Electro-optic microdisk RF receiver

Mani Hossein-Zadeh

Advanced Network Technology Lab. (www.usc.edu/alevi)

4th photonic seminar University of Southern California

August 20th, 2004

Introduction

- Microwave-photonics
- Microdisk resonant optical modulators
- LiNbO₃ microdisk modulator
- LiNbO₃ microdisk photonic RF receiver
- Integrated photonic RF receiver

Definitions

3

Conventional and photonic RF receiver architecture

Applications areas

Microdisk photonic RF receiver

- Indoor wireless
- Fiber feed backbone networks
- Space communication
 - ♦ Technology transfer
 - Our 8.7 GHz LiNbO₃ microdisk modulator shipped to NASA

Mars exploration requires new, efficient Ka-band receivers for surface to surface, surface to relay, and surface to Earth communications.

Microwave photonics

External optical modulator applications:

◆ High-speed optical links (10 Gb/s-40 Gb/s) → broad band Mach-Zehnder modulator

Resonant optical modulators

- Resonant optical modulator
 - Long photon lifetime ($\mathbf{t}_p = Q/\mathbf{w}_{res}$) **Þ** long interaction length **Þ** high sensitivity
 - Limited modulation bandwidth ($BW \pounds Dn_{FWHM} = n_{res} / Q$), centered around integer multiples of the optical free-spectral-range (FSR)

Bandwidth and optical quality factor

Average size LiNbO₃ microdisk optical resonator

RF-photonic LiNbO₃ microdisk technology

LiNbO₃ microdisk modulator

- Small volume: $3 \text{ mm}^3 = \mathbf{p} \times 3 \times 0.4 \text{ mm}^3$
- large electro-optical coefficient $(r_{33} = 30.8 \times 10^{-12} \text{ m/V})$
- High-Q optical whispering-gallery (WG) resonance: 2×10⁶- 6×10⁶ (loaded), 1.2×10⁷ (unloaded)
- Long photon life time :
 1.6 5 ns (loaded), 9.5 ns (unloaded)
- Long interaction length: 0.2-0.7 m (loaded), 1.3 m (unloaded)
- High-Q RF resonator : 70 - 90 (loaded), $G_v \propto vQ_{RF}$

RF-photonic application

- Optical modulation
 - Iow power optical amplitude modulation
- RF signal processing in optical domain
 - high-frequency operation
 - low loss in optical domain
 - ♦ reduced power consumption
 - laser diode local oscillator
 - \diamond optical isolation

1 mm

Simultaneous electrical and optical resonance

Combination of *microdisk* and *RF-photonic* technology demonstrated in LiNbO₃ microdisk receiver

LiNbO₃ microdisk modulator

LiNbO₃ microdisk modulator

- Increased RF sensitivity and low power
 - **♦ RF** and optical signal in *simultaneous* resonance
 - RF resonance provides voltage gain
 - \Rightarrow high-Q (> 10⁶) whispering gallery(WG) mode provide long RF-photon interaction time
 - ♦ photons highly confined at edge allowing high RF-photon spatial overlap
- Modulation only occurs at $f_{RF} = m$ 'Dn_{FSR} with a bandwidth of Dn = n₀/Q (n_{FSR} = optical free spectral range, m: integer)

Ring resonator controls the *E*-field inside the LiNbO₃disk

Third harmonic modulation

Third harmonic modulation

- Disk diameter = 5.13 mm
- Disk thickness = 0.4 mm
- $Dn_{FSR} = 8.7 \text{ GHz}$ $f_{RF} = 3 \text{ } Dn_{FSR} = 26.1 \text{ GHz}$ Optical $Q = 3.5 \text{ } 10^6$

Frequency (GHz)

- **Modulation bandwidth » 50 MHz**

Frequency(GHz)

Optical

14.6 GHz LiNbO₃ microdisk modulator

14.6 GHz LiNbO₃ microdisk modulator

- 3 mm diameter LiNbO₃ microdisk
 - $\diamond D = 3 \text{ mm}, h = 400 \text{ mm}$
 - Q = 4 8 10⁶, *FSR* = 14.6 GHz
- Single prism optical coupling
- Improved RF coupling
 - fine tuning of the ring-microstripline coupling coefficient: Critical coupling with 350 mm gap.

Modified E-field distribution

cylindrical symmetric *E*-field distribution
enhanced *E*-field intensity

Linear modulation at 14.6 GHz

- 14.6 GHz LiNbO₃ microdisk modulator
 - Disk diameter = 3 mm
 - Disk thickness = 0.4 mm
 - $Dn_{FSR} = 14.6 \text{ GHz}$

 - $f_{\rm RF} = 14.6 \, {\rm GHz}$ Optical $Q = 4 \, {}^{-}10^{6}$
 - Modulation bandwidth » 45 MHz

Power sensitivity of single-frequency linear modulation at 14.6 GHz

Linear modulation sensitivity

- Dynamic range : > 70 dB
- SNR of 10 dB at -70 dBm (100 pW)
 - ♦ SNR = 1 at 85 dBm RF input power
- Modulation bandwidth: 80 MHz
- 0 dBm RF saturation power
- Fiber-to-Fiber insertion loss ~ 10 dB
- V_{HMM} ~ 0.4 V

Self-homodyne RF-photonic receiver

- Transmitted carrier RF format
 - Nonlinear mixing of carrier and sidebands in the receiver
 - No local oscillator required
- Photonic baseband down-conversion
 - Second-order nonlinear modulation with optical transfer function $(P_0 \mu V_{RF}^2)$

Linear and nonlinear modulation with microdisk modulator

Critical optical coupling and second-order nonlinear modulation with microdisk modulator

Experimental arrangement

Single tone down-conversion

Optimizing modulation index for single frequency down-conversion efficiency

Calculated down-conversion efficiency and second-harmonic suppression ratio based on ideal square law response (Down-conversion efficiency,P_{ob}/P_{om}, is defined as the ratio of modulated optical power at baseband frequency and the total modulated optical power)

At small signal regime ($P_{RF} < -10$ dBm) a modulation index of $m_I = 0.7$ results in 25% down-conversion efficiency and about 15 dB second-harmonic suppression ratio.

Conclusion

• 0.7< *m_I* <0.8 simultaneously optimizes linearity and efficiency of the conversion

Simulated signal flow in RF-photonic receiver

Measured 10 Mb/s data down-conversion from 14.6 GHz carrier

Received RF power (dBm)

10 Mb/s, 50 Mb/s and 100 Mb/s data down-conversion from 14.6 GHz carrier

- Ku-band photonic RF receiver
 - **RF carrier frequency : 14.6 GHz**
 - Baseband: 10 Mb/s, 50 Mb/s, 100 Mb/s NRZ PBRS 2⁷-1
 - *m* = 0.7
 - Received RF power : -15 dBm (integrated power measured within 100 MHz bandwidth centered at 14.6 GHz)

Measurement of 14.6 GHz patch array performance

14.6 GHz wireless link with microdisk optical receiver

Receiver

Transmitter

Wireless data communication with self-homodyne microdisk optical receiver

- Wireless self-homodyne microdisk RF-photonic receiver
 - 14.6 GHz 4-patch antenna array
 - High sensitivity microdisk optical modulator
 - **RF-photonic nonlinear modulation**
 - Carrier frequency : 14.6 GHz
 - Modulation index: *m* = 0.8
 - Baseband: 10 Mb/s NRZ PBRS 2⁷-1
 - Input RF power to transmit antenna: 28 dBm

Future: photonic RF receiver

- Higher carrier frequencies
 - Harmonic modulation
 - Small disks

Future: photonic RF receiver

Monolithic integration of photonic RF receiver

Future: microdisk photonic RF receiver integration

Power efficiency

- Microwave photonic technology can provide solutions to current challenges in mm-wave electronic wireless design.
- Nonlinear optical modulation and transmitted carrier RF modulation format may be combined in a self-homodyne architecture to realize a low-power and low-cost photonic RF receiver.
- Microdisk resonant optical modulator is one of the best candidates for self-homodyne photonic RF receiver design
- Proof of concept experiments with LiNbO₃ microdisk modulator demonstrate the feasibility of electro-optic microdisk wireless receiver for short distance applications.
- By employing alternative electro-optical materials such as semiconductors and polymers, the photonic RF receiver can be integrated in a single chip.

ELECTROMAGNETIC WORLD! in which DC-to-light is used for communication

Mechanical tuning of resonant frequency (compatible with MEMS technology)

- Resonant frequency of the ring resonator can be tuned by varying the height of an air cylinder under the LiNbO₃ disk.
- Accurate tuning of *f*_{RF} to optical *FSR*

Feedback loop stabilization

Second harmonic modulation

