,
analytic, and decomposition methods. Additional details regarding these methods may be found in the
following Explore More appendices.

Explore More: Gaussian elimination

Explore More: Analytic solution to matrix inversion

Since manually computing the inverse of an invertible matrix quickly becomes impractical with respect to the
matrix size, it is best to either automate the procedure with a computer program or use an optimized library
function in a language such as MATLAB or Python. In MATLAB, for example, the inverse of a matrix
may be computed using the inverse function, inv(), such that A−1 = inv(A). If the inputted matrix A is
Hermitian such that A† = A, this function performs an LDL decomposition and otherwise it performs an
LU decomposition; these inversion methods are described in greater detail in their respective Explore More
appendices below. The results are then used to form a linear system whose solution is the matrix inverse
inv(A).

Explore More: LU decomposition
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Explore More: LDL decomposition

It is worth noting that forming the explicit inverse of a matrix is rarely necessary. A common mistake is
using the inv() function in MATLAB to solve a linear system of equations given by Ax = b, in which A is
the matrix of linear coefficients, x is the vector of unknowns, and b is the vector of constants. In MATLAB
it is recommended to use the matrix backslash operator x=A\b which is more efficient and accurate than
x=inv(A)*b since other methods, such as Gaussian elimination, may be used to produce the solution without
the need to explicitly generate the inverse.
5.2.6 Eigensystem of a matrix

A matrix eigensystem is a concept in linear algebra involving the relationship between a matrix and its
eigenvalues and eigenvectors. Understanding eigensystems is crucial for solving many problems in engineering,
physics, and applied mathematics.

Explore More: Eigenvalues and eigenvectors

Explore More: Norm of a matrix

Explore More: Singular value decomposition

Homework Problems: Matrices

6 Regression analysis

Learning objectives:

• Explicitly perform linear regression.
• Understand the concept of coefficient of determination as a measure for fit quality.
• Use prior information about a physical system to build good models.
• Understand the limitations of polynomial regression.

Regression analysis is a powerful statistical method used to examine the relationship between a dependent
variable and one or more independent variables. The primary goal is to model the dependent variable based
on the independent variables, allowing for predictions, inference about the relationships, and adjustment of
effects based on the data.
Curve fitting is considered a particularly important and ubiquitous application for extracting knowledge from
experimental data. In curve fitting, a set of n points {xi, yi} where i ∈ {1, 2, ..., N} is given and we wish to
determine a function f(x) such that f(x1) ≈ y1, ..., f(xN ) ≈ yN . This process can be performed using the
least squares method13 to estimate the parameters of a regression model, which are found by minimizing
the sum of the squared differences (known as residuals) between observed values and those predicted by the
model. Thus, least squares can be used to find the line or curve that best fits the data according to the
criterion of minimizing the sum of the squared residuals.
While a polynomial model of a sufficiently high degree may be useful for characterizing the behavior of data
in many cases, ultimately the choice of fit function which is most appropriate for modeling the data is largely
dependent on the underlying mechanisms which generate the data. Automating the selection of the most
appropriate basis function is left for future discussion; however, we will explore the impact made by selecting
different types of functions in this section.

13Kreyszig, E., Advanced Engineering Mathematics 10th Ed., John Wiley & Sons, Inc. (2011).
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6.1 Least squares

The least squares method determines the best-fitting curve or line to a given set of data points by minimizing
the sum of the squares of the differences (termed residuals) between the observed values and those predicted
by the model.
Formally, we begin by considering a series of observations strictly described by real numbers (xi, yi) for
i ∈ {1, 2, . . . , N}, and a function f which could be linear, polynomial, or any other type parameterized by a
parameter vector a such that f(x, a) predicts the value of y. The goal of least squares fitting is to find the
parameter vector a with elements aj where j ∈ {1, 2, . . . , M} that minimizes the cost function C. Using the
L2 norm (least squares), the cost function to be minimized can be written as

C(a) =
N∑

i=1
r2

i (a) =
N∑

i=1
[f(xi, a) − yi]2 (62)

where ri is the ith residual, yi is the ith observed value, f(xi, a) is the predicted value from the model, and
the residuals are squared to ensure they are positive as well as to emphasize larger differences. Note that
the residual exponent of 2 in Eq.(62) refers to the L2 norm, which is commonly used since it guarantees
differentiability while measuring the shortest distance from the absolute smallest value the cost function C(a)
can take: zero. Thus, the function C(a) quantifies the discrepancy between the observed data and the model.
By minimizing C, we find the values of a that make f(x, a) as close as possible to yi for all i. The resulting
estimate for the parameter vector a is known as the least squares estimate, which is the solution to the least
squares problem.
By taking the gradient of the argument in Eq.(62) and setting this gradient to zero, we can construct gradient
equations for the set of model parameters aj . Thus,

∂C

∂aj
= 2

N∑
i=1

ri
∂ri

∂aj
= 0 (63)

Since ri = f(xi, a) − yi, this becomes

∂C

∂aj
= 2

N∑
i=1

ri
∂f(xi, a)

∂aj
= 0 (64)

where j ∈ {1, 2, . . . , M}. Although any given problem might require particular expressions for the model
selected and its partial derivatives, these gradient equations apply to all least squares problems.

6.2 Linear least squares

To solve the least squares problem efficiently, different mathematical models are employed depending on
the nature of the function f that models the relationship between the dependent and independent variables.
While numerical methods are generally used due to the complexity and dimensionality of the problem, it
is possible to construct analytical solutions for models where f is a linear function of the parameters like
f(x, a) = Xa, in which X is a matrix of input data and a is a vector of coefficients. For some applications in
signal processing, such as digital image processing, there may exist many features (high dimensionality) but
relatively few data points. Such scenarios can make the problem more challenging and prone to overfitting.
As a straightforward example, we can construct a quadratic polynomial model f(x, a) = a0 + a1x + a2x2

to fit a set of observed data x with parameter vector a = [a0 a1 a2]. This model is linear with respect to
the model parameters ai. A simple example of a nonlinear model - that is, a model that is nonlinear with
respect to the parameters that we seek to optimize - would be

f(x, a) = a0 + a1x + a2x2

a3
(65)

However, in such a case, we can simply construct a model that is linear with respect to a new set of coefficients
built from the original parameters:
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f(x, a) =
(

a0

a3

)
+

(
a1

a3

)
x +

(
a2

a3

)
x2 = a′

0 + a′
1x + a′

2x2 = f(x, a′) (66)

This is an example of dimensionality reduction by simplifying the model without loss of generality. For
models that are linear with respect to a, then, we can solve the minimization problem given by Eq.(64) and
derive an analytic solution for the model parameters a that does not require differentiation.
Starting with a matrix of input data X, the optimal parameter vector a minimizes the sum of squared
differences between observed outcomes y and model predictions Xa, leading to the problem formulation

min
a

|Xa − y|2 (67)

This is known as the normal equation of least squares, and the parameter vector a may be found analytically
for the linear case, assuming the matrix X is non-singular, that is, it has a non-zero determinant and therefore
a defined inverse.
We start by expanding the argument of the minimization problem in Eq.(67):

|Xa − y|2 = (Xa − y)⊺ (Xa − y)
= (Xa)⊺ Xa − (Xa)⊺ y − y⊺Xa + y⊺y
= a⊺X⊺Xa − a⊺X⊺y − y⊺Xa + y⊺y

(68)

By taking the gradient (partial derivative) of Eq.(68) with respect to the parameter vector a and setting the
result to zero, we can solve for the normal equations:

∂

∂a (a⊺X⊺Xa − a⊺X⊺y − y⊺Xa + y⊺y) = −2X⊺y + 2X⊺Xa = 0

⇒ 2X⊺Xa = 2X⊺y ⇒ a = (X⊺X)−1 X⊺y
(69)

6.2.1 Explicit analytic solutions for regression coefficients

For a set of n data points {xi, yi} where i ∈ {1, 2, ..., n}, we can utilize the least squares method to analytically
fit a polynomial of degree N to the set of data and extract explicit solutions for the set of regression coefficients.
To fit a polynomial of degree N to data, the condition n ≥ N must be satisfied. The regression coefficients
(polynomial coefficients) may be found analytically using Gaussian elimination with partial pivoting on the
following linear equation. In general, we have

X · a = Y (70)

where a is a vector with the regression coefficients as its elements; that is, for a polynomial of degree N , we
have the following fit function:

yfit = a0 + a1x + a2x2 + · · · + aN xN (71)

with the coefficient vector given by

a⊺ = (a0, a1, a2, · · · , aN ) (72)

The elements of matrix X are given by

Xkl =
{

n, if k = l = 1.∑n
i=1 xk+l−2

i , otherwise. (73)

where {k, l} ∈ {1, 2, ..., N + 1}, and the elements of vector Y are given by
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Yk =
n∑

i=1
yix

k−1
i (74)

We can solve for a by computing the inverse of X:

a = X−1 · Y (75)

Example: As an example, we can write out the various matrices and vectors to fit a 2nd-order polynomial
(yN with N = 2). Thus, the fit function to be used for polynomial regression is given by

y2 = a0 + a1x + a2x2 (76)

The regression coefficients a0, a1, and a2 can be computed by solving Eq. (75) for a; using Eqs. (72)-(74), we
can explicitly write out the following set of equations:

X · a =


n

∑
xi

∑
x2

i∑
xi

∑
x2

i

∑
x3

i∑
x2

i

∑
x3

i

∑
x4

i

 ·


a0

a1

a2

 =


∑

yi∑
yixi∑
yix

2
i

 = Y, (77)

where the sums are over the set of n data points. Thus, the coefficients can be explicitly computed by
inverting X:

a = X−1 · Y ⇒


a0

a1

a2

 =


n

∑
xi

∑
x2

i∑
xi

∑
x2

i

∑
x3

i∑
x2

i

∑
x3

i

∑
x4

i


−1

·


∑

yi∑
yixi∑
yix

2
i

 (78)

Finally, in regression analysis, a useful measure of fit is the coefficient of determination, R2. This measure
represents the proportion of the variance in the dependent variable that is predictable from the independent
variable(s). Additional details may be found below.

Explore More: Coefficient of determination

6.2.2 Noiseless vs. noiseless data

6.2.3 Leveraging prior knowledge

Incorporating prior knowledge about a physical system into regression and statistical analysis enhances the
robustness, interpretability, and predictive power of the models developed. Depending on the system being
studied, prior knowledge may encompass known sources of noise, historical data trends, and established
physical laws. As such, one can use prior knowledge to guide the selection of appropriate variables, inform
the functional form of the model, and constrain the parameter space. This approach can not only capture
the empirical relationships present in the observed data, but it can also align with the underlying physical
principles governing the system.
By embedding well-established physical laws or constraints into the model, one can reduce the complexity of
the model or introduce regularization terms that prioritize solutions consistent with prior knowledge. This
not only enhances the model’s performance on unseen data but also facilitates the interpretation of the
results, ensuring that the outcomes are physically plausible and actionable. In engineering and the natural
sciences, where decisions and predictions must often be made under uncertainty and the stakes for accuracy
can be high, the integration of prior knowledge into statistical models is not only beneficial — it is essential
for advancing understanding and making reliable predictions.
A straightforward example of using prior knowledge with linear regression considers the current-voltage
characteristics of a Shockley diode. The ideal Shockley diode equation that models the current-voltage
relationship of a diode under a forward or reverse voltage bias is
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I = I0

(
e

eVbias
kBT − 1

)
(79)

where I is the current flowing through the diode, Vbias is the voltage across the diode, e is the electron charge,
and kBT is the thermal energy where kB is Boltzmann’s constant and T is the absolute temperature of the
diode, and I0 is the reverse-bias saturation current at temperature T .
For this example, we assume ignorance of the exponential nature of the diode equation and collect six
measurements of the current I(Vbias) with three positive and three negative bias voltage values across the
diode, as shown in Fig. 8.
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Figure 8: Data points are shown as black dots. For voltage values Vbias/kBT ∈ {−3.0, −2.8, −2.6, 2.6, 2.8, 3.0},
the respective measured current I values are {−0.9502, −0.9392, −0.9257, 12.4637, 15.4446, 19.0855} in units
of pA/cm2. Parameters used are T = 300 K, I0 = 10−12 A/cm2. MATLAB code used is diode_fitting.m.
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Figure 9: (a) R2 values resulting from fitting the measured Vbias/VT = {−3.0, −2.8, −2.6, 2.6, 2.8, 3.0}. For
N ≥ n − 1, the maximal R2 = 1 value is achieved with N = 5, resulting in overfitting. (b) The best fit for
N < (n = 6) is found with a 5th-order model (dashed red curve) with coefficient of determination R2 = 1
and coefficients a0 = 0.9959, a1 = 1.1305, a2 = 0.1303, a3 = 0.1178, a4 = 0.0852, a5 = 0.0142, with
the (noiseless) Shockley diode curve I(Vbias) shown in black for comparison. Parameters are as in Fig. 8.
MATLAB code used is diode_fitting.m with zero-padding parameter nzero (nzero) = 0 on line 21.
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For the sake of simplicity, we also assume the system to be noiseless such that there is no uncertainty in the
measurement data. Because the data trend appears to follow a smooth curve, we can use linear regression to
try fitting a polynomial model and capture the general behavior of the diode. To extract the coefficient of
determination R2 and coefficient vector a for a hypothesized Nth-order polynomial model, we can numerically
implement equations (75) and (146) in MATLAB or in any other scientific computing language. These are
equivalent to using MATLAB’s polyfit() function.
The numerical implementation of these equations is straightforward, and MATLAB may be used to demonstrate
polynomial regression. In general, for n points, you can fit a polynomial of degree n − 1 to exactly pass
through the points. This is observed for the case of the N = 5 polynomial fit y5 in Fig. 9(b), which has the
maximal coefficient of determination value R2 = 1.
It is important to note that overfitting will occur for polynomial models of order N ≥ (n − 1) data points,
resulting in spurious high values of R2. If we plot the first polynomial model which results in R2 = 1 as a
function of voltage bias (as shown in Figs. 9(b) and 11(a)), non-zero current is predicted when the voltage
bias is zero, implying the non-physical existence of free energy in the system, despite the fit measure R2

indicating an optimal fit to all available data points.
We can use our knowledge of energy conservation as prior information and force the polynomial model to
pass through (Vbias, I) = (0, 0) by zero-padding, that is, including additional, experimentally unmeasured
data points at (0, 0). Doing so weights the regression coefficients such that a0 → 0 as the number of zero
points nzero are increased while the remaining coefficients are modified to minimize the difference between the
Nth-order polynomial model and the remaining data points. Using this prior knowledge about the system
results in a significantly better fit as far as approximating Eqn. (79), as shown in Fig. 10(b) and Fig. 11(b).
Finally, it is important to note that arbitrarily adding zero values to a dataset for linear regression without a
clear, contextually relevant justification can distort the analysis, leading to incorrect interpretations.
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Figure 10: (a) R2 values resulting from fitting the data set from Fig. 8 but now with zero-padding in which
nzero = 103 data points at (Vbias, I) = (0, 0) are included to ensure that the fitted curve goes through zero. An
overall better fit is achieved despite R2 < 1 for N = 5 as there are now 7 total unique data points. (b) With zero-
padding, the 5th-order model y5 (dashed red curve) results in a better fit with fit measure 1−R2 = 7.21×10−7

and coefficients a0 = 5.4943 × 10−7, a1 = 1.1305, a2 = 0.3854, a3 = 0.1178, a4 = 0.0691. a5 = 0.0142, and
the noiseless Shockley diode curve I(Vbias) is shown in black for comparison. Parameters are as in Fig. 8.
MATLAB code used is diode_fitting.m with zero-padding parameter nzero (nzero) = 103 on line 21.
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Figure 11: (a) Zoomed-in view of Fig. 9(b) comparing polynomial fit with analytic diode function. Note that
for Vbias = 0, the polynomial model predict non-zero current, implying energy non-conservation. Parameters
are as in Fig. 8 with zero-padding parameter nzero = 0. (b) Zoomed-in view of Fig. 10(b) showing how
zero-padding forces the fitted model to go through zero, resulting in significantly better fits when compared to
the idealized diode model. Parameters are as in Fig. 8 with zero-padding parameter nzero = 103. MATLAB
code used is diode_fitting.m.

7 Introduction to photons

Photons are elementary particles of light, which are crucial to understanding both classical optics and quantum
mechanics. Unlike everyday objects, photons do not have mass and always travel at the speed of light in a
vacuum. They are the carriers of the electromagnetic force, meaning that whenever electromagnetic energy is
transferred, photons are involved.
Photons can exhibit key features that distinguish them from everyday classical objects. One such feature is
wave-particle duality since photons can exhibit particle-like and wave-like behavior. As particles, they can be
counted and interact with matter in a discrete manner. However, they also exhibit wave-like behavior, such
as self-interference and diffraction, which are characteristics of waves. Wave-particle duality is central to
understanding how light behaves in different contexts, including optics and quantum technologies. Unlike
classical particles, photons can be identical and indistinguishable. They can have identical state characteristics,
including polarization, wavelength, and phase. This state can be mathematically described using a vector.
Linearity allows for the linear combination, or superposition, of photon state vectors. For example, if a
photon can exhibit two sets of physical characteristics respectively described by vectors v1 and v2, then the
photon can also exist as a linear superposition, represented by a linear combination of the two vectors so that
v3 = av1 + bv2, where, in general, a and b are complex scalar coefficients.
A quantized particle with wave properties moving from point a to b in free space might take a path sn

and arrive at b with an associated amplitude magnitude An and phase ϕn, where n labels the path. If the
particle leaves point a at time t = 0 then the total quantum field amplitude at point b at time t is the sum of
amplitudes Atot(t) = A1eiks1−iωt + A2eiks2−iωt + . . .. In quantum mechanics the probability of detecting the
particle at position b is Pb(t) = A∗

totAtot = |Atot|2, which is the magnitude of the total probability amplitude
Atot squared.
As shown in Fig. 12, the shortest path between a and b for a particle of energy E = ℏω moving in free space
is s(n0). A path such as s(n1) might have a small difference in length compared to s(n0) and so almost the
same phase at b as the particle that took path s(n0). A different path such as s(n2) is much longer compared
to s(n0) and hence can have a very different phase at b.
The paths between a and b are s(n), where n labels each path in the ordered sequence of increasing path
length. For the case being considered, the particle is free to propagate at energy ℏω using any of the infinite
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a bs(n0)
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y

Fig. 1.13 Illustration of paths s a particle can take in free space between position a and b. The
shortest path is a straight line, s(n0). Other paths such as s(n1) can make small deviations from
s(n0) and so have almost the same phase at b as s(n0). Paths such as s(n2) are much longer
compared to s(n0) and hence can have a very different phase at b.

each path has the same amplitude magnitude A0 and so the total probability amplitude
at position b is an integral over all paths. The resulting path integral12 is

Atot = A0e
−iωt

∫
eiks(n)dn. (1.13)

Because s(n0) has the minimum length corresponding to a straight-line path, then

ds(n0)

dn
= 0. (1.14)

Expanding s(n) in a Taylor series for small variations in path length about this minimum
results in

s(n) = s(n0) +
ds(n0)

dn
(n − n0) + O

(
(n − n0)

2
)
. (1.15)

Hence, to first order, all paths near s(n0) have the same length and phase and the phases
directly add in the integral to make a large contribution to Atot. Other paths can result
in phases that vary considerably and that, when added, tend to cancel each other out.
It is in this way, and in contrast to the classical case, that quantum mechanics allows a
particle moving between point a and b in free space to explore all paths.

While this path integral description shows how the classical straight-line path of a
particle in free space moving between point a and b emerges from the sum of all quantum
paths, in general, the method is not an efficient way to solve practical problems and so a
different approach is needed.

The development of a theory powerful and efficient enough to describe the properties
of electrons, atoms, and other quantized particles was first developed by Heisenberg.13

Even though this work, which was published in 1925, is insightful and interesting, a more

12R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, New York, McGraw-
Hill, 1965 (ISBN 978-0-07-020650-2).

13W.Heisenberg, Zeitschrift für Physik 33, 879 (1925).
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Figure 12: Illustration of paths s a particle can take in free space between position a and b. The shortest
path is a straight line, s(n0). Other paths such as s(n1) can make small deviations from s(n0) and so have
almost the same phase at b as s(n0). Paths such as s(n2) are much longer compared to s(n0) and hence can
have a very different phase at b.

number of allowed paths between a and b. In free space, each path has the same amplitude magnitude A0 and
so the total probability amplitude at position b is an integral over all paths. The resulting path integral14 is

Atot = A0e−iωt

ˆ
eiks(n)dn (80)

Because s(n0) has the minimum length corresponding to a straight-line path, then

ds(n0)
dn

= 0 (81)

Expanding s(n) in a Taylor series for small variations in path length about this minimum results in

s(n) = s(n0) + ds(n0)
dn

(n − n0) + O((n − n0)2) (82)

Hence, to first order, all paths near s(n0) have the same length and the phases directly add in the integral
to make a large contribution to Atot. Other paths can result in phases that vary considerably and that,
when added, tend to cancel each other out. It is in this way, and in contrast to the classical case, quantum
mechanics allows a particle moving between point a and b in free space to explore all paths.
While this path integral description shows how the classical straight-line path of a particle in free space
moving between point a and b emerges from the sum of all possible quantum paths, in general, the method is
not an efficient way to solve practical problems and so a different approach is needed.

7.1 An experiment to prove the photon exists

Many years after the initial suggestion that light is quantized the first laboratory experiments were performed
that proved the existence of the photon. Famously, Kimble, Dagenais, and Mandel published a paper in 1977
showing that light is made up of discrete photons, each of which can create a single “click” in a detector.15 In
the 1980’s Grangier, Roger, and Aspect were able to refine these experiments16 and also show the interference
of a single photon, thereby demonstrating in complementary experiments the particle and wave nature of the
photon.

14R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, New York, McGraw-Hill, 1965 (ISBN
978-0-07-020650-2).

15H. J. Kimble, M. Dagenais and L. Mandel, Phys. Rev. Lett. 39, 691 (1977).
16P. Grangier, G. Roger and A. Aspect, Europhys. Lett. 1, 173 (1986).
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Figure 13: An optical source emits single photons that are incident on an ideal, lossless, symmetric, 50:50
beam splitter. Single-photon detectors D1 and D2 are placed at the two output ports of the beam splitter.
Because the photon is an indivisible elementary particle it must either be detected by D1 or D2, but not
both.

It is possible to perform experiments similar to those of Kimble, Dagenais, and Mandel using laser diode
based single-photon sources, fiber-optic components, and single-photon detectors as illustrated in Fig. 13. An
optical source emits single photons that are, on average, spaced apart in time by ⟨τph⟩. The photon flux is
incident on an ideal, lossless, symmetric, 50:50 beam splitter with linear response. Single-photon detectors
D1 and D2 are placed at the two output ports of the beam splitter. In the simplest configuration the optical
path length between the beam splitter output port and the associated detector is the same and each detector
response time is very much smaller than ⟨τph⟩. The photon path taken through the beam splitter can only be
inferred after it is detected by D1 or D2. The inferred photon path selection is purely random and hence
non-causal. The photon is either detected by D1 or D2, but not both, and it is fundamentally not known
beforehand at which output port the photon will be detected. When properly implemented, the experiment
reveals that there are no coincidence counts between the two detectors thereby proving that the photon is an
indivisible quantized particle and therefore elementary.
The absence of single-photon coincidence counts in the experiment is something that cannot be explained
by a classical wave model of light. Maxwell’s electromagnetic waves appear at both detectors at the same
time and so give rise to coincidence detection - something that is not observed experimentally. A classical
description using Maxwell’s equations is accurate when there are a large number of incoherent photons
associated with a particular electromagnetic field. If there are very few photons, special conditions involving
identical indistinguishable photons, or a coherent superposition of photons, then a quantum description is
appropriate.

7.2 Random number generation and stochastic computing

A single photon incident on an ideal, lossless, symmetric, 50:50 beam splitter with linear response has an
exactly 50% chance of being detected at one of the two output ports. This pure random behavior is guaranteed
by quantum mechanics and can be used as a mechanism to generate random numbers for applications that
include computation.
In stochastic computing, numbers are represented as probabilities p of a binary 1 or 0 signal in a clocked
bit-stream of length nbits. As nbits → ∞ the average value of the signal is p distributed in the interval [0, 1].
A circuit that can perform multiplication followed by addition on stochastic data is illustrated in Fig. 14.
Since basic linear algebra operations involve multiplication of matrix A with vector s, stochastic computing
might be tasked with computing both x = As and s = A−1x. For the simplest 2 × 2 matrix, x = As may be
written as

[
x1
x2

]
=

[
a11 a12
a21 a22

] [
s1
s2

]
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so that evaluation of x1 = a11 × s1 + a12 × s2 requires multiplication and addition (also known as multiply-
accumulate, or MAC). In the limit nbits → ∞, the output of the AND function on stochastic input streams
a11 and s1 is the product of probabilities p(a11) and p(s1). The sum of the two AND outputs is found by
multiplexing using a select (SEL) that has a random value of binary 1 or 0 each clock cycle. In this way, the
average value of the MAC output is scaled to fall in the interval [0,1].

 MUXAND

SEL

s1 s2a11 a12x1

0

1
=

a11

a12

s1

s2

s1a11

s2a12

+

Figure 14: Illustration of the AND and MUX functions to perform matrix element multiplication followed by
addition in stochastic computing. Numbers are represented as probabilities of a binary 1 or 0 signal in a
clocked bit-stream of length nbits. Select (SEL) has a random value of binary 1 or 0 for each clock cycle, and
the output is scaled to fall in the interval [0,1].

Using random bit streams to represent numbers has the advantage that the multiplication and addition
circuits are very simple to implement. There is also some inherent robustness to random errors in the
bit stream. However, the accuracy of the calculation is sensitive to correlations between random number
generators, the finite number of bits used to represent a number, and the condition of the matrix. While the
use of a single photon source can, in principle, be used to guarantee random number generation physically, the
number of bits, nbits, and matrix condition number are also important considerations when solving s = A−1x
for which the determinant of matrix A must be calculated.

Explore More: Logic gates

Homework Problems: Logic gate design

Explore More: Condition number of a matrix

8 Photon detection after a beam splitter

Controlling the interaction of photons with matter is of fundamental and practical interest. A basic component
in photonics that requires a model of photon-matter interaction is the beam splitter. This is considered next.
As illustrated schematically in Fig. (15), a beam splitter has two input ports and two output ports. The
reflection and transmission amplitudes experienced by a linearly polarized photon at port 1 are rph,1 and
tph,1, respectively. Similarly, at port 2 they are rph,2 and tph,2. If there are integer n1 photons incident at
port 1 and integer n2 photons incident at port 2 then the input Fock-state is |n1, n2⟩in.17 Zero photons at an
input port are described by the vacuum state. The output of the beam splitter has photons with quantum
field amplitude a3 at port 3 and amplitude a4 at port 4.
It is a consequence of unitarity that an ideal, lossless, symmetric, 50:50 dielectric beam splitter has rph,1 =
rph,2 = rph and this can be chosen such that

rph = −1√
2

(83)

and tph,1 = tph,2 = tph is
17Ignore, for the moment, that the input state could be a superposition involving quantum field amplitude at both

port 1 and 2.

34



The USC Primer for EE 539

 

Input port 1, n1 photons
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Output port 3, n3 photons,
quantum field amplitude a3
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Figure 15: Sketch of a beam splitter showing input ports 1 and 2 and output ports 3 and 4. In the case
considered, there are integer n1 photons incident at port 1 and integer n2 photons incident at port 2.
Single-photon quantum field transmission amplitude is tph,1,2 and reflection amplitude is rph,1,2.

tph = i√
2

(84)

The origin of the phase difference between transmission and reflection amplitude is described in the Explore
More appendix linked below.

Explore More: Origin of beam splitter amplitudes

8.1 An integer number of photons at each input port of a beam splitter

A photon number input state |n1, n2⟩in corresponds to integer n1 photons incident at port 1 and integer n2
photons incident at port 2. The output of the beam splitter has photons with quantum field amplitude a3 at
port 3 and amplitude a4 at port 4. The input state of the beam splitter |n1, n2⟩in is connected to the output
state of the beam splitter |a3, a4⟩out by a linear transformation |a3, a4⟩out = B|n1, n2⟩in where B is a 2 × 2
matrix

B =
[

tph,1 rph,2
rph,1 tph,2

]
(85)

so that [
a3
a4

]
= B

[
n1
n2

]
=

[
tph,1 rph,2
rph,1 tph,2

] [
n1
n2

]
(86)

If the photons incident on the beam splitter are indistinguishable then the probability of transmission or
reflection must take into account the number of ways of arranging the photons among themselves. For
example with n2 = 0 the probability that a single beam of n1 indistinguishable photons is transmitted as n3
photons and reflected as n1 − n3 = n4 photons at an ideal, lossless, symmetric, 50:50 beam splitter is given by

P (n1, n2 = 0, n3, n4 = n1 − n3) = n1!
n3!(n1 − n3)!

(
1
2

)n1

=
(

n1

n3

) (
1
2

)n1

(87)

where the binomial coefficient represents number of ways of choosing n3 indistinguishable photons from a set
of n1 indistinguishable photons.
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If the photons are distinguishable the probability that a single beam of n1 photons is transmitted as n3
photons at the beam splitter would have the smaller value

P (n1, 0, n3, n4) =
(

1
2

)n1

(88)

Photons are indistinguishable if they have the same polarization, the same frequency, the same phase, and arrive
at the detector at the same time. Photon polarization, frequency, and phase are internal degrees of freedom.
One way to continuously tune the system from quantum (indistinguishable) to classical (distinguishable)
behavior is to introduce a delay between the detected time of arrival of photons18.

8.2 Transmission of a single photon at a beam splitter

If the total number of Fock-state photons incident on the 50:50 beam splitter is ntot = n1 + n2 = 1, then
there is either one photon present at port 1 or one photon present at port 2. This means input state
|n1 = 1, n2 = 0⟩in has only one path to output state |n3 = 1, n4 = 0⟩out and the quantum field amplitude at
port 3 is tph:

|n1 = 1, n2 = 0⟩in → |n3 = 1, n4 = 0⟩out : tph = i√
2

(89)

Similarly, the input state |1, 0⟩in has only one path to output state |0, 1⟩out and the quantum field amplitude
at port 4 is rph:

|n1 = 1, n2 = 0⟩in → |n3 = 0, n4 = 1⟩out : rph = −1√
2

(90)

The photon number detection probability is just the magnitude squared of the quantum field amplitude so
that at the output port 3 detector

Pout(n1 = 1, n2 = 0, n3 = 1, n4 = 0) = |tph|2 =
∣∣∣∣ i√

2

∣∣∣∣2
= 1

2 (91)

and at the output port 4 detector

Pout(n1 = 1, n2 = 0, n3 = 0, n4 = 1) = |rph|2 =
∣∣∣∣ −1√

2

∣∣∣∣2
= 1

2 (92)

Placing a single photon at input port 2, so that the input state |n1 = 0, n2 = 1⟩in, produces similar results.

Table 1: Single photon detection probability after a 50:50 beam splitter.

ntot = 1 |1, 0⟩out |0, 1⟩out

|1, 0⟩in
1
2

1
2

|0, 1⟩in
1
2

1
2

As indicated in Table 1, the probabilities are the same as the flux ratios predicted for a classical electromagnetic
wave interacting with the same beam splitter. However, the situation changes dramatically if there are two or
more identical indistinguishable photons interacting with the beam splitter and subsequently detected. This
is considered next.

18Y.-S. Ra, M. C. Tichy, H.-T. Lim, O. Kwon, F. Mintert, A. Buchleitner, and Y.-H. Kim, Proc. Nat. Academy Sci.
110, 1227 (2013).
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8.3 The Mandel effect: transmission of two indistinguishable photons at a beam splitter

In general, if there is an integer number of photons at the inputs of a beam splitter, then the Fock state is
|n1, n2⟩in with integer n1 photons at input port 1 and integer n2 photons at input port 2. Likewise a Fock
output state of the beam splitter |n3, n4⟩out has n3 photons at output port 3 and n4 photons at output port
4.
A biphoton source can be used to create two indistinguishable photons. These can be input to the two
input ports of an ideal, lossless, symmetric, 50:50 beam splitter. Every possible combination of inferred
photon paths through the beam splitter that is consistent with the exchange-symmetric product states for
the boson two-particle system must be accounted for. In contrast to the description of classical particles,
indistinguishable quantum particles may be viewed as simultaneously experiencing every possible path through
the system.
If one photon is introduced at input port 1 and the other at input port 2, then the input state is |n1 =
1, n2 = 1⟩in. This input state is transformed to output states by passing through the beam splitter so that
|n1 = 1, n2 = 1⟩in → |n3, n4⟩out. When n1 = n2, there are just three exchange-symmetric output product
states. Setting reflection coefficient rph = −1 and transmission coefficient tph = i results in non-normalized
output states

|n1 = 1, n2 = 1⟩in → |n3 = 2, n4 = 0⟩out : tphrph = −i (93)

|n1 = 1, n2 = 1⟩in → |n3 = 1, n4 = 1⟩out : rphrph + tphtph√
2

= (1 − 1)√
2

= 0 (94)

|n1 = 1, n2 = 1⟩in → |n3 = 0, n4 = 2⟩out : rphtph = −i (95)

For the case |n1 = 1, n2 = 1⟩in → |n3 = 1, n4 = 1⟩out there are two indistinguishable paths the photons
can take from input to output that can be inferred after detection. They are either both reflected or both
transmitted through the beam splitter. Each inferred path after detection is equally likely in the 50:50
beam splitter so the photons may be considered to be simultaneously experiencing both processes with the
same weight. The superposition of product amplitudes (rphrph + tphtph)/2 describes this. The photon field
amplitude interference that results in (rphrph + tphtph/2 = 0 occurs because the detectors are unable to
distinguish between the two two-photon paths.
The photon-number detection probabilities at the output ports are proportional to the absolute value squared
of the non-normalized quantum amplitudes

P non
out (n1 = 1, n2 = 1, n3 = 2, n4 = 0) = |tphrph|2 = 1 (96)

P non
out (n1 = 1, n2 = 1, n3 = 1, n4 = 1) =

∣∣∣∣rphrph + tphtph√
2

∣∣∣∣2
=

∣∣∣∣1 − 1√
2

∣∣∣∣2
= 0 (97)

P non
out (n1 = 1, n2 = 1, n3 = 0, n4 = 2) = |rphtph|2 = 1 (98)

Normalization of Pout,non output values in Eqns. (96) – (98) enables interpretation as probability Pout.
Normalization may be achieved via division by the sum

Psum =
∑

j

P non
j,out (99)

In this case Psum = 2 and so the normalized probability values are

Pout (n1 = 1, n2 = 1, n3 = 2, n4 = 0) = |tphrph|2

Psum
= 1

2 (100)

Pout (n1 = 1, n2 = 1, n3 = 1, n4 = 1) = 0 (101)

Pout (n1 = 1, n2 = 1, n3 = 0, n4 = 2) = |rphtph|2

Psum
= 1

2 (102)
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If there is one indistinguishable photon at each input port then the detected quantum amplitudes interfere
and cancel exactly so there is precisely zero probability of detecting one photon at each output port. The
zero probability of detecting a |n3 = 1, n4 = 1⟩out output state when there is a |n1 = 1, n2 = 1⟩in input
state is a strong quantum correlation effect first measured by Hong Ou and Mandel 19. In addition, one
indistinguishable photon at each input port can only result in two photons detected at an output port. This
effect, also driven by the symmetry of identical indistinguishable boson particles in quantum mechanics, is an
example of photon bunching.
If two photons are introduced at input port 1 and zero at input port 2 then the input state is |n1 = 2, n2 = 0⟩in
and the possible output state amplitudes are proportional to

|n1 = 2, n2 = 0⟩in → |n3 = 2, n4 = 0⟩out : tphtph = −1 (103)

|n1 = 2, n2 = 0⟩in → |n3 = 1, n4 = 1⟩out : tphrph + rphtph = − 2i√
2

= −
√

2i (104)

|n1 = 2, n2 = 0⟩in → |n3 = 0, n4 = 2⟩out : rphrph = 1 (105)

In this case Psum = 4 and the corresponding photon-number detection probabilities at the output ports are

Pout (n1 = 2, n2 = 0, n3 = 2, n4 = 0) = |tphtph|2

Psum
= 1

4 (106)

Pout (n1 = 2, n2 = 0, n3 = 1, n4 = 1) = |tphrph + rphtph|2

Psum
= 1

2 (107)

Pout (n1 = 2, n2 = 0, n3 = 0, n4 = 2) = |rphrph|2

Psum
= 1

4 (108)

When the total number of indistinguishable photons ntot = 2 there are three possible input states and three
possible output states with detected output probabilities as indicated in Table 2 and represented graphically
in Figure 16. If there is one indistinguishable photon at each input port then the detected output is two
photons at one of the output ports. In general, if there is an equal number of indistinguishable photons at
each input port (n1 = n2), then it is not possible to have an odd number of photons at an output port.

Table 2: Output probabilities of two identical indistinguishable photons interacting with an ideal, lossless,
symmetric, 50:50 beam splitter.

Input state |n1, n2⟩ Output state |n3, n4⟩

|n3 = 2, n4 = 0⟩ |n3 = 1, n4 = 1⟩ |n3 = 0, n4 = 2⟩

|2, 0⟩ 1
4

1
2

1
4

|1, 1⟩ 1
2 0 1

2

|0, 2⟩ 1
4

1
2

1
4

Two-photon quantum interference (the ntot = 2 case) is not interference of two separate photons at the beam
splitter but rather it is interference of the two two-photon amplitudes at the detectors. The photon paths
can only be inferred after detection at the detectors. This is a consequence of the standard Copenhagen
interpretation of quantum mechanics in which the properties of a system are only obtained after interaction
between the quantum system and the measurement instrument – in this case the detectors. In fact photons do
not have to arrive simultaneously at the beam splitter to have their quantum field amplitudes interfere at the
detectors; rather it is only that the inferred two two-photon paths must be indistinguishable 20. In practice,
it is the inferred interpretation of indistinguishable two-photon paths that may be used as a convenient way
to predict quantum field amplitude interference.

19C. K. Hong, Z. Y. Ou, and L. Mandel, Phys. Rev. Lett. 59, 2044 (1987).
20T. B. Pittman, D. V. Strekalov, A. Migdall, M. H. Rubin, A. V. Sergienko, and Y. H. Shih, Phys. Rev. Lett. 77,

1917 (1996).
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Figure 16: (a) Probability of photon number detection as a function of input and output states of an ideal,
lossless, symmetric, 50:50 beam splitter. There are n1 photons at input port 1 and n2 photons at input
port 2 when there is a total of ntot = 2 indistinguishable photons in the system. For the case when n1 = 1
and n2 = 1 there is zero probability that the value of n3 = 1 and that the value of n4 = 1. (b) Dots show
output probability into output port 3 for the case when the input port 1 contains n1 = ntot = 2 and when
n1 = n2 = ntot/2 = 1. Lines connecting dots are to guide the eye.

8.3.1 Experimental demonstration of the Mandel effect

A Mandel effect quantum interference experiment results in a reduction in coincidence counts below that
expected from a classical light source. The reduction is called the Mandel dip. Observing the Mandel dip
requires an experimental setup that typically includes the following components:

• Laser source: This is a stabilized high-power laser diode with single-mode, spectrally narrow
line-width, emission peaked at photon energy E.

• Biphoton source: This a source that emits indistinguishable biphotons via the interaction of
laser light with a nonlinear medium. A typical mechanism for biphoton generation is spontaneous
parametric down-conversion (SPDC) in which a single photon of energy E is converted into two
indistinguishable photons of energy E/2.

• Optical fibers and connectors: These are used to guide photons between optical elements and to
minimize the introduction of noise such as light from other sources.

• Beam splitters: Used to direct photons into different paths or to mix different photon streams
coherently. The manipulation of photon states at a beam splitter is modeled as a unitary transforma-
tion.

• Variable delay line: Used to vary photon path length and control photon distinguishability.
• Photon detectors: Detectors such as avalanche photodiodes (APDs) or superconducting nanowire

single-photon detectors (SNSPDs) are used. These are capable of detecting individual photons with
high efficiency and timing resolution.

• Coincidence counter (CC): This measures the time interval between the arrival of detected
photons.

• Data acquisition system: To record the counts and analyze the statistics of the detected photons.

To demonstrate the Mandel effect, the components are configured as shown in Fig. 17. The experimental
setup is optimized to minimize losses and maximize the indistinguishability of the photons, which is needed
to observe the Mandel dip.
In this experiment, SPDC is used to generate indistinguishable photon pairs. In SPDC, single wavelength
lasing light directed into a crystal is absorbed and re-emitted as two photons with double the wavelength
of the original pump beam. For example, a blue pump photon at 405 nm wavelength can spontaneously
convert into two red photons (ideally, each photon has exactly double the lasing wavelength) in a crystal,
demonstrating energy down-conversion.
The efficiency of SPDC is low; typically, out of 100 billion pump photons, only one or two are down-converted.
This inefficiency is advantageous for creating controlled, low numbers of photons. The photons are produced
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Figure 17: Block diagram of the components used to demonstrate the Mandel effect. Labelled experimental
setup shown in Fig. 18

in pairs, allowing, for example, one photon to be detected to confirm the presence of its pair, a process known
as heralding.
Several factors affect the efficiency of SPDC, including the pump beam’s intensity, wavelength, and polarization,
as well as the crystal’s cut. Our setup uses a Type-II SPDC configuration in a periodically-poled Potassium
Titanyl Phosphate (PPKTP) crystal, which converts a blue pump photon into an H-polarized red signal
photon and a V-polarized red idler photon. A dichroic mirror ensures only the red photons are collected.
The system also includes a heater to adjust the crystal’s temperature Tcrystal, altering the wavelength of each
emitted photon. We aim to produce at least 10,000 photon pairs per second per milliwatt of pump power. A
fiber-optic polarizing beam splitter separates the photons based on their polarization, facilitating further
manipulation and experimentation. If the crystal temperature is set correctly such that the down-converted
photons have precisely the same wavelength, and so are degenerate, then the biphotons are indistinguishable.
As shown in Figs. 17 and 18, one output of the polarizing beam splitter is attached to a fiber-optic wave-guide
that connects directly to a 50:50 non-polarizing beam splitter. The other output of the polarizing beam
splitter leads to a variable delay line. This variable delay line can be used to change the photon path length
between output and input. The variable delay line is controlled using a stepper motor, which is coded to
move between respectively specified start and stop positions xstart and xstop with increment ∆x.

Laser + crystal 
(biphoton source)

50:50 nonpolarizing 
beam splitter

SPCM #1

Coincidence 
counter

Variable delay line

SPCM #2

50:50 polarizing 
beam splitter

1 inch

Figure 18: Experimental setup used to demonstrate the Mandel effect.

Each photon may either transmit through or reflect off the second 50:50 beam splitter, which is non-polarizing,
and exit from the output ports as described in Fig. 15 with detection probabilities listed in Table 2. Two
single-photon counting detector modules (SPCMs) are individually connected to the output ports of the
non-polarizing beam splitter. These detectors produce an output signal when a photon is detected at its
input port. The SPCMs are silicon-based avalanche photodiodes that detect the photon. Both SPCMs are
connected to a coincidence counter. When both SPCMs detect a photon within a coincidence time window
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twindow, it is considered a coincidence event. When this occurs, the coincidence counter will add a single
coincidence count to the register. The counter will collect coincidences within a defined time tdwell which,
along with twindow, is a parameter that can be set when running the experiment.
As the stepper motor varies the length of one path to the detector, there will be a position for which the
difference in the time it takes the photon to travel each path to the detector is minimized. In this scenario,
the difference in arrival time of each photon path to the detectors will be minimized, and the photons are
maximally indistinguishable. It is this indistinguishability that results in the detection probabilities, as
described by Eqns. (100)-(102). There is a reduction in coincidence counts since, after accounting for noise,
the biphotons are both only detected at a single detector. This is demonstrated through the experimental
results shown in Fig. 19, which are the average of running 100 experiments for the same set of parameters.
The visibility of the Mandel dip may be quantified by either computing the peak-to-valley ratio (PVR) or
a normalized visibility measure VHOM = (⟨C⟩classical − min(C))/⟨C⟩classical, where ⟨C⟩classical is the average
classical baseline count when the photons are distinguishable and min(C) is the dip valley.
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Figure 19: Measured baseline coincidence counts resulting from distinguishable photons when Tcrystal = 60
◦C (red curve) and measured Mandel dip resulting from identical, indistinguishable photons when Tcrystal =
54.1 ◦C (black curve). Red dots are the mean values of 100 experimental runs using distinguishable
photons (Tcrystal = 60 ◦C), while black dots are the mean values of 100 experimental runs using identical,
indistinguishable photons (Tcrystal = 54.1 ◦C), with the corresponding standard deviations respectively shown
as red and black vertical error bars. Parameters used in this experiment are laser current Ilaser = 109 mA,
twindow = 5 ns, tdwell = 1 s, xstart = 14 mm, xstop = 16 mm, ∆x = 0.1 mm, resulting in a Mandel dip with
PVR = 1.64 and VHOM = 0.39.

The temperature of the crystal involved in the SPDC process plays an important role in the production of
identical, indistinguishable photons. SPDC requires a specific phase-matching condition where the refractive
indices of the pump photon, signal photon, and idler photon are matched. Since the crystal’s refractive index
is generally temperature-dependent, changes in crystal temperature can shift the phase-matching requirement,
resulting in non-identical, and therefore distinguishable, photons.
In addition, temperature affects the crystal’s dispersion properties, and temperature variation can cause
changes in the signal and idler photon spectra. Producing indistinguishable photons requires high spectral
overlap with narrow spectral bandwidth. Finally, the sensitivity of photon group velocity to temperature in
the crystal impacts the temporal overlap of photon pairs, which is critical for ensuring simultaneous arrival
at the detectors when the paths are identical.
A change in temperature can introduce timing mismatches between the down-converted photons, making
the photon pairs distinguishable. Generating identical, indistinguishable photons requires tight crystal
temperature control with precision temperature stabilization to within fractions of a degree Celsius. As
shown in Fig. 19, when the crystal temperature Tcrystal is increased to 60 ◦C, the photon pairs become
distinguishable, the Mandel dip disappears, and the classical result is measured.
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8.4 Transmission of n indistinguishable photons at a beam splitter

The quantum amplitude of integer n3 and n4 indistinguishable photons appearing at the output ports of the
beam splitter is

|n1, n2, n3, n4⟩ = (−1)n1

(
1
2

) ntot
2 ∑

k

(−1)k

√(
n1
k

) (
ntot − n1

n3 − k

) (
n3
k

) (
ntot − n3

n1 − k

)
(109)

where because the total number of particles ntot = n1 + n2 is conserved n4 = n1 + n2 − n3. In this expression
the number of ways of choosing k indistinguishable photons from a set of ntot indistinguishable photons is
given by the binomial coefficient (

ntot

k

)
= ntot!

k!(ntot − k)! (110)

If k is negative or greater than ntot the binomial coefficient is set to zero. The terms (−1)n1 and (−1)k are
due to the relative phase difference between a transmitted or reflected photon and it is this that gives rise
to strong quantum interference effects. When using Eqn. (109) the probability of detecting photons at the
output ports of the beam splitter is

Pout = ||n1, n2, n3, n4⟩|2 (111)

8.4.1 Transmission of ntot = 8 indistinguishable photons at a beam splitter

Figure 20 shows the calculated probability of photon output from an ideal, lossless, symmetric, 50:50 beam
splitter with the input of integer n1 photons at input port 1 and n2 photons at input port 2 for a total of
ntot = 8 indistinguishable photons in the system, and Table 3 gives probability of n3 detected photons at
output port 3 for the cases when n1 = 8 and n1 = 4 at input port 1. Note the zero values for odd-integer n3
and the rational numbers with denominator 2ntot for the non-zero probability values.
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Figure 20: (a) Probability of photon output from a lossless symmetric 50:50 beam splitter showing input of
n1 photons at input port 1 and n2 photons at input port 2 when there is a total of ntot = 8 indistinguishable
photons in the system. (b) Dots shows output probability into output port 3 for the case when the input
port 1 contains n1 = ntot = 8 and when n1 = n2 = ntot/2 = 4. Lines connecting dots are to guide the eye.

The blue dots in Figure 20(b) are port 3 output probability for the case when the input port 1 contains
n1 = ntot = 8 indistinguishable photons. The probability has an approximately normal distribution centered
at ntot/2 = 4. The red dots show port 3 output probability for the case when the input port 1 contains
n1 = n2 = ntot/2 = 4 indistinguishable photons. In this situation, symmetry dictates that the probability of
an odd number of indistinguishable photons at an output port is zero. The system behavior is closest to
expectations of a continuous unmodulated classical electromagnetic wave when photons are only present at
one input port. The system behavior is most non-classical when there are equal numbers of photons at each
input port of the beam splitter. Increasing the value of ntot can be used to explore the transition between the
most non-classical behavior and behavior that seems closest to classical expectations. As will be illustrated
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Table 3: Photon detection probability after a 50:50 beam splitter with ntot = 8 when n1 = 8 and n1 = 4.

ntot = 8 n1 = 8 n1 = 4

n3 = 0 1
256

70
256

n3 = 1 8
256 0

n3 = 2 28
256

40
256

n3 = 3 56
256 0

n3 = 4 70
256

36
256

n3 = 5 56
256 0

n3 = 6 28
256

40
256

n3 = 7 8
256 0

n3 = 8 1
256

70
256

next near-classical results for a continuous unmodulated electromagnetic wave are retrieved when either
n1 = ntot or n2 = ntot in the limit ntot → ∞.

8.4.2 Transmission of ntot = 64 indistinguishable photons at a beam splitter

Figure 21 shows the results of calculating transmission of ntot = 64 identical indistinguishable photons at
an ideal, lossless, symmetric, 50:50 beam splitter. The blue curve in Figure 21(b) is port 3 detected output
probability for the case when the input port 1 contains n1 = ntot indistinguishable photons. The probability
has an approximately normal distribution centered at ntot/2 and full-width-half-maximum (FWHM) slightly
greater than 8 =

√
64. In the limit when ntot → ∞ (the large particle number thermodynamic limit) and

n1 = ntot the detected photon number output probability distribution exhibits the normal (classical) result
FWHM → √

ntot. Extrema of the red curve in Figure 21(b) is port 3 detected output probability showing
the most non-classical behavior. This occurs when n1 = n2 = ntot

2 = 32.
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Figure 21: (a) Probability of detected photon output from an ideal, lossless, symmetric, 50:50 beam splitter
showing input of n1 photons at input port 1 and n2 photons at input port 2 when there is a total of ntot = 64
indistinguishable photons in the system. (b) Port 3 detected output probability for the case when the input
port 1 contains n1 = ntot and when n1 = n2 = ntot/2 = 32. Lines connecting probability values on the
vertical axis for integer values of n3 on the horizontal axis are to guide the eye.

Figure 22 is a three-dimensional plot of the probability of photon output from an ideal, lossless, symmetric,
50:50 beam splitter when there is a total of ntot = 64 indistinguishable photons in the system. The appearance
of detected quantum interference effects is limited to a “quantum cauldron” of radius √

ntot/2 21. The closest
to classical behavior (an approximately normal probability distribution) occurs at the boundary of the domain

21F. Lalöe and W. J. Mullin, Found. Phys. 42, 53 (2012).
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when n1 = ntot and n2 = 0 or n1 = 0 and n2 = ntot. The quantum cauldron illustrated in Figure 22 is one
way to depict the transition from closest to classical behavior to most non-classical behavior in the system.

Figure 22: Three-dimensional plot of the probability of detected photon output from an ideal, lossless,
symmetric, 50:50 beam splitter when there is a total of ntot = 64 indistinguishable photons in the system.
There is a “quantum cauldron” of interference inside a radius √

ntot/2. The closest to classical behavior
occurs at the boundary of the domain when n1 = ntot and n2 = 0 or when n1 = 0 and n2 = ntot.

In the preceding, photon number is preserved and the interaction of the optical field with the beam splitter
is ideal. The symmetry associated with indistinguishable particles results in detected quantum amplitude
interference between different inferred paths through the system. It should be noted that fundamental to
the Copenhagen interpretation of quantum mechanics, the photon paths taken can only be inferred after
detection. As illustrated by the Mandel effect, because of strong quantum correlations, the probability
of detecting a fixed number of discrete photons at an output port can be dramatically different from the
expectations of a continuous unmodulated classical electromagnetic wave interacting with the system.

Homework Problems: Beam splitter numerical error

8.5 Quantum interference and distinguishability

The Mandel effect is an example of quantum interference between two indistinguishable particles. Distin-
guishability between two photon particles is achieved if they have different polarization, different spectral
frequency content, different phase or a time delay between pulses. To quantify how quantum interference is
suppressed as the distinguishability of the photons increases, it is convenient to describe interaction with a
beam splitter using boson creation and annihilation operators.
If there is a single indistinguishable photon at each input port 1 and 2 of the beam splitter then |1⟩1|1⟩2 =
b†

1b†
2|0⟩1|0⟩2 and as illustrated in Figure 23 there are four different paths the two photons can take to the

output ports 3 and 4. The unitary transform that connects input port states to output port states is given
by the unitary matrix

ÛB = 1√
2

[
i −1

−1 i

]
=

[
tph rph
rph tph

]
(112)
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which has an inverse such that Û†
B = Û−1

B and the creation operator of the superposition output states are
such that b†

1 → −
(

ib†
3 + b†

4

)
/
√

2 and b†
2 → −

(
b†

3 + ib†
4

)
/
√

2. The output state is

1
2(ib†

3 + b†
4)(b†

3 + ib†
4)|0⟩3|0⟩4 = 1

2(ib†
3b†

3 − b†
3b†

4 + b†
3b†

4 + ib†
4b†

4)|0⟩3|0⟩4 = i
2(b†

3b†
3 + b†

4b†
4)|0⟩3|0⟩4 (113)

in which the terms −b†
3b†

4 + b†
3b†

4 creating a single photon in each output port exactly cancel. Hence when
a single indistinguishable photon is present at each input port 1 and 2 of the beam splitter then the only
possible output is either two photons at output port 3 or two photons at output port 4. The output state is

i
2(b†

3b†
3 + b†

4b†
4)|0⟩3|0⟩4 = i

2(|2⟩3|0⟩4 + |0⟩3|2⟩4) (114)

where use is made of the fact that b†
3b†

3|0⟩3|0⟩4 = b†
3|1⟩3|0⟩4 =

√
2|2⟩3|0⟩4 and b†

4b†
4|0⟩3|0⟩4 = b†

4|0⟩3|1⟩4 =√
2|0⟩3|2⟩4. The probability of detecting two photons at either output port is exactly one-half and the output

port at which the two photons are detected is a fundamentally random quantum mechanical process.
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Figure 23: Illustration showing four possible outputs from an ideal, lossless, 50:50 beam splitter.

It is possible to tune the distinguishably of identical photons by creating a time delay τ in arrival time at the
detector. Introducing the time delay at port 2 changes the creation operator to b†

2eiωτ and if the spectral
amplitude of each photon pulse is a Gaussian centered at frequency ω0 with standard deviation σ0 such that
ϕ0(ω) = e−(ω−ω0)2/(2σ2

0)/
√

2πσ0 it can be shown that the coincidence probability measured by the detectors
is 22

1
2 − 1

2e−σ2
0τ2/2 (115)

Hence, in this case the “Mandel dip” in detected photon coincidence counts measured as a function of delay
is described using a Gaussian. A typical value of delay that characterizes the extent of the dip in coincidence
counts is τ = 1 ps corresponding to a photon propagating 300 µm in free space. The wave-particle duality of
indistinguishable photons manifesting as wave-like interference and a measured particle-like “click” output
from a detector is a purely quantum phenomenon with no classical counterpart.

Explore More: Classical analog of the “Mandel dip”

22C. Drago and A. M. Brańczyk, Can. J. Phys. 102, 411 (2024).
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9 Explore More

9.1 Sets of real numbers [return to section]
Different types of real numbers are classified into categories referred to as sets.

The set of natural numbers (N) consists of all positive numbers starting from 1, extending
indefinitely in an increasing sequence. This set includes numbers like 1, 2, 3, etc. typically used for
counting and ordering, and under some contexts in mathematics and computer science, can also
include 0 as a basis for arithmetic operations. In such cases, the set of natural numbers may conven-
tionally be labelled either N0 or W which represents whole positive semi-definite numbers. There is
no general consensus regarding whether zero should be included in the set of natural numbers, however.

The set of integers (Z)acomprises all whole numbers, including positive numbers, negative
numbers, and zero. Integers are used for counting, ordering, and various arithmetic operations that
include subtraction and addition across positive and negative values. Examples of integers include -2,
-1, 0, 1, 2, etc.

The set of rational numbers (Q) consists of all numbers that can be expressed as the ratio
of two integers, where the numerator is an integer and the denominator is a non-zero integer, such
as integers, fractions and numbers that have a repeating or terminating decimal representation.
Examples of rational numbers include 22/7, −1/12, and 1/137.

The set of irrational numbers (I) includes all real numbers that cannot be expressed as a ra-
tio of two integers. Irrational numbers have non-repeating, non-terminating decimal expansions.
Common examples of irrational numbers include

√
2, π, and e.

In summary, the sets of real numbers and their corresponding symbols is given below:
• N: Natural set (1, 2, 3, etc.); denoted as N0 if 0 is included.
• Z: Integer set (-1, 0, 1, etc.); includes N.
• Q: Rational set (1/2, 1/3, 2/3, etc.); includes Z.
• I: Irrational set (e, π,

√
2, etc.).

• R: Real set; includes all above sets (N, Z, Q, I).
aThe symbol representing the set of integers, Z, has been attributed to German mathematician David

Hilbert and stands for “Zahlen”, the German word for numbers.
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9.2 Other generalized number systems [return to section]
Beyond complex numbers, other generalized number systems include quaternions, octonions, and
p-adic numbers.
• Quaternions (H)a: Quaternions extend complex numbers to four dimensions. A quaternion is

expressed as a + bi + cj + dk, where a, b, c, and d are real numbers, and i, j, and k are imaginary
unit numbers satisfying the following relationships:

1. i2 = j2 = k2 = ijk = −1
2. ij = k, ji = −k
3. jk = i, kj = −i
4. ki = j, ik = −j

Quaternions are non-commutative, meaning the order of multiplication matters. They are particu-
larly useful in 3D computer graphics and physics to represent rotations.

• Octonions (O)b: Octonions are an extension of quaternions to eight dimensions. An octonion
is expressed as a linear combination of eight basis elements: {e0, e1, e2, e3, e4, e5, e6, e7}, where e0
is the scalar element and typically identified with the real unit so that e0 = 1. Octonions follow
non-associative multiplication rules, which means that how operations are grouped affects the result.
They are used for the construction of more advanced mathematical objects and are sometimes used
in theoretical high-energy particle physics.

• p-adic numbers (Qp): p-adic numbers are a system of number representation used primarily in
number theory. They are defined with respect to a given prime number p and differ from real or
complex numbers in that they measure distances based on divisibility by p. p-adic numbers are
useful for solving equations in modular arithmetic and also see application in theoretical physics as
well as in cryptography.

These as well as other specialized number systems explore different properties and appli-
cations, often extending concepts found in more familiar number systems to new contexts or
addressing problems that are intractable using conventional numbers. Mathematics continues to
expand with new number systems and structures to solve emerging problems, leading to creative
approaches across many different disciplines.
aQuaternions were first introduced by Irish mathematician William Rowan Hamilton in 1843.
bOctonions were independently discovered by John Graves in 1843 and Arthur Cayley in 1845.
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9.3 Common functions with applications
[return to section]

Common examples of non-polynomial functions along with common applications in, for example,
electrical engineering include:
• Exponential functions: The general form of an exponential is f(x) = aebx, where a and b are

constants. If b is purely real, such functions describe exponential growth or decay, depending
on whether b is respectively positive or negative. Applications in electrical engineering include
modeling capacitor charging and discharging, describing growth and decay processes in filters and
amplifiers, and signal processing for analysis of exponential signals.

• Logarithmic functions: The general form of a logarithmic function is f(x) = a logb(x), where a is
a constant and b is the logarithmic base. Applications include signal processing for dB calculations
in amplifiers and attenuation, and analysis of nonlinear distortion and compression effects.

• Sinusoidal functions: These cyclic functions include f(x) = a sin(bx+c) and f(x) = a cos(bx+c),
where a, b, and c are constants. Applications include representing AC signals, oscillators, and
waveforms in signal processing, and modeling electromagnetic waves and impedance in AC circuits.

• Hyperbolic functions: These typically include hyperbolic sine and cosine, with the general
forms respectively given as f(x) = a sinh(bx) and f(x) = a cosh(bx), where a and b are constants.
Applications include describing transient responses of transmission lines and representing charge
distributions in semiconductor junctions.

• Power functions: The general form of a power function is f(x) = axb, where a and b are constants.
Applications include modeling nonlinear amplifier gains and describing signal scaling as well as
voltage-power relationships. These functions are useful for understanding scaling laws in physical
systems, such as how resistance varies with conductor length and cross-sectional area, thereby
aiding in the design of efficient electrical components.

• Gaussian functions: These are functions with the general form f(x) = ae−(x−b)2/(2c2) and are
commonly used in statistical analysis, such as analyzing the distribution of various measurements
of many real-world phenomena. Applications in electrical engineering include designing filters and
analyzing signal noise, as well as image processing and pattern recognition algorithms.
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9.4 Examples of one-to-many functions
[return to section]

In complex analysis, the complex logarithm log(z) can yield multiple values for a single input because
it has an infinite number of possible angles in the complex plane. These distinct values exist within
branches corresponding to a continuous and single-valued segment of the multi-valued complex
logarithm. Thus, unless a particular branch is specified, the complex logarithm cannot be considered
a function under the standard definition. By selecting a specific branch, we define a function in a
way that it is continuous and single-valued, making it practical for analysis and computations and
ensuring correct outputs with respect to complex differentiation and integration. In broader terms of
set theory, one might consider a general relation that can map an input to multiple outputs. Although
these are not functions, they are helpful in some mathematical contexts, including database theory
and computer science, where an input might correspond to multiple outputs.

In physics, an initial state might lead to multiple states, particularly in quantum mechanics
and statistical mechanics. For example, the outcome of a quantum measurement can be fundamentally
probabilistic, suggesting a one-to-many relationship from initial state to potential outcomes. However,
these are not functions in the mathematical sense but rather stochastic or probabilistic processes.

Another example is the complex band structure description of a bulk crystal that describes
the energy eigenvalues E of electrons and their Bloch wave vectors (crystal momenta ℏk) in a
periodic lattice. Complex band structure has applications in electronic device design.a The reduced
Brillouin zone is a convenient method for visualizing the band structure. In this case, all real
wave vectors are folded back into the first Brillouin zone due to the periodicity of the reciprocal
lattice. Hence, as shown in Fig. 9.4.1, a given wave vector k can correspond to multiple energy values E.
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Fig. 9.4.1. (a) Complex band structure of the Kronig-Penney modelb depicted in the reduced Brillouin
zone scheme with total unit cell spacing L = 1 nm, potential barrier of thickness LB = 0.4 nm and
energy VB = 4 eV, and potential well of thickness LW = 0.6 nm and energy VW = 0 eV. (b) Same as (a)
but energy plotted vs. the complex wave vector plane to illustrate complex band structure in a 3D plot.

In some cases, what might appear as a one-to-many function can be resolved by considering
more variables or parameters. For example, a parametric equation in physics might describe a
trajectory or a set of states over time, with time as an implicit parameter that resolves the apparent
one-to-many nature.

To summarize, while a one-to-many function does not exist in the strict mathematical sense,
various constructs like multi-valued functions, relations, and parametric equations exhibit one-to-many
characteristics under certain conditions or interpretations in the fields of mathematics and physics.

aW. Unglaub and A. F. J. Levi. Physics Open 17, 100164 (2023) and W. Unglaub and A. F. J. Levi.
Physica E 165, 116067 (2025).

bFor more details on the Kronig-Penney model and electron dispersion in periodic potentials, see section
3.6 in A. F. J. Levi, Applied Quantum Mechanics, 3rd ed. Cambridge: Cambridge University Press, 2023.
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9.5 Limits and asymptotic behavior [return to section]
The concepts of asymptotes and limits are important for analyzing the behavior of functions as they
approach specific points or infinity. An asymptote is a line that a function approaches but never
reaches as the independent variable approaches a certan value or infinity. Asymptotic lines can be
vertical, horizontal, or have a finite non-zero slope. Vertical asymptotes occur when the function
approaches infinity or negative infinity as the independent variable x approaches a specific value.
For example, the function f(x) = 1/x has a vertical asymptote at x = 0. Horizontal asymptotes
describe the behavior of a function as the independent variable x approaches ±∞. For example, the
function f(x) = 2x/(x + 1) approaches the horizontal line y = 2 as x approaches ±∞. Finally, oblique
asymptotes refer to the case when the function f(x) approaches a line with finite non-zero slope as
x → ±∞. This typically occurs when the degree of the numerator is one more than the degree of the
denominator. An example of this would be the function f(x) = (x2 − 1)/x, which approaches the line
y = x as x → ±∞.

Related to asymptotes is the concept of limits, which are critical for understanding deriva-
tives and integrals of functions. The limit of a function describes the value that the function
approaches as the input or independent variable approaches some value. Generally, there are three
types of limits: finite limits, infinite limits, and limits at infinity. Finite limits are characterized by
the limit of f(x) equaling L as x approaches some value a. This is denoted as

lim
x→a

f(x) = L, (116)

provided f(x) can be made arbitrarily close to L by making x sufficiently close to a. Infinite limits
occur when f(x) increases or decreases without bound as x → a, resulting in f(x) → ±∞, where the
sign depends on which direction the function diverges. Finally, limits at infinity describe a third type
of limit in which the behavior of f(x) is characterized as x approaches ±∞. This can result in f(x)
taking on either a finite value or diverging to ±∞.

Example: If we consider the rational function f(x) constructed by dividing two polynomi-
als

f(x) = 3x2 + 7x + 5
2x2 + 2

and take the limit as x approaches ∞, we have the limit

lim
x→∞

3x2 + 7x + 5
2x2 + 2 = 3

2 ,

which demonstrates a horizontal asymptote at y = 3/2.

Problem 1: Evaluate the following limit:

lim
x→∞

2x2 − 3x + 4
x3 + x + 1 .

Problem 2: Calculate the limit:

lim
x→3

x2 − 9
x − 3 .

Problem 3: Identify and describe the asymptotes for the function:

f(x) = 2x

x − 1 .
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9.6 The gradient [return to section]
The gradient of a function represents the generalization of the derivative to functions of multiple
variables, providing a vector of partial derivatives for each variable. While formally introduced in a
later section, a vector may be viewed as an array of N numbers, each corresponding to some amount
along that number’s direction in an N -dimensional space, in which each direction is orthogonal. The
gradient, therefore, points in the direction of the steepest ascent of the function at a given point and
its magnitude gives the rate of increase in that direction.

For a function f(x) = f(x1, x1, . . . , xN ) of N variables, the gradient of f is denoted as ∇f
and defined as:

∇f =
[

∂f
∂x1

∂f
∂x2

· · · ∂f
∂xN

]
, (117)

where ∂f/∂xi is the partial derivative of f with respect to the ith variable, indicating how f changes
as xi changes while keeping the other variables constant. At any point described by a set of values xi,
the gradient vector gives the direction of the steepest ascent from that point, and the magnitude, or
length, or the gradient vector represents the rate of increase of the function in the direction of the
steepest ascent.

Example: Using the same function from Example 1, we can compute the partial derivatives for each
variable (x and y):

∂f

∂x
= ∂

∂x

(
x2 + 3xy − y2)

= 2x + 3y

∂f

∂y
= ∂

∂y

(
x2 + 3xy − y2)

= 3x − 2y

∴ ∇f = [2x + 3y 3x − 2y]

At any point (x, y), the gradient ∇f(x, y) gives the direction and rate of fastest increase of the
function f . For example, at the point (1, 1), ∇f(1, 1) = (2 · 1 + 3 · 1, 3 · 1 − 2 · 1) = (5, 1). This
indicates that starting from (1, 1), the function f increases most in the direction of vector (5, 1).

Generally speaking, the gradient is a powerful tool that provides useful insights into the be-
havior of functions across different dimensions and is extensively used in gradient-based optimization
methods and for designing gradient descent algorithms in machine learning.
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9.7 Taylor series expansion [return to section]
The Taylor series expansion is a mathematical method for approximating functions using factorials
and the sum of its derivatives at a single point. It is particularly useful for approximating complex
functions with a series of polynomial terms.a

The Taylor series of a function f(x) around a point a is given by

f(x) =
∞∑

n=0

f (n)(a)
n! (x − a)n = f(a) + f ′(a)

1! (x − a) + f ′′(a)
2! (x − a)2 + f ′′′(a)

3! (x − a)3 + · · · (118)

Here, f ′(a), f ′′(a), and so on are the first, second, and higher derivatives of f evaluated at the point
a, and n! denotes the factorial of integer n. This expansion is particularly powerful in engineering for
approximating functions where direct computation is complex or infeasible. A few common examples
of expanding nonlinear functions (around a = 0) include the following:

ex =
∞∑

n=0

xn

n! = 1 + x + x2

2! + x3

3! + x4

4! + x5

5! + · · · (119)

cos(x) =
∞∑

n=0

(−1)n

(2n)! x2n = 1 − x2

2! + x4

4! − x6

6! + x8

8! − x10

10! + · · · (120)

sin(x) =
∞∑

n=0

(−1)n

(2n + 1)!x
2n+1 = x − x3

3! + x5

5! − x7

7! + x9

9! − x11

11! + · · · (121)

Example: Using the definition of a Taylor series expansion provided by Eq. (118), derive a third-order
approximation of ln(1 + x) using a Taylor series expansion around x = 0. What are the first three
non-zero terms of the series approximation?

We identify a = 0, so for f(x) = ln(1 + x) we have:

f(x) ≈ f(0)
0! · (x − 0)0 + f ′(0)

1! · (x − 0)1 + f ′′(0)
2! (x − 0)2 + f ′′′(0)

3! (x − 0)3

= ln(1 + x)|x=0
1 · 1 +

(1 + x)−1
∣∣
x=0

1 · x +
(−1) (1 + x)−2

∣∣
x=0

2 · x2 +
(−2)(−1) (1 + x)−3

∣∣
x=0

6 · x3

= ln(1) + 1 · x − 1
2 · x2 + 2

6 · x3 = 0 + x − x2

2 + x3

3 .

Thus, the first three non-zero terms of the Taylor series approximation to ln(1 + x) are x, −x2/2, and
x3/3.

Problem 1: Use the Taylor series expansion of f(x) = ex to approximate e using the first
four terms. How many terms are required to achieve a relative error less than 10−6?
Problem 2: Find the first three non-zero terms of the Taylor series expansion of f(x) = ex ln (2x + 1)
around x = 0. Using this finite series as an approximation function for f(x), what is the relative error
between the two functions when x = −0.4?
Problem 3: Using the Taylor series expansions for sin(x) and ex, determine the coefficients ai for a
4th-order approximation of f(x), where i ∈ {0, 1, . . . , 4}:

f(x) = sin(x)
ex

≈ a0 + a1x + a2x2 + a3x3 + a4x4. (122)

aThis method is named after the British mathematician Brook Taylor, who formalized the technique in
1715.
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9.8 First-order differentiation of discrete functions [return to section]
Discrete differentiation appears frequently in digital signal processing and is necessary for approxi-
mating the derivative of signals with either uniform or non-uniform sampling. Unlike continuous
differentiation which deals with functions that have an infinite number of points within any given
range of the domain, discrete differentiation focuses on functions defined at discrete intervals or
points. This is particularly relevant in digital systems where signals are sampled at specific times, for
example. With respect to discrete systems, differentiation is not performed in the traditional calculus
sense but is instead approximated through differences between successive samples.

In discrete differentiation, the derivative of a function at a point is approximated by the dif-
ference between its values at successive points. The simplest general form of discrete differentiation
between the nth and (n + 1)th samples is given by the forward difference ∆y[n] divided by the
sampling interval ∆x[n], defined as:

y′[n] = ∆y[n]
∆x[n] = y[n + 1] − y[n]

x[n + 1] − x[n] , (123)

where y[n] represents the value of the function or signal at the nth interval, and x[n] represents the nth
sample point. This approximation assumes that the change between consecutive samples is indicative of
the slope at the point. If the signal is uniformly-sampled in x, then ∆x[1] = ∆x[2] = . . . = ∆x[N ] = ∆x
for N samples. Thus, Eq.(123) becomes:

y′[n] = ∆y[n]
∆x

= y[n + 1] − y[n]
∆x

, (124)

Example: Consider the discrete sequence y = [2, 3, 5, 7, 11] and compute the first derivative using the
forward difference method, assuming uniform sampling ∆x = 2.

We can straightforwardly compute the forward difference sequence as:

∆y[1] = y[2] − y[1] = 3 − 2 = 1
∆y[2] = y[3] − y[2] = 5 − 3 = 2
∆y[3] = y[4] − y[3] = 7 − 5 = 2
∆y[4] = y[5] − y[4] = 11 − 7 = 4.

Thus, the numerical derivative array is

∆y

∆x
= 1

2 [1, 2, 2, 4] = [0.5, 1, 1, 2] .

Note that computing the first order forward difference sequence results in N − 1 terms, since each
value requires at least two consecutive sample points.

Problem 1: Given the sequence y = [3, 3, 6, 9, 12], compute the first derivative using the
forward difference method.

Problem 2: For the sequence y = [2, 5, 10, 17, 26], compute the first derivative using the
forward difference method. Assuming ∆x = 1, what continuous function does the sequence trace out?
Is the derivative of such a function consistent with the forward difference result?

Problem 3: Given the signal y = [0, −1, −2, −1, 0, 1, 2, 1, 0], compute the discrete derivative
and interpret the result.
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9.9 Introduction to plane waves [return to section]
As an example of applying Euler’s formula, we consider the concept of a plane wave. A plane wave in
physics and engineering represents the propagation of a set of wavefronts (such as an electromagnetic
or acoustic wave) which are infinite, parallel, and equidistant - meaning the wave has a well-defined
wavelength λ.

This is visualized below for a plane wave z(x) = Aeikx with amplitude A = 1 and wave-
length λ = 2π/k, where k is the wave vector. The real part of the plane wave (solid blue curve) is
given by Re(z) = A cos(kx), and the imaginary part of the plane wave (dashed red curve) is given by
Im(z) = A sin(kx).
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In the context of electromagnetism, a plane electromagnetic wave can be described using
complex exponential functions and analyzed using Euler’s formula. Consider a plane electromagnetic
wave traveling in the +x direction with an electric field represented as follows:

E(x, t) = E0ei(kx−ωt), (125)
where E0 is the amplitude of the electric field (a constant vector), k = 2π/λ is the wave number which
is inversely proportional to the wavelength λ, ω = 2π/T is the angular frequency which is inversely
proportional to the wave period T , x is the positon along the x-axis, and t is time.

Example: Calculate the real part of this field, assuming that the electric field oscillates in
the y-direction only, and E0 = E0ĵ, where ĵ is the unit vector associated with the y-direction.

Given the wave

E(x, t) = E0ei(kx−ωt)ĵ, (126)
we use Euler’s formula to expand it:

E(x, t) = E0 (cos(kx − ωt) + i sin(kx − ωt)) ĵ (127)
The real part of this electric field, which is physically meaningful in the context of measurable electric
fields is

Re (E(x, t)) = E0 cos(kx − ωt)̂j. (128)
This represents a sinusoidal wave in the y-direction, with a wavelength λ = 2π/k and a period
T = 2π/ω, propagating along the x-direction.

In general, the use of complex functions to describe plane wave simplifies calculations and
visualizations of wave phenomena, particularly by converting trigonometric problems into exponential
ones, which are often easier to manipulate mathematically.
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9.10 Complex differentiation [return to section]
In complex analysis, the Cauchy-Riemann equations are a set of partial differential equations that,
along with certain continuity conditions, form a criterion for a function of a complex variable to
be differentiable in the complex sense. Differentiability in this context is similar to the concept of
differentiability for real functions but includes some additional constraints due to the nature of
complex numbers.

Suppose f(z) is a complex function expressed in therms of a complex variable z = x + iy,
where x and y are real numbers. If f can be decomposed into real and imaginary parts
f(z) = u(x, y) + iv(x, y), where u and v are real-valued functions of two variables, then the function f
is differentiable at a point in the complex plane if both the Cauchy-Riemann equations are satisfied
and the partial derivatives comprising these equations are continuous. Using the shorthand notation
for partial derivatives introduced in (23), the Cauchy-Riemann equations are

∂xu = ∂yv

∂yu = −∂xv.
(129)

We can combine these two equations and write a compact, homogeneous system of linear equations by
defining a matrix D using the partial derivative operators, acting on the complex function vector f:[

∂xu − ∂yv
∂yu + ∂xv

]
=

[
0
0

]
⇒

[
∂x −∂y

∂y ∂x

]
·
[
u
v

]
=

[
0
0

]
⇒ Df = 0. (130)

Note the structural similarity between D and the rotation matrix R used to perform vector rotations
in Euclidean space by an angle θ,

R =
[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
. (131)

In contrast, the Cauchy-Riemann equations convey that the local behavior of an analytic function
in the complex plane corresponds to a transformation that can be understood as both a rotation
and dilation, equivalent to multiplication by a complex number. For a complex function f(z) to be
differentiable about a complex value z, the derivative

f ′(z) ≡ lim
∆z→0

f(z + ∆z) − f(z)
∆z

(132)

must be independent of the direction from which the limit is taken as ∆z approaches zero. Specifically,
whether ∆z approaches zero along the real axis, the imaginary axis, or any other direction, the
resulting derivative must be the same for the derivative to exist.

Example: Verify whether the function f(z) = x2 − y2 + i2xy satisfies the Cauchy-Riemann
equations and is therefore complex differentiable.

We begin by expressing f in terms of u and v:

u(x, y) = x2 − y2

v(x, y) = 2xy.

Next, we calculate the partial derivatives and check whether the Cauchy-Riemann equations are
satisfied according to Eqn. (130):[

∂x −∂y

∂y ∂x

]
·
[
x2 − y2

2xy

]
=

[
∂x(x2 − y2) − ∂y(2xy)
∂y(x2 − y2) + ∂x(2xy)

]
=

[
2x − 2x

−2y + 2y

]
=

[
0
0

]
. ✓

Therefore, since the equations are satisfied and each partial derivative results in a continuous function,
we can conclude that f(z) is complex-differentiable.
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9.11 Cross product [return to section]
With the concept of a matrix and the determinant, we can introduce another operation between
vectors in three dimensions: the cross product. Also known as the vector product, it is a binary
operation on two vectors resulting in a new vector that is orthogonal to both of the original vectors,
making it particularly useful in physics and engineering for determining the direction of forces, torque,
and rotation in three dimensions.

For two vectors a and b, the magnitude of the resulting vector c from the cross product
c = a × b is given as

|c| = c = |a||b| sin(θ) = ab sin(θ), (133)

where θ is the angle between a and b. The cross product is anti-commutative, meaning that
a × b = −b × a, and it is distributive over addition so that a × (b + c) = a × b + a × c.

To determine the components of the cross product vector, however, we must calculate a de-
terminant. Using Cartesian coordinates in three dimensions, we can use the unit vectors î, ĵ, and k̂ to
indicate direction along the x, y, and z directions respectively. For two vectors a and b, we can write

a = ax î + ay ĵ + azk̂ (134)
and

b = bx î + by ĵ + bzk̂. (135)

The cross product c = a × b can then be found by computing the determinant,

c = a × b =

∣∣∣∣∣∣
î ĵ k̂

ax ay az

bx by bz

∣∣∣∣∣∣ = (aybz − azby )̂i − (axbz − azbx)̂j + (axby − aybx)k̂ = cx î + cy ĵ + czk̂. (136)

The magnitude c = |c| can then be computed as

c =
√

c2
x + c2

y + c2
z = |a||b| sin(θ). (137)

The resulting vector c is visualized below, where the cross product between vectors a and b results in
vector c which is orthogonal to both of the original vectors. Orthogonality in this context means that
the inner product between vectors c and a, or c and b, is equal to zero since the angle between each
pair of vectors is 90◦ = π/2 radians. That is,

a · c = b · c = ac cos(π/2) = bc cos(π/2) = 0. (138)

î

k̂

× =ĵî k̂

× =ĵ îk̂

ĵ

× = ĵîk̂𝐛𝐛

𝐚𝐚

𝜃𝜃

𝐜𝐜 = 𝐚𝐚 × 𝐛𝐛
(a)                                      (b)                                          (c)

î

k̂

ĵ

× = ĵî k̂ − × =ĵ îk̂ −

× =ĵ î k̂−

Fig. 9.11.1. (a) The cross product of two vectors a and b results in a third vector c which is orthogonal
to both a and b. (b) The unit vectors î, ĵ, and k̂ are all orthogonal to each other and taking the cross
product of any ordered pair results in the third under the right-hand rule convention. (c) If the pair
ordering is reversed, the resulting cross product is negative.
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9.12 Gaussian elimination [return to section]
Gaussian elimination is a systematic method for solving systems of linear equations, and it can also be
used to find the inverse of a matrix. The process involves augmenting the original matrix A with the
identity matrix 1 and then performing row operations to transform A into 1. Allowed row operations
include swapping rows, multiplying a row by a nonzero scalar, and adding a multiple of one row to
another, with the goal of transforming the original matrix into an upper triangular form and then into
reduced row echelon form. The resulting matrix on the right-hand side of the augmented matrix will
then be A−1.

For Gaussian elimination to be used to find the inverse of a matrix, the matrix must be
square (same number of rows and columns) and invertible, meaning that its determinant must be
non-zero. If the determinant is zero, the matrix is singular and does not have an inverse. This
singularity occurs if the matrix has linearly-dependent rows or columns, leading to at least one entire
row of zeros in its row-reduced form.

Example: Consider the matrix

A =
[ 1 1 −1

1 −1 1
−1 1 1

]
.

We begin by augmenting it with the identity matrix on the right, then adding the first row to the
third row, followed by subtracting the first row from the second row:

[ A | 1 ] =
[ 1 1 −1 1 0 0

1 −1 1 0 1 0
−1 1 1 0 0 1

]
⇒

[ 1 1 −1 1 0 0
1 −1 1 0 1 0
0 2 0 1 0 1

]
⇒

[ 1 1 −1 1 0 0
0 −2 2 −1 1 0
0 2 0 1 0 1

]
.

For the next several linear operations towards transforming the left-hand side of the augmented matrix
into the identity matrix, we multiply the second row by −1/2, then subtract the second row from the
first row, followed by subtracting 2 times the second row from the third row:

⇒

 1 1 −1 1 0 0
0 1 −1 1

2 − 1
2 0

0 2 0 1 0 1

 ⇒

 1 0 0 1
2

1
2 0

0 1 −1 1
2 − 1

2 0
0 2 0 1 0 1

 ⇒

 1 0 0 1
2

1
2 0

0 1 −1 1
2 − 1

2 0
0 0 2 0 1 1

 .

Finally, we multiply the third row by 1/2 and then add the third row to the second row, resulting in
the identity matrix on the left-hand side of the augmented matrix and the inverse A−1 of the original
matrix A on the right-hand side:

⇒

 1 0 0 1
2

1
2 0

0 1 −1 1
2 − 1

2 0
0 0 1 0 1

2
1
2

 ⇒

 1 0 0 1
2

1
2 0

0 1 0 1
2 0 1

2
0 0 1 0 1

2
1
2

 ⇒
[

1 | A−1 ]
.

Thus, the matrix inverse A−1 is

A−1 =

 1
2

1
2 0

1
2 0 1

2
0 1

2
1
2

 .
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9.13 Analytic solution to matrix inversion [return to section]
An explicit method for computing the inverse of a matrix is to do so analytically with the cofactor
matrix method. Also known as the adjugate method, it is based on computing the cofactor matrix of
a square matrix A, transposing it to get the adjugate matrix, and finally dividing each element by the
determinant of A. This method can be expressed by first defining the cofactor matrix.

Given a matrix A = [aij ], the cofactor cij is given by multiplying the minor determinant
associated with element aij with (−1)i+j , in which the matrix associated with the minor is the subma-
trix comprised of matrix elements which do not share the row nor column number of matrix element aij .

Example 1: Assuming we have the 3 × 3 matrix

A =
[

a11 a12 a13
a21 a22 a23
a31 a32 a33

]
,

if we wish to compute the cofactor associated with, say, element a21, we first identify the submatrix
corresponding to this element and compute the minor M2,1 by taking the determinant:

M2,1 =
∣∣∣∣∣HHa11 a12 a13
HHa21 HHa22 HHa23
HHa31 a32 a33

∣∣∣∣∣ =
∣∣∣∣a12 a13
a32 a33

∣∣∣∣ = a12a33 − a13a32.

The cofactor c21 is then found by multiplying this determinant with (−1)i+j , where i = 2 and j = 1:

c21 = (−1)2+1M2,1 = −(a12a33 − a13a32) = a13a32 − a12a33.

Thus, if a square N × N matrix A is invertible, the inverse A−1 is given in terms of the transpose of
the cofactor matrix C = [cij ] and the determinant |A| as

A−1 = C⊺

|A|
∴

[
A−1]

ij
= [cij ]⊺

|A|
= cji

|A|
= (−1)j+iMji∑N

j=1(−1)1+jM1j

, (139)

where, for A = [amn] with m, n ∈ {1, 2, . . . , N}, the minor Mij is the determinant of the submatrix in
which i ̸= m and j ̸= n:

Mij = det ([am̸=i,n̸=j ]) . (140)

Example 2: Compute the inverse of a general 2 × 2 matrix:

Given a 2 × 2 matrix A,

A =
[
a11 a12
a21 a22

]
,

the inverse is generally and straightforwardly computed as

A−1 = 1
(a11a22 − a12a21)

[
a22 −a21

−a12 a11

]⊺

= 1
(a11a22 − a12a21)

[
a22 −a12

−a21 a11

]
. (141)
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9.14 Norm of a matrix [return to section]
The Euclidean norm, or 2-norm, of a matrix is a specific way to measure the size or length
of the matrix, based on the Euclidean distances between points represented by the matrix’s
vectors. Specifically, for matrices, the 2-norm is defined as the maximum singular value of the
matrix, which is also the largest eigenvalue of A⊺A when A is a reaql matrix. In simpler terms,
it can be thought of as the greatest stretch factor by which the matrix can increase the length of a vector.

For a matrix A, the Euclidean norm (or spectral norm) is given by:

∥A∥2 =
√

λmax (A⊺A), (142)

where λmax denotes the largest eigenvalue of A⊺A.

Example: Consider the matrix A =
[
3 4
0 0

]
.

To find the Euclidean norm of A, we first calculate A⊺A:

A⊺A =
[
3 4
0 0

]⊺ [
3 4
0 0

]
=

[
3 0
4 0

] [
3 4
0 0

]
=

[
9 12
12 16

]
.

We then solve for the eigenvalues by solving the characteristic equation and select the largest eigenvalue:

|A⊺A − λ1| =
[
9 − λ 12

12 16 − λ

]
= 0

(9 − λ) (16 − λ) − (12) (12) = λ2 − 25λ = λ (λ − 25) = 0
∴ λ = {0, 25} ⇒ λmax = 25.

Thus, the 2-norm of A is ∥A∥2 =
√

25 = 5, suggesting that the maximum length by which this matrix
can stretch a vector is by a factor of 5. This measure is particularly useful in applications where the
distortion caused by a matrix to input signals or data vectors is critical, such as in signal processing
and numerical simulations.

59



The USC Primer for EE 539

9.15 Condition number of a matrix [return to section]
The condition number of a matrix in the context of numerical linear algebra is a measure that describes
how sensitive the solution of a system of linear equations is to changes in the input or errors in the
calculations. It essentially quantifies the stability and accuracy of solutions computed using the matrix.

The condition number of a matrix, particularly with respect to solving linear systems, is de-
fined in terms of its norm. For a square, invertible matrix A, the condition number κ(A) is defined
as:

κ(A) = ∥A∥ ·
∥∥A−1∥∥ , (143)

where ∥A∥ is a norm of A, such as the 2-norm. While this measure depends on the choice of norm,
the 2-norm is commonly used. A matrix is considered well-conditioned if its condition number is close
to 1. This implies that errors in the input data or in the computational process result in only small
errors in the final result. A matrix is ill-conditioned if its condition number is very large, implying
that even small errors in the input data or during computation can lead to very large errors in the
output, making the computational results potentially unreliable.

Example: Consider a 2 × 2 matrix A =
[
3 1
1 5

]
.

Although we could manually compute the condition number by computing the inverse A−1,
then the norm of A and A−1, and finally multiplying these two values together, the step-by-step
manual computation is left as an exercise to the reader. Using MATLAB’s cond() function to
compute the condition number (or a combination of the norm() and inv() functions representing
matrix norm and inverse, respectively), we have:

κ(A) = cond(A) = norm(A) ∗ norm(inv(A)) ≈ 2.094.

Since this matrix has a condition number close to 1, it implies that solving a system using A would
result in stable and accurate solutions. Thus, we would say matrix A is well-conditioned.

However, if the lower-right element is changed to a22 = 0.333, the determinant becomes a
small number when computing the inverse, leading to a significantly larger condition number
κ(A) ≈ 11, 110.89 and thus A is now ill-conditioned. This implies that even small errors in the input
data or during computation can lead to very large errors in the output, making the computational
results potentially unreliable. As the determinant of a matrix approaches zero, the matrix becomes
singular and the condition number tends towards infinity, resulting in numerical instability. Therefore,
the condition number is a useful measure to ensure reliability in numerical precision in any calculation
or simulation that requires it.

60

https://www.mathworks.com/help/matlab/ref/cond.html
https://www.mathworks.com/help/matlab/ref/norm.html
https://www.mathworks.com/help/matlab/ref/inv.html


The USC Primer for EE 539

9.16 Integration of continuous functions [return to section]
With respect to function which are continuous in x, there are generally two types of integration:
definite and indefinite. The former computes the integral of a function between two specific bounds a
and b of an independent variable x, with the result being a number representing the area under the
curve of the function from x = a to x = b, as shown diagrammatically below, for which areas above
the x-axis (shown in red) are positive while areas below the x-axis (shown in blue) are negative.

x

f(x)

a b

Indefinite integration finds the general form of the integral of f(x) without specific bounds on x. The
general result is a function plus a constant of integration, representing a family of solutions. This has
widespread applications in engineering, such as calculating the total charge from a current vs. time
graph or calculating average values of a signal when working with control systems and performing
signal processing.

Example 1: To find the area under the curve f(x) = x2 from x = 0 to x = 2, the inte-
gral is calculated as

ˆ 2

0
f(x)dx =

ˆ 2

0
x2dx = x3

3

∣∣∣∣2

0
= (2)3

3 − (0)3

3 = 8
3 ,

where dx is the differential element of the variable x for which the function f is being integrated over.

Example 2: Find the area under the curve of f(x) = 4x − x2 in the interval 0 ≤ x ≤ 4.

Since the interval is finite in extent, we can compute the following definite integral:
ˆ 4

0
f(x)dx =

ˆ 4

0
4x − x2dx =

[
4x2

2 − x3

3

]4

0
=

[
2(16) − (64)

3

]
− [0 − 0] = 32

3 .

Problem 1: If the current I, measured in mA = mC/s, flowing through a device is I(t) = 4 sin(πt),
find the total charge Q, measured in mC, transferred from 0 ≤ t ≤ 1 seconds.

Problem 2: In an RC circuit, the voltage across the capacitor decreases as the capacitor
discharges without any external voltage source. If the initial voltage across the capacitor is V0 and it
discharges through a resistor, the voltage V (t) at time t is given by

V (t) = V0e−t/RC , (144)
where R is resistance, C is capacitance, and t is time. Calculate the energy dissipated in the resistor
during the first 5 seconds.

Problem 3: The power P in watts delivered by a power supply over time t in hours is
modeled by the equation P (t) = 5t3 − 15t2 + 20t. Find the total energy delivered by the power supply
from t = 0 to t = 3 hours.
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9.17 Integration of discrete functions [return to section]
Discrete integration involves numerical techniques to estimate the integral of a function, and is a
common example of a multiply-accumulate, or MAC, operation. This can be useful where analytic
integration is difficult or impossible, or when working with data from experiments and measurements
that are inherently discrete. For example, discrete integration can be used for calculating the total
energy or power in a signal based on sampled data or analyzing data from sensors and systems which
provide measurements at discrete intervals.

There are three common techniques used for discrete integration: Riemann sums, the Trape-
zoidal rule, and Simpson’s rule. Riemann sums approximate integration by dividing the area under a
curve into rectangles and summing their areas. This can be done with either uniform or non-uniform
spacing between sample points, and there are three types of Riemann sums: left, right, and midpoint
rules. The left and right rules respectively use the left and right subinterval endpoints, while the
midpoint rule uses the average of the left and right endpoints in a given subinterval for the height.
The trapezoidal rule improves upon Riemann sums by approximating the area under the curve with
trapezoids instead of rectangles, which generally provides a better approximation. The midpoint
and trapezoidal methods are visually depicted below for uniformly sampled intervals of width ∆x in
subfigures (a) and (b) respectively.

x

f(x)

a b

(a) 

x

f(x)

a b

(b) 

Δx Δx

Simpson’s rule utilizes splines instead of lines to approximate the curve, providing even more accuracy,
especially when the function is smooth. Generally, a spline is a piecewise function composed of
connected polynomials. In the case of Simpson’s rule, the simplest nonlinear spline would be composed
of parabolic arcs (second-order polynomials).

Example: Approximate the integral of f(x) = x2 from 0 ≤ x ≤ 1 using N = 5 subinter-
vals and the midpoint rule and calculate the relative error. We begin by first computing the interval
width,

∆x = xmax − xmin

N
= 1 − 0

5 = 0.2.

The endpoints of each subinterval are thus [0, 0.2], [0.2, 0.4], [0.4, 0.6], [0.6, 0.8], and [0.8, 1], and
therefore the corresponding midpoints are 0.1, 0.3, 0.5, 0.7, and 0.9, respectively. Finally, we
calculate the integral by multiplying the value of the function (the height) with the subinterval length,
and adding these subinterval areas together. Since the subinterval spacing is uniform, we can factor it
out and simply multiply it with the sum of function values at the midpoints:

Area =
N=5∑
n=1

f(xn)∆x = [f(x1 + f(x2) + f(x3) + f(x4) + f(x5)] ∆x

=
[
0.12 + 0.32 + 0.52 + 0.72 + 0.92]

(0.2) = 0.33.

Comparing this with the actual integral of f(x), we get a relative error of only 1%:
ˆ 1

0
x2dx = x3

3

∣∣∣∣1

0
= 0.3 ⇒ |0.3 − 0.33|

0.3
× 100% = 1%

Problem 1: Calculate the approximate value of the integral of f(x) = e−x2 in the interval 0 ≤ x ≤ 1
using the trapezoidal rule with n = 4 subintervals.
Problem 2: Estimate the integral of f(x) = ln(x) in the interval 1 ≤ x ≤ 2 using the midpoint rule
with n = 2 subintervals.
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9.18 Coefficient of determination [return to section]
The coefficient of determination, often denoted as R2, is a statistical measure used in the context of
least squares fitting to evaluate how well a regression model fits the observed data. It is particularly
useful in linear regression analysis, where it quantifies the proportion of the variance in the dependent
variable that is predictable from the independent variables. In simpler terms, it describes how much
of the variation in the data can be explained by the fitted model.

Using Eq.(62), the coefficient of determination for n sample points is calculated as:

R2 = 1 − S(a)
Stot

, (145)

where Stot = nσ2
y is the total sum of squares, proportional to the variance of the data. In terms of

Eq.(72) and (74), the coefficient of determination can be expressed as

R2 = a⊺ · Y − n⟨y⟩2

nσ2
y

, (146)

where ⟨y⟩ = 1
n

∑n
i=1 yi and σ2

y = ⟨y2⟩ − ⟨y⟩2 denote the mean and variance of y respectively, with
⟨y2⟩ = 1

n

∑n
i=1 y2

i .

Example: Once the coefficients a are calculated in the case of a quadratic (N = 2) model,
we can then compute the coefficient of determination explicitly. Using Eq. (146), we have

R2 =
a0

∑
yi + a1

∑
yixi + a2

∑
yix

2
i − 1

n (
∑

yi)2∑
y2

i − 1
n (

∑
yi)2 (147)

The coefficient of determination has a value 0 ≤ R2 ≤ 1, where R2 = 1 implies a perfect fit and the
regression model explains all of the variation in the data, while R2 = 0 implies the model does not
explain any variation in the data. Thus, intermediate values represent the partial explanatory power
of the model, indicating that some but not all of the variation is captured.

However, a high value of R2 does not always imply a better model due to potential overfit-
ting, especially with many independent variables, or predictors. Thus, it should be used carefully
when comparing models with different numbers of predictors.
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9.19 The binomial theorem [return to section]
The binomial theorem provides a formula for expanding expressions that are raised to a power, and is
given by

(a + b)n =
n∑

k=0
C(n, k)an−kbk = an + nan−1b + . . . + nabn−1 + bn, (148)

where C(n, k) is the n-choose-k binomial coefficient, representing the number of ways to choose k
elements from a set of n total elements.

Example: Use the binomial theorem to expand (x + 2)3.

We can directly apply (148) to get

(x + 2)3 =
3∑

k=0
C(3, k)x3−k2k =

(
3
0

)
x3−020 +

(
3
1

)
x3−121 +

(
3
2

)
x3−222 +

(
3
3

)
x3−323

= 3!
0!(3 − 0)!x

3 + 3!
1!(3 − 1)!2x2 + 3!

2!(3 − 2)!4x + 3!
3!(3 − 3)!8

= x3 + 6x2 + 12x + 8
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9.20 LU decomposition [return to section]
LU decomposition is a technique that simplifies solving systems of linear equations, inverting matrices,
and calculating determinants. It is a useful tool in numerical linear algebra due to its efficiency and
effectiveness in handling large matrices.

The LU decomposition of a square matrix A involves factorizing it as the product of a
lower triangular matrix (L) with ones on the diagonal and an upper triangular matrix (U) such that
A = LU. This factorization can be used to solve the linear equation Ax = b by first solving Ly = b
for vector y using forward substitution, and then solving Ux = y for vector x using back substitution.

Example: Consider the following matrix A and decompose it into the two triangular ma-
trices L and U:

A =
[2 3 1

4 7 2
6 12 5

]

To find the LU decomposition, we execute the following steps:

1. Initialize L and U as identity and zero matrices respectively:

L =
[1 0 0

0 1 0
0 0 1

]
, U =

[0 0 0
0 0 0
0 0 0

]
.

2. Fill the U matrix with the values from A:

U =
[2 3 1

0 1 0
0 0 0

]
.

3. Perform row operations to fill in the L and U matrices by initially eliminating the first
column below the diagonal:

L =
[1 0 0

2 1 0
3 0 1

]
, U =

[2 3 1
0 1 0
0 0 0

]
4. Next, the second column is eliminated below the diagonal:

L =
[1 0 0

2 1 0
3 3 1

]
, U =

[2 3 1
0 1 0
0 0 2

]

Problem 1: Solve the system of linear equations using LU decomposition:

2x + 3y + z = 5
4x + 7y + 2z = 11

6x + 18y + 5z = 25
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9.21 LDL decomposition [return to section]
LDL decomposition is a type of matrix factorization particularly useful for symmetric and Hermitian
matrices. It expresses a given symmetric matrix A as the product of a lower triangular matrix L, a
diagonal matrix D, and the transpose (or conjugate transpose) of the lower triangular matrix L⊺ so
that A = LDL⊺. This decomposition is valuable in numerical analysis, especially for solving linear
systems as well as for understanding the properties of the matrix. Furthermore, this decomposition
is particularly efficient because it avoids the need for pivoting and is stable for symmetric positive
definite matrices.

Example: Let’s consider a symmetric matrix A and decompose it into L, D, and L⊺:

A =
[ 4 12 −16

12 37 −43
−16 −43 98

]
To find the LDL decomposition, the following steps are taken:

1. Initialize L and D matrices:

L =
[1 0 0

0 1 0
0 0 1

]
, D =

[0 0 0
0 0 0
0 0 0

]

2. Compute the elements of D and L:
• For D11:

D11 = A11 = 4
• For L21 and L31:

L21 = A21

D11
= 12

4 = 3

L31 = A31

D11
= −16

4 = −4

• For D22:
D22 = A22 − L2

21D11 = 37 − 32 · 4 = 37 − 36 = 1
• For L32:

L32 = A32 − L31L21D11

D22
= −43 − (−4) · 3 · 4

1 = −43 + 48
1 = 5

• For D33:

D33 = A33 −(L2
31D11 +L2

32D22) = 98−((−4)2 ·4+52 ·1) = 98−(16 ·4+25) = 98−89 = 9

3. Thus, the final matrices L, D, and L⊺ are:

L =
[ 1 0 0

3 1 0
−4 5 1

]
, D =

[4 0 0
0 1 0
0 0 9

]
, L⊺ =

[1 3 −4
0 1 5
0 0 1

]

Problem 1: Solve the system of linear equations using LDL decomposition:

4x + 12y − 16z = 12
12x + 37y − 43z = 30

−16x − 43y + 98z = −48
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9.22 Eigenvalues and eigenvectors [return to section]
Eigenvectors and eigenvalues are important concepts in linear algebra with applications across physics,
engineering, computer science, and other quantitative fields. They are especially useful in systems
analysis, stability studies, quantum mechanics, and methods for solving differential equations.
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9.23 Singular value decomposition [return to section]
Singular value decomposition (SVD) is a matrix factorization technique in linear algebra. It generalizes
the eigendecomposition of a square matrix to any m × n matrix. SVD has applications in signal
processing, statistics, and machine learning, particularly in data compression, noise reduction, and
dimensionality reduction.
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9.24 Rising and falling factorials [return to section]
The rising factorial, also known as the Pochhammer function or Pochhammer symbol, is best denoteda

as xn,

xn =
n∏

k=1
(x + k − 1) =

n−1∏
k=0

(x + k) = x(x + 1)(x + 2) · · · (x + n − 1), (149)

where n is an integer. Similarly, the falling factorial is best denoted as xn, where

xn =
n∏

k=1
(x − k + 1) =

n−1∏
k=0

(x − k) = x(x − 1)(x − 2) · · · (x − n + 1). (150)

Rising and falling factorials are related by

xn = (−1)n(−x)n ∴ xn = (−1)n(−x)n. (151)
Example:

aIn the interest of mitigating notational ambiguity, overline (xn) and underline (xn) notation was introduced
to respectively represent rising and falling factorials in D. Knuth, The art of computer programming, (Pearson
Education, 1997).
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9.25 Logic gates [return to section]
In electrical engineering, logic gates are the building blocks of digital circuits. They perform Boolean
operations on one or more binary inputs to produce a single output and are therefore useful for
creating digital circuits that can perform complex computations, from simple arithmetic to intricate
algorithms.

In digital electronics, the function of a given gate may be quantified using a truth table
which lists all possible values of input variables along with the gate’s output value. Along with their in-
verses, the basic set of logic gates and their corresponding truth tables are shown in the following figures.

A Q

NOT gate truth table

A B Q = �𝑨𝑨
0 - 1

0 - 1

1 - 0

1 - 0
NOT gate truth table

A Q = �𝑨𝑨
0 1

1 0

Fig. 1. The NOT logic gate, which takes a single Boolean input A and outputs the opposite value
Q = NOT(A) = A.

AND gate truth table

A B Q = A ×B
0 0 0

0 1 0

1 0 0

1 1 1

A

B
Q

NAND gate truth table

A B Q = 𝑨𝑨 × 𝑩𝑩
0 0 1

0 1 1

1 0 1

1 1 0

A

B
Q

OR gate truth table

A B Q = A +B
0 0 0

0 1 1

1 0 1

1 1 1

A

B
Q

NOR gate truth table

A B Q = 𝑨𝑨 + 𝑩𝑩
0 0 1

0 1 0

1 0 0

1 1 0

A
B

Q

XOR gate truth table

A B Q = A ⨁B
0 0 0

0 1 1

1 0 1

1 1 0

XNOR gate truth table

A B Q = 𝑨𝑨⨁𝑩𝑩
0 0 1

0 1 0

1 0 0

1 1 1

A

B
Q

A

B
Q

Fig. 2. From left-to-right, top-to-bottom, the AND, NAND, OR, NOR, XOR, and XNOR logic gate
symbols and corresponding truth tables are respectively given. Each gate has two inputs A and B
and a single output Q which is either a logical 1 (“True”) or logical 0 (“False”) according to the truth
table.

These set of logic gates can be combined in various ways to build circuits capable of per-
forming any logical operation. Such a concept is known as functional completeness, which is
independently satisfied by both the NAND and NOR logic gates. That is, with either of these logic
gates, all other logical operations can be replicated.

A set of practice problems may be found in Homework Problems: Logic gate design.
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9.26 Higher-order differentiation of discrete functions [return to section]
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9.27 Origin of beam splitter amplitudes [return to section]
Consider the ideal, lossless, symmetric, 50:50 beam splitter configured with two input ports and two
output ports and illustrated in Fig. 15. Quantum field reflection and transmission coefficients for
a single photon entering port 1 or 2 are rph,1, rph,2, tph,1 and tph,2 respectively. If a single isolated
photon enters port 1 then it is in input state |n1 = 1, n2 = 0⟩in. For the case being considered, it is
well known that the phase of the transmitted field leads the phase of the reflected field by π/2 a. The
single-photon input state |n1 = 1, n2 = 0⟩in has quantum field amplitude at port 1 that can be set
to a1 = 1 and at port 2 it is set to a1 = 0. In this case the input state is a product state so that
|1, 0⟩in = |1⟩1 ⊗ |0⟩2 where |0⟩ is the vacuum state. For input state |n1 = 0, n2 = 1⟩in the quantum
field output is a3 = rph,2 at port 3 and a4 = tph,2 at port 4. The single-photon input and output
quantum field amplitudes are related via[

a3
a4

]
out

=
[

tph,1 tph,2
rph,1 rph,2

] [
a1
a2

]
in

= ÛB

[
a1
a2

]
in

, (152)

where ÛB is a 2 × 2 matrix describing the ideal lossless beam splitter. Photon probability is conserved
because an ideal lossless beam splitter is being considered. This means that the 2 × 2 matrix ÛB is
unitary and consequently its Hermitian adjoint is its inverse Û†

B = Û−1
B . Hence,

Û†
B =

[
t∗
ph,1 r∗

ph,1
r∗

ph,2 t∗
ph,2

]
= 1

tph,1tph,2 − rph,1rph,2

[
tph,2 −rph,2

−rph,1 tph,1

]
= Û−1

B . (153)

Because the determinant of a unitary matrix has unit magnitude, in general, tph,1tph,2 −rph,1rph,2 = eiϕ

where ϕ is a global phase factor that has no impact on relative phase between matrix elements and may
be set to ϕ = π, so that tph,1tph,2 − rph,1rph,2 = −1 since eiπ = −1. Inserting this into the expression
for Û†

B gives rph,1 = r∗
ph,2 and tph,1 = −t∗

ph,2 from which it may be concluded that |rph,1| = |rph,2| and
|tph,1| = |tph,2|. Re-expressing the complex terms for rph,1 and tph,1 gives

|rph,1|eiθrph,1 = |rph,2|e−iθrph,2 and |tph,1|eiθtph,1 = −|tph,2|e−iθtph,2 . (154)

Dividing these equations gives

|tph,1|eiθtph,1

|rph,1|eiθrph,1
= −|tph,2|e−iθtph,2

|rph,2|e−iθrph,2
→ eiθtph,1 −iθrph,1 = −e−iθtph,2 +iθrph,2 = e−iθtph,2 +iθrph,2 +iπ (155)

where use is made of eiπ = −1. Hence,(
θtph,1 − θrph,1

)
+

(
θtph,2 − θrph,2

)
= π. (156)

For the ideal, lossless, symmetric, 50:50 beam splitter rph,1 = rph,2 and tph,1 = tph,2. Therefore, the
phase difference between transmission and reflection at each port is the same,(

θtph,1 − θrph,1

)
+

(
θtph,2 − θrph,2

)
= π

2 (157)

and it is clear that the phase of the transmitted field leads the phase of the reflected field by π/2. For
the perfect, lossless, symmetric, 50:50 dielectric beam splitter |rph,1| = |rph,2| = |tph,1| = |tph,2| which
can only be satisfied if |rph,1| = |rph,2| = |rph| is pure real and |tph,1| = |tph,2| = |tph| is pure imaginary.
Given the fact that the determinant of the unitary matrix requires tph,1tph,2 − rph,1rph,2 = 1, then

rph = − 1√
2

and tph = i√
2

, (158)

so that the unitary 2 × 2 matrix ÛB describing a single photon interacting with an ideal, lossless,
symmetric, 50:50 beam splitter and satisfying the unitary requirement Û†

B = Û−1
B is

ÛB = 1√
2

[
i −1

−1 i

]
=

[
tph rph
rph tph

]
. (159)

aA. Agnesi and V. Degiorio, Opt. Laser Tech. 95, 72-73 (2017). V. Degiorio, Am. J. Phys. 48, 81 (1980).
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9.28 Introduction to the Fourier transform [return to section]
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9.29 The Fast Fourier Transform (FFT) [return to section]
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9.30 Classical analog of the “Mandel dip” [return to section]
In a somewhat contrived experiment it is possible to configure a classical (or a single photon) analog
of the “Mandel dip” by applying external controls to randomly switch the quadrature phase difference
of classical electromagnetic radiation (or a single photon field) entering the respective input ports of
an ideal, lossless, 50:50 beam splitter such that the output field is multiplexed to appear at either
one but not both output portsa. So, in this sense, any claim of measuring quantum interference and
correlation associated with the Mandel dip requires specifying the absence of special external phase
modulation of input fields or replacing single photon detectors with photon number-resolving detectors.

To see how interference can be used to multiplex two input signals into a single output
port, recall that reflection amplitude at a perfect, lossless, symmetric, 50:50 beam splitter is
rph = −1/

√
2 and transmission is tph = i/

√
2 (Eqns. (83) and (84)). Flux conservation in the lossless

system requires |rph|2 + |tph|2 = 1. If the field amplitude at input port 1 is 1 and at port 2 it is in
phase quadrature with a value −i = tph/rph then the output field at port 3 is zero and the output
field at port 4 is 2. The output field can be multiplexed by switching the phase of the port 1 and port
2 input fields.

aS. Sadana, D. Ghosh, K. Joarder, A. N. Lakshmi, B. C. Sanders, and U. Sinha, Phys. Rev. A 100, 013839
(2019).
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9.31 Coordinate systems [return to section]
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10 Homework Problems

10.1 Complex differentiation [return to section]
Problem 1: Use the Cauchy-Riemann conditions to determine whether the function
f(z) = ex cos(y) + iex sin(y) is complex-differentiable at any point in the complex plane.

Problem 2: The standard numerical technique to compute the derivative of a function
f(x) is

f ′(x) ≈ f(x + ∆x) − f(x)
∆x

, (160)

where ∆x is the step size. However we have a subtraction which causes difference errors under
numerical implementation.

Given the function f over the R line, we can construct an analytic function f(z) (where x,
a real variable, gets replaced by z, a complex variable). Then from the Taylor series

f(x + ih) = f(x) + ihf ′(x) − h2f ′′(x)/2 − ... (161)
where h ∈ R. Using the above equation, show that

f ′(x) ≈ Im(f(x + ih))
h

(162)

and compute the error in the approximation E1.

Problem 3: Compute the appropriate numerical approximation of f ′′(x) from equation
Eq. 161 and find the error E2. Observe and state your observation of the merit in this method vs the
second-order derivative approximation

f ′′(x) ≈ f(x + ∆x) + f(x − ∆x) − 2f(x)
∆x2 . (163)

Problem 4: For the following function

f(x) = ex

(cos3(x) + sin3(x))1/2 ,

compute f ′(x) at x = π/4 by both the complex method and finite difference method. Using a symbolic
toolbox (using either MATLAB, Mathematica, SciPy, or some other tool of choice), find the actual
derivative f ′(x) at x = π/4. Now compare the errors in both methods. Throughout the whole problem
let h iterate over the order from h = 10−1 to h = 10−16. Plot the error.
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10.2 Poynting vector [return to section]
The Poynting vector represents the directional energy flux (the rate of energy transfer per unit area) of
an electromagnetic field.a Such a concept can be used to understand, for example, how electromagnetic
energy is transmitted from a radio antenna to a receiver. In vacuum, the Poynting vector S is defined
as the cross product of the electric field E, measured in volts per meter (V/m), and the magnetic field
B, measured in teslas (T),

S = 1
µ0

E × B = E × H, (164)

where µ0 = 4π × 10−7 H/m (henries per meter) is the permeability of free space and the
magnetic field intensity H = B/µ0. The direction of S indicates the direction of energy propaga-
tion of the electromagnetic wave, and its magnitude represents the rate of energy transfer per unit area.

Problem 1: If complex field G =
(
D/

√
ε0 + iB/

√
µ0

)
/
√

2 show that Maxwell’s equations
in free space and in the absence of free charges may be written as the complex equations

∇ · G = 0 (165)
and

i∂G
∂t

= 1
√

ε0µ0
∇ × G, (166)

where G = 1√
2

(
G√

2 + i B√
µ0

)
.

Problem 2: Show that the energy flux density in the electromagnetic field given by the
Poynting vector is

S = E × H = −i
√

ε0µ0
(G∗ × G) . (167)

Problem 3: If the field G is purely real, what is the value of S?

Problem 4: Show that the electromagnetic energy density is U = |G|2.

Problem 5: How would Maxwell’s equations be modified if magnetic charge g exists (thereby
implying the existence of magnetic monopoles)? Derive an expression for conservation of magnetic
current and write down a generalized Lorentz force law that includes magnetic charge. Write
Maxwell’s equations with magnetic charge in termns of a field G.

aThe Poynting vector is named after the physicist John Henry Poynting who first derived it in 1884.
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10.3 Logic gate design [return to section]
The set of logic gates described in Explore More: Logic gates can be combined in various ways to
build circuits capable of performing any logical operation. Such a concept is known as functional
completeness, which is independently satisfied by both the NAND and NOR logic gates. That is, with
either of these logic gates, all other logical operations can be replicated.

Example: Construct an OR gate using only NAND gates. As shown in Fig. 1, we can
use a set of three NAND gates to construct an OR gate by having the first value A go into both
inputs of one NAND gate, the second value B go into both inputs of a second NAND gate, and finally
the outputs of these two NAND gates are passed as inputs to a third NAND gate. Completing the
truth table for this gate shows that it is functionally equivalent to a single OR gate.

A

B

Q

A

A

NAND(A, A )

NAND(B, B )B

B

NAND(NAND(A, A ), NAND(B, B ))
A B Q
0 0 0

0 1 1

1 0 1

1 1 1

Fig. 1. By combining three NAND gates, an OR logic gate can be constructed. That is, the output
Q = NAND(NAND(A, A), NAND(B, B)) = OR(A, B).

Problem 1: Design a circuit that outputs the opposite state of the input using NAND
gates only.

Problem 2: Suppose you are designing a safety system where a machine should only oper-
ate if two sensors (A and B) are activated and there is manual confirmation (C). Construct a logic
circuit using only AND and OR gates.

Problem 3: Implement an XOR gate using AND, OR, and NOT gates.

Problem 4: Design a simple binary multiplier circuit for two 2-bit numbers (A1A0 and
B1B0) and then accumulate the result to a previous total using an AND and an XOR gate for
addition.
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10.4 Combinatorics [return to section]
Problem 1: Calculate C(100, 99) by hand.

Problem 2: Use the binomial theorem to expand (x − 2)6.

Problem 3: A student forgot the 3-digit code to their bicycle lock.

(a) If each digit can range from 0 to 9, how many unique codes could exist?

(b) The student remembers that none of the digits repeat in their code. How many unique
codes can exist now?

(c)The student then remembers at least one of the three digits to their unique code. How
many unique codes can exist now?

(d) By what fraction do each of these two pieces of information reduce the original number
of possible codes (and therefore the guessing difficulty) by themselves as well as together?

Problem 4: An engineer must design a security system featuring a set of unique numbers
comprising a code which must have strictly less than one in a million chance of being randomly
guessed.

(a) Assuming each unique number in the code can be a value between 0 and 9, determine
the minimum number of code digits required to satisfy the design requirement.

(b) If the constraint of uniqueness is removed such that a given digit could be used more
than once and still satisfy the guessing probability requirement, what is now the minimum number of
code digits required?

(c) The engineer must now add a second layer of security which requires a second type of
code that is restricted to only 4 unique numbers yet must still satisfy the guessing probability
requirement of the design, however the value of each number is no longer restricted from 0 to 9, but
rather 1 to n. Determine the minimum value of n such that randomly guessing the 4-number code
would have a probability less than 106.
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10.5 Differentiation [return to section]
Problem 1: Showing each step, find the derivative f ′(x) of the function f(x) = ex2+3x.

Problem 2: Showing each step, find the derivative f ′(x) of the function f(x) = x4 cos(2x).

Problem 3: Showing each step, find the derivative f ′(x) of the function f(x) = (x2 + 1)/(
√

x + 2).

Problem 4: In an AC circuit, the capacitive reactance XC is given by XC = 1
ωC , where

the signal angular frequency ω varies with time according to the function ω = 2πt and the capacitance
C is a constant. Derive an expression for the rate of change of the reactance, X ′

C(t).

Problem 5: The power P in a circuit is given by P = IV , where I is the current and V
is the voltage. If the voltage varies with respect to time as V (t) = t3 − t and the current exponentially
decays over time as I(t) = e−t, derive an expression for the rate of change of the power, P ′(t).

Problem 6: The amplitude A of a signal in a circuit depends on the frequency f accord-
ing to the equation A(f) = ln(1 + f2). If the frequency of the signal changes with respect to time
according to f(t) = sin(t), derive an expression for the rate of change of the amplitude over time,
A′(t).
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10.6 Vectors [return to section]

Problem 1: Given a vector v =
[
4
3

]
, find the unit vector u in the direction of v.

Problem 2: Calculate the inner product of vectors a =
[ 1

2
−1

]
and b =

[−2
0
3

]
.

Problem 3: Consider two complex orthogonal vectors v =
[
3 + 4i

a

]
and u = 1

2

[
1 + i

b

]
.

Solve for all possible values of a and b, assuming that u is a unit vector and b ∈ R.
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10.7 Matrices [return to section]
Problem 1: Using MATLAB or some other language of choice (e.g., Python, Julia, etc.), Construct
an N × N uniform random matrix. In MATLAB, this can be done with the rand(N) function (i.e.,
real entries in a full (non-sparse) matrix). Use a timing function (e.g., MATLAB’s tic and toc
functions) to calculate the length of time required to invert the matrix. Now loop this process as a
function of the size of the square N × N matrix, where N ranges from 100 to 1,000 and store the time
required to invert each matrix in an array. Plot the time array as a function of N two different ways:
using a linear scale for both x and y axes (a linear-linear plot via the plot(x,y) command if using
MATLAB) and using a base-10 logarithmic scale on both axes (a log-log plot via the loglog(x,y)
command if using MATLAB).
How does the inversion time scale with respect to N for each type of plot, and what does this say
about the computational complexity of matrix inversion (that is, the amount of resources required to
invert a matrix)? Based on the inversion timescale you determined from your numerical experiments,
estimate the size of the largest N × N matrix you could invert in 1 minute or less.

Problem 2: Two identical antennas, labeled 1 and 2, are separated in free-space by dis-
tance L as shown below.

Antenna 2Antenna 1

Angle of 
arrival, 

𝜃𝜃𝑛𝑛

Source signal, 𝑆𝑆𝑛𝑛

𝑋𝑋1 𝑋𝑋2
𝐿𝐿

If the antennas receive an electromagnetic signal from source Sn that has angular frequency ωn then,
as a function of time t, a unit-amplitude source signal is Sn(t) = eiωnt. If the nth signal Sn(t) is a
plane wave and has an angle of arrival θn measured anticlockwise from normal incidence then there is
a relative phase difference of ϕn between the contribution of Sn(t) arriving at antenna 1 and 2. In
general the relationship between angle of arrival of θn of the nth signal and the phase difference ϕn is

ϕn = 2πL

λn
sin (θn) (168)

for a signal of wavelength λn = 2πc/ωn, where c is the speed of light. If there are only two
plane-wave sources, S1(t) and S2(t), then each antenna receives the sum of the two signals and

at any given time this sum may be written in matrix form as X = AS where vector X =
[
X1
X2

]
describes signal X1(t) received at antenna 1 and signal X2(t) received at antenna 2, S =

[
S1
S2

]
de-

scribes sources S1(t) and S2(t), and the time-independent complex mixing matrix is A =
[
a11 a12
a21 a22

]
.

(a) Find the matrix elements of the mixing matrix, A.
(b) Find the inverse matrix A−1 and find the conditions when it is not possible to separate the source
signals using S = A−1X.
(c) In a typical wireless receiver system implementation the complex signals are separated into their
real (in-phase, I) and imaginary (quadrature, Q) components at each antenna relative to a reference
local oscillator. This doubles the size of the mixing matrix. Find the matrix elements for the mixing
matrix in this case.
(d) Can an RF receiver be used to directly measure the electromagnetic field?
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10.8 Beam splitter numerical error [return to section]
Problem 1: Consider an ideal, lossless, symmetric, 50:50 beam splitter with a total number of ntot
identical and indistinguishable photons.

(a) Run MATLAB script Chapt11Fig7.m for ntot = 8 and ntot = 110. Compare and explain the results.

(b) Calculate the average deviation from zero for probabilities of observing odd numbers of
photons exiting output port 3 or 4 when n1 = ntot/2. Range the total input photon number parameter
12 ≤ ntot ≤ 128 where ntot is even, and plot the average error (deviation from zero) on a logarithmic
scale as a function of ntot value on a linear scale. Comment on how this error varies as a function of ntot.

(c) Repeat part (b), but now use single precision to compute the probability amplitude.
How does this result differ from double precision?

(d) Using Mathematica and table 3 as a guide, derive simplified analytic expressions of Eq.
(11.31) which can be used to accurately calculate the photon detection probabilities in output port 3
for the two extremal cases where n1 = ntot and n1 = ntot/2. Use these simplified expressions to plot
the probability distributions for the two aforementioned cases when ntot = 1000 and comment on the
results.
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