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Abstract

A microphotonic mm-wave modulator using simultaneous RF and optical resonance in an electro-optic medium is
presented. Theory and simulation of modulator operation is discussed, and experimental results demonstrating modu-
lation using simultaneous resonance in the mm-wave range are reported. © 2001 Elsevier Science Ltd. All rights re-

served.

Keywords: mm-wave receiver; LINbO; modulator; Resonant detection; Microphotonic; Microdisk; Microsphere; Resonator

1. Introduction

The wide-scale implementation of microwave cellular
telephone networks, and continued need for personal data
assistants (PDAs) is driving development of indoor wire-
less and microcell wireless systems [1]. Recently, a micro-
photonic modulator for a novel wireless and front-end RF
receiver architecture operating at mm-wave frequencies
was proposed [2]. Previous work has focused on modulator
development and demonstration of efficient modulation
at microwave frequencies [3,4]. In this paper, we present
initial experimental results demonstrating modulation at
mm-wave frequencies by achieving simultaneous reso-
nance of RF and microphotonic electro-optic resonators. In
addition, results of simulations describing optical modula-
tion within the microphotonic resonator are presented.

2. LiNbO3 microphotonic resonator

A microphotonic optical resonator is fabricated from
an electro-optic material. In the work presented here, we
use a z-cut LiNbO; disk-shaped resonator with optically
polished curved side walls. The index of refraction along
the extraordinary axis (z-axis) is o, = 2.14 at an optical
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wavelength 4= 1.5 ym, and greater than 5.1 at RF
frequencies in the mm-wave regime [5]. Simultaneous
resonance between optical and RF fields is possible in-
side the disk. The optical field is resonant within the
microphotonic modulator by confining a TE-polarized
optical-field in a high quality-factor (Q) whispering-
gallery mode (WGM) along the periphery of the disk,
while metal electrodes feed RF power from a resonant
electrical circuit. The optical resonator’s large Q in-
creases the effective interaction length of photons in
the electro-optic material. In addition, a simultaneously
resonant RF electrical feed for voltage enhancement and
a patterned electrode structure provides high-sensitivity
at mm-wave frequencies.

Fig. 1(a) shows the basic geometry of the LiNbO;
resonator. These devices are disks of radius R, where
1 <R <3 mm, and thickness d, where 0.2<d <1 mm.
The side wall of the disk is optically polished with a
radius of curvature, R'. In this work R = R'. The equator
of the disk’s curved side wall should be accurately
maintained at height d/2. A photograph of a larger
device is shown in Fig. 1(b) to illustrate the optically
polished curved sidewalls of the resonator.

2.1. Solving for optical resonances in the microphotonic
resonator

WGMs in disk-shaped dielectric resonators arise from
solution of Maxwell’s equations. The large dielectric

0038-1101/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.

PII: S0038-1101(01)00165-4



1578 D.A. Cohen et al. | Solid-State Electronics 45 (2001) 1577-1589

(@) 4 Z - axis

side

top

(b)

(©

optical B

\\
-

of WGM

—— 8 M ———

Fig. 1. (a) Geometry of a microdisk indicating disk radius R, disk thickness d and curved side walls with radius of curvature R'. (b)
Photograph of a large z-cut LiNbO; disk-shaped resonator with solid-gold top and bottom flat-electrodes and optically polished
curved side walls mounted on a ground plane. (c) The coordinate system used to solve the electromagnetic modes of a spherical

resonator.

discontinuity between air and resonator result in elec-
tromagnetic resonances which in the ray-tracing ap-
proximation are explained by total internal reflection.
When the disk radius R is equal to R', the electromagnetic
solutions to the disk resonator are found by defining the
disk to be a sphere with part of the top and bottom
hemispheres removed. Therefore, the nature of WGMs
propagating within the disk is essentially the same as
modes that propagate within passive dielectric micro-
spheres. The only exception is that some higher-order
modes are spatially filtered by losses introduced at the
top and bottom disk interfaces. Whispering gallery reso-
nances are characterized by high electric-field inten-

sity close to the air-dielectric interface and very high-Q.
Loss due to finite curvature becomes small when the
resonator dimension is significantly greater than the
optical resonance wavelength. Hence, for optical wave-
lengths near A = 1.55 pm, the Q of optical dielectric reso-
nators greater than ~10 m in diameter is typically limited
by attenuation due to scattering from surface imperfec-
tions.

The problem of electromagnetic oscillation in a di-
electric sphere has been solved explicitly for a lossless,
linear medium with no sources [6]. Assuming mono-
chromatic solutions of the form E(r,¢) = E(r)e ' the
vector Helmholtz equation is
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where ¢ and u are the relative permitivity and perme-
ability, and o = 2nf, where f is the frequency of the
electric-field oscillation. We would like to express the
vector E in terms of radial (E,), meridional (Ey), and
azimuthal (E;) components. However, the Laplacian of
the vector E results in three partial differential equations
each involving E,, Ey, and E4. Hence, the simple sepa-
ration of the Helmholtz equation in the rectangular
coordinate system does not occur in the spherical co-
ordinate system. It can be shown that three solutions in
terms of the field  are

E= (V)

Ers = (r x V)

ETM :ng (I'XVIP)

These are also independent vector solutions which result
in three separable partial differential equations. Using
these solutions, the scalar Helmholtz equation is solved
for i, where the scalar equation is given by

2
1)
Vzl//Jrus?l// =0

The solutions Erg and Ery are those of interest for
electromagnetic WGM solutions excited by evanescent
coupling along the equator of the sphere. The first is
named the transverse electric (TE) solution because Etg
is tangent to the spherical surface, while the second is the
transverse magnetic (TM) solution because the magnetic
field Hry is tangent to the spherical surface [7]. This
notation is opposite to that used with microdisk lasers
[8] where TE polarization is along the radial unit vector.
The microdisk laser definition comes from multiple
quantum well slab-waveguide geometries.

Although the Helmholtz equation can be solved
explicitly for the dielectric sphere, a simplification is
achieved by assuming the electromagnetic field polar-
ization may be approximated as constant along one
coordinate axis [9]. In this case, the TE and TM modes
are redefined as those with vector electric-field compo-
nents

ETM = éE() = él{‘

E, = E4 =0, and TM modes defined as those with vec-
tor magnetic field components

HTM = éH() = é\P

H, = Hy =0. The validity of this approximation has
been confirmed numerically by Little et al. [9].

Such an approximation permits separation of the
vector Helmholtz equation as seen with rectangular co-
ordinates. Again starting with the vector Helmholtz
equation, and using the definitions for Erg (Hty) above,
the resulting scalar equation

2
)
Vz!//+ﬂsg¢ =0

is easily solved in the spherical coordinate system.
Boundary conditions are then applied to obtain the
characteristic equations and normalization constants.

By imposing boundary conditions at the disk radius
Ry and restricting the spherical Bessel function from
diverging at the origin, one obtains

= Y(r0,¢) =

ETE HTM le Y/m 0 d)

Im

U, (r) o< jilkr), r<Ry

l//ﬁ(r) x e %0k p s Ry

where j,;(kr) are spherical Bessel function, Y, are
spherical harmonics, and / and m are eigenvalues solved
from boundary conditions. The exponential decay de-
fines only the bound portion of the field outside the
sphere. Radiation modes are ignored. In the equations
above k = 2ny/ ), where ny is the refractive index of the
sphere, and / is the electromagnetic wavelength in free
space. The third eigenvalue n is found from the char-
acteristic equations resulting from the boundary condi-
tion that the interior and exterior tangential fields at the
surface of sphere must be equal.

From these solutions, we find the eigenmodes of the
microresonator are characterized by polarization (TE or
TM), and the three eigenvalues n, [, and m. The radial
eigenvalue n > 1 is the number of field maxima in the
direction of the sphere radius, / is approximately the
number of wavelengths that fit into the optical length of
the resonator, and m is the number of field maxima in
the equatorial plane. We will show later that the number
of polar intensity maxima is / — m + 1.

We see that as / = m increases, the optical power
begins to concentrate closer to the equator. The longi-
tudinal cross-section of the x—z plane displays the con-
centration of field toward both the equator and disk
edge as / and m increase. A cross-section of the mode in
the x—y plane demonstrates the increase in number of
field maxima, and a trend in which the mode becomes
increasingly confined to the disk edge.

A significant approximation can be made with the
angular distribution of the mode along the polar axis
[10]. We define a new coordinate 0., = 6 — n/2, such
that 0., = 0 along the equator as shown in Fig. 1(c).
Making the approximations 0.q < 2m and m > 1, and
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including this in the polar differential equation, v, (0eq)
becomes

Wo(0cq) o< €% Hyy (\/mleq)
N=I[l—m

where Hy(x) are the Hermite polynomials, with Hy(x) =
1, H(x) = 2x, Hy(x) = 4x> — 2, etc. For case of large m,
and / =~ m the resulting WGM is Gaussian in nature.
From this approximation, and the nature of Hermite
polynomials, we see that there are / —m + 1 polar in-
tensity maxima. At / — m = 0, the mode is Gaussian and
centered about the equator. As / — m increases, the en-
ergy distribution spreads further from the equator. Be-
cause input laser light typically has a Gaussian beam
profile, we expect that the / = m Gaussian modes are
those that are most strongly coupled [10]. In addition, in
a perfect sphere, WGM frequencies depend only on »
and /, and hence are 2m + 1 degenerate in frequency.
However, in any sphere with finite ellipticity this de-
generacy is broken [11].

Fig. 2 shows the simulated WGM power distribution
for disks typical of that used in experimentation. Fig.
2(a) shows the normalized radial profile of the spherical
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Bessel function with n =1 for a 2.0 mm (/ = 8690), 3.5
mm (/ =15120), and 5.84 mm (! =25260) disk. By
approximating the boundary condition at the disk ra-
dius to be Erg(R) =0, the full width half maximum
(FWHM) of the modes along the radius are 2.6, 3.7, and
4.8 um for the 2.0, 3.5, and 5.84 mm disks, respectively.
Normalized profile along the z-axis for N =17—m =0,
1,2, and 3 for a 2.0, 3.5, and 5.84 mm disk are plotted in
Fig. 2(b). These figures demonstrate that the relative
angular distribution of the mode increases with de-
creasing disk radius, but the actual mode height along
the z-axis decreases.

Fig. 3(a) shows the two-prism evanescent coupling
scheme used to couple light into and out of the disk.
When TE-polarized WGM modes are excited within the
LiNbO; microphotonic resonator the detected optical
spectrum shows peaks corresponding to the free spectral
range (FSR) of the resonant cavity. This FSR is defined
as Afrsr = ¢/ (nop2mR), Where npy is the optical refrac-
tive index, and R is the radius of the disk. It should be
noted that 1/Afgsr is equal to the round trip time of the
cavity tgisx = (n27R)/c. Results using a tunable DFB
laser to scan the entire FSR of the disk are shown in Fig.
3(b) for a disk of diameter 2R = 5.85 mm, and thickness
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Fig. 2. WGM power distribution for disks of large / = m. (a) Normalized profile of spherical Bessel functions with # = 1 for a 2.0 mm
(I =28690),3.5 mm (/ = 15120), and 5.84 mm (/ = 25260) disk. The FWHM of the modes are 2.6, 3.7 and 4.8 um for the 2.0, 3.5 and
5.84 mm disks, respectively. (b) Normalized profile of spherical harmonics using Hermite polynomial approximation for N =
I—m=20,1,2 and 3 for a 2.0, 3.5, and 5.84 mm disk.
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Fig. 3. (a) Top view of two prism coupling using diamond prisms. Input light is coupled into the prism on the right. Light output from
the disk is collected at the single mode fiber output coupler. (b) Optical spectrum for TE polarized light when alignment is optimized
for single optical mode excitation with FSR = 7.57 GHz, and Q > 4 x 10°. The disk used has a diameter 5.85 mm and thickness of 0.7

mm. Wavelength of lasing light is 1.55 pm.

d = 0.74 mm. This disk exhibited a FSR of 7.57 GHz
(60.6 pm) for TE optical modes with WGM optical Q
greater than 4.1 x 10°.

2.2. Electro-optic modulation configuration and theory

Fig. 4(a) shows the schematic diagram of the experi-
mental approach. An RF input signal is incident on the
modulator electrodes. This mm-wave signal feeds the
electrodes of the microphotonic resonator where the RF
signal is directly converted via the electro-optic response
of the modulator to an optical signal with a 200 THz
optical carrier frequency supplied by a DFB laser. By
patterning metal electrodes periodically about the disk
circumference, it is possible to obtain a resonant opto-
electronic modulation response at large RF frequencies.
Photons make a number of round trips in the resonator,
thereby interacting with the RF field on multiple passes
which increase the total phase shift seen by any indi-
vidual photon. This results in improved sensitivity to
the applied RF field. The resulting phase-modulated

optical signal may be converted to amplitude modula-
tion through use of a standard Mach—Zehnder configu-
ration. The intensity of the amplitude-modulated optical
carrier is detected using an optical receiver whose re-
sponse is sensitive only to base-band frequencies.

Basic principles regarding the coupling of photons
into and out of the microphotonic resonator can be
understood through a directional coupler approach. Fig.
5 shows the generic approach to model the coupling of
light from any evanescent coupler (e.g. prism) into a disk
or ring structure. Input light is incident on coupling
region 1 with an electric-field coupling coefficient ix; and
output from coupling regions 1 and 2 with electric-field
coupling coefficients ix] and ixj, respectively. Single
prism coupling is defined when monitoring output 1
with x, = 0, and two prism coupling when monitoring
output 2 with x, # 0.

Using the steady-state loop approach [11], 4; is de-
fined as the steady state electric-field amplitude for input
light entering coupling region 1, B; is the field exiting
coupling region 1, and 4, and B, are the fields inside the
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Fig. 4. (a) Schematic showing the receiver proposed for mm-wave RF detection. An electromagnetic wave received at a RF antenna
feeds electrodes of the microphotonic modulator. The modulator directly converts the RF signal to an optical carrier via the electro-
optic effect. The resulting phase-modulated optical signal is converted to amplitude modulation through the use of a standard Mach-
Zehnder configuration. (b) Schematic showing the receiver proposed for mm-wave RF detection without the need of a Mach—Zehnder
reference arm. The phase-modulated optical signal is internally converted to amplitude modulation through interference with previous

optical round trips.

resonator before and after coupling region 1. Similarly,
D, is the field exiting coupling region 2, and C, and D,
are the fields inside the resonator before and after cou-
pling region 2. For simplicity, a lossless symmetric cou-
pler is assumed, with field coupling constant ix; = —ix]
in region 1, and ix, in region 2. The transmission coef-
ficient T, from 4, to By is Ty5 = (1 — K%)l/z. In the
case of the prism coupler, the coupling coefficient x is
a function of gap spacing, coupler geometry, and disk
size.

The round-trip disk electric optical field transmission
coefficient o = oo, where oy = exp(—agL;/2) is the
electric-field transmission coefficient for the length L,
between coupling regions 1 and 2, and o, = exp(—opyLs/
2) is the electric-field transmission coefficient for the
length L, between coupling region 2 and before region 1.
The constants oy, and o, are the optical power loss per
unit length for the regions L; and L,, respectively. The
refractive index of the resonator is ny4. Finally, the round-
trip time of the disk is © = 7| 4 15, where 1, = ngL,/c,

and 1, = ngL,/c. The self-consistent relations between
field amplitudes at a time 7 for the two coupling regions
are

Bi(t) = (1 — )24, (1) + i1 41 (2)
By(t) = i 4, (1) + (1 — 13) P45 (1)
Dl(t) = iK'zCz(t)

Dy(1) = (1 - x3)"Co(1)

while optical propagation between coupling regions
give

Cz(t) = o e_i¢1(’)32(l — ‘L'])

Az(l) = 0y eiiqﬁl(l)Dz(t — ‘L'z)
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Fig. 5. Directional coupler model used to understand coupling
principles of a microphotonic modulator. Photons incident on
the input directional coupler are evanescently transferred into a
ring or disk. After traveling around the disk, light is evanes-
cently coupled out of the resonator at either output 1 or output
2. T;; is the electric-field transmission coefficient of the coupling
region, «; is the electric-field coupling coefficient of the coupling
region, and o; is the electric field transmission coefficient be-
tween coupling regions. Coupler losses are ignored.

Where ¢,(¢), and ¢,(¢) are the electrically induced op-
tical phase shift along lengths L, and L,. Using recursion
and assuming a monochromatic input, the total output
field from coupling region 1, Eq () = B () as a func-
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tion of the field input to coupling region 1, E, (f) = 4,(¢)

then E;,(t — pt) = E;(t) e %", and
p—1
Eoui(t) = [\/IK Zp‘"exp (12
q=0

— Ty —q1) + ¢yt — ‘IT)]) Ein(1)

pr=oy/1— 134 /1 —i3e”

where o is the optical frequency. Similar to the above
method, recursion is used to find the total electric-field
output from coupling region 2, E.n(t) = D;(f) as a
function of Ei,(¢). This gives

EnutZ(t) =

— KyKyy €@ H010) (1

p—1

(= (g + 1)) + (¢

00
+ Z 0 exp (1
p=1

)

pr =0y /1—134/1 —i3e”

RF modulation frequency of the microphotonic reso-
nator is determined by the FSR of the optical resonator
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Fig. 6. Calculated response of a microphotonic-based opto-electronic modulator with the indicated periodic metal electrode structures.
(a) A R =3.18 mm LiNbO; disk modulator with x = 0.05 and a continuous ring electrode. (b) x = 0.05 with a split 2-segment ring-
electrode showing resonant opto-electronic response at 7 GHz. (c) k = 0.05 with 4 segments and response at 14 GHz. (d) x = 0.05 with

10 segments showing response at 35 GHz.
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and the spatial pattern of the metal electrode structure.
The frequency of the RF carrier frr should be an integral
multiple m of the optical FSR, frsr, Where frsr =
1/7disk = ¢/ (nopt2mR), Taisk is the optical round-trip time
of the disk, and R is the disk radius [12]. A periodic metal
electrode structure permits operation of the modulator
well beyond a typically 20 GHz —3 dB roll-off of con-
ventional commercial LiNbO; modulators.

As shown in Fig. 6(a) for a resonant solid-ring elec-
trode, high optical-Q results in a summation of multiple
round trips that further suppresses modulation efficiency
at finite frequency. Fig. 6(b)—(d) illustrates how a change
in the metal electrode pattern shifts the resonant re-
sponse to higher frequencies with little decrease in effi-
ciency.

The relative response at the resonant frequency
compared to base band is 0.63 indicating the potential
for efficient modulation. A larger modulation response
at base-band results because a photon will encounter a
larger average electric field during a single round trip.
This is because the time constant determining this re-
sponse is the round trip time 7gi5x = 1/fFsr of the disk.

Fig. 7(a) plots the optical power for the split 2-seg-
ment electrode case shown in Fig. 6(b) on a logarithmic
scale. RF detected power would be two times optical
power on this log scale. Fig. 7(b) and (c) shows ex-
panded views of the optical modulation response at base
band and fundamental disk frequency. Qualitatively, the
presence of modulation dips result from spectral filtering
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by the optical resonance of the optical modulation side
bands.

Fig. 8 qualitatively explains the presence of the dips.
At base band for a fixed RF power and frequency frr,
modulated optical power will be coupled out of the
optical carrier frequency fo, = ¢/Aop and into optical
side bands fop & frr. All three optical frequencies, fop
and fop = frr, must be resonant within the disk to
propagate.

Both experiment and simulation have verified that
maximum modulation occurs near the maximum slope
of the CW optical resonance, labeled in Fig. 7(a) as Aqpy.
The base-band modulated response for the k = 0.05 split
2-segment ring-electrode of Fig. 6(b) is shown in Fig.
7(b).

As frr increases, the optical side bands are modified
according to the optical resonance peak. The approxi-
mate condition for maximum modulation occurs when
one optical side band is aligned with the resonance peak
(frr = f> in the figure). In the simulation, the optical
input wavelength A, was centered above the resonant
wavelength such that Af' = foeax — fopr = 50 MHz.

In agreement with this qualitative description, simu-
lated maximum modulation occurs at 54 MHz. The dip
at 7 GHz is understood through a similar argument,
where side bands are shifted by plus and minus one FSR
into adjacent resonances. The peaks at 7 GHz occur +4
MHz from the 7 GHz dip. Fig. 7(d) demonstrates the
null in modulation when excited at the second harmonic
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Fig. 7. (a) Calculated response of the x = 0.05 with split 2-segment ring-electrode of Fig. 6(b) shown using a log scale. (b) Expanded
view of the base-band response. (b) Expanded view of the fundamental 7 GHz modulation response showing a modulation dip at the
center of the modulation peak. (d) Expanded view at 14 GHz showing a null in modulation at the second harmonic.
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Fig. 8. (a) CW optical resonance peak centered at wavelength /.. (b) Optical modulation response as a function of applied RF
frequency for the two-section electrode in Fig. 6(b). (c) Optical carrier and side-band wavelengths for the three indicated RF fre-
quencies shown in part (b). The amplitude of each wavelength is optically filtered by the resonance peak. Therefore frr = f> will have

the maximum modulation as shown in (b).

frequency. This results when light passing between the
electrode is modulated at the second harmonic of the
total round trip frequency. In this case, the total phase
shift from the electrode is zero, and there is no modu-
lation.

2.3. The role of the reference arm

Both experiment and simulation have shown that the
reference arm in Fig. 4(a) is not always necessary, and
the configuration shown in Fig. 4(b) can be used to
achieve efficient modulation. For a single coupler config-
uration (x, = 0), Fig. 9 shows as the coupling coefficient
decreases, a point is passed where the Mach—Zehnder
geometry is no longer needed.

Amplitude modulation is achieved through a com-
bination of two mechanisms. In the first, phase-shifted
light exiting the active arm of the Mach—Zehnder in-
terferes with light in the reference arm, thereby con-
verting phase information to amplitude modulation.
In the second mechanism, because light of increasing

1 —~
-~ No reference arm
g o4 /  \ - Mach-Zehnder
e
2 06
e
=7
= 044
2
2
© 0.2
0 : o
0.01 0.10 1.00

Coupling coefficient, ¥,

Fig. 9. Simulated comparison of modulation with and without
use of a Mach—Zehnder geometry using the single-coupler geo-
metry. Amplitude modulation without the Mach-Zehnder is
shown to result in larger modulation at coupling coefficients x;
< 0.085. Values used in the simulation are the same as those in
Fig. 6(b).

round-trip number has a larger accumulated phase shift,
amplitude modulation will result due to interference
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Fig. 10. (a) Measured optical resonance of the LiNbO; mi-
crophotonic disk modulator near wavelength 42 = 1.55 um. The
measured Q of this device is more than 4x 10°. Inset shows a
photograph of a z-cut LiNbO; disk-shaped resonator with
optically polished curved side walls. Gold electrodes are placed
in an annulus around the disk to increase the overlap of elec-
trical bias and optical fields. The dimensions of the disk are
radius R = 2.92 mm and thickness d = 0.74 mm. (b) Detected
optical time-domain signal showing 7.56 GHz modulation.
Modulation is shown at four wavelengths referenced in (a), and
is maximum at a wavelength corresponding to the maximum
slope of the optical resonance.

between individual round trips. Because each round-trip
optical path length is an integral multiple of the optical
wavelength, this “self-modulation” is inherently phase
matched.

Fig. 9 shows a comparison of modulation with and
without the Mach-Zehnder geometry. In a single pass
limiting case x; = 1 and k, = 0, light passing along the
active arm is phase modulated. It is then amplitude
modulated via interference with light from the reference
arm. Because there is only one round trip, there is no
self-modulation. As x; decreases from 1, self-modula-
tion becomes a larger fraction of the total modulation,
and amplitude modulation via the Mach-Zehnder
mechanism becomes less important. Below a value of
k; = 0.085 in the simulation, the Mach-Zehnder geo-
metry is disadvantageous, and a modulation geometry
without the reference arm is more efficient. Hence, mi-
crophotonic modulators with small values of x; are best

1 -
(a)

Optical power (arb.)

0 M Ay Ao Ag
10

Relative wavelength, AA (pm)

(b)

Simulated optical power (arb.)

(=3

0 0.1 0.2 0.3 0.4 0.5
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Fig. 11. (a) Simulated optical resonance of the LiNbO; mi-
crophotonic disk modulator near wavelength 1 = 1.55 um. The
radius of the disk is R = 2.92 mm. (b) Simulated optical time-
domain signals showing 7.6 GHz modulation. Modulation is
shown at four wavelengths referenced in (a), and is maximum at
a wavelength corresponding to the maximum slope of the op-
tical resonance.

implemented without use of a reference arm (see Fig.
4(b)).

Comparison of experiment and simulation shows the
typical coupling coefficients are x; < 0.05, and therefore
using a single-arm non-Mach-Zehnder configuration
results in a more efficient modulation geometry. This
more efficient and less complex experimental configu-
ration is used for all experimental results presented here.

2.4. Comparison of calculated and measured modulation
response

Fig. 10(a) shows the measured optical spectrum of
the WGM resonance in the absence of RF modulation,
with a resulting optical O = 4 x 10°. As shown in Fig.
10(b), measured optical modulation in the time domain
is maximized for a fixed RF input power when the op-
tical wavelength 14 is located at the maximum slope of
the WGM spectral shape. Frequency doubling is shown
to occur at the wavelength A. at the center of the optical
resonance. In addition, because the slopes are opposite
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Fig. 12. (a) Side-coupled resonator geometry used to achieve simultaneous resonance with RF voltage gain. (b) Simulation results
showing the RF intensity at the fundamental frequency of the RF resonator. The simulation assumed a dielectric thickness, d = 0.508
mm, relative dielectric constant, ¢, = 2.94, line width, w = 1.2 mm, disk thickness, t = 0.7 mm, resonator width = 1.2 mm, resonator
angle = 90°, and gap spacing, x = 0.3 mm. Scale is in arbitrary linear units.

on either side of the optical resonance, the modulation
response at 4. and A4 are © out of phase.

As additional confirmation of the micropho-
tonic resonator modulation model, time domain simu-
lation is compared to the experimental data shown in

ymicrostrip feed

output light

Fig. 11. Fig. 11 shows very good agreement with the
experimental data in Fig. 10, including frequency dou-
bling, the = phase change, and maximum modulation
occurring near the maximum slope of the optical reso-
nance.

LiNbO;
disk

' input light

input and output
coupling prism
mounts

Fig. 13. Photograph showing the experimental setup used for the side-coupled electrode coupling scheme.
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3. RF modulation experiments at mm-wave frequencies
3.1. Side-coupled electrode coupling

A side-coupled microstripline resonator is used to
achieve both voltage amplification and efficient RF
coupling to the microphotonic resonator electrode. Fig.
12(a) shows the geometry of the side-coupled electrode.
A SMA launch is used to couple power from the RF
source to a microstrip line of 50 Q impedance patterned
on a RT-Duroid 6002 substrate with ¢, = 2.94. Simula-
tion shows that RF power reflects from the open end of
the microstrip line generating the standing wave pattern
seen in Fig. 12(b). However, part of the RF power ev-
anescently couples to a microstrip resonator of length L
that is either patterned or placed on the LiNbOj; disk.
This coupled power generates standing waves at RF
frequencies frr = mc/(2nel), where ney is the effective
RF index of refraction seen by the RF mode, and m is an
integer. Fig. 12(b) shows RF intensity of a simulated
resonant standing wave.

Fig. 13 shows the RF and optical experimental con-
figuration. Prisms are used to couple laser light of ap-
proximate wavelength A = 1.55 pm into and out of the
WGM optical mode of the microphotonic resonator.
The optical wavelength is tuned to a resonant wave-

D.A. Cohen et al. | Solid-State Electronics 45 (2001) 1577-1589

length of the optical resonator. A RF electric field
propagating on a 50 Q impedance metal microstrip line
evanescently side couples to a metal electrode resonator
on the LiNbO; disk. The fundamental resonant fre-
quency of the electrode resonator is tuned to match the
optical FSR of 7.56 GHz.

3.2. Experimental results of mm-wave modulation

Demonstration of mm-wave modulation in the
LiNbO; microphotonic resonator using simultaneous
RF and optical resonance with voltage gain on the RF
electrode is shown in Fig. 14(a). Optical modulation is
demonstrated in the Ka band at 30.3 GHz. By side
coupling a 30.3 GHz RF signal into the third harmonic
of a 10.1 GHz RF microstrip resonator, optical modu-
lation at 30.3 GHz is achieved. Fig. 14(b) shows only
residual modulation when the optical wavelength is
tuned-off resonance, while the RF frequency is still set to
resonance. Fig. 14(c) shows the optical wavelength on
resonance, with the RF frequency tuned-off resonance.

Using a similar experimental arrangement, optical
modulation at 37.9 GHz has also been demonstrated as
shown in Fig. 15. This modulation used the third har-
monic of a 12.6 GHz microstrip resonator for RF cou-
pling to the metal electrode.
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Fig. 14. (a) Demonstration of mm-wave modulation at 30.37 GHz using a LiNbO; microphotonic resonator with both the RF fre-
quency and optical wavelength tuned to resonance. (b) When the optical wavelength is tuned-off resonance, while the RF frequency
stays in resonance, no modulation is measured. (¢) No modulation is observed if the optical wavelength is kept tuned on resonance

while the RF frequency is tuned-off resonance.
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Fig. 15. Measured modulation response of a LiNbO; micro-
photonic resonator at 37.9 GHz. RF resonance was achieved
using the third harmonic of a 12.6 GHz microstrip resonator.

4. Conclusion

Theory and simulation for a new type of mm-wave
RF modulator with direct electrical-to-optical conver-
sion has been discussed. Simulation shows very close
agreement with experimental results at GHz frequen-
cies and confirms our model. In addition, experimental
modulation of a RF carrier using a side-coupled RF
coupling scheme has demonstrated modulation at fre-
quencies approaching 40 GHz.
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