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Optimal design using negative refractive index as a new 
degree of freedom: JOSA paper

 One-dimensional electromagnetic resonator

 Strong correlations between measurable quantities in 
conventional DBR resonator of cavity length L can be 
discovered analytically or numerically

– Electromagnetic energy in cavity W ~ L
– FWHM in transmission spectrum  ~ 1/ L
– Characteristic response time  = 1/ ~ L
– Resonance wavelength shift  ~ L

 New functionality by seeking degrees of freedom that eliminate 
correlations

– Negative refractive index
• Find configurations that decouple W, and 

 Will show that, compared to any given conventional device 
design, negative index allows:

– Up to twice the electromagnetic energy density
– Always a faster characteristic response time
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Optimal design using negative refractive index as a new 
degree of freedom

 Negative refractive index to control electromagnetic field intensity
– Maximizing electromagnetic field density in a resonant cavity

• Up to 2x increase in cavity energy density, approaches uniform field distribution!
• Discovered using optimal design

– Ad-hoc studies: single dielectric pair sub-wavelength cavity resonator, N. Engheta, IEEE Ant. 
Wireless Prop. Lett. 1, 1536 (2002), 

0/nr cavity, 0 = 980 nm
 layer pairs optimized for maximum 
uniform field intensity in cavity

 layer pairs ad-hoc design for 
uniform field intensity in cavity
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Optimal design using negative refractive index as a new 
degree of freedom

 Example:  15 GHz (0 = 20 mm) electromagnetic 
resonator with zero phase accumulation

– Separation of response time  from cavity length L

Zero phase 
accumulation resonator 
allows cavity to have 
any length L

Conventional resonator 
requires discrete cavity 
length of

L = n0/2nr 

where n is a non-zero 
positive integer
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Optimal design using negative refractive index as a new 
degree of freedom

 Example:  15 GHz (0 = 20 mm) electromagnetic resonator
– Compared to conventional resonator, zero phase accumulation device decouples 

resonator transmission line width (response time  ) from cavity length L
• Independent design variables

Zero phase accumulation resonator allows cavity 
to have any length L

Transmission (, L) solutions simplified

Decouple L from 

Conventional resonator requires discrete cavity length of

L = n0/2nr 

where n is a non-zero positive integer

Transmission (, L) solutions complex
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Optimal design using negative refractive index as a new 
degree of freedom

 Zero phase accumulation sensitivity to parameter variation
 Example:  15 GHz (0 = 20 mm) electromagnetic resonator

– 2 DBR pairs, 7% mismatch in negative and positive cavity index nc1 = -1.53, nc2 = 1.43
• Stepped peak transmission walk-off

Transmission at 0 = 20 mm

L =  L = 4

Steps at L = n/ or (n-1/2)/

0 = 20 mm 0 = 20 mm
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Optimal design using negative refractive index as a new 
degree of freedom

 Conventional phase accumulation sensitivity to parameter variation
 Example:  15 GHz (0 = 20 mm) electromagnetic resonator

– 2 DBR pairs, mismatch in positive cavity index nc1 = 1.53, nc2 = 1.43
• Poorly behaved with oscillations in peak transmission

Transmission at 0 = 20 mm

L =  L = 4

Peaks near L = (n-1/2)/

0 = 20 mm 0 = 20 mm
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Optimal design using negative refractive index as a new 
degree of freedom

 Solution space as function of fraction of negative index material in cavity
 Example:  15 GHz (0 = 20 mm) electromagnetic resonator

– 2 DBR pairs, nc1 = 1.43, nc2 = -1.43

Click image 
to run video
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Optimal design using negative refractive index as a new 
degree of freedom

 Solution space as function of fraction of negative index material in cavity
 Example:  15 GHz (0 = 20 mm) electromagnetic resonator

– 2 DBR pairs, nc1 = 1.43, nc2 = -1.43

Click image 
to run video
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Optimization of 1D Bragg resonator with negative index 
material as a new degree of freedom

 Symmetric Optimization
– Refractive index in resonator cavity is +/- 1.43
– Optimum at 0.5 fraction negative refractive index material in cavity of length L
– Search space highly dependent on cost functional
– Global measures strongly influenced by sample space, highly irregular
– Sum of local measures more robust
– 1D search space at a single frequency 0
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Optimization of 1D Bragg resonator frustrated by choice 
of cost function

 Asymmetric Optimization
– Refractive index in resonator cavity is +1.43 and -1.33

• Optimum not at 0.5 fraction negative refractive index material in resonance cavity
– Optimization frustrated by choice of cost function
– Optimization routine: Matlab’s fminbnd
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Optimization of 1D Bragg resonator due to correct choice 
of cost function

 Asymmetric Optimization
– Refractive index in resonator cavity is +1.43 and -1.33
– Appropriate choice of cost function produces an almost parabolic search space 
– Optimization routine: Matlab’s fminbnd
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