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Adaptive quantum design of small systems
— Device synthesis ==
- Atoms-up configurations for function  Applied Quantum
— Optimization : '.,:.__ __1, : : Mechanics
* Non-intuitive design and discovery 3 '

Nanophotonics
— Scaled semiconductor lasers
* Sub-wavelength cavity design, switching
— Electromagnetic scattering
*  Aperiodic dielectric structures
Semiconductor device physics
— Nonequilibrium electron transport
+  HBTs, NETs
System engineering

— High performance electronics
* Interconnects
* RF systems
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Technology mega-trends:
Transistor scaling will flat-line

» Preparing for the end of
Moore’s Law

> After 2020:
— Rules for building
systems changes
— Increased risk of
technological surprise
» Solution: Create design
tools that contain the
knowledge to secure
systems beyond 2020
endpoint
— Increase efficiency of
scientific discovery and

technological
development
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What is the scaling paradigm in technology
beyond 2020?

» Not physical scaling of device size to increase number of devices per
mm? and thereby increase system functionality

> ltis increased functionality via manipulation of new degrees of
freedom
— Single electron states in a nano particle
« Single electron picture
— Interacting electrons in presence of coulomb interaction
« Collective excitations (e.g. plasmonics)
— Hybridization
« Bonding and chemical specificity
— Electron spin
« Magnetization
— Light-matter interaction
« Strong coupling
— Nonequilibrium processes
+ fs time scales
> Efficient exploitation requires new design tools
— Many degrees of freedom
— Initially non-intuitive configurations 4



Example: Atoms-up device synthesis for quantum
systems: Broken symmetry enables function

> N particle system of atoms with overlap of atomic
wave functions dependent on distance, ¢, .. = |r—r'|

eg.a=3
» Hamiltonian includes interactions between all
atoms
H==%1.,(e.+ecl)
> Nurﬁré?ically determine eigenvalues and
eigenstates of system with Hamiltonian
0 tfi2 ts

ta1 0 2

H =
31 t 0

> Dete_rmine phys_ical quantity of interest e.g. density
of states N(F)

— By breaking translational symmetry of the system
the desired response can be obtained

» Compare with objective function and perform

guided random walk to minimize A= N(E)- N, (E)|— 0

dl/dV (nA/V)
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Example: Tailoring Electronic
Properties of Atomic Chains
Assembled by STM, N. Nilius
and T. M. Wallis and W. Ho,
Appl. Phys. A 80, 951-956 (2005)



Example: Atoms-up system design using an optimizer

Visualization of

. i Fosition Convergence
adaptive algorithm: 10 Z
»Initial 2D periodic
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Learning from output of synthesis tools: Molecular
building blocks in the dilute limit

> Dimers: o—eo [ —+1¢

Density of States

» Trimers: A E=-2t1,1

Density of States

» Quadrumers:

E=+2t-1¢,1

 Density of States

»Break symmeiry to achieve target density of states
— In dilute limit use asymmetric molecular building blocks



Vision for future device synthesis: System function made to
order in nano-factories

»>System needs
— Specification of required response function

»Device synthesis tools for quantum systems
— Translation of specifications into physical
constraints
— Search and optimization of actual response
relative to target response

»Nano-factory
— Fabrication of non-intuitive device designs
using structures with nano- and atomic scale
tolerance
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»Functional system components
' — Delivery and integration of functional
components to system user




Example of more sophisticated physical model: Linear response
of inhomogeneous media, &(r,r'.w)=¢,(r,r',0)+ y,(r,r',0)

» Assume positive jellium background. Potential, V(r), and ¢  (r, r',0) = ¢, (®)
» Solve Schrodinger equation for unpert}gzrbed system of non-interacting electrons
H, = —%vz +V(r)
> Linear response theory (the induced charge density is linearly proportional to the total

potential)
¢tot (l‘) — ¢ext (l’) + ¢ind (l‘)

» The induced potential satisfies Poisson equation:

Vi) = Amp(r) )= [ L2 |) &r
» Calculation of induced charge density (within the IinVear response approximation):

Pos(0) = [ 24X ) (£ r"

» Non-local density-density electroﬁ response function using RPA :
0= T ) B
» Self-consistent integral equatlon for the induced potential

S(E)—-f(E)) l//,(l‘)l//,()
Poa (1) = Z:E ~E, ha)—l)/".

Xa(r,1,

f SN P () + 4, (D, (1!

4 ‘r_




Size-effects for linear dielectric response of elliptic rod: The
classical-quantum boundary for nano-metla light interaction

Energy, 7o (E;)

Energy, ho (E,)

03 , , , , , A a » Elliptic cylinder with semi-axis a and b where
Sk x?/a?+ y?Ib?= R? and a < b. Periodic boundary
025 1 - conditions in z direction
3 &
02 1, W ;g » Energy of induced electric field W,,q in elliptic
_= ' ¥  rod as a function of field frequency ® and R
0.15F - B E,
I s inhduced — 2 3
: charge
01F — L @ density Wll’ld oC J‘Elnd‘ d 7"
X y
o) I L B @ > Aspect ratios a:b = 1:1.3, and a:b = 1:2, classical
Size of elliptic rod, R(L) ® Mie plasmon frequencies o* = oap(bl(a+b))1/2 and
03 : : ‘ : ‘ o = o (al(a+b))? where o, = (4ne?p/m) 12
] | . > GaAs, p = 10% cm?, L = 1.28 nm, E, = i2/2mL? =
3.5 330 meV,y=103,T=0K
2 | — || » For R < 6 L quantum finite size effects control
0151 1, dielectric response
L —————— '
I B » Collective excitation phase velocity larger than
' Fermi velocity
F 1.5
05 1 > Spectral strength at lower frequencies for
: : ‘ : ‘ =k smaller L due to anharmonicity of the jellium
2 4 6 8 10 12 14 pOtential

Size of elliptic rod, R(L)
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Frequency response of rough nanoparticle on a surface

Energy loss, ko (1)

Induced field intensity £ Induced charge density p
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» Random number generator used
for particle roughness
> Electromagnetic field enhancement
via resonances
— Sub-wavelength focusing
— Local field enhancement
» Control of electromagnetic field
enhancement possible using
optimal configuration of multiple
particles
— The coexistence of classical and
quantum response create additional
degrees of freedom

20
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Plasmon-induced sub-wavelength light transmission

9%}

i)
= N
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Induced field energy, log (

L]

T » Plasmon-enhanced light
. . . . . . . penetration of sub-wavelength
diameter hole
— Enhancement in transmission is
1 about 2 orders of magnitude
»> Control of electromagnetic field
penetration possible using optimal

: spatial configuration

— The coexistence of classical and
quantum response create additional
degrees of freedom

0 0.|02 0.|04 0.|06 0.(|38 O.I'I 0.|12 0.|14 0.16
Energy loss, fie (t) > Parameters
— Number of electrons in the system:
N =126
Induced field intensity E2 Induced charge density p — Dimension of the metal foil:
Isooo e 60x60x16

— Radius of hole R=4L

» All previous calculations use
idealized geometry and idealized or

14000

13000

L2000 [ T phenomenological description of
o — dielectric response
I1°°° I_05 — H.A. Bethe, Phys. Rev. 66, 163 (1944)
| — Schatz, Optics Express 13, 3150
(2005)
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Optical excitation of diatomic molecule on surface of metal

grain
Positive 350 ‘
« background 3 vi >  Multiple peaks and shifts in
= potential ” ] 300 ] frequency spectrum due to
. m) () A & 250 . metal — molecule
Applied field Faa -0 z ool | interaction
direction L B e | % »  Molecule signature peak |,
' & 1507 7 i, Iv
Z 100+ I v 1 » Strongest spectral features
g - come from metal grain
E 50 | ] — Larger density of states
‘ = #2 2
Induced charge Induced field 00 0.05 0.1 0.15 0.2 > t=n?2mL

Energy, fic (1)

density intensity
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Quantum transport in electronic devices

» Nanoscale electronic devices using optimal design

— Self-consistent Schrodinger - Poission solver required

« Schrodinger equation Fly/ =Ey
— Time dependent Schrédinger equation Hy = i70,

 Poisson equation V¢=-pl¢
— Maxwell equations

» Prototype problem is modification of conduction band profile to create
linear current-voltage characteristic in presence of ballistic transport
and tunneling

— Can inherent nonlinear transfer characteristics and exponential sensitivity
in nanoscale devices be suppressed?

» Exhaustive search methods to be used and then compared
quantitatively with other approximate methods

— Efficient optimizers for electronic devices
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Example: Quantum transport in electronic devices

» Prototype problem is modification of conduction band profile to create
linear current-voltage characteristic in presence of ballistic transport
and tunneling

— Can inherent nonlinear transfer characteristics and exponential sensitivity
in nanoscale devices be suppressed?

Current 1 Ohm’s Law

Ohm’s law: N I=V/R
 Diffusive electron transport
» Conduction limited by electron

dissipation/scattering o >
* <To> » <Tje> Over same region of space  <t;q> YelEey
Electronic nanoscale semiconductor device: ,
 Ballistic electron transport potential barier == R el RramonsBrtouin

right electrode

» Exquisite current control in potential left electrode
barrier, limited by quantum mechanical

v
Z 0011

incident € transmitted e”

Transmission, T

transmission — —>
* < T el> ’ < T inel> Spatla”y Separated current control _povlvcl; didssipation
e i E— 04 06 08 1
<Te> < Tinel™ Voltage bias, V, (V)
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Electron transmission-voltage characteristic
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» Rectangular barrier 0.3 eV energy (Al,Ga,_,As), 4 nm wide

> Electrode carrier concentration is n =101 cm?-3

> Effective electron mass m” = 0.07 x m,(GaAs)

» Incident electron energy E = 26 meV

> Solve Schrodinger equation in piecewise fashion using propagation
matrix and calculate transmission T(V, )

» Use Poisson equation to calculate band bending at V, ;.
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Example: Best potential profile with linear transmission

voltage found using exhaustive search
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» Non-intuitive potential profile, V(x)
— Exhaustive search on grid with Ax =2 nm (8 monolayer GaAs), AV =0.01 eV.

— Maximum on-site potential 0.3 eV, total width 10 nm, incident electron energy

E =26 meV

— Quadratic deviation from linear transmission: y2 =5.1 x 107
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5 Ybias

X© =

Z (J (I"i}ia.s ) )2

Ybias

0.05

01 0.03
Voltage bias, V,. (V)

0.2

0.25

17



Understanding the physics: Evolution from single barrier (i)
to optimal potential profile

Potential, V(x) (eV)
[N}
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> Superposition of broad scattering resonances from different potential
steps results in linear transmission-voltage curve
» Control of pole energy and strength determines transfer function

> Insensitivity to monolayer variations in potential and robustness of

design associated with broadness of resonances
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Quantum electron transport: Non-intuitive design

> Synthesis of current voltage characteristics in semiconductor devices

— Machine generated non-intuitive conduction band potential profile for
linear current-voltage characteristics from 0V to 0.25V
« Current state-of-the-art limited to elastic scattering only

— Future physical model development to include inelastic processes
— Future integration with optimizer
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Combining exhaustive search with adjoint method

» Exhaustive search among all potentials on
a specified discrete grid in space and 1
potential energy:

— A X = 4 monolayers, where a monolayer in GaAs
is 0.282665 nm

— AV = 0.036062 eV, corresponds to Al -
concentration x = 0.04 in GaAs/Al Ga,_ As
conduction band heterojunction

— Number of barriers =5, V(x) =0 ... 5 AV

» Target function is transmission-voltage
characteristic for which V(1) =2 AV, V(2) =
10 AV, V(3) = AV, V(4) = 0.0eV, V(5) = AV
— Take each of the best 50 potentials as an initial . ' ! ' !
choice and then calculate the local minimum I
using adjoint method and FMINCON to identify
basins of convergence
> Potentials from grid-based exhaustive
search converge to different local minima
(different colored dots)
— Non-convex solution space
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Aperiodic dielectric design

> Goal

— Verify experimentally device synthesis tools and methodology

— mm-wave (37.5 GHz, A,= 8 mm) test-bed

+ Rapid prototyping, high tolerance control (+2um / A, = 1/4000), relatively low cost
— Compare with achievable tolerance for nanophotonics which is A =500 nm, 5 nm / A = 1/100

* Solve Helmholtz equation 5 #; g, 0,20 E+ 0’ gyt E=0
— FDFD Hy Fe
— Interior boundary is TE10 mode at wave guide aperture
— In modeling domain p. =1 and ¢, = g(x, y) varies discontinuously at cylinder boundary

— Meet top-hat design metrics

+ 30 dB side lobe suppression, £0.15 dB ripple, 90% coupling
— Develop efficient robust optimization design tools

* Local optimization using adjoint method

* Global optimization, heuristic rule-based method, interactive visualization
— Generalized methodology

* High dimensionality of design space, nonlinearity, non-convexity

i Nano-photonic

21



Aperiodic nano-photonics: Uniform illumination of a

New generation of broken
symmetry nano-photonics
devices

56 dielectric scattering
centers configured to
convert gaussian profile
input beam of width 26 =4
um into 30° — 60° top hat
intensity function at 7 um
radius observation circle

Size of aperiodic nano-
photonic structure
dominated by size of input
beam

Aperiodic nano-photonic
design patterned using e-
beam lithography in Si

slab waveguide geometry

surface
}{m'ﬁ = field
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Aperiodic electromagnetic design: Experimental verification
of uniform illumination between 30° and 60° scattering angles

Position, y (m)

<
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-0.05

Position, x (m)

0.05

» Adjoint method
» Good agreement between model and measured

-10

-15

-20

-25

-30

data at 37.5 GHz (A, = 8 mm)
— 95% calculated, 92.4% measured power uniformly

illuminates between 30° and 60° scattering angles

+0.725 dB calculated, +0.885 dB measured ripple
in illuminated power between 30° and 60°

scattering angles

0
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Nanophotonic and RF design

» Aperiodic arrangements of dielectrics and
metals for filters and micro-spectrometers

— Synthesis for non-intuitive design

* Compact WDM filter and spectrometer for chip-scale
photonics

» Exploration for new functionality
— Accessibility of scaled nanophotonic devices

* Room-temperature operation of 1,® volume laser

diode |
. 0 0.02 0.04 006 0.08 01 012
+ Single photon source at A,=1550 nm or ;=850 nm x (m)
. Lasing based on SI materials T ':.r E Power distribution over the Modeling Domain

. -‘.f Fylad &
-
-

— New configurations using negative index material 7_-:’_"-_“5‘:5.
for unique behavior and performance i :
» Discovery of performance metrics for new building
blocks such as resonators and lenses
» Optimal design of negative index physical
media

— Optimized meta-materials

* Metal and dielectric configurations with low

dispersion and low losses at RF and optical 0 00z 004 ";?‘;m,“-“s 01, Mz
frequencies

Power distribution over the Modeling Domain

LY

Cyim)

-10

-20

y (m)

-30

-40

-60
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Adaptive optimization concept

Conventional approach

Human interface

— Objective function
— Cost functional

78

— Forward solve and iterate
Intelligent optimization

Set-valued objective
Robustness

— Maximally exploit available
information with minimum

effort

— Significant adaptive control
loops within and between
modules

Modify objective function
Dimensionality reduction
Modify cost functional
Modify physical model

— Interactive

At end of computation both
problem and algorithm have
changed

— Adaptive optimization

Probability of success
Accessibility

Monitor computational effort
Monitor information content

Automatically discover
extreme physical behavior of

nano-scale inhomogeneous
configurations using first-

Family of solutions
Post processing of data

principles calculations of
light-matter interactions

A4

— Linear scaling DFT

Human interface

— Quantized electromagnetic
field
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Requirements for system function made to order

Design iteration feedback paths and learning

a‘@ (=10

Path to production of new functional components

> Efficient
— Realistic physical models
— Adaptive optimization
— Human interaction for learning (real time)

»System needs
— Specification of required response function
»Device synthesis tools for quantum systems
— Translation of specifications into physical
constraints
— Search and optimization of actual response
relative to target response
»Nano-factory
— Fabrication of non-intuitive device designs
using structures with nano- and atomic scale
tolerance
»Functional system components
— Delivery and integration of functional
components to system user
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Securing systems beyond Moore’s Law endpoint in 2020

-
Wlth The semiconductor industry technology roadmap When the road turns to dirt, the dinosaurs die

Ultimate Technology

Nano-metal

llya Grigorenko
Stephan Haas
Electron transport
Petra Schmidt
Gary Rosen
Aperiodic design
Chunming Wang
Philip Seliger
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