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Ah&ret--A nearest-neighbor semi-empirical tight-binding theory of energy bands in zincblende and diamond 
structure materials is developed and applied to the following sp3-bonded semiconductors: C, Si, Ge, Sn, SIC, GaP, 
GaAs, GaSb, InP, InAs, InSb, AIP, AlAs, AISb, ZnSe, and ZnTe. For each of these materials the theory uses only 
thirteen parameters to reproduce the major features of conduction and valence bands. The matrix elements 
exhibit chemical trends: the differences in diagonal matrix elements are proportional to differences in free-atom 
orbital energies and the off-diagonal matrix elements obey the de2 rule of Harrison et al. The lowest energy 
conduction bands are well described as a result of the introduction of an excited s state, s*, on each atom. 
Examination of the chemical trends in this sp’s* model yields a crude but “universal” sp’s* model whose 
parameters do not depend explicitly on band gaps, but rather are functions of atomic energies and bond lengths 
alone. The “universal” model, although cruder than the sp’s* model for any single semiconductor, can be 
employed to study relationships between the band structures of different semiconductors; we use it to predict band 
edge discontinuities of heterojunctions. 

1. INTRODUCTION 

Now that semiconductors can be grown with varying 
composition a few atomic layers at a time [I], the number 
of conceivable new electronic devices and materials for 
improving the performance of existing devices will in- 
crease many-fold. This situation will put new demands 
on theorists to predict the properties of exotic semicon- 
ductors before the materials are even fabricated. This 
need to survey and simulate wide classes of semicon- 
ducting materials is not well met by most conventional 
theories, which concentrate on the accurate description 
of a few semiconductors. A notable exception, however, 
is the empirical Bond Orbital Model pioneered by 
Harrison[2,3]; this model provides a simple nearest- 
neighbor tight-binding theory of valence bands and how 
they change as the chemistry of the semiconductor 
varies. With this model, one can estimate the nature of 
the filled, bonding valence bands of almost any semi- 
conductor. However, a comparable model that also des- 
cribes the empty anti-bonding conduction states is 
needed. 

In this paper we present such a model. We maintain 
the spirit of Harrison’s model of semiconductors by 
constructing a nearest-neighbor tight-binding theory 
which preserves and displays chemical trends, while 
successfully reproducing the unoccupied anti-bonding 
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lower conduction bands as well as the occupied bonding 
valence bands. In order to achieve these goals we have 
found, by trial and error, a chemically-correct tight- 
binding theory with a minimum number of parameters. 
We have replaced the actual semiconductor Hamiltonian 
with a pseudo-Hamiltonian[4] which (i) involves only a 
small number of localized pseudo-orbitals[S], (ii) has 
off-diagonal matrix elements that are significant only 
between states localized on adjacent sites, and (iii) has 
diagonal matrix elements that are determined by the free 
atom orbital energies of the semionductor’s chemical 
constituents and are only weakly influenced by the con- 
densed-matter environment [6]. Such a replacement of 
the Hamiltonian was recently shown to produce an 
adequate pseudo-Hamiltonian[5,6]. The resulting 
pseudo-orbital basis functions turn out to be atomic- 
like[6, ‘II-although atomic orbitals themselves (as were 
used in early linear combination of atomic orbitals 
models) do not provide an adequate pseudo-Hamiltonian 
basis. The spirit of the pseudo-Hamiltonian replacement 
procedure is analogous to that of conventional empirical 
pseudopotential theory [8]: the matrix elements of the 
pseudo-Hamiltonian are adjusted to fit optical band gaps, 
thereby constraining the theory to produce a reasonable 
band structure. 

Our model has all of the following properties: (i) the 
chemistry of sp3 bonding is manifestly preserved; (ii) the 
diagonal matrix elements of the model are related to the 
atomic energies of the chemical constituents, permitting 
exploration of chemical trends, simple treatment of al- 
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loys, and theories of semiconductors with defects; (iii) 
the off-diagonal matrix elements scale as the inverse 
square of the bond length (the d-* scaling rule of the 
Bond Orbital Model[2,3]); (iv) the model employs a 
minimum number of parameters, only nearest-neighbor 
matrix elements; and (v) the theory successfully 
reproduces not only the valence bands but also the 
lowest conduction band, even in indirect gap semicon- 
ductors. Other empirical tight-binding theories lack one 
or more of these properties. 

Theories with fewer than eight bands cannot describe 
the chemistry of localized states in covalently bonded 
semiconductors: the sp3 bonding of zincblende and 
diamond structures demands a basis set of at least four 
orbitals for each of the two atoms in the unit cell, 
namely, one s and three p orbitals per atom. Tight 
binding theories with more than nearest-neighbor matrix 
elements have been discussed extensively in the classic 
paper of Slater and Koster [9]. For example, a zincblende 
structure with an sp3 basis for each atom requires 9 and 
23 independent parameters for first- and second-nearest- 
neighbor tight binding theories, respectively. In practice, 
attempts to determine extended-neighbor tight-binding 
parameters empirically are faced with so many adjust- 
able parameters that least-squares fitsHO] to pseudopo- 
tential bands are normally employed. The resulting 
parameters, although quite useful for a single semicon- 
ductor, cannot be confidently used to discuss different 
semiconductors, such as alloys, by interpolation, 
because the fitting procedure is insensitive to the chem- 
istry and chemical trends in the band structure 
parameters. Moreover, the basic spirit of empirical tight- 
binding theory is to minimize the number of empirical 
parameters by restricting the number of non-zero matrix 
elements. Therefore, to preserve simplicity and to permit 
easy identification of chemical trends in the band struc- 
ture, we limit our consideration to a nearest-neighbor 
tight-binding theory. 

Attempts to fit the conduction bands of semiconduc- 
tors with a nearest-neighbor sp’ tight-binding model have 
generally failed; for example, Chadi et nl.[ll] showed 
that such a model cannot produce an indirect fundamen- 
tal band gap in zincblende or diamond materials, and 
hence cannot adequately describe even the lowest con- 
duction bands of such important semiconductors as Si, 
Ge, AIAs, or GaP. The nearest-neighbor sp’ model fails 
to produce an indirect gap for Si because it omits essen- 
tial physics: the excited atomic states, such as the s* 
state of atomic Si, couple with the anti-bonding p-like 
conduction states of Si near the X and L points of the 
Brillouin zone, and press these states down in energy. 
The present theory overcomes this deficiency by includ- 
ing an excited s-state, s*, on each atom, giving an sp3s* 
basis and a ten-band theory. The excited s* state repels 
the lower, unoccupied energy levels of the neighboring 
atom, and, in particular, presses the indirect relative 
conduction band minima down in energy. 

In an $-basis there are four diagonal matrix elements 
(s- and p-orbital energies for each atom) and five in- 
dependent nearest neighbor transfer matrix elements 
(V(s, s), V(x, x), Vx, Y). Usa, PC), and WC, pa)). 

These parameters all have physical significance; our 
procedure is to first determine them by fitting the pseu- 
dopotential bands[l2], and then to augment the basis 
with the s* state which, in this model, introduces a 
diagonal matrix element and off-diagonal matrix ele- 
ments, only two of which we take to be non-zero: the 
couplings between s* and p orbitals on adjacent sites. 
The reason for treating the s* states a posterion’ is that 
they are simply devices for producing accurate indirect 
band edges. The inclusion of some such excited states in 
any minimal basis set is physically important-although 
the precise physics of the actual excited states need not 
be faithfully and quantitatively reproduced. One would 
see this by executing a first-principles band calculation 
for a semiconductor: various excited states (including d 
states) must be introduced in order to obtain the correct 
band structure, because these excited states repel the 
energy levels below them, influencing the width of the 
conduction bands in particular. A central physical point 
of the present work is that any excited state that depres- 
ses the states below can be used to improve the sp3 
nearest-neighbor model conduction bands; therefore 
extensions of the model to distant-neighbor matrix ele- 
ments (with the proliferation of adjustable matrix ele- 
ments) can be avoided by introducing an s* state. 

In Section 2 we present the model Hamiltonian; the 
determination of its matrix elements is discussed in 
Section 3. The resulting matrix elements have scaling 
properties discussed in Section 4. Our results are sum- 
marized in Section 5. Appendix A contains the predicted 
band structures, and the remaining Appendices discuss 
details of the model. 

2. MODEL HAMILTONIAN 

We construct the zincblende-structure tight-binding 
Hamiltonian in a basis of quasi-atomic functions 

(nbk) = N-“*z exp (ik.Ri + ik.vh)lnbRi). (1) 

The quantum numbers n run over the s, px, py, pz, and s* 
orbitals; the N wavevectors k lie in the first Brillouin 
zone[l3]; the site index b is either a (for anion) or c (for 
cation); the anion positions are Ri; and, in terms of the 
Kronecker 8, we have vb = S,,,(aJ2)(1, 1,l). The quasi- 
atomic functions are Lowdin orbitals: symmetrically 
orthogonalized atomic orbitals [14]. The Schrlidinger 
equation for the Bloch functions Ikh) is 

(H - c(kh))lkA) = 0, (2) 

or, in this basis, 

3, {(nbk]Hlmb’k) - ~(kA)s,.,s,,,.}(mb’kIkA) = 0 (3) 

The solutions are 

IkA) = 3 jnbk)(nbkjkA). (4) 

The band index A has ten values. The Hamiltonian 
matrix in the /r&k) basis is: 
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where we have 

g,,(k) = cos (k,aJ4) cos (k&4) cos (k&4) 

- i sin ( kl aJ4) 

x sin (k&4) sin (kd8, 

g,(k) = - cos (k,aJ4) sin (k,uJ4) sin (k&t) 
+ i sin (k,uJ4) 

x cos (k,uJ4) cos (k,uJ4), 

g2(k) = -sin (k,uJ4) cos (k2uJ4) sin (kjaJ4 

+ i cos (k, a J4) 

x sin (k2uJ4) cos (kjaJ4, 

and 

g3(k)=-sin(k,uJ4)sin(kzuJ4)cos(k3uJ4) 

+ i cos (k,uJ4) 

x cos (k2uJ4) sin (k3u J4). (6) 

The independent tight-binding matrix elements, to be 
determined by fitting band structure data, are expressed 
in the localized Lowdin basis of symmetrically ortho- 
gonalized atomic orbitals (nbR): 

E(s, b) = (sbRIH(sbR), 

E(p, b) = (p,bRIHlp,bR), 

v(s, s) = 4(suR~H~scR), 

W, X) = 4(p,aRIHl~,cR), 

Vk Y) = ~(P,uRIH~P,cR)> 

V(su, pc) = 4(saR[Hlp,cR), 

and 

V(pa, SC) = 4(p,aRIHIscR). (7) 

Here we have b = a (anion) or b = c (cation). The above 
nine parameters, four diagonal energies and five transfer 
matrix elements V, determine the band structure in a 
nearest-neighbor, sp3, eight-band model. We include an 
excited s state, s*, in our ten-band sp’s* model, and 
permit only coupling to p-states on adjacent sites, omit- 
ting, for simplicity, the coupling to s-states on different 
sites [IS]. Thus we have four additional matrix elements, 
two diagonal energies and two transfer matrix ele- 
ments 

E(s*, b) = (s*bR[H(s*bR), 

V(s*u, pc) = 4(s*aR[Hlp,cR), 

and 

V(pu, s*c) = 4(p,uRIHls*cR). (8) 

The empirical matrix elements are given in Table 1, 
and the band structure data used in determining them are 
given in Table 2. 

Table 1. Empirical matrix elements of the sp’s* Hamiltonian in eV. Although only three digits are significant, we 
reproduce the actual numbers used to generate the firmres in order to eliminate anv oroblem with round-off errors 

Compound E(s ,a) E(p,a) E(s,c) E(P,c) E(s*,a) E(s*,c) 

C -4.5450 3.8400 -4.5450 3.8400 11.3700 11.3700 

Si -4.2000 1.7150 -4.2000 1.7150 6.6850 6.6850 

Ge -5.8800 1.6100 -5.8800 1.6100 6.3900 6.3900 

Sn -5.6700 1.3300 -5.6700 1.3300 5.9000 5.9000 

sic -8.4537 2.1234 -4.8463 4.3466 9.6534 9.3166 

AlP -7.8466 1.3169 -1.2534 4.2831 8.7069 7.4231 

AlAs -7.5273 0.9833 -1.1627 3.5867 7.4033 6.7267 

Al Sb -6.1714 0.9807 -2.0716 3.0163 6.7607 6.1543 

GE%P -8.1124 1.1250 -2.1976 4.1150 8.5150 7.1850 

GaAs -8.3431 1.0414 -2.6569 3.6686 8.5914 6.7386 

GaSb -7.3207 0.8554 -3.8993 2.9146 6.6354 5.9846 

IIlP -a.5274 0.8735 -1.4826 4.0465 8.2635 7.0665 

Ill& -9.5381 0.9099 -2.7219 3.7201 7.4099 6.7401 

InSb -8.0157 0.6738 -3.4643 2.9162 6.4530 5.9362 
2nSe -11.8383 1.5072 0.0183 5.9928 7.5872 8.9928 
ZnTe -9.8150 1.4834 0.9350 5.2666 7.0834 8.2666 

Compound V(s,s) V(X,X) V(X,Y) V(sa,Pc) V(sc,pa) V(s*a,Pc) V(Pa,s*c) 

C -22.7250 
Si -8.3000 
Ge -6.7800 

Sl-l -5.6700 
sic -12.4197 

AlP -7.4535 
AlAs -6.6642 
AlSb -5.6440 
GaP -7.4709 

GaAs -6.4513 
GaSb -6.1567 

IllP -5.3614 
InAS -5.6052 
InSb -5.5193 
ZllSe -6.2163 
ZnTe -6.5765 

3.8400 
1.7150 
1.6100 

1.3300 
3.0380 

2.3749 
1.8780 
1.7199 
2.1516 

1.9546 
1.5789 
1.8801 
1.8398 
1.4018 
3.0054 

2.7951 

11.6700 15.2206 
4.5750 5.7292 
4.9000 5.4649 
4.0800 4.5116 
5.9216 9.4900 
4.8378 5.2451 
4.2919 5.1106 
3.6648 4.9121 
5.1369 4.2771 
5.0779 4.4800 
4.1285 4.9601 
4.2324 2.2265 
4.4693 3.0354 
3.8761 3.7880 
5.9942 3.4980 
5.4670 5.9027 

15.2206 8.2109 
5.7292 5.3749 
5.4649 5.2191 
4.5116 5.8939 
9.2007 8.7138 
5.2775 5.2508 
5.4965 4.5216 
4.2137 4.3662 
6.3190 4.6541 
5.7839 4.8422 
4.6675 4.9895 
5.5825 3.4623 
5.4389 3.3744 
4.5900 3.5666 
6.3191 2.5891 
5.8199 1.3196 

- 
8.2109 
5.3749 
5.2191 
5.8939 
4.4051 

4.6386 
4.9950 
3.0739 

5.0950 
4.8077 
4.2180 
4.4814 
3.9097 
3.4048 
3.9533 
0.0000 
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Table 2. Bond lengths d (in Angstroms) and band structure energies at symmetry points (zincblende notation) in 
eV 

” C C ” ” ” C C 
Compound d r1 r1 r15 Xl x3 x5 x1 x3 Reference 

C 1.54 -27.2, la.18 7.68 -16.14 -16.14 -7.83 5.48 5.48 ca)(b) 
Si 2.35 -12.50 4.10 3.43 -7.69 -7.69 -2.86 1.13 1.13 (b)(c) 

Ge 2.45 -12.66 0.90 3.22 -8.76 -8.76 -3.29 0.76 0.76 (b) {c) 
SIl 2.81 -11.34 0.00 2.66 -7 .a8 -7 .a8 -2.75 -0.42 -0.42 (c) 
sic 1.88 -19.20 5.90 6.47 -13.50 -11.20 -2.79 2.33 5.41 (d) 
ALP 2.36 -12.70 3.60 5.60 -9.80 -5.40 -2.26 2.50 3.00 (e)(f) 

AlAs 2.45 -11.73 3.04 4.57 -9.52 -5.69 -2.20 2.30 2.68 cgl(h) 
AlSb 2.66 -10.13 1.88 4.00 -8.30 -5.03 -1.80 1.98 2.41 (i)(j) 
GaP 2.36 -13.19 2.88 5.24 -9.46 -7.07 -2.73 2.35 2.90 {c)(k) 

GaAs 2.45 -12.55 1.55 4.71 -9.83 -6.88 -2.89 2.03 2.38 {b)(c) 

GaSb 2.64 -12.00 0.78 3.77 -9.33 -6.76 -2.37 1.21 1.28 (c)(g) 

InP 2.54 -11.42 1.41 4.92 -8.91 -6.01 -2.06 2.44 2.97 (c)(g) 

IllAs 2.62 -12.69 0.43 4.63 -10.20 -6.64 -2.37 2.28 2.66 cc)Igl 

InSb 2.81 -11.71 0.23 3.59 -9.20 -6.43 -2.24 1.71 1.83 {c)(g) 
ZnSe 2.45 -14.50 2.68 7.50 -12.50 -5.60 -2.65 4.54 5.17 (b)IU 

ZllTe 2.64 -13.31 2.56 6.75 -11.90 -5.67 -2.41 5.97 6.94 (bl(l> 
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3.DETERhiINATION OF THE MATRIX 

ELEMENTS OF H 

(a) The sp’ model 
In selecting a scheme for determining the matrix ele- 

ments, we concentrate on producing energy bands which 
mimic the nonlocal pseudopotential bands[l2], and, in 
particular, reproduce the spectral densities of states. The 
reason for paying close attention to the densities of 
states is our desire to employ the empirical Hamiltonian 
for localized defect calculations; such computations are 
extremely sensitive to minor redistributions of state 
density[l6-181. 

For clarity of presentation, we discuss only GaP in the 
main text, leaving the discussion of other semiconduc- 
tors to Appendix A. We eschew least-squares 
methods[lO] of fitting the bands in favor of careful 
treatment of the k = 0 P-point and the k = (27r/aL)(l, 0,O) 
X-point of the Brillouin zone. (The highest valence band 
maximum of GaP is at r and the lowest conduction 
minima are at X.) In terms of the band energies at X and 
r (see Fig. I), we have expressions for the tight-binding 
matrix elements as functions of the diagonal energies 
E(l, c) and E(l, a): 

V(S, S) = (1/2)kqr,c) - w,V 
- [E(s, c) - E(s, a)]*}“* 

w, XI = m){[E(r;, - E(r;,)l* 

- [mh c) - m, ~)12Y, 

PCS Vol. 44, No. S-B 

w, Y) = (m[ar;,) - E(XJI* 

- {E(P, cl - HP, a)12Y2, 

Vsa, PC) = U/N[E(s, a) + E(P, cl -4E(X,“)l* 

- [E(s, a) - E(p, c)]‘}“*, 

and 

V(pu, SC) = (1/2H[E(s, c) + E(P, a) - 4E(X,“)l* 

- [E(s, c) - E(p, a)]*}“*. (9) 

I11-t/“-2; 
LhT A XU,K Z I- 

WAVEVECTOR r 

Fig. I. The sp’ (solid) and pseudopotential (dashed; Ref. WI) 
band structures of GaP. 
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The sums of diagonal energies are related to the energies 
at I: 

E(s, c) + E(s, a) = E(T,“) + E(T,‘), 

and 

E(P, c) f E(p, a) = E(K) - E(K). (10) 

Seven of these nine energies are fixed by the band 
structure at seven points: I,, 115, X,, X,, and X5 in the 
valence band, and I, and 115 in the conduction band. 
(Note that the pseudopotential band structure is normally 
fit to reflectivity and photoemission data. Thus, by ad- 
justing our tight-binding model to fit that band structure, 
we are, in reality, fitting the primary data.) 

The remaining two energies are determined by fixing 
the differences in diagonal matrix elements: 

D, = E(l, c)-E(l, a). (11) 

These are assumed to be functions of the atomic orbital 
energies w( 1, b) of Table 3. Expanding D, to lowest order 
in the neutral atom energies and recognizing that D, = 0 
for homonuclear semiconductors, we find 

D, =E(l,c)-E(l,a)=/.?,(w(l,c)- ~(],a)). (12) 

The constants /3, should be nearly equal for a variety of 
zincblende hosts, because the elements forming the 
zincblende compounds are all chemically similar (espe- 
cially the III-V’s). Indeed, we find p, = 0.8 and &, = 0.6 
using the procedures of Appendix B. These last two 
constraints serve to completely determine the parameters 
of the sp3 band structure. 

A crucial test for the internal consistency of the model 
is provided by the amount of charge transferred from the 
cation to the anion. The same diagonal matrix elements 
can be used for an atom in different chemical environ- 
ments only if the pseudoatoms are nearly neutral entities. 
Once we have fixed the Hamiltonian parameters, we 
calculate the net charge per anion or cation by perform- 
ing an energy integral over valence band states of the 
local density of states[l9] per atom. We find this charge 
to be small indeed-typically one-tenth of an electron 
charge. 

A modicum of justification for the assumption that the 
differences D, are functions solely of atomic orbital 
energies is available from Bullett’s chemical pseudopo- 
tential theory[6] and Harrison’s Bond-Orbital 
Model[2,3]. These methods of atomic and solid-state 
physics show that the electronic properties of an atom in 
a solid can be simulated by functions which depend on 
the atomic energies of neutral atoms; we are adopting a 
corresponding phenomenology. 

The computed sp’ band structure for GaP is given in 
Fig. 1 where it is compared with the pseudopotential 
band structure[l2], which was empirically adjusted to 
reproduce the available data. The valence bands of the 
sp3 model are good but the lowest conduction band, 
which has too much dispersion, does not have minima near 
the X points of the Brillouin zone. 

(b) The sp%* model 
To remedy this deficiency of the sp’ model, we add an 

excited s state to the basis, and couple it to the p states 
in such a way that it can reduce the dispersion in the 
conduction band and drive the relative minima at X to 
lower energy (Fig. 2). This s* state is actually an ad hoc 
device that permits adjustment of the lowest conduction 
band near X (and also near L). Addition of s* is simpler 
than augmenting the basis with d orbitals, which would 
necessitate treatment of higher angular momentum states 
and the development of unique empirical prescriptions 
for d matrix elements. The addition of an excited state to 
the basis set is to be preferred over extension of the 
model to second and more distant neighbors because the 
repulsion of the conduction band by the excited state 
plays a central role in fixing the indirect gaps. Economy 
of parameters also argues against the proliferation of 
comparably sized matrix elements associated with al- 
lowance for second-nearest-neighbor interactions. 

The expected s* states are allowed to interact only 
with the p states on the nearest neighbor atom. The s* 
states, being at higher energy, repel the p-like conduction 
band levels near X and L downward in energy, produc- 
ing the desired indirect band structure. 

The excited s* state energies E(s*) listed in Table 3 
were derived from spectroscopic energy levels by 
averaging over multiplets of angular momentum, as des- 
cribed in Appendix C. 

The coupling of the s* states to the p-state is chosen 
to reproduce the X-point energy of each of the two 
lowest conduction bands. For the zincblende lattice, 
V(s*a,pc) is adjusted to fit the XI’ energy and 

Table 3. Atomic orbital energies in eV for atoms from Columns 
II-VI of the periodic table, taken from Refs. [32,331 

Element -w(s) -w(p) -w(s*) 

Be 
B 
C 
N 
0 
F 

Mg 
Al 
Si 
P 
S 
Cl 
Zll 
Ga 
GE 
As 
Se 
Br 
cd 
Ill 
sn 
Sb 
Te 

& 
Tl 
Pb 
Bi 
PO 
Af 

8.4121 
13.4560 
19.1932 
25.7130 
33.8454 
42.7729 

6.8831 
10.7011 
14.6840 
18.9425 
23.9232 
29.1832 

7.9563 
11.5490 
15.0520 
18.6568 
25.7771 
27.0011 

7.2043 
10.1366 
12.9598 
15.8258 
19.0563 
22.3347 

7.1008 
9.8226 

12.4107 
15.0051 
17.9022 
20.8189 

5.0500 
8.4281 

11.7868 
15.4388 
17.1877 
19.8564 

3.7600 
5.7106 
8.0814 

10.6544 
11.8963 
13.7740 

3.4816 
5.6712 
7.8156 

10.0497 
10.9575 
12.4327 

2.9920 

5.3661 
7.2089 
9.1033 
9.7870 

10.9665 
1.4960 
5.2332 
6.9520 
8.7039 
9.2847 

10.3324 

4.26 
4.99 
7.94 

2.57 
3.11 
3.27 
5.27 

2.60 
3.04 
3.55 
4.89 

2.34 
2.64 
3.33 
4.19 

3.50 
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Fig. 2. The sp3s* model band structure (solid) compared with the 
pseudopotential (dashed: Ref. I121) band structure of GaP. 

Enerqy (eV) 

Fig. 3. Comparison of the sp’s* model density of states with the 
photoemission data of Ref. [23]. 

V(pa, s*c) is fixed to fit the X3’ energy. The parameters 
of the sp’ model are retained without alteration; the two 
parameters listed above would be zero in the sp3 
model [22]. 

The resulting sp3s* band structure is in good 
agreement with the pseudopotential band structure (Fig. 
2) and the density of states agrees with the photoemis- 
sion data[23] (Fig. 3). 

4. SCALING PROPERTIES OF TAE MATRIX ELEMENTS 

AND THR UNIVERSAL MODEL 

(a) Scaling properties of matrix elements 
To a good approximation, the off-diagonal matrix 

elements determined in the sp3 model have the d-* 
scaling law of the Bond Orbital Model (see Fig. 4), where 
d is the bond length (d = d(3)aJ4). This property is 
extremely useful for treating lattice relaxation around 
defects or at surfaces, because it gives prescriptions for 
the matrix elements in the relaxed material in terms of 
the perfect crystal matrix elements. 

The differences in diagonal matrix elements E(1, c)- 
E(1, a), by construction, are proportional to the 
differences in atomic energies w( 1, c) - w( 1, a). 

haAS 
Q-s? 

I;? Gaib 
In’Sb 

.AISb 
V(x,yld’ 

Vk.sld’ 

ItSb- 

fi?nTe a$” 

-502.3 2.9 
dl:l 

Fig. 4. Interatomic matrix elements V(s, s), V(x, x) and V(x, y) 
multiplied by the square of the bond length vs the bond length d. 
This illustrates the de2 scaling law. Semiconductors with small 

bond lengths, C and Sic, are off the scale of this figure. 

Moreover, the excited s* state matrix elements exhibit 
little variation from one semiconductor to another. (See 
Table 3). 

(b) The “universal” model 
Except for the sums of diagonal matrix elements, 

E(1, c)+ E(1, a), which have not yet been related to 
atomic energies or bond lengths, the sp3s* model has all 
of its matrix elements approximately fixed by the atomic 
energies of the constituents and a set of “universal” 
constants. In other words, this work suggests that all 
zincblende and diamond semiconductors have electronic 
structures that can be predicted crudely from a simple 
“universal” model of the energy bands, which involves 
only atomic energies and a set of universal off-diagonal 
matrix elements. 

To formulate a “universal” model, we attempt to 
directly relate the sums E(l, c) + E(1, a) to atomic ener- 
gies. We find, in analogy with eqn (ll), that, to a satis- 
factory approximation: 

E(l,c)tE(l,a)={l ta,}{w(l,c)t w(l,a)}. 

A modicum of justification for this form of a relationship 
between the energies in the solid and in the atom is given 
in Appendix D. 

Thus we have the following “universal” model of 
semiconductor electronic structure whose matrix ele- 
ments for each semiconductor depend solely on the 
neutral-atom orbital energies of its constituents and its 
lattice constant. The diagonal matrix elements, which 
represent orbital energies within the solid, are defined in 
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Fig. 5. The “universal” model band structure of GaP (solid) 
compared with the pseudopotential results of Ref. [12]. 

terms of sums and differences of neutral atomic orbital 
energies (see eqn (11) and eqns (D3) and (D4) of Ap- 
pendix D). The values a, = 0.2 and ap = 0.4 follow from 
the empirical determination of /?, (see Appendix B) and 
the relation al = 1 -PI. The off-diagonal matrix ele- 
ments, also known as transfer energies, are obtained by 
the de2 scaling rule: V(i) = p( i)d-‘. The five 
coefficients v”(i) (see Fig. 4) were obtained by averaging 
over the semiconductors listed in Table 1. The resulting 
coefficients in eV, are p(s, s) = -42.15, V”(x, x) = 11.19, 
~(x, y) = 27.88, p(sa, pc) = 29.61, and ~(sc, pa) = 
33.76. 

The universal model accurately simulates the valence 
band energies and spectral densities of states (Figs. 6 and 
7). The center of the conduction bands and their general 
features (lowest-energy moments) are also reproduced. 
However, the detailed features of the band structure, 
such as the optical bandgap, are not very accurately 
predicted. In addition to the broad features of the 
valence bands, the absolute energy placements, with 
respect to the vacuum reference, of the valence and 
conduction band edges are predicted. 

Predictions of the discontinuities of the valence band 
edges are directly made with the universal model, which 
estimates the absolute energies of the valence band 

7 --- 
E 
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0 
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E 
2 

In 
b 
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z 

g $ 0.5 
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Fig. 6. The density of states of the “universal” model of GaP 
(solid) compared with the data of Ref. [23]. 
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Fig. 7. Absolute energies of the valence band maxima calculated 
in the “universal” model vs bond length in Angstroms. This 
figure illustrates that the absolute valence band maxima are nearly a 

linear function of bond length. 

maxima. The valence band edge energy for each com- 
pound depends on the p-orbital energies of its atoms and 
the interatomic matrix elements V(x, x) = p(x, x)d-‘: 

J% = L&P, c) + E(P, all/2 - [(E(p, c) - E(p, a))’ 

+ 4 V(x, x)*11’*/2. 

Using the equilibrium bond length d for each compound, 
we predict E. and find that it is nearly a linear function 
of the bond length (Fig. 7). Such a linear trend with bond 
length suggests that experimenters’ efforts to match lat- 
tice constants of the alloys used in heterojunctions may 
also serve to nearly match valence band edges as well. 
That remains a useful strategy even though the band 
discontinuity of any specific lattice-matched hetero- 
structure does not become exactly zero either in our 
theory or in the data. One should focus on the general 
trend displayed in Fig. 7, which clearly demonstrates that 
lattice-matched heterojunctions tend to have small 
valence band discontinuities. 

The predictions of band-discontinuities at hetero- 
junction interfaces can be made directly from Fig. 7. The 
bandstructure discontinuity of the valence band, 
SE(A, B) = E(&; A)- E(r;,; E), is obtained from the 
maximum valence band energies, E(T&; A) and 
E(r;,; B), of the two interfaced semiconductors. The 
conduction band discontinuity SE(A, IQ follows from the 
known bandgaps of these two semiconductors. Our 
values for the Ge/Si and the Ge/GaAs interfaces, two of 
the few that have been measured and published, are 
within 0.5 eV agreement of the published data and other 
theoretical estimates (see Table 5). Predictions for other 
interfaces can be made by examining Fig. 7. For in- 
stance, AlAs and GaAs have very similar lattice con- 
stants, and thus their valence band discontinuity is small: 
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Table 4. Spin-orbit parameters in eV {a} 

Compound 

AlAs 

AlP 
C&4.9 
GoP 
GaSb 
InAs 
InP 
InSb 
ZllSe 

0.28 
0.10 
0.34 
n In ".I" 
0.80 
0.41 
0.14 
0.28 
0.45 

0.421 0.024 
0.067 0.024 
0.421 0.174 
n n&7 n 17/r ".Y", _.&,_ 
0.973 0.179 
0.421 0.392 
0.067 0.392 
0.973 0.392 
0.48 0.074 

I a) D. J. Chadi, Phys. Rev. Bs, 790 (1977). and references therein. The 
values of A0 In this reference are similar to more recently determined 
values of K. C. Rust@, P. Merle, D. Auvergne, and H. Hathieu, Solid 
State Commun.~, 1201 (1976). 

Table 5. Band edge discontinuities in eV 

GelSi 

Bond orbital model 
Universal model 
Experiment 

0.38 {a1 
0.45 
0.24 to 0.17 {b) 

Ge/GaAs 

Bond orbital model 
Pseudopotential theory 
Universal model 
Experiment 

0.41 (a) 
0.35 1c) 
0.50 
0.36 to 0.76 (dl 

(al Ref. lZll31 
(b) A. G. Milnes and D. L. Feucht, lieterojunctions and Metal-Semiconductor 

Junctions, (Academic Press, New York, 1972). 
cc) W. E. Picket, S. G. Louie, and M. L. Cohen, Phys. Rev. 811, 815 (1978). 
Id1 R. Dinzle. W. Wiwmann. and C. H. Henry, Phys. Rev. Letters z, 827 

(1974): - 

GE(AIAs, GaAs), = - 0.1 eV. Similarly, SE(Ge, ZnSe), = 
0.2 and SE(GaAs, ZnSe), = - 0.25 because Ge, GaAs and 
ZnSe have similar lattice constants [24]. Such agreement, 
which is quite good on the - 20 eV scale of the physics 
determining &E(Ig] nrnvnlrl=< us to investigate other r”.,.“‘..,” 

2 12 r 
2 
0 

p Atomic Energy Difference WI 

Fig. 8. The p-orbital energy differences, obtained from eqn (Bl) 
vs the p-orbital energy differences for neutral atoms. The slope 

of the dashed line is BP = 0.6. 

possible interfaces to determine those which will provide 
an interface with matched valence bands and lattice 
constants. 

We hope that this will stimulate experimenters to 
p<tnhlich thr rnnnertinnp ~rnnn~ lnttirp micmatrh atnmir _1__1..1.. _.__ __....__.._..I _..._..~ .__..__ . . .."...__"... -.-....- 

energies, and band edge discontinuities at heterojunc- 
tions. 

SUMMARY 

In summary, we have developed an sp’s* empirical 
nearest-neighbor tight-binding model that reproduces the 
valence and conduction band structures of major semi- 
conductors. 

In separate work we have successfully applied this 
model to several problems. These include the following: 
the theory of deep impurity levels in homopolar and 
heteropolar semiconductors and semiconductor 
aiioysii7j; the theory of core excitons in the buiI~25j, at 
interfaces [26], and at surfaces [27]; surface state 
theory[28]; models of deep traps at interfaces[29] and 
lattice-relaxed surfaces[30]; and a theory of extended, 
paired substitutional defects[31]. 
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The “universal” model extracted as an approximation 
to the sp’s* model promises to be a useful model for 
global theoretical studies of chemicaf trends in semicon- 
ductors; for example, estimates of the band discon- 
tinuities as a function of lattice mismatch for hetero- 
junctions. 
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APPENDIX A 

Semiconductor bandstructures 
Figures 11 give the sp’s* band structures (solid lines) of the 

various zincblende semiconductors, in comparison with the 
pseudopotential band structures[l2] when available (dashed 
lines). 

Determination of PI 

APPENDIX B 

An approximation 0,” to the difference Dp in the diagonal 
matrix elements for p orbitals can be extracted from data using a 
relationship[l I] among Dr,, the Tls conduction band energy, the 
spin-orbit splitting & of the highest two valence bands, and the 
atomic spin-orbit splittings of the anion and cation A, and A,: 

0; = (24, - A. - A,)E(&)/(A, -A,). (Bl) 

By plotting 0,” vs the neutral atom energy difference w(p, c)- 
w(p, a) for several semiconductors we find the average value 0.6 
for & = D,‘/(w(p, c) - w(p, a)). (See Fig. 8 and Table 3.) 

Exploiting the relationship obtained from the Hamiltonian for 
energies at the X point 

E(s, c) - E(s, a) = E(p, c) - E(p, a) t E(X,") - E(X,")+ &X3') 
-E(X,"), 

and plotting the r.h.s., while using 0,” for E(p, c)- E(p, a), 
against w(s, c)- w(s, a), we find /3s = 0.8 (Fig. 9). 

APPENDIX C 

The s and p orbital energies were obtained from Hartree-Fock 
calculations for neutral atoms[32]. The s* orbital energies were 
obtained from tabulated spectroscopic data[33]. Associated with 
each p orbital in a term of angular momentum J was a transition 
energy; an average energy was obtained by weighting each 
transition energy by a multiplicity factor of 2J t 1. 

APPENDIX D 

Orbital energies within the solid 
The Lowdin orbital of symmetry 1 at a specific site is com- 

posed primarily of the atomic orbital at that site with a slight 
admixture from neighboring sites. The component from an orbi- 
tal at a neighboring site depends on its overlap with the primary 
orbital; this overlap decreases sufficiently rapidly with distance 
that to a good approximation we can ignore the effect of all but 
the nearest neighbor atoms. In the spirit of this model, we 
assume that the diagonal matrix elements are functions of the 

18 

r 

s Atomc Energy Difference (eV) 

Fig. 9. The s-orbital energy differences, obtained in terms of the 
X-point energy differences (see eqn B2) vs the s-orbital energy 
differences in the neutral atom. The slope of the dashed line is 

p, = 0.8. 

atomic energies, and we make the linear approximation 

E(1, a) = ~(1, a) t a,w(l, c) OW 

E(1, c) = w(l, c)t a, w(l, a) FW 

to relate the energies in the solid, E(1, b), to neutral atom orbital 
energies w(l, b) of Table 3 (b = a for the anion and b = c for the 
cation). The coefficients u,, representing the admixture of the 
nearest neighbor, are small, and depend on the symmetry I and 
the lattice constant aL. In our crude model we ignore their 
dependence on lattice constant [34]. 

The diagonal energies enter the calculation as sums S1 and 
differences D, which are defined by the atomic energies: 

S,=E(l,c)tE(l,a)=(ltal)(w(l,c)tw(l,a)), (D3) 

and 

D,=E(l,c)-E(l,a)=(l-cr,)(w(l,c)- w(l,a)). (D4) 

20- 

P, = 0.8 

18 - /3p= 0.7 / l tnse 

5: 
3 16- 
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‘OIO 
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12 14 16 I8 20 

E(r~VS)+E(r;:)-E(r~)-E(r,‘) (ev) 

Fig. 10. Shows the relationship of orbital energies in the solid to 
neutral atom orbital energies. See eqn (W). The fact that the 
points cluster along the diagonal of the figure indicates that the 
sums of the anion and cation orbital energy differences, obtained 
from the “universal” model (see eqns Dl and D2), agree with 
those directly determined from the experimental band structure. 
Here we use & =0.7; in Fig. 9 we would find a better fit with 

0, = 0.5. Thus we settle on the average value of 0.6. 
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navmg oenneo me absoiute energies of tight-binding orbitais 
within the solid, we can compute the corresponding energies of 
the tight-binding bandstructures. These cannot be directly com- 
pared with experiments such as photoemission, because the 
tight-binding bands do not include effects, mainly electron-elec- 
tron correlation effects, which in general shift the bands to higher 
energy. Other more sophisticated methods, such as the Hartree 
Fock method, also produce bands that are too low in energy[35]. 
Because such energy shifts are nearly constant, as demonstrated 
by the Bond Orbital Model[2,3], we can construct an indirect, 
internal test of the absolute energies of the tight-binding orbitals 
within the solid. The test consists of computing the differences of 
two quantities, $ and S,, which are then compared with the 
corresponding dtfferences computed from experimental band 
structures. From the tight-binding Hamiltonian we obtain 

E(K) f -WY,) - W,“) - W,‘) (D5) 

for S,,-S, derived from bandstructure. In Fig. 10. that quantity is 
shown to compare favorably with 

$A = (2 - L$)(W(P. c)+ NP, a)) - (2 - Br)(w(s, cl + w(s, 0)) 
(W 

obtained from eqns (D3) and (D4), using A = I - a,. 

Fig. I I(a) 
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Fig. 11. The sp’s* band structures for AlP, AIAs, AlSb, GaAs, GaSb, InP, InAs, I&b, Z&e, ZnTe, C, Si, Ge, Sn, and 
SIC. For simplicity, the symmetry points that were fit to experimental data are labelled with a uniform non-relativistic 
zincblende notation, even for diamond-structure crystals. A non-local pseudopotential band structure (dashed line) is 

included whenever one is available [ 121. 


