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Preface

This book summarizes our research work conducted in the University
of Colorado at Boulder from 2000 to 2004 while the first author was
pursuing his Ph.D. degree in the Department of Electrical and Com-
puter Engineering. The Ph.D. dissertation won the 2003-2004 ACM
Outstanding Ph.D. Dissertation Award in Electronic Design Automa-
tion. This ACM award, established by ACM SIGDA, is given each year
to an outstanding Ph.D. dissertation that makes the most substantial
contribution to the theory and/or application in the field of electronic
design automation.

Our research addresses the problem of applying automatic abstraction
refinement to the model checking of large scale digital systems. Model
checking is a formal method for proving that a finite state transition
system satisfies a user-defined specification. The primary obstacle to
its widespread application is the capacity problem: the state-of-the-art
model checker cannot directly handle most industrial-scale designs. Ab-
straction refinement, an iterative process of synthesizing a simplified
model to help verifying the original model, is a promising solution to
the capacity problem. In this book, several fully automatic abstraction
refinement techniques are proposed to efficiently reach or come close to
the simplest abstraction.

First, a fine-grain abstraction approach is proposed to keep the ab-
straction granularity small. With the advantage of including only the
relevant information, the fine-grain abstraction is proved to be indispens-
able in verifying systems with complex combinational logics. A scalable
game-based refinement algorithm called Grab is proposed to identify the
refinement variables based on the systematic analysis of all the shortest
counterexamples. Compared to single counterexample guided refinement
methods, this algorithm often produces a smaller abstract model that
can prove or refute the same property.



xii

Second, a compositional SCC analysis algorithm called DnC is pro-
posed in the context of LTL model checking to quickly identify unim-
portant parts of the state space in previous abstractions and prune them
away before verification is applied to the next abstraction level. With a
speed-up of up to two orders of magnitude over standard symbolic fair
cycle detection algorithms, DnC demonstrates the importance of reusing
information learned from previous abstraction levels to help verification
at the current level.

Finally, BDD based symbolic image computation and Boolean sat-
isfiability check are revisited in the context of abstraction refinement.
We propose two new algorithms in order to improve the computational
efficiency of BDD based symbolic fixpoint computation and SAT based
bounded model checking, by applying the idea of abstraction and suc-
cessive refinements inside the two basic decision procedures.

Analytical and experimental studies demonstrate that the fully auto-
matic abstraction refinement techniques proposed in this book are the
key to applying model checking to large systems. The suite of fully au-
tomatic abstraction refinement algorithms has demonstrated significant
practical importance. Some of these BDD and SAT based algorithms
have been adopted by various commercial/in-house verification tools in
industry.

Chao Wang, Gary D. Hachtel, Fabio Somenzi

April 2006



Chapter 1

INTRODUCTION

Our society is increasingly dependent on various electronic and com-
puter systems. These systems are used in consumer electronics, automo-
biles, medical devices, traffic controllers, avionics, and space programs,
etc. Many of these systems can be classified as critical systems—safety-
critical, mission-critical, or cost-critical. Design errors in these critical
systems are generally intolerable, since they either cost a lot of money,
or cost lives. However, designing a flawless computer system is becoming
harder as the size of the system keeps getting larger. In the hardware de-
sign community, for instance, functional verification has been identified
as the bottleneck in the entire design process. According to ITRS (the
International Technology Roadmap for Semiconductors [ITR03]), two
thirds of a typical ASIC design budget goes into verification, and verifi-
cation engineers frequently outnumber design engineers in large project
teams. Still, over 60% of the IC designs require a second “spin” due
to logic and functional level errors. Similar problems also exist in the
software community, especially in the design and implementation of em-
bedded and safety-related software systems (device drivers, air traffic
control systems, security protocols, etc.). The vast majority of verifica-
tion experts believe that formal analysis methods are indispensable in
coping with this “verification crisis.”

Traditional verification techniques are simulation and testing. Simu-
lation is applied to a model of the product, while testing is applied to
the product itself. The basic idea of simulation and testing is feeding
in some test vectors and then checking the output for correctness. The
disadvantage of this “trial-and-error” based approach is that all the pos-
sible input conditions must be checked in order to make sure the design
is correct. However, even for pure combinational circuits, it is infeasi-
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ble to enumerate all the possible input conditions except for very small
designs. For sequential circuits, there can be an infinite number of in-
put conditions due to the possibly unbounded number of time instances.
Therefore, although simulation and testing are very useful in detecting
“bugs” in the early stages of the design process, they are not suitable
for certifying that the design meets the specification.

To get a mathematical proof that the design satisfies a given spec-
ification under all possible input conditions, one needs formal verifi-
cation techniques. Model checking and theorem proving are two rep-
resentatives of the existing formal verification techniques. Given a fi-
nite state model and a property expressed in temporal logics, a model
checker can construct a formal proof when the model satisfies the prop-
erty [CE81, QS81]. If the property fails, the model checker can show
how it fails by generating a counterexample trace. Model checking is
fully automatic in the sense that the construction of proof or refutation
does not require the user’s intervention. This is in contrast to the formal
techniques based on theorem proving, which rely on the user’s expertise
in logics and deductive proof systems to complete the verification.

Model checking has been regarded as a potential solution to the “ver-
ification crisis” in the computer hardware design community. It is show-
ing promise for many other applications as well, including real-time sys-
tem verification [AHH96], parameterized system verification [EK03], and
software verification [VB00, BMMR01, MPC+02].

The primary obstacle to the widespread application of model check-
ing to real-world designs is the capacity problem. Since model checking
uses an exhaustive search of the state space of the model to determine
whether a specification is true or false, the complexity of model check-
ing depends on the number of states of the model as well as the length
of the specification. Due to its exponential dependence on the num-
ber of state variables or memory elements, the number of states of the
model can be extremely large even for a moderate-size model. This is
known as the state explosion problem. A major breakthrough in dealing
with state explosion was symbolic model checking [BCM+90, McM94]
based on Binary Decision Diagrams (BDDs [Bry86]). However, even
with these symbolic techniques, the capacity of model checking remains
limited: The state-of-the-art model checkers still cannot directly han-
dle most industry-scale designs. In fact, symbolic model checkers often
lose their robustness when the model has more than 200 binary state
variables; at the same time, hardware systems become more and more
complex because of Moore’s law and the increasing use of high level hard-
ware description languages (HDLs)—models with thousands or tens of
thousands of state variables may yet look modest.
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1.1 Background

Abstraction is an important technique to bridge the capacity gap be-
tween the model checker and large digital systems. When a system can-
not be directly handled by the model checker, abstraction can be used to
remove information that is irrelevant to the verification of the given prop-
erty. We then build an abstract model which hopefully is much simpler
and apply model checking to it. In doing so, an abstract interpreta-
tion [CC77], or a relation between the abstract system and the concrete
system is created. For it to be useful in model checking, abstraction
must preserve or at least partially preserve the property to be verified.
There exist automatic abstraction techniques under which a certain sub-
class of temporal properties are preserved. For instance, bi-simulation
based reduction [Mil71, DHWT91] preserves the entire propositional µ-
calculus. However, property-preserving abstractions are either very hard
to compute or do not achieve a drastic reduction [FV99], and therefore
are less attractive in practice. A more practical approach is called prop-
erty driven abstraction, which preserves or partially preserves only the
property at hand. Along this line, Balarin et al. [BSV93], Long [Lon93],
and Cho et al. [CHM+96a] have studied various ways of deriving an
abstract model from the concrete system for model checking.

Abstraction refinement was introduced by Kurshan [Kur94] in the
context of model checking linear properties specified as ω-regular au-
tomata. In this paradigm, verification is viewed as an iterative process
of synthesizing a simplified model that is sufficient to prove or refute the
given property. In COSPAN [HHK96], the initial abstraction contains
only the state variables in the property and leaves the other variables
unconstrained. Since unconstrained variables can take arbitrary values,
the abstract model is an over-approximation in the sense that it contains
all possible execution traces of the original model, and possibly more.
Therefore, when a linear time property holds in the abstract model, it
also holds in the concrete model; when the property fails in the abstract
model, however, the result is inconclusive. In the case of inconclusive
result, the abstract model is refined by adding back some relevant but
previously unconstrained variables. The key issue in abstraction refine-
ment is to identify in advance which variable is relevant and which is
not. Note that an over-approximated abstraction is applicable not only
to linear properties specified as ω-regular automata, but also to other
universal properties including LTL [Pnu77] and ACTL [CE81, EH83],
because over-approximation suffices to prove these properties true.

For practical reasons, it is important to keep the abstraction refine-
ment process fully automatic. Manual abstraction techniques can be
very powerful when they are carried out carefully by experienced users.
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However, it often requires a significant amount of user’s intervention and
in-depth knowledge of the design. In fact, manual abstraction is very
labor intensive and can be error-prone even for skilled users, making it
hard for verification to keep up with the design schedule in real industry
settings. Therefore, fully automated abstraction techniques are far more
attractive in practice. In abstraction refinement, a procedure typically
starts with a coarse initial abstraction and then automatically augments
the abstract model by iterative refinement.

The main challenge in abstraction refinement is related to the ability
of generating a final abstract model that is as simple as possible. The
final abstraction, or deciding abstraction, is the one that decides the
truth of the property to be verified. One can always start with a very
coarse initial abstraction and keep refining it until the abstraction be-
comes deciding. Therefore, the effectiveness of the refinement algorithm
is critical in keeping the final abstract model small. Existing refinement
algorithms can be classified into the following categories. Some refine-
ment algorithms rely on information about the structure of the model,
e.g., the pair-wise latch relation [LPJ+96] or the variable dependency
graph [LNA99]. Some refinement algorithms rely on the analysis of the
set of approximate satisfying states of the given property produced in a
previous model checking run, e.g., the operation-based refinement meth-
ods [PH98, JMH00]. Some refinement algorithms are driven by spuri-
ous abstraction counterexamples produced in a previous model check-
ing run [CGJ+00, WHL+01, CGKS02, CCK+02, GKMH+03, MH04]; in
these methods, the goal of refinement is to remove the abstract coun-
terexamples that do not correspond to any real path in the concrete
model. Other refinement algorithms rely on the analysis of unsuccessful
bounded model checking runs [MA03, LWS03, GGYA03, LS04, LWS05,
ZPH04, ZPHS05]. In the latter cases, unsatisfiability proofs of these
bounded model checking instances directly induce abstract models that
are sufficient for disabling all counterexamples of a certain length.

The simplicity of the final abstract model is bounded ultimately by
the degree of locality of the given property in the model. In general,
a high degree of locality is necessary for the success of abstraction re-
finement. For a property whose proof or refutation relies on detailed
knowledge of the entire system, it is clear that abstraction refinement is
ineffective. In practice, however, the properties used in model checking
are often partial specifications of the system behavior, and user-specified
properties tend to depend on only part of the system. This is largely due
to the structured programming or design style adopted by engineers. In
this case, it is the refinement algorithm’s responsibility to exploit fully
the degree of locality of a given property. To measure the quality of dif-
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ferent abstraction refinement algorithms, we define an important metric
called abstraction efficiency as follows:

η = (1 −
final abstract model size

original model size
) .

For every pair of model M and property φ, there exists an optimum or
maximum abstraction efficiency η∗. Note that η∗ is a property of the
specific verification problem 〈M, φ〉, not a property of the abstraction
refinement algorithm. As a heuristic principle, the closer to the opti-
mum value it can achieves, the better a certain abstraction refinement
algorithm is.

Another important metric for abstraction refinement is the rate of
convergence. This characterizes how quickly a refinement algorithm
converges from the initial abstract model to a deciding abstraction. In
practice, this can be measured either by the number of refinement itera-
tions or by the overall run time. We have observed cases for which some
algorithms converge quickly to a near optimal abstraction while other
algorithms spend a lot of time searching in vain for such an abstrac-
tion. In the ideal case, an algorithm should find, at each abstraction
refinement iteration, a set of refinement variables that is a subset of an
optimum deciding abstraction.

1.2 Our Contributions

This book deals with the main challenge in abstraction refinement,
i.e., the ability to efficiently reach or come close to the optimum deciding
abstraction. We propose several fully automatic abstraction techniques
in order to improve the overall computation efficiency as well as the rate
of convergence. Together, they address the following three problems that
are critical in the abstraction refinement loop:

1 How to make the abstraction more concise?

2 How to identify and reuse critical information from previous abstrac-
tion levels?

3 How to make the basic decision procedures used in abstraction re-
finement more efficient?

In order to achieve a higher abstraction efficiency, it is crucial to
keep the refinement granularity small so that only the relevant infor-
mation is included in the abstract model. That is, each successive re-
finement should include only variables that are present in an optimal
or near-optimal deciding abstraction. In previous work, the abstraction
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granularity is often limited at the state variable level: the entire fan-
in combinational logic cone of a state variable is either included in or
completely excluded from the abstract model. However, it is often the
case that not every one of these fan-in logic gates is necessary for the
verification of a certain property, even if the state variable itself is in-
deed necessary. Including these redundant logic gates often significantly
increases the complexity of the abstract model—an abstract model with
few state variables may end up containing a large number of logic gates.

In this book, we propose a fine-grain abstraction approach to push the
granularity of abstraction beyond the usual state variable level. Boolean
network variables are selectively inserted into large combinational logic
cones to partition them into smaller pieces. In the abstraction as well
as the successive refinements, Boolean network variables are given the
same status as state variables—both are considered as atoms. With this
approach, refinement strategies must search a two-dimensional space.
Refinement in the sequential direction is comprised of the addition of new
state variables only, which is typical of much of the prior art [LPJ+96,
JMH00, CGJ+00, CGKS02]. Refinement in the Boolean direction is
comprised of the addition of Boolean network variables only, which does
not increase the number of abstract states but refines the transition
relation among them. Although cut-set variables that are similar to
Boolean network variables were used in the previous work of Wang et
al. [WHL+01] and Glusman et al. [GKMH+03], these variables were not
treated the same as state variables during refinement. We shall show that
by separating the two refinement directions and carefully controlling the
direction at each iteration, we can produce refinement variable sets that
are significantly more concise.

Spurious counterexamples in an abstract model have been used in
previous work to compute the set of refinement variables. With the ex-
ception of [GKMH+03], the prior art of counterexample based refinement
relies exclusively on a single counterexample. In practice, however, there
can be an extremely large number of spurious counterexamples when the
property fails. In that case, arbitrarily picking up one counterexample
and use it to drive the refinement is “a-needle-in-the-haystack” approach.
In this book, we present a way to capture, for invariant properties, all the
shortest counterexamples using a data structure called the Synchronous
Onion Rings (SORs). A new refinement algorithm, called Grab, is pro-
posed to identify the refinement variables by systematically analyzing
all the shortest counterexamples. Grab has two novel features: First,
it takes a generation of refinement steps to systematically eliminate all
spurious counterexamples supported by a given set of SORs. Second,
each refinement step in the current generation is computed using a scal-
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able game-based strategy that depends solely on the current abstract
model. Note that being able to compute the refinement without using
the concrete model is crucial to the scalability of the algorithm, since the
working assumption is that the concrete model is large and any compu-
tation on it is prohibitively expensive. In contrast, previous refinement
methods in [CGJ+00, CGKS02, CCK+02] do not scale well, because
they rely on computation in the concrete model.

Due to the global guidance from the SORs, and the quality and scal-
ability of the game-based variable selection computation, Grab demon-
strates significantly advantages over these previous refinement algorithms
– it can solve significantly larger problems, require less memory and less
CPU time. Although the method in [GKMH+03] is also driven by mul-
tiple counterexamples, it does not guarantee to capture each and every
one of the shortest counterexamples. As a result, this refinement method
is often less accurate than the SOR based refinement and is incapable
of catching concretizable counterexamples at the earliest possible refine-
ment step.

Proof based abstraction methods in [MA03, LWS03, GGYA03, LS04,
LWS05, ZPH04, ZPHS05] captures implicitly all the shortest counterex-
amples. However, these are SAT based methods and rely on a SAT
solver to produce the unsatisfiability proof of a SAT instance in the
concrete model. In contrast, our core refinement variable selection al-
gorithm is pure BDD based, even though we use SAT as well in con-
cretization test and in predicting the refinement direction. We note
that a small unsatisfiability proof, i.e., the one with a small subset of
Boolean variables or clauses, does not automatically give a small refine-
ment set [LS04, GGA05]. Both proof-based and counterexample based
methods have their own advantages and disadvantages. A detailed ex-
perimental comparison of GRAB with a proof-based refinement algo-
rithm can be found in [LWS05], showing that these two methods com-
plement each other on the various test cases. Amla et al. [ADK+05]
also published results of their experimental evaluation of the various
SAT based abstraction methods. There is also a trend of combining
counterexample based methods and proof-based methods in abstraction
refinement [AM04].

In abstraction refinement, we need to model check the abstract model
repeatedly while it is gradually refined. Information gathered at previous
abstraction levels can be carried on and be used to speed up the veri-
fication at the current level. In this book, we propose a compositional
SCC (Strongly Connected Component) analysis algorithm, called DnC,
to quickly identify unimportant parts of the state space and prune them
away before going to the next abstraction. The search state space is also
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disjunctively decomposed into smaller subspaces that can be checked in
isolation. Although there exist several symbolic SCC algorithms in the
prior art [HTKB92, XB00, BGS00, GPP03] and some of them have been
applied to model checking [FFK+01, SRB02], these methods are not
compositional, and would not be effective on the larger practical exam-
ples studied in this book. In this book, we also prove that the strength of
an SCC or a set of SCCs decreases monotonically with refinement, which
allows the model checking algorithm to tailor the proof to the strength
of the SCC at hand. The concept of automaton strength was due to
Kupferman and Vardi [KV98] and Bloem et al. [BRS99]. Although the
strength of the automaton was used in [BRS99] to improve LTL model
checking, we believe that DnC is the first to systematically exploit this
important property in the context of abstraction refinement.

The idea of abstraction followed by the successive refinements is also
applied to the two basic decision procedures used in model checking:
BDD based symbolic image computation and Boolean Satisfiability (SAT)
check. Image computation [CBM89a, GB94] accounts for most of the
CPU time in BDD based symbolic model checking. The peak sizes
of the BDDs produced during the computation are essential in deter-
mining whether or how fast image computation can be completed on
a given computer. In this book, we propose a novel image computa-
tion algorithm called FarSide image, to reduce the peak BDD size
inside image computation by minimizing the transition relation with
over-approximated images as care sets. Exact and approximate reach-
able states have been widely used to improve image computation since
the early work of Ranjan et al. [RAB+95] and Moon et al. [MJH+98].
However, BDD minimization was effective only when being applied to
the near side, or present-state variables of the transition relation. The
FarSide image algorithm is the first to achieve a significant perfor-
mance gain by applying BDD minimization to the far side, or next-state
variables of the transition relation. It may seem surprising that signifi-
cant improvements to the low level BDD work routines can be obtained
long after the time when BDD methods were a consistent focus in the
relevant conferences and journals. From our discussion and presented
results, it should be clear that these improvements are obtained only
when compositional methods are applied to models that are much larger
than previously considered.

Deciding the SAT problem of a Boolean formula is a fundamental com-
putation in Bounded Model Checking (BMC [BCCZ99]). In BMC, we
search for counterexamples of a finite length in the given model, and the
existence of a finite-length counterexample is formulated into a Boolean
formula that is satisfiable if and only if a counterexample exists. When
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the Davis-Longeman-Loveland recursive search procedure [DLL62] (im-
plemented in many modern SAT solvers) is used to solve the SAT prob-
lem, the variable decision ordering affects the performance significantly.
In this book, we propose a new algorithm to compute a good variable de-
cision order for the series of SAT problems in BMC. The new algorithm
exploits the fact that the SAT problems in BMC are highly correlated,
and therefore information learned from previous problems can help solv-
ing the current problem. The new variable ordering is computed based
on the analysis of the unsatisfiability proofs of previous SAT instances,
and is gradually refined as the BMC unrolling depth keeps increasing.
Shtrichman also studied in [Sht00] the use of static ordering to improve
the SAT search in BMC. However, his method is based primarily on the
unrolled circuit structure, and therefore is completely orthogonal to ours.
Due to the strong correlation among different SAT instances in BMC,
applying our new decision ordering can significantly reduce the sizes of
the SAT search trees and therefore improve the overall performance of
BMC.

To summarize, all the new techniques proposed in this book are fully
automatic and are crucial at improving the performance of abstraction
refinement. Their application to model checking can significantly in-
crease the model checker’s ability to handle large designs. Our experi-
mental studies on real-world benchmark circuits indicate that these au-
tomatic abstraction refinement techniques are the key to applying model
checking to industrial-scale systems.

1.3 Organization of This Book

This book has nine chapters. Chapter 2 is an introduction to the basic
concepts and notations commonly used in model checking, including
finite state models, temporal logics, Büchi automata, symbolic model
checking, bounded model checking, and abstraction refinement. This
chapter should be an easy reading for those who are familiar with model
checking. We have also tried to make the materials easily accessible to
readers who are in the general areas of computer science but not very
familiar with model checking. From Chapter 3 to Chapter 8, we present
our main research contributions in details.

In Chapter 3, we introduce the notion of abstraction granularity and
present the Fine-Grain abstraction approach. We use the simulation
relation between the abstract and concrete models to explain why model
checking of the abstract system may be conservative. We present the
data structure of the SORs to capture all the shortest abstract counterex-
amples. We show how to use SAT based multi-thread concretization test
to decide whether the abstract counterexamples are real or not.
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In Chapter 4, we present the Grab refinement algorithm for select-
ing refinement variables based on a two-player reachability game in the
abstract model. At each refinement iteration, we show how to decide
the appropriate refinement direction using a SAT check. In both refine-
ment directions, a greedy generational minimization is used at the end
to remove redundant refinement variables. Finally, we discuss the use of
sequential don’t cares to constrain the behavior of the abstract model.

In Chapters 5 and 6, we address the important problem of carrying on
information from previous abstraction levels to the current level, and ap-
plying it to speed up model checking. We present a compositional SCC
analysis algorithm called DnC for model checking LTL properties. In-
formation learned from previous abstraction levels is used to restrict the
search for fair cycles at the current abstraction level. We will explain the
use of SCC strength reduction, disjunctive state space decomposition,
and guided search for fair cycles in the general framework of abstraction
refinement.

In Chapters 7 and 8, we apply the idea of abstraction and succes-
sive refinements to the basic symbolic computation algorithms in model
checking. In Chapter 7, we focus on improving the performance of BDD
based symbolic image computation and present the FarSide image com-
putation algorithm. In Chapter 8, we discuss the variable decision or-
dering of a SAT solver based on the DLL procedure in the context of
bounded model checking. We then present a new variable ordering algo-
rithm to improve the performance of the SAT checks in BMC. In both
chapters, we conduct experiments to demonstrate the effectiveness of
the proposed techniques.

We conclude in Chapter 9 and point out some interesting research
directions.



Chapter 2

SYMBOLIC MODEL CHECKING

Model checking [CE81, QS81] is an algorithmic method for proving
that a digital system satisfies a user-defined specification. Both the sys-
tem and the specification must be formally specified: The model of the
system must have a finite number of states; the specification, or property,
is often expressed in temporal logics. In the model checking literature,
the model and the property are often represented by the Kripke structure
and a temporal logic formula, respectively.

Given a model K and a property φ, model checking is used to check
whether K models φ, denoted by K |= φ. For properties specified
in Computational Tree Logic (CTL [CE81, EH83]), the model check-
ing problem can be solved by a set of least and/or greatest fixpoint
computations [CES86]. For properties specified in Linear Time Logic
(LTL [Pnu77]), model checking is often transformed into language empti-
ness checking in a generalized Büchi automaton. In this automata-
theoretic approach [VW86], the negation of the given LTL formula is en-
coded into a Büchi automaton, which is then composed with the model.
The LTL model checking problem is then decided by checking the lan-
guage of the composed system—the model satisfies the property if and
only if the language of the composed system is empty. Therefore, the
underlying LTL model checking algorithms are usually variants of algo-
rithms for computing Strongly-Connected Components (SCCs).

In this chapter, we first introduce the basic concepts and notations
commonly used in model checking. We then review some of the fun-
damental algorithms in symbolic model checking, which includes BDD
based symbolic fixpoint computation, SCC hull and SCC enumeration
algorithms, SAT and bounded model checking, and iterative abstraction
refinement.
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2.1 Finite State Model

In model checking, we deal with a formal model of the given digi-
tal system, known as the Kripke structure. A Kripke structure is an
annotated finite-state transition graph.

Definition 2.1 A Kripke structure is a 5-tuple

K = 〈S, S0, T, A,Λ〉 ,

where S is a finite set of states, S0 ⊆ S is the set of initial states,
T ⊆ S × S is the transition relation, A is a finite alphabet for which a
set P of atomic propositions is given and A = 2P , and Λ : S → A is the
labeling function.

We further require that the transition relation of a Kripke structure
be complete; that is, every state has at least one successor. With this
assumption, we can extend any finite state path in the state transition
graph into an infinite one.

As the standard representation of models in the model checking litera-
ture, the Kripke structure has its origin in modal logic, the generalization
of temporal logic. In modal logic, a certain formula is interpreted with
respect to a state inside a universe, a domain of discourse, and a rela-
tion establishing how the validity of a predicate changes from state to
state. Temporal logic is a special case of modal logic that allows us to
reason about how predicates evolve over time. In temporal logic model
checking, a node or state of the Kripke structure represents the “state”
of the given system at a certain time, and the change from state to state
represents a time change.

From an engineer’s point of view, the Kripke structure is nothing but
a labeled finite state machine (FSM). The additional features, i.e., the
finite alphabet and a labeling function from states to sets of atomic
propositions, make it possible to specify simple propositional properties
on the finite state machine. These propositional properties, combined
with some temporal operators, allow us to specify properties like “¬abort
holds on all the states reachable from the initial states” or “from a
state labeled req we will eventually reach a state labeled ack.” We will
introduce temporal logic operators in the next section. Now let us focus
on propositional properties and take a look at the example FSM at the
right-hand side of Figure 2.1.

The FSM in Figure 2.1 has four states, among which three are reach-
able from the single initial state a. Propositions p and q belong to the
finite alphabet. With the labeling function and initial predicate indi-
cated in Figure 2.1, the finite state machine is augmented into a Kripke



Symbolic Model Checking 13

p = ¬x0

d b

pq p

a cb

state

a

c

d

0

0

1

1

0

1

0

1

encoding

x1 x0 q = x1 ∧ x0

Figure 2.1. An example of the Kripke structure.

structure defined as follows:

S = {a, b, c, d} Λ(a) = {p}
S0 = {a} Λ(b) = { }
T = {(a, a), (a, b), (b, c), (c, c), (d, d), (d, a)} Λ(c) = {p}
P = {p, q} Λ(d) = {q}

Given a sequential circuit, the construction of the finite state machine
from the system description is straightforward. A digital circuit is often
defined as an entity with memory elements (latches and flip-flops), com-
binational logic gates, input signals, and internal wires. The transition
functions of the memory elements are defined in terms of the current
values of these memory elements and the input signals.

Figure 2.2 gives an example circuit, in which we use the variables x1

and x0 to represent the outputs of the two registers, and variables y1 and
y0 to represent their data inputs. Note that after a clock cycle, the values
of y1 and y0 will be propagated to the register outputs. Therefore, we
often call x1 and x0 the present-state (or current-state) variables, and
call y1 and y0 the next-state variables. In this example, we use the
variable w0 to represent the value of a primary input signal.

States in the corresponding FSM are mapped to the different valua-
tions of the set of memory elements. Edges in the state transition graph
correspond to the changes of states among different clock cycles. For the
example in Figure 2.2, we can write out the transition functions of the
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Figure 2.2. A sequential circuit example.

two registers as

y1 : ¬x1 ∧ x0 ∨ x1 ∧ ¬x0 ∨ x1 ∧ x0 ∧ ¬w0

y0 : ¬x1 ∧ ¬x0 ∧ w0 ∨ x1 ∧ x0 ∧ ¬w0

Given the values of present-state variables and the input signal, the val-
ues of next-state variables are determined by their transition functions.
When the current values of the two registers are (x1 = 0, x0 = 0), for
instance, their values at the next clock cycle will be (y1 = 0, y0 = 0)
for w0 = 0, and (y1 = 0, y0 = 1) for w0 = 1. If we use the state en-
coding scheme and labeling functions described on the left-hand side of
Figure 2.1, we will get the right-hand side Kripke structure in the same
figure.

Since the number of memory elements in a sequential circuit is finite,
there are only a finite number of states. However, There is a well-known
state explosion problem. The total number of states in the FSM can
be as large as 2n for a system with n binary state variables. Due to its
exponential dependence on the number of state variables, the number
of states of the model can be extremely large even for a moderate-size
system.

Some digital systems may have an infinite number of states. Soft-
ware with recursive function calls and unbounded data structures, for
instance, fall into this category. Other examples include timed systems
and hybrid systems [ACH+95, AH96], in which the state variables can
be of unbounded integer or even real type. Since model checking re-
quires the Kripke structure to be finite-state, before we can apply model
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checking, a certain degree of abstraction is needed to extract suitable
verification models from these systems. In general, abstraction used for
this purpose is either under-approximation or over-approximation. The
process of mapping an infinite state space into a finite state space, by
itself, is an important research topic, and is beyond the scope of this
book. In the sequel, we assume that the finite state model of a given
system, or the Kripke structure, is already available.
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2.2 Temporal Logic Property

Propositional logic is the basis for specifying properties. A proposition
is a declarative sentence about the Kripke structure that is either true
or false. Propositions are represented by a set of propositional variables
p, q, . . . plus the truth values true and false. A formula consisting of a
propositional variable is called an atomic proposition. The evaluation of
an atomic proposition maps to a set of states in the Kripke structure.

Propositional logic formulae are defined in terms of atomic proposi-
tions with the common logical connectives.

Definition 2.2 A propositional logic formula is defined as follows:

atomic propositions are propositional formulae;

if φ is a propositional formula, then ¬φ is a propositional formula;

if φ and ψ are propositional formulae, then φ ∧ ψ, φ ∨ ψ, φ → ψ,
φ ↔ ψ are propositional formulae.

In the set of logical connectives, the unary operator negation (¬) and
the binary operation logical AND (∧) constitute a minimal subset that
is sufficient for defining propositional logic. Besides ∧, there are 15 other
binary logical connectives; however, all of them can be expressed in terms
of ¬ and ∧. For example, under the De Morgan’s law the formula φ∨ψ
can be rewritten into ¬(¬φ ∧ ¬ψ). The “implies” operator → means
“only if”, and therefore φ → ψ is equivalent to ¬φ ∨ ψ. Similarly, the
formula φ ↔ ψ is equivalent to ¬φ ∧ ¬ψ ∨ φ ∧ ψ.

Propositional logic is incapable of reasoning about the evolution of
valuations over time. When the truth of a property depends on not
only the present valuation, but also on the valuations in the past or
in the future, we need temporal logics. The most common temporal
logics to express system properties are Computational Tree Logic (CTL)
and Linear Time Temporal Logic (LTL). CTL and LTL are subsets of
the more general CTL∗. In this book, we will focus on Linear Time
Temporal Logic, but we will also briefly describe the Computational
Tree Logic, since some of its operators will be used in our discussion of
model checking algorithms.

There are two very different ways of modeling time in temporal logics.
The linear time model assumes that each time instance has exactly one
successor; the branching time model, on the other hand, allows several
successors for each time instance. LTL is based on the linear time model.
LTL formulae specify properties about the future of each individual ex-
ecution trace such as the condition ack will eventually be true, or that
the condition busy will be true until another condition done becomes
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true. Logics based on the branching time model, such as CTL, deal with
all possible execution traces. CTL formulae can specify properties such
as that if the condition reset is true then on all paths the condition
reset done will eventually be true.

LTL formulae are defined in terms of atomic propositions, the usual
logic connectives, as well as linear time temporal operators. The two
basic temporal operators in LTL are X and U, called next and until,
respectively. The first operator is unary and the second is binary. The
formula Xφ means that φ holds at the next point of time. The for-
mula φU ψ means that φ has to hold until ψ becomes true, and ψ will
eventually become true.

Definition 2.3 A Linear Time Temporal Logic (LTL) formula is de-
fined recursively as follows:

atomic propositions are LTL formulae;

if φ and ψ are LTL formulae, so are ¬φ, φ ∧ ψ, and φ ∨ ψ;

if φ and ψ are LTL formulae, so are Xφ and φU ψ;

Besides X and U, there are other temporal operators including G for
globally, F for finally, and R for release. The formula Gφ means that φ
has to hold forever. The formula F φ means that φ will eventually be
true. The formula φRψ means that ψ remains true before the first time
φ becomes true (or forever if φ remains false). These three temporal
operators can be expressed in terms of the two basic ones:

F φ = trueU φ
Gφ = ¬F¬φ

φRψ = ¬(¬ψ U¬φ)

The semantics of LTL formulae are defined for an infinite path π =
(s0, s1, ...) of the Kripke structure, where si ∈ S is a state, s0 is an
initial state, and T (si, si+1) evaluates to true for all i ≥ 0. The suffix
of π starting from the state si is represented by πi. We use K, πi |= φ
to represent the fact that φ holds in a suffix of path π of the Kripke
structure K. The property φ holds for the entire path π if and only
if K, π0 |= φ. When the context is clear, we will omit K and rewrite
K, πi |= φ into πi |= φ. The semantics of LTL formulae are defined
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recursively as follows:

π |= true always holds
π |= ϕ iff π0 |= ϕ
π |= ¬ϕ iff π 6|= ϕ
π |= ϕ ∧ ψ iff π |= ϕ and π |= ψ
π |= X ϕ iff π1 |= ϕ
π |= ϕ U ψ iff ∃i ≥ 0 such that πi |= ψ and for all 0 ≤ j < i ,

πj |= ϕ
π |= ϕ Rψ iff for all i ≥ 0, πi |= ψ; or ∃j ≥ 0 such that

πj |= ϕ and for all 0 ≤ i ≤ j, πi |= ψ

The Kripke structure K satisfies an LTL formula φ if and only if all
paths from the initial states do. This means that all LTL properties are
universal properties in the sense that we can add the path quantifier A
as a prefix without changing the meaning of the properties. That is,
K |= φ is equivalent to K |= Aφ, where the path quantifier A means
φ holds for all computation paths. Another path quantifier is E, which
stands for there exists a computation path. E is not used in LTL, but
both A and E are used in CTL.

An LTL formula is in the normal form if negation appears only in
front of propositional formulae. For instance, the formula F¬F p is not
in the normal form since negation is ahead of the temporal operator F;
on the other hand, the equivalent formula F G¬p is in the normal form.
We can always rewrite an LTL formula into normal form by pushing
negation inside temporal operators. The following rules can be applied
during the rewriting:

X p = ¬X¬p
G p = ¬F¬p

p U q = ¬(¬q R¬p)
F p = true U p

Since an LTL formula φ is a universal property and is equivalent to Aφ,
the negation of φ should be the existential property E¬φ.

The two path quantifiers are an integral part of Computational Tree
Logic (CTL), and are used explicitly to specify properties related to ex-
ecution traces in the computation tree structure. A (for all computation
paths) specifies that all paths starting from a given state satisfy a prop-
erty; E (for some computation paths) specifies that some of these paths
satisfy a property.

Definition 2.4 A Computational Tree Logic (CTL) formula is defined
recursively as follows:



Symbolic Model Checking 19

atomic propositions are CTL formulae;

if ϕ and ψ are CTL formulae, then ¬ϕ, ϕ ∧ ψ, and ϕ ∨ ψ are CTL
formulae;

if ϕ and ψ are CTL formulae, then EX ϕ, E ψ Uϕ, and EG ϕ are CTL
formulae.

A CTL formula is in the normal form if negation appears only in
front of propositional formulae. Formula ¬AX p is not in the normal
form since negation is ahead of the temporal operator AX; on the other
hand, the equivalent formula EX¬p is in the normal form. We can
always rewrite a CTL formula into normal form by pushing negation
inside temporal operators. The following rewriting rules can be applied
during normalization:

AX p = ¬EX¬p
AG p = ¬EF¬p

A p U q = ¬(E¬q U¬p ∧ ¬q) ∧ ¬EG¬q
AF p = A trueU p
EF p = E true U p

Many interesting properties in practice can be expressed in both LTL
and CTL. However, there are also properties that can be expressed in
one but not the other. The difference between an LTL formula and a
CTL formula can be very subtle. For instance, the LTL formula F G p
holds in the Kripke structure in Figure 2.3, but the CTL formula AF AG p
fails. (In the Kripke structure, p and q are state labels.)

p a

a

a b

b

c

d a b c

pq

Figure 2.3. A Kripke structure and its computation tree.

The reason is that the LTL property is related to the individual paths,
and on any infinite path of the given Kripke structure we can reach the
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state c from which p will holds forever. The CTL formula AF AG p, on
the other hand, requires that on all paths from the state a we can reach
a state satisfying AG p. Note that the only state satisfying AG p is the
state c; however, the Kripke structure does not satisfy AF{c}—as shown
in the right-hand side of the figure, the left most path of the computation
tree is a counterexample. On this particular path, we can stay in the
state a while reserving the possibility of going to the state b (where p
does not hold). Therefore, F G p and AF AG p represent two very similar
but different properties.

The above example shows that LTL and CTL have different express-
ing powers. Some LTL properties, like F G p, cannot be expressed in
CTL. There are also CTL properties that cannot be expressed in LTL;
an example in this category would be AG EF p. Both LTL and CTL are
strict subsets of the more general CTL* logic [EH83, EL87]. The re-
lationship among LTL, CTL, and CTL* is given in Figure 2.4. In this
book, we focus primarily on LTL model checking. Readers who are in-
terested in CTL model checking are referred to [CES86, McM94] or the
book [CGP99].

CTL

CTL*

LTL

Figure 2.4. The relationship among LTL, CTL, and CTL*.

We have used the term universal property during previous discussions.
Now we give a formal definition of universal and existential properties.

Definition 2.5 A property φ is a universal property if removing edges
from the state transition graph of the Kripke structure does not reduce
the set of states satisfying φ. A property ψ is an existential property if
adding edges into the state transition graph of the Kripke structure does
not reduce the set of states satisfying ψ.

It follows that all LTL properties and ACTL (the universal fragment
of CTL) properties are universal. The existential fragment of CTL, or
ECTL, is existential. For the propositional µ-calculus formulae, those
that do not use EX and EY in their normal forms are universal.
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Temporal logic properties can also be classified into the following two
categories: safety properties and liveness properties. The notion of
safety and liveness was introduced first by Lamport [Lam77]. Alpern
and Schneider [AS85] later gave a formal definition of both safety and
liveness properties. Informally, a safety property states that something
bad will not happen during a system execution. Liveness properties
are dual to safety properties, expressing that eventually something good
must happen. The distinction of safety and liveness properties was orig-
inally motivated by the different techniques for proving them.

We can think of a property as a set of execution sequences, each
of which is an infinite sequence of states of the Kripke structure. A
property is called a safety property if and only if each execution vio-
lating the property has a finite prefix violating that property. In other
words, a finite prefix of an execution violating the property (bad thing)
is irremediable no matter how the prefix is extended to a infinite path.
Safety properties can be falsified in a finite initial part of the execution,
although proving them requires the traversal of the entire set of reach-
able states. The invariant property G p or AG p, which states that the
propositional formula p always holds, is a safety property. Other safety
properties include mutual exclusion, deadlock freedom, etc.

A property is a liveness property if and only if it contains at least
one good continuation for every finite prefix. This corresponds to the
intuition that it is still possible for the property to hold (good thing to
happen) after any finite execution. Liveness properties do not have a
finite counterexample, and therefore in principle cannot be falsified after
a finite number of execution steps. An example of liveness property is
G(p → F q), which states that whenever the propositional formula p is
true, the propositional formula q must become true at some future cycle
although there is no upper limit on the time by which q is required to
become true. Other liveness properties include accessibility, absence of
starvation, etc.
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2.3 Generalized Büchi Automaton

An LTL formula φ always corresponds to a Büchi automaton Aφ that
recognizes all its satisfying infinite paths. In other words, the Büchi
automation Aφ contains all the logic models of the formula φ. If we
consider the Kripke structure as a language generator and the Büchi
automaton Aφ as a language recognizer, then we have K |= φ if and only
if all infinite words generated by K are accepted by Aφ. Therefore, the
LTL model checking problem can be translated to ω-regular language
containment checking. Since checking language containment between
two Büchi automata in general is PSPACE-complete [Kur94], it follows
that LTL model checking is PSPACE-complete.

In practice, however, LTL model checking is often translated into
language emptiness checking in a generalized Büchi automaton. This
automata-theoretic approach [VW86] consists of the following three steps:

1 we negate the given property φ and translate it into a Büchi au-
tomaton A¬φ, which accepts all the infinite paths that do not satisfy
φ;

2 we then compose the model K and the property automaton A¬φ

together. The system produced by parallel composition, denoted by
(K||A¬φ), consists of only those infinite paths of K that are accepted
by A¬φ;

3 finally, we check whether the language of the composed system is
empty.

If the language is empty, then K |= φ since no infinite path in K is
accepted by A¬φ. If the language is not empty, any accepting run in the
composed system serves as a counterexample to K |= φ.

LTL model checking via language emptiness has the same worst-case
complexity bound as the language containment based approach, which
is linear in the number of states of the model, but exponential in the
length of the LTL formula. The exponential blow-up comes from the
translation from LTL formulae to Büchi automata. However, this is
often acceptable in practice, because user specified LTL formulae are
usually small compared to the size of the model.

In the automata-theoretic approach, we can use the labeled general-
ized Büchi automata as a unified representation for the model K, the
property automaton A¬φ, as well as the composed system(K||A¬φ). A
labeled generalized Büchi automaton is simply a Kripke structure aug-
mented by a set of acceptance conditions. In other words, we can view
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the model K as a special case of the labeled generalized Büchi automaton
whose only acceptance condition is satisfied by all paths.

Definition 2.6 A labeled generalized Büchi automaton is a six-tuple

A = 〈S, S0, T, A,Λ,F〉 ,

where S is the finite set of states, S0 ⊆ S is the set of initial states,
T ⊆ S × S is the transition relation, A is a finite alphabet for which a
set P of atomic propositions is given and A = 2P , Λ : S → A is the
labeling function, and F ⊆ 2S is the set of acceptance conditions.

A run of A is an infinite sequence ρ = s0, s1, . . . over S, such that
s0 ∈ S0 and for all i ≥ 0, (si, si+1) ∈ T . A run ρ is accepting or fair
if for each fair set Fi ∈ F , there exists sj ∈ Fi that appears infinitely
often in ρ. The automaton accepts an infinite word σ = σ0, σ1, . . . in
Aω if there exists an accepting run ρ such that for all i ≥ 0, σi ∈ Λ(ρi).
The language of A, denoted by L(A), is the subset of Aω accepted by
A. Note that the language of A is nonempty if and only if A contains a
reachable fair cycle—a cycle that is reachable from an initial state and
intersects with all the fair sets.

We have defined the automata with labels on the states, not on the
edges. The automata are called generalized Büchi automata because
multiple acceptance conditions are possible. A state s is complete if for
every a ∈ A, there is a successor s′ of s such that a ∈ Λ(s′). A set of
states, or an automaton, is complete if all of its states are. In a complete
automaton, any finite state path can be extended into an infinite run.
In the sequel all automata are assumed to be complete.

We define the concrete system A as the synchronous (or parallel)
composition of a set of submodules. Composing a subset of these sub-
modules gives us an over-approximated abstract model A′. In symbolic
algorithms, A and A′, as well as the submodules, are all defined over the
same state space and agree on the state labels. Communication among
submodules then proceeds through the common state space, and com-
position is characterized by the intersection of the transition relations.

Definition 2.7 The composition A1 ‖ A2 of two Büchi automata A1

and A2, where

A1 = 〈S, S01, T1, A,Λ,F1〉 ,

A2 = 〈S, S02, T2, A,Λ,F2〉 ,

is a Büchi automaton A = 〈S, S0, T, A,Λ,F〉 such that, S0 = S01 ∩ S02,
T = T1 ∩ T2, and F = F1 ∪ F2.
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In Figure 2.5, we give an example to show how the automata-theoretic
approach for LTL model checking works. The model or Kripke structure
in this example corresponds to the circuit in Figure 2.2. We are inter-
ested in checking the LTL property φ = F G p; that is, eventually we will
reach a point from which the propositional formula p holds for ever.

c1

pq p

A
¬φ the Kripke structure K

K ‖ A
¬φ

¬p

true

0

1

d a b c

a0

a1 b1

b0 c0

Figure 2.5. An LTL model checking example.

First, we create the property automaton A¬φ that admits all runs
satisfying the negation of φ, which is ¬φ or G F¬p. Runs satisfying
G F¬p must visit states labeled ¬p infinitely often. There are exist-
ing algorithms to translate a general LTL formula to a Büchi automa-
ton; readers who are interested in this subject are referred to [VW86,
GPVW95, SB00]. Since our example is simple enough, we do not need
to go through the detailed translation algorithm to convince ourselves
that the automaton in Figure 2.5 indeed corresponds to G F¬p. In Fig-
ure 2.5, states satisfying the acceptance condition are represented as
double circles. The property automaton has only one acceptance condi-
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tion {0}, meaning that any accepting run has to go through the state
0 infinitely often. We assume that all states in the Kripke structure K
are accepting; that is, the acceptance condition of K is {a, b, c, d}.

After composing the property automaton with the model, we have
the composed system at the bottom of Figure 2.5, whose acceptance
condition is {a0, b0, c0}. Note that in the creation of K||A¬φ we have
used the parallel composition; that is, only transitions that are allowed
by both parents are retained. The final acceptance condition is also the
union of those of both parents. Since the one for K consists of the entire
state space, it is omitted. Finally, we check language emptiness in the
composed system by searching for a run that goes through some states
in the fair set {a0, b0, c0} infinitely often. It is clear that the language of
that system is empty, because no run visits any of these states infinitely
often. Therefore, the property φ holds in K.

Whether the language of a Büchi automaton is empty can be decided
by evaluating the temporal logic property EGfair true on the automaton.
In other words, the language of the composed system is empty if and
only if no initial state of the composed system satisfies EGfair true. The
property is an existential CTL formula augmented with a set of Büchi
fairness constraints; for our running example, fair = {{a0, b0, c0}}. In
a run satisfying this property, a state in every Fi ∈ F must be visited
infinitely often. The CTL formula under fairness constraints can be
decided by a set of nested fixpoint computations:

EGfair true = νZ.EX
∧

Fi∈F

E Z U(Z ∧ Fi) ,

where ν denotes the outer greatest fixpoint computation, and EU repre-
sents the embedded least fixpoint computations. When a monotonically
increasing transform function f is applied repeatedly to a set Z, we de-
fine f (i)(Z) = f(f(...f(Z))) and declare Z as a least fixpoint if f (i)(Z) =
f (i+1)(Z). Conversely, when a monotonically decreasing transform func-
tion g is applied repeatedly to a set Z, we define g(i)(Z) = g(g(...g(Z)))
and declare Z as a greatest fixpoint if g(i)(Z) = g(i+1)(Z). When we eval-
uate the above formula through fixpoint computation, the initial value
of the auxiliary iteration variable Z can be set to the entire universe.
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For our running example,

F0 = {a0, b0, c0}

Z0 = {a0, b0, c0, a1, b1, c1, a2, b2, c2, a3, b3, c3}

Z1 = EX E Z0 U(Z0 ∧ F0)
= EX E{a0, b0, c0, a1, b1, c1, a2, b2, c2, a3, b3, c3}U{a0, b0, c0}
= EX{a1, b0}
= {a1}

Z2 = EX E Z1 U(Z1 ∧ F0)
= EX E{a1}U{ }
= EX{ }
= { }

Since no state in the composed system satisfies EGfair true, the language
is empty. This method for deciding EGfair true is known as the Emerson
and Lei algorithm [EL86], which is the representative of a class of SCC
hull algorithms [SRB02]. In general, the evaluation of EX and EU op-
erators does not have to take the above alternating order; they can be
computed in arbitrary orders without affecting the convergence of the fix-
point [FFK+01, SRB02]. All SCC hull algorithms share the same worst-
case complexity bound — they require O(η2) symbolic steps, where η is
the number of states of the composed model. A symbolic step is either a
pre-image computation (finding predecessors through the evaluation of
EX) or an image computation (finding successors through the evaluation
of EY, the dual of EX).

Another way of checking language emptiness is to find all the strongly
connected components (SCCs) and then check whether any of them sat-
isfies all the acceptance conditions. If there exists a reachable non-trivial
SCC that intersects every Fi ∈ F , the language of the Büchi automaton
is not empty. An SCC consisting of just one state without a self-loop is
called trivial. In our running example, the reachable non-trivial SCCs of
the composed system are {a1} and {c1}. Since none of the non-trivial
SCCs intersects the fair set {a0, b0, c0}, the language of the system is
empty.

An SCC is a maximal set of states such that there is a path between
any two states. A reachable non-trivial SCC that intersects all accep-
tance conditions is called a fair SCC. An SCC that contains some initial
states is called an initial SCC. An SCC-closed set of A is the union
of a collection of SCCs. The complete set of SCCs of A, denoted by
Π(A), forms a partition of the states of A. Likewise, the set of disjoint
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SCC-closed sets can also form a partition of the state space S. A SCC
partition Π1 of S is a refinement of another partition Π2 of S if for every
SCC or SCC closed set C1 ∈ Π1, there exists C2 ∈ Π2 such that C1 ⊆ C2.

An SCC (quotient) graph is constructed from a graph by contract-
ing each SCC into a node, merging parallel edges, and removing self-
loops. The SCC graph of A, denoted by Q(A), is a directed acyclic
graph (DAG); it induces a partial order: the minimal (maximal) SCC
has no incoming (outgoing) edge. Reachable fair SCCs, by definition,
contain accepting runs that make the language non-empty. Therefore,
a straightforward way of checking language emptiness is to compute all
the reachable SCCs, and then check whether any of them is a fair SCC.

Observation 2.8 The language of a Büchi automaton is empty if and
only if it does not have any reachable fair SCC.

Tarjan’s explicit SCC algorithm using depth-first search [Tar72] can
be used to decide language emptiness. The algorithm can be classified as
an explicit-state algorithm because it traverses one state at a time. Tar-
jan’s algorithm has the best asymptotic complexity bound—linear in the
number of states of the graph. However, for model checking industrial-
scale systems, even the performance of such a linear time algorithm is
not be good enough due the extremely large state space. A remedy to
the search state explosion is a technique called “on-the-fly” model check-
ing [GPVW95, Hol97], which avoids the construction of the entire state
transition graph by visiting part of the state space at a time and con-
structing part of the graph as needed. Its fair cycle detection is based
on two nested depth-first search procedures. Early termination, efficient
hashing techniques, and partial order reduction can be used to reduce
memory usage during the search and the number of interleavings that
need to be inspected. The scalability issue in explict-state enumeration
makes them unsuitable for hardware designs, although they have been
successful in verifying controllers and software.

Symbolic state space traversal techniques are another effective way
of dealing with the extremely large state transition graphs. Instead of
manipulating each individual state separately, symbolic algorithms ma-
nipulate sets of states. This is accomplished by representing the tran-
sition relation of the graph and sets of states as Boolean formulae, and
conducting the search by directly manipulating the symbolic represen-
tations. By visiting a set of states at a time (as opposed to a single
state), symbolic algorithms can traverse a very large state space using
a reasonably small amount of time and memory. Thousands or even
millions of states, for instance, can be visited in one symbolic step.
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An example of symbolic graph algorithms in the context of LTL model
checking is the SCC hull algorithms introduced earlier (the Emerson and
Lei algorithm [EL86] is a representative), where each image or pre-image
computation is implemented as a symbolic step. There is also another
class of SCC computation algorithms based on symbolic traversal, called
the SCC enumeration algorithms [XB99, BRS99, GPP03]. Both SCC
hull algorithms and SCC enumeration algorithms can be used for fair
cycle detection and therefore can decide EGfair true; however, some of
the enumeration algorithms have better complexity bounds than SCC
hull algorithms. For example, the Lockstep algorithm by Bloem et al.
[BRS99] runs in O(η log η) symbolic steps, and the algorithm by Gen-
tilini et al. [GPP03] runs in O(η) symbolic steps.
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2.4 BDD-based Model Checking

In symbolic model checking, we manipulate sets of states instead of
each individual state. Both the transition relation of the graph and the
sets of states are represented by Boolean functions called characteristic
functions, which are in turn represented by BDDs. Let the model be
given in terms of

a set of present-state variables x = {x1, ..., xm},

a set of next-state variables y = {y1, ..., ym};

a set of input variables w = {w1, ..., wn}, and

the state transition graph can be represented symbolically by 〈T, I〉,
where T (x, w, y) is the characteristic function of the transition relation,
and I(x) is the characteristic function of the initial states. A state is
a valuation of either the present-state or the next-state variables. For
m state variables in the binary domain B = {0, 1}, the total number of
valuations is |B|m.

If a valuation of the present-state variables, denoted by x̃, makes the
initial predicate I(x̃) evaluate to true, the corresponding state is an initial
state. Let x̃, ỹ, and w̃ be the valuations of x, y, and w, respectively;
the transition relation T (x̃, w̃, ỹ) is true if and only if under the input
condition w̃, there is a transition from the state x̃ to the state ỹ.

In our running example in Figure 2.2, the present-state variables,
next-state variables, and inputs are {x1, x0}, {y1, y0}, and w0, respec-
tively. The next-state functions of the two latches, in terms of the
present-state variables and inputs, are:

∆1 = (x1 ⊕ x0) ∨ (x1 ∧ x0 ∧ ¬w0) ,

∆0 = (¬x1 ∧ ¬x0 ∧ ∧w0) ∨ (x1 ∧ x0 ∧ ¬w0) .

Note that ⊕ denotes the exclusive OR operator. Boolean functions T
and I are given as follows:

T = (y1 ↔ ∆1) ∧ (y0 ↔ ∆0) ,

I = ¬x1 ∧ ¬x0 .

When (x1 = 0, x0 = 0), (y1 = 0, y0 = 1), and w0 = 1, for instance,
the transition relation T evaluates to true, meaning a valid transition
exists from the state (0, 0) to the state (0, 1) under this input particular
condition.

Computing the image or pre-image is the most fundamental step in
symbolic model checking. The image of a set of states consists of all the
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successors of these states in the state transition graph; the pre-image of
a set of states consists of all their predecessors. In model checking, two
existential CTL formulae, EX(D) and EY(D), are used to represent the
image and pre-image of the set of states D under the transition relation
T . With a little abuse of notation, we are using EX and EY as both
temporal operators as sell as set operators. These two basic operations
are defined as follows:

EXT (D) = {s | ∃s′ ∈ D : (s, s′) ∈ T} ,
EYT (D) = {s′ | ∃s ∈ D : (s, s′) ∈ T} .

When the context is clear, we will drop the subscripts and use EX and
EY instead. Given the symbolic representation of the transition relation
T and a set of states D, the image and pre-image of D are computed as
follows:

EXT (D) = ∃y, w . T (x, w, y) ∧ D(y) ,
EYT (D) = ∃x, w . T (x, w, y) ∧ D(x) .

When we use them inside a fixpoint computation, we usually represent
sets of states as Boolean functions in terms of the present-state variables
only. Therefore, before pre-image computation and after image compu-
tation, we also need to simultaneously substitute the set of present-state
variables with the corresponding next-state variables.

Many interesting temporal logic properties can be evaluated by apply-
ing EX and EY repeatedly, until a fixpoint is reached. The set of states
that are reachable from I, for instance, can be computed by the least
fixpoint computation as follows:

EP I = µZ.I ∪ EY(Z) .

Here EP I denotes the set of reachable states and µ represents the least
fixpoint computation. In this computation, we have Z0 = ∅ and Zi+1 =
I ∪ EY(Zi) for all i ≥ 0. That is, we repeatedly compute the image
of the set of already-reached states starting from the initial states I,
until the result stops growing. Similarly, the set of states from which
D is reachable, denoted by EF D, can be computed by the least fixpoint
computation

EF D = µZ.D ∪ EX(Z) .

This fixpoint computation is often called the backward reachability.
The computation of EG D, on the other hand, corresponds to a great-

est fixpoint computation. (EG p means that there is a path on which p
always holds—in a finite state transition graph, such a path corresponds
to a cycle.) It is defined as follows:

EG D = νZ.D ∩ EX(Z) ,
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where ν represents the greatest fixpoint computation. In this computa-
tion, we have Z0 set to the entire universe and Zi+1 = D ∩ EX(Zi) for
all i ≥ 0.

The computation of EGfair true also corresponds to a set of fixpoint
computations. As pointed out in the previous section, this is a CTL
property augmented with a set of Bc̈hi fairness constraints, and it can
be used to decide whether the language of a Büchi automaton is empty.
The formula can be evaluated through fixpoint computations as follows:

EGfair true = νZ.EX
∧

Fi∈F

E Z U(Z ∧ Fi) .

The evaluation corresponds to two nested fixpoint computations, a least
fixpoint (EU) embedded in a greatest fixpoint (νZ.EX). In the previous
section, we have given a small example to illustrate the evaluation of
this formula.

As mentioned before, we can use symbolic algorithms to enumerate
the SCCs in a graph [XB99, BRS99, GPP03]. Conceptually, an SCC
enumeration algorithm works as follows (here we take the algorithm in
[XB99] as an example, for it is the simplest among the three and it
serves as a stepping stone for understanding the other two). First, we
pick an arbitrary state v as seed and compute both EF v and EP v. EF v
consists of states that can reach v and EP v consists of states reachable
from v. We then intersect the two sets of states to get an SCC (and the
intersection is guaranteed to be an SCC). If the SCC does not intersects
with all the fair sets Fi ∈ F , we remove it from the graph and pick
another seed from the remaining graph. We keep doing that until we
found an SCC satisfying all the acceptance conditions, or no state is
left in the graph. Although SCC enumeration algorithms may have
better complexity bounds than SCC hull algorithms, for industrial-scale
systems, applying any of these algorithms directly to the concrete model
remains prohibitively expensive.

For certain subclasses of LTL properties, there exist specialized algo-
rithm that are more efficient than the evaluation of EGfair true. One way
of finding these subclasses is to classify LTL properties by the strength of
the corresponding Büchi automata. According to [BRS99], the strength
of a property Büchi automaton can be classified as strong, weak, and
terminal. If the property automaton is classified as strong, checking the
language emptiness of the composed system requires the evaluation of
the general formula EGfair true. Whenever the property automaton is
weak or terminal, language emptiness checking in the composed system
only requires the evaluation of EF fair or EF EG fair, respectively. Note
that the latter two formulae are much easier to evaluate since they cor-
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responds to a single fixpoint computation or two fixpoint computations
aligned in a row, rather than two fixpoint computations but with one
nested inside the other as in EGfair true.

Let us take the invariant property G p as an example, whose cor-
responding property automaton is denoted by AF¬p. The property au-
tomaton is given at the left-hand side of Figure 2.6. The only acceptance
condition of the automaton is {2}, or F = {{2}}. The SCC {2} is a fair
SCC since it satisfies the acceptance condition; furthermore, the SCC
is maximal in the sense that no out-going transition exists. For the au-
tomaton at the left-hand side, we can mark State 1 accepting as well;
that is, fair = {1, 2}. The automaton remains equivalent to the original
one because both accept the same ω-regular language. However, this new
property automaton can be classified as a terminal automaton although
according to the definition in [BRS99], the original one is classified as
weak. For a terminal property automaton, the language of the composed
system is empty as long as no state in the fair SCC is reachable. This
is equivalent to evaluating the much simpler formula EF fair (which has
a similar complexity as the reachability analysis). Note also that when
EF fair is used instead of EGfair true, we may end up producing a shorter
counterexample.

Same automaton, with more accepting states

0

1

2

0

1

2

0

1

2

0

1

2

¬p

true

truetrue

¬p

true

Automaton for (F¬p)

Figure 2.6. Two terminal generalized Büchi automata.

Binary Decision Diagrams

Set operations encountered in symbolic fixpoint computations, includ-
ing intersection, union, and existential quantification, are implemented
as BDD operations. BDDs are an efficient data structure for repre-
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senting Boolean functions. BDD in its current form is both reduced and
ordered, called the Reduced Ordered BDD (RO-BDD). ROBDD was first
introduced by Bryant [Bry86], although the general ideas of branching
programs have been available for a long time in the theoretical computer
science literature. Symbolic model checking based on BDDs, introduced
by McMillan [McM94], is considered as a major breakthrough in increas-
ing the model checker’s capacity, leading to the subsequently widespread
acceptance of model checking in the computer hardware industry.

Given a Boolean function, we can build a binary decision tree by
obeying a linear order of decision variables; that is, along any path from
root to leaf, the variables appear in the same order and no variable
appears more than once. We further restrict the form of the decision
tree by repeatedly merging any duplicate nodes and removing nodes
whose if and else branches are pointing to the same child node. The
resulting data structure is a directed acyclic graph. Conceptually, this is
how we construct the ROBDD for a given Boolean function. In practice,
BDDs are created directly in the fully reduced form without the need
to build the original decision tree in the first place. BDDs representing
multiple Boolean functions are also merged into a single directed graph
to increase the sharing; such a graph would have multiple roots, one for
each Boolean function.

The formal definition of a BDD is given as follows:

Definition 2.9 A BDD is a directed acyclic graph (Φ ∪ V ∪ {1}, E)
representing a set of functions fi : {0, 1}n → {0, 1}. The nodes Φ ∪ V ∪
{1} are partitioned into three subsets.

1 is the only terminal node whose out-degree is 0.

V is the set of internal nodes whose out-degree is 2 and whose in-
degree is 1. Every node v ∈ V corresponds to a Boolean variable
l(v) in the support of functions {fi}; the n variables {l(v)} in the
entire graph are ordered as follows: if vj is a descendant of vi, then
l(vj) < l(vi).

Φ is the set of function nodes whose out-degree is 1 and whose in-
degree is 0; the function nodes are in one-to-one correspondence with
the fi’s.

E is the set of edges connecting the nodes. The outgoing edge of function
nodes may have the complement attribute. The two outgoing edges for
a node v ∈ V are labeled T and E, respectively. The E edges may have
the complement attribute. We write (l(v), T (v), E(v)) to indicate an
internal node and its two outgoing edges.
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The set of functions represented by a BDD is defined as follows: (1)
The function of the only terminal node, 1, is true. (2) The function
of a regular edge is the function of the head node; the function of a
complement edge is the complement of the function of the head node.
(3) The function of a node v ∈ V is l(v)∧ fT ∨¬l(v)∧ fE , where fT and
fE are the functions of its T and E edges. (4) The function of φ ∈ Φ is
the function of its outgoing edge.

BDD provides a very compact representation for many Boolean func-
tions found in practice, although in the worst case the size of a BDD
may become exponential with respect to the number of support vari-
ables. (An example for the worst-case blowup is a multiplier, which is
known to have an exponential number of BDD nodes regardless of the
BDD variable order [Bry86].) In addition to the compactness, BDDs
are also easy to manipulate. Efficient algorithms exist for almost all the
common set-theoretic operations. For example, the intersection or union
of two BDDs takes time proportional to the product of their respective
sizes in the worst case.

BDDs are also a canonical representation in the sense that with a fixed
variable ordering, every Boolean function has a unique BDD representa-
tion. Therefore, checking whether two Boolean functions are the same
is reduced to a pointer comparison. Given a BDD, complementation or
the validity check takes constant time as well.

The complexity of symbolic model checking depends on the size of the
BDDs involved in the symbolic steps, such as the BDDs that represent
the transition relation and sets of states. Because of this, the search for
heuristics to avoid the BDD blow-up in the context of image computation
and symbolic fixpoint computation has been one of the major research
topics in formal verification.

CU Decision Diagram (CUDD) is a public-domain decision diagram
package developed in the University of Colorado [Som]. CUDD is be-
ing used widely in industry and academia. The package provides a
large set of operations to manipulate BDDs, Algebraic Decision Dia-
grams (ADDs) [BFG+93], and Zero-suppressed Binary Decision Dia-
grams (ZDDs) [Min93]. The latter two are variants of BDDs. In partic-
ular, ADDs are used to represent function from B

m to an arbitrary set, as
opposed to B in BDDs. ZDDs represent switching functions like BDDs;
however, they are much more efficient than BDDs when the functions
to be represented are characteristic functions of cube sets, or in general,
when the ON-set of the function to be represented is very sparse. They
are inferior to BDDs in other cases. The CUDD package also provides
functions to convert BDDs into ADDs or ZDDs and vice versa, and a
large assortment of variable reordering methods.
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2.5 SAT and Bounded Model Checking

SAT based Bounded Model Checking (BMC) is a complementary tech-
nique to BDD based symbolic model checking. BMC was first introduced
by Biere et al. in [BCCZ99]. Given a model and an LTL property, BMC
searches in the given model for counterexamples of a finite length. The
existence of a finite length counterexample is encoded as a Boolean for-
mula, which is satisfiable if and only if the counterexample exists. The
satisfiability problem of a Boolean formula can be decided by a SAT
solver. Since modern SAT solvers often suffer less from the potential
search space explosion, in practice, SAT based bounded model checking
can handle some industrial-scale circuits that are beyond the reach of
BDD based techniques.

In bounded model checking, one can keep increasing the counterex-
ample length k (also called the unrolling depth) until either a counterex-
ample is found or k exceeds a predetermined completeness threshold. A
completeness threshold is a constant kc such that if we cannot find any
counterexample shorter than or equal to kc, we have proved that the
property holds. It is clear that kc ≤ η, where η is the number of states
of the Kripke structure, since any finite run of the Kripke structure with
distinct states cannot be longer than that. Therefore, BMC can be re-
garded as transforming the PSPACE-complete problem of LTL model
checking into a finite number of Boolean satisfiability checks. Although
each individual SAT problem in this process is NP-complete, the total
number of SAT problems, or kc, can be exponential with respect to the
number of state variables. In practice, the SAT checks often slow down
significantly after k goes beyond a few hundred steps.

A better completeness threshold than η would be the diameter of
the state transition graph, i.e., the length of the longest shortest path
between any two states. For safety properties, we can go one step further
and use the reachable diameter of the graph, which is the length of the
longest shortest path between an initial state and another state. While
the diameter of a design may be exponential in the number of its state
elements, Baumgartner and Kuehlmann [BK04] have observed that in
practice it often ranges from tens to a few hundred regardless of design
size. They also proposed a general approach for enabling the use of
structural transformations to tighten the bounds obtained by arbitrary
diameter approximation techniques. Despite this previous research work,
computing a tight bound of the diameter of an extremely large graph
remains very hard in practice. In the absence of a reasonably small
completeness threshold, people use BMC primarily for detecting bugs
rather than for proving properties.
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The Boolean formula used to encode the existence of a finite length
counterexample consists of two subformulae: Φ = ΦM ∧ ΦP . The first
subformula, denoted by ΦM , captures all the length k execution traces
that are possible in the Kripke structure, all of which starts from the
initial states. The second subformula, denoted by ΦP , captures the con-
straint for a length k path to violate the given property. The conjunction
of the two subformula captures all the length k counterexamples of the
property. Such a counterexample exists if and only if the Boolean for-
mula has a satisfiable assignment.

First, we explain how to create the subformula ΦM . We use V to
represent the set of state variables (or latches) and U to represent the
rest of the signals (primary inputs, outputs, and signals of internal logic
gates). We then replicate these variables at every clock cycle: we use
V i = {vi

1, . . . , v
i
n} to represent the set of state variables at the i-th time

frame and U i = {ui
1, . . . , u

i
m} to represent the set of other signals at the

i-the time frame. Now we can unroll the sequential circuit (by making
multiple copies of the symbolic transition relation) into a combination
circuit. When the BMC unrolling depth is k,

ΦM = I(V 0) ∧
∧

1≤i≤k

T (V i−1, U i−1, V i) ,

where I(V 0) states that all paths must start from an initial state, and
the rest is the conjunction of k copies of the transition relation.

The transition relation copy at the i-th time frame is denoted by
T (V i−1, U i−1, V i), which is the conjunction of elementary transition re-
lations,

T (V i−1, U i−1, V i) =
∧

1≤j≤n

(vi
j ↔ ui−1

j ) ∧
∧

1≤j≤m

Tj(U
i−1, V i) .

Each Tj is called a gate relation for it describes the behavior of a logic
gate. For instance, if uj is the output variable of a two-input AND gate
with inputs ul and ur, then Tj = uj ↔ (ul∧ur). If uj is a primary input

to the circuit, then Tj = 1. Each term of the form (vi
j ↔ ui−1

l ) equates a
next-state variable to a combinational variable, describing that the out-
put of a logic gate is fed to the data input of the j-th register. Adjacent
transition relation copies are effectively connected together through the
use of shared state variables in V i.

Next we explain the creation of the subformula ΦP , which states that
a path of length k must violate the given property. To explain the basic
idea, we use the invariant property G p as an example. For the encoding
of a general LTL formula in BMC, the readers are referred to the original
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BMC paper [BCCZ99]. Note that the property G p fails if and only if
there is a path of length k from an initial state to a state labeled ¬p.
Therefore,

ΦP = ¬P (V k) ,

which indicates that the last state is a “bad” state. We use P (V k) to
denote the predicate that the state V k satisfies the propositional formula
p. In general ΦP should be the conjunction of ¬P (V i) for 0 ≤ i ≤ k.
However, if we start BMC with k = 0 and keep increasing the unrolling
depth by 1 at a time, by the time it reaches k we know that the “bad”
state cannot be found in the first (k − 1) depths; therefore, ΦP can be
simplified into ¬P (V k). To summarize, the entire BMC instance at the
unrolling depth k is as follows,

Φ = I(V 0) ∧
∧

1≤i≤k

T (V i−1, U i−1, V i) ∧ ¬P (V k) .

This formula can be viewed as a pure combinational circuit with some
environmental constraints. Figure 2.7 illustrates such a view for the
unrolling depth 2.

I(V 0) ¬P (V 2)

W 0 W 1

Figure 2.7. A bounded model checking instance.

Now, we explain how to convert the Boolean formula Φ into the Con-
junctive Normal Form (CNF). This step is necessary because in practice,
we often use an off-the-shelf Boolean SAT solver to decide Φ, and most
of the modern SAT solvers accept the CNF input format. A CNF for-
mula is the conjunction of a set of clauses, each of which is a disjunction
of literals. A literal is the positive (or negative) phase of a Boolean
variable. As an example, the following formula fragment

(a ∨ ¬c) ∧ (b ∨ ¬c) ∧ (¬a ∨ ¬b ∨ c) ∧ ...
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has three variables (a, b, and c), six literals (a, ¬a, b, ¬b, c, and ¬c),
and three clauses.

Boolean formulae and combinational circuits can be converted into
CNF formulae in linear time if we are allowed to add auxiliary variables.
The result CNF formula is also linear with respect to the size of the input
formula or the size of the input circuit. Since the transition relation of a
Kripke structure can be represented as a network of logic gates, we only
need to consider the problem of encoding the individual combinational
logic gates as conjunctions of clauses. The solution to the latter problem
is actually very straightforward. For instance, a two-input AND gate uj

with inputs ul and ur has the following set of clauses:

(ul ∨ ¬uj) ∧ (ur ∨ ¬uj) ∧ (¬ul ∨ ¬ur ∨ uj) .

Finally, we review an algorithm used in many modern SAT solvers
to decide the satisfiability of a CNF formula. A formula is satisfiable
if and only if there exists a set of assignments to the variables that
makes the formula true. It is clear that for the entire CNF formula
to be satisfiable, each individual clause must also be satisfiable. The
SAT problem of a CNF formula can be solved by the Davis-Longeman-
Loveland (DLL) recursive search procedure [DLL62]. Its basic steps are
making decisions and propagating the implications of these decisions.
Selecting a literal and making it true is called a decision. If a clause
has only one unassigned literal and all the other literals are false, it
is called a unit clause. Every unit clause triggers an implication—its
only unassigned literal has to be true, otherwise, the clause is no longer
satisfiable. The process of applying implications iteratively until no unit
clause is left is called Boolean Constrain Propagation (BCP).

A decision and the corresponding BCP restrict our attention into a
subformula or a subset of the original clauses (since the rest of the clauses
have been made true). If we keep making decisions on free variables and
performing BCP until no subformula remains to be decided, the formula
is proved to be satisfiable. However, if the remaining subformula is not
satisfiable (i.e., some of its clauses become false), we need to backtrack
and flip some of the previous assignments we made earlier.

The pseudo code of the DLL procedure is given in Figure 2.8. It
makes decisions and then applies BCP inside the while loop. If all
the variables have been assigned and no conflict occurs, the procedure
MakeDecision will return false and the procedure SatCheck will re-
turn a complete set of variable assignments. If a conflict occurs after a
partial set of assignments—some clauses become false inside BCP, it in-
dicates that a previous decision is not appropriate. Inside the procedure
ConflictAnalysis, the level of that decision is identified by conflict
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SatCheck( ) {
while (true) {

if ( MakeDecision( ) ) {
while ( BCP( ) == CONFLICT ) {

level = ConflictAnalysis( );
if (level < 0)

return UNSAT;
else

BackTrack(level);
}}
else

return SAT;
}

}

Figure 2.8. The DLL Boolean SAT procedure.

analysis [SS96], following which, the inappropriate decision is recovered
by backtracking. Before backtracking, a conflict clause learned from
this analysis is also added to the clause database (i.e., conjoined with
the original formula) to prevent the search from repeating this mistake.
When the backtrack level is less than 0, the given formula is proved to
be unsatisfiable—there is a conflict before we make any decision.
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2.6 Abstraction Refinement Framework

Abstraction refinement was first introduced by Kurshan [Kur94] in
checking linear time properties specified by ω-regular automata. It is
an important technique to bridge the capacity gap between the model
checker and large digital systems. When a model cannot be directly
handled by the model checker due to the limited capacity of the model
checking algorithms, abstraction can be used to simplify the model by
removing the information that is irrelevant to verification. To simplify
verification, we want to retain only the relevant details. The key issue in
abstraction refinement is identifying in advance which part of the model
is relevant and which is not.

There are automatic techniques for computing a simplified model
in which an entire class of properties are preserved. For instance, bi-
simulation based reduction preserves the full propositional µ-calcus (hence
the entire CTL since all CTL formulae can be evaluated through the
translation to fixpoint computations in propositional µ-calcus). A nice
feature of these techniques is that we only need to compute the reduc-
tion for a given model once, and then use the simplified model to check
all kinds of properties in that class. In practice, however, bi-simulation
and other property preserving abstractions are less attractive because
they are either hard to compute, or do not achieve a drastic reduction.
A previous study by Fisler and Vardi [FV99] has demonstrated that
bi-simulation relation is often expensive to compute and bi-simulation
based simplification does not speed up CTL model checking.

A more practical abstraction approach is called property driven ab-
straction, which often results in a significantly smaller model that pre-
serves or partially preserves a given property (as opposed to a class of
properties). This abstraction approach is frequently used in the iter-
ative abstraction refinement loop. There are various ways of deriving
such an abstract model [BSV93, Lon93, CHM+96a]. Most of them cre-
ate abstract models that are upper bounds or over-approximations of the
exact system, which may have more behavior than the concrete model.
They may produce false negatives when being used to verify universal
properties such as AG p: If a property holds in the abstract model, it
also holds in the concrete model; however, if the property fails in the
abstract model, it may still pass in the concrete model—in this case, the
property is still undecided.

There are also lower bounds or under-approximations of the exact
system. These abstractions are conservative as well because they may
produce false positives when being used to check universal properties.
Since the abstract models have less behavior than the exact system, if
a counterexample is found in the abstract model, then it is also a coun-
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terexample in the exact system. However, if no counterexample exists
in the abstract model, we cannot conclude that the property is true. In
other words, these abstractions can only refute a property but cannot
prove it. Note that one can also use under-approximations and over-
approximations simultaneously in a single iterative refinement process,
to tighten up abstraction from both ends.

real? Refinement

Counter−Example Analysis

Initial Abstraction

Model Checking

pass?
no

no
true

false

Figure 2.9. The abstraction refinement framework.

Since the property driven abstraction is conservative, we need an it-
erative process to refine the abstract model until it becomes deciding.
In abstraction refinement, one seeks the simplest abstraction that can
either prove or refute the given property. Such abstraction is called the
final or deciding abstraction for the given model checking problem. Fig-
ure 2.9 shows the generic framework for iterative abstraction refinement.
Given a model and an LTL property, we can build a very coarse initial
abstraction than is an over-approximation of the concrete model. We
then use a model checker to decide whether the abstract model satisfies
the property. If the property is satisfied by the abstract model, it is
also satisfied by the concrete model. If the property fails in the abstract
model, there is no conclusive result yet.
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At this point, the model checker returns an abstract counterexample
showing how the property is violated. Inside counterexample analysis,
we check whether this abstract counterexample contains a valid path in
the concrete model. One way of doing that is using the concretization
test to reconstruct the abstract path in the concrete model. If this is
possible and we find a real path within the given abstract counterexam-
ple, the property is refuted. Otherwise, the abstract counterexample is
declared as spurious, which means that some important information of
the exact system is missing and therefore the current abstraction needs
to be refined.

During refinement, we can use spurious counterexamples to guide the
identification of missing information in the current abstract model. Of-
ten, the immediate goal in counterexample guided refinement is to re-
move the (set of) spurious counterexample(s). That is, one searches for
a set of refinement variables such that, adding them into the current
abstract model removes the spurious counterexample(s).

After computing the set of refinement variables, we can build the new
abstract model by including their corresponding bit transition relations.
We then start the model checker again. This iterative process terminates
when either the property is decided, or the available computing resources
(i.e., CPU time and memory) are depleted.



Chapter 3

ABSTRACTION

Abstraction is a key to model checking large real-world systems. The
idea is using simplified model to help verify the original model. The
definition of simplified model depends on the type of algorithms used in
the verification process. In this chapter, abstraction is defined in terms
of the simulation relation, and in such a way that the abstract models
can be constructed directly from a high level description of the system,
even before the concrete model of the system is available.

The abstraction granularity is very important in achieving a higher
abstraction efficiency. In previous work, the abstraction granularity is of-
ten restricted at the state variable level—binary state variables, together
with their transition bit-relations, are treated as atoms. This approach
is too coarse for most industrial-scale circuits with large combinational
logic cones. In this chapter, we propose a finer grain abstraction ap-
proach which goes beyond the usual state variable level. In the extreme
case, we can treat every combinational logic gate as an atom for abstrac-
tion; refinement then becomes a process of synthesizing a final abstract
model with the fewest logic gates.

Abstract models used in this chapter are over-approximations of the
original model. If the property fails in an abstract model, we will system-
atically analyze the abstract counterexamples. For invariant properties,
we propose a data structure called the synchronous onion rings (SORs)
to symbolically capture all the shortest counterexamples and no other
counterexamples. The SORs are then used to concretize all the shortest
counterexamples simultaneously with a SAT solver, and to compute the
refinement set.
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3.1 Introduction

The concrete model is considered as a formal description of the com-
plete behavior of the system. Abstraction preserves only part of the
behavior that is relevant to the verification of the given property, in
the hope that the simplified model is easier to verify. The definition of
simplified model depends on the type of algorithms used in the verifi-
cation process. For explicit state traversal algorithms whose complexity
depends on the number of states, the simplification often aims at reduc-
ing the size of the state space. The complexity of symbolic state space
traversal algorithms depends on the size of the symbolic representation,
and therefore the abstract model must be simplified to provide a more
compact BDD representation of the transition relation and the sets of
states.

The properties under verification must be at least partially preserved
during abstraction. Based on how well they preserve the properties,
abstraction methods are classified into two categories: the property-
preserving transformation and the conservative transformation. Let A
be the original model, {φ} be a set of temporal logic properties, and Â
be the abstract model. Under a property-preserving transformation, for
all the properties in {φ}, Â |= φ if and only if A |= φ. Simplification
based on bi-simulation and simulation equivalence [Mil71, DHWT91], for
instance, are property-preserving transformations: bi-simulation based
reduction preserves the entire propositional µ-calculas, while simulation
equivalence based reduction preserves the entire LTL.

However, it is often the case that the more properties one wants to
preserve, the less information of the system one can abstract away. Since
the major concern in practice is to achieve a drastic simplification of
the model, we are more interested in conservative transformations, even
though properties may only be partially preserved. Simplification based
on simulation relation is a conservative transformation.

Definition 3.1 A Büchi automaton Â simulates A (written A ¹ Â) if

there exists a simulation relation R ⊆ S × Ŝ such that

1 for every initial state s ∈ S0, there is an initial state ŝ ∈ Ŝ0 such that
(s, ŝ) ∈ R;

2 (s, ŝ) ∈ R implies that Λ(s) = Λ(ŝ), and if (s, t) ∈ T then there exists

t̂ ∈ Ŝ such that (ŝ, t̂) ∈ T̂ , and (t, t̂) ∈ R.

If A ¹ Â, then L(A) ⊆ L(Â) [Mil71, DHWT91], where L(A) denotes
the language accepted by A. This is because a corresponding run in
Â exists for every run in A—that is, Â has all possible behavior of A,
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and maybe more. This is the reason why abstract counterexamples may
contain transitions that are allowed in Â but not in A, which produces
“false negatives” when we are checking properties in Â. Conservative
abstraction can be improved by successive refinements, as is done in the
abstraction refinement framework. In practice, one often starts with
a primitive abstract model that only partially preserves the property.
Information about the concrete model are gradually added until the the
false negative result is completely removed.

The mapping between abstract and concrete models can be described
using the more general notion of Galois connection [BBLS92].

Definition 3.2 A Galois connection from S to Ŝ is a pair of function

α : 2S → 2Ŝ and γ : 2Ŝ → 2S that are called the abstraction function
and the concretization function, respectively. α and γ are both complete
and monotonic, and must satisfy the following conditions:

∀X ∈ 2S, γ ◦ α(X) ⊇ X, and

∀X ∈ 2Ŝ, α ◦ γ(X) ⊇ X.

Under the following condition, the Galois connection can be reduced to

the simulation relation: if ∀X ∈ 2Ŝ , α(EXT (γ(X))) ⊆ EX
T̂
(X), then A ¹

Â. Although the Galois connection provides a more general framework,
no easy and practical implementation has been proposed so far to exploit
the flexibility provided by the extra generality.

We shall show in the sequel that when simulation relation is used,
little overhead is required to construct abstract models from the concrete
model. The idea is to directly abstract the transition relation. For
sequential circuits, their abstract models can be constructed directly
from a high level description of the system, even before the concrete
model of the system is available. Abstraction used in this book relies on
the simulation relation.
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3.2 Fine-Grain Abstraction

Let the concrete model be represented as a generalized Büchi au-
tomaton A = 〈T, I〉, where T (x, w, y) is the characteristic function of
the transition relation and I(x) is the characteristic function of the set
of initial states. The model is considered as the synchronous (parallel)
composition of a set of submodules. In the simplest form, every binary
state variable together with its bit transition relation is considered as a
submodule. Let J = {1, . . . , m} be the a permutation of the indexes of
the state variables; then,

T (x, w, y) =
∧

j∈J

Tj(x, w, yj) ,

where Tj(x, w, yj) is the bit transition relation of the j-th binary state
variable. Note that Tj depends on one next-state variable yj but on
potentially all present-state variables in x. Let ∆j(x, w) be the next-
state function of the j-th state variable, then Tj = (yj ↔ ∆j(x, w)).

Over-approximations of T and I, denoted by T̂ and Î, respectively,
induce an abstract model that simulates A. A straightforward way of
building T̂ from T , which has been adopted by many existing algorithms,
is to replace some Tj by tautologies. Note that this approach treats
the bit transition relation Tj as an atom for abstraction—it is either
included in or excluded from the abstract model completely. Since each
Tj corresponds to a binary state variable (or latch), the abstraction
granularity is at the state variable level. Assume that the abstract model
Â contain a subset of state variables Ĵ = {1, ..., k} ⊆ J , a subset x̂ ⊆ x
of present-state variables, and a subset ŷ ⊆ y of next-state variables;
then T̂ is defined as follows:

T̂ (x, w, ŷ) =
∧

j∈Ĵ

Tj({x̂, x̌}, w, yj) ,

where variables in x̂ are called the visible state variables, and variables in
x̌ = x \ x̂ are called the invisible state variables. Bit transition relations
corresponding to the variables in x̌ are abstracted away. The set of
initial states Î(x̂) is an existential projection of I(x): an abstract state
is initial if and only if it contains a concrete initial state.

There are two different view of the abstract model Â = 〈T̂ , Î〉:

1 The abstract model is defined in exactly the same concrete state
space, only with more transitions among the states and possibly more
states labeled as initial. While the number of states of the model



Abstraction 47

remains the same, the simplification is mainly in the size of the BDD
representation of the transition relation. This interpretation appears
natural when analyzing symbolic graph algorithms.

2 The abstract model is defined in a reduced state space: a set of con-
crete states in which any two states cannot be distinguished from
each other under the simplified transition relation T̂ forms an equiv-
alence class; mapping every equivalence class into a new state forms
the abstract model in a reduced state space. The number of states in
the reduced state space is also called the number of effective states.
The worst-case complexity of the graph algorithms is determined by
the number of effective states. It makes sense, especially for ana-
lyzing explicit graph algorithms, to consider the abstract model in a
reduced state space. (In the analysis of symbolic graph algorithms,
the number of effective states is also useful.)

Restricting the abstraction granularity at the state variable level,
however, is not suitable for verifying industrial-scale systems with ex-
tremely large combinational logic cones. The bit transition relation Tj

is either (y ↔ ∆j) or the tautology, depending on whether the cor-
responding state variable is included or not, but it cannot be an arbi-
trary Boolean function in between. However, there are often cases where
not all the logic gates in the combination logic cone are necessary for
the verification, even though the state variable itself is necessary. In
these cases, an abstraction T̂j of the bit transition relation such that

(y ↔ ∆j) ≤ T̂j ≤ 1 would be ideal; this, however, is not possible when
we use the “coarse-grain” abstraction approach. Unnecessarily including
the irrelevant information can make the abstract model too complex for
the model checker to deal with.

We now give a finer grain approach for abstraction to push the ab-
straction granularity beyond the state variable level. We consider not
only the state variables but also Boolean network variables. Boolean
network variables (BNVs) are the intermediate variables selectively in-
serted into the combinational logic cones of latches to partition large
logic cones so that a compact BDD representation of their transition
relations is possible. Each Boolean network variable is associated with
a small portion of the combinational circuit in its fan-in cone; similar
to state variables, each BNV and its associated area have an elementary
transition relation. The transition relation of the entire system is the
conjunction of all these elementary transition relations. The following
example shows how fine-grain abstraction works.

We use the example in Figure 3.1 to illustrate the difference between
traditional (coarse-grain) abstraction and the fine-grain abstraction ap-
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Figure 3.1. Illustration of fine-grain abstraction.

proach. In Figure 3.1, there are 10 gates in the fan-in combinational
logic cones of the two latches. Variables y1 and y2 are the next-state
variables, and x1, ..., x5 are the present-state variables. Let ∆y1

be the
output function of Gate 9 in terms of the present-state variables and
inputs; similarly, let ∆y2

be the output function of Gate 10. ∆y1
and

∆y2
are also called the transition functions of Latch 1 and Latch 2, re-

spectively. According to the definition given above, the bit transition
relation of Latch 1 is,

T1 = y1 ↔ ∆y1
(x1, x2, x3, x4) .

Boolean network variables are a selective set of internal nodes in the
fan-in combinational cones of state variables. To illustrate this, we insert
4 BNVs, t1, t2, t3, and t4, into this circuit. We use δti to represent the out-
put function of the signal ti, but in terms of both present-state variables
and BNVs (as opposed to present-state variables only). Similarly, we
define for each BNV ti the elementary transition relation Tti = ti ↔ δti .
For the example in Figure 3.1, these new functions and transition rela-
tions are defined as follows:

δt1 = x1 ⊕ x2 Tt1 = t1 ↔ δt1

δt2 = ¬(x2 ∧ x3) ⊕ t1 Tt2 = t2 ↔ δt2

δt3 = ¬(x3 ∨ x5) ∧ x4 Tt3 = t3 ↔ δt3

δt4 = x2 ⊕ t3 Tt4 = t4 ↔ δt4

δy1
= ¬(x1 ∧ t2) ∨ ¬(x4 ∧ t1) Ty1

= y1 ↔ δy1

δy2
= ¬(x4 ∧ t1) ∧ t4 Ty2

= y2 ↔ δy2
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Note that the state variable y1 is now associated with δy1
instead of

∆y1
. The bit transition relation of Latch 1 is a conjunction of three

elementary transition relations

T1 = Ty1
∧ Tt1 ∧ Tt2 .

In coarse-grain abstraction methods where only state variables are
treated as atoms, when Latch 1 is included in the abstract model, all
the six fan-in gates (Gate 1, 2, 4, 5, 7, and 9) are also included; that is,

T̂ = Ty1
∧Tt1 ∧Tt2 . In the new fine-grain abstraction approach, BNVs as

well as latches are treated as atoms, which means that when Latch 1 is
in the abstraction, only those gates covered by the elementary transition
relation Ty1

are included. This is indicated in the figure by the cut φ1,
which contains Gate 5, 7, and 9.

In the successive refinements, only the clusters of logic gates that are
relevant to a set of refinement variables are added. In the next chapter,
an algorithm to identify which variables should be included in the refine-
ment set will be presented. Meanwhile, assume that the current abstract
model is not sufficient, and t1 is added during refinement. The refined
model is indicated by the new cut φ2 in the figure, which corresponds to
T̂ = Ty1

∧ Tt1 . The abstract model now contains Latch 1 and Gates 2,
5, 7, and 9. Continuing this process, we will add y2, t4, . . . until a proof
or a refutation is found.

It is possible with the new fine-grain approach that gates covered
by the transition cluster Tt2 (i.e., Gates 1 and 4) never appear in the
abstract model, if they are indeed irrelevant to the verification of a given
property. This demonstrates the advantage of fine-grain abstraction. In
a couple of real-world circuits, we have observed that over 90% of the
gates in some large fan-in cones are indeed redundant, even though the
corresponding latches are necessary.

The granularity of the new abstraction approach depends on the size
of the elementary transition relations, as well as the algorithm used
to perform the partition. The partitioning algorithm is important be-
cause it affects the quality of the BNVs. In our own investigation, the
frontier [RAB+95] partitioning method is applied to selectively insert
Boolean network variables. The method was initially proposed in the
context of symbolic image computation. It works as follows: First, the
elementary transition function of each gate is computed from the com-
binational inputs to the combinational outputs, in a topological order.
If the BDD size of an elementary transition function exceeds a given
threshold, a Boolean network variable is inserted. For all the gates in
the fan-outs of that gate, their elementary transition functions are com-
puted in terms of the new Boolean network variable. Each Boolean
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network variable or state variable is then associated with a BDD δtk or
δyj

for describing its transition function.
Now we formalize the definition of a fine-grain abstract model. Let

t = {t1, . . . , tn} denote the set of Boolean network variables. Assume
that each variable tk is associated with an elementary transition relation
Ttk = (tk ↔ δtk), and each state variable is associated with a fine-grain
bit transition relation Tyj

= (yj ↔ δyj
). Let J = {1, . . . , m} be a

permutation of the indexes of state variables and K = {1, . . . , n} be a
permutation of the indexes of BNVs. The concrete transition relation
can be represented as

T (x, t, y) =
∧

j∈J

Tyj
(x, w, t, yj) ∧

∧

k∈K

Ttk(x, w, t, tk) .

Let the fine-grain abstraction consists of m′ ≤ m state variables and
n′ ≤ n Boolean network variables, i.e., Ĵ = {1, . . . , m′} ⊆ J and K̂ =
{1, . . . , n′} ⊆ K. Then,

T̂ (x̂, {x̌, w}, t̂, ŷ) =
∧

j∈Ĵ

Tyj
(x̂, {x̌, w}, t̂, yj) ∧

∧

k∈K̂

Ttj (x̂, {x̌, w}, t̂, tk) .

Here x̂ = {xj |j ∈ Ĵ} is the subset of present-state variables in the

abstract model, ŷ = {yj |j ∈ Ĵ} is the subset of next-state variables,

and t̂ = {tk|k ∈ K̂} is the subset of BNVs. All the remaining (invisible)
present-state variables and BNVs (t\t̂) go into x̌. We call the variables in
x̌ pseudo-primary inputs since they are treated as inputs during symbolic
model checking. The initial predicate Î is an existential projection of
I—an abstract state is called initial if it contains a concrete initial state.

We can fine tune the actual abstraction granularity by controlling
the BDD size threshold during the frontier partitioning. In the extreme
case such that the BDD size threshold is set to 1 (i.e., a Boolean network
variable is created for every logic gate), the optimum deciding (or final)
abstraction, among all the possible final abstract models, is the one with
the fewest logic gates. In this sense, we have built a connection between
abstraction refinement and logic synthesis; abstraction refinement is an
iterative process of synthesizing a small abstract model that can prove
or refute the given property.
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3.3 Abstract Counterexamples

counterexamples found in the abstract model may not be real paths,
because some transitions that are responsible for the counterexamples
may be forbidden in the concrete model. To check whether an abstract
counterexample is real or not, we need to conduct a so-called concretiza-
tion test. Conceptually, a concretization test is reconstructing an ab-
stract execution trace in the concrete model. If the abstract trace cannot
be reconstructed, the counterexample is called spurious.

When a property fails in the abstract model, there are often many
counterexamples. We have observed, for instance, that the number of
shortest counterexamples to an invariant property is 1045 in a model
with 100 state variables. This suggests that analyzing them one-by-one
through enumeration is not a good strategy; at the same time, arbi-
trarily choosing one counterexample is also “a-needle-in-the-haystack”
approach, especially if we want to use a single counterexample to guide
the computation of refinement variables. It is desirable to capture as
many counterexamples as possible and analyzing them simultaneously.
Note that the number of counterexamples to a general LTL property
can be infinite (e.g., when the counterexamples contain cycles). Even if
one focuses on the counterexamples of the shortest length, the number
of counterexamples can still be extremely large. For safety properties,
however, we can actually capture symbolically all the counterexamples
of the shortest length.

Synchronous Onion Rings

All the shortest counterexamples can be captured by a data structure
called the Synchronous Onion Rings (SORs). The SORs build upon the
reachability onion rings, which have been used frequently in symbolic
fixpoint computation. Consider model checking the invariant property
G p: forward reachability computation from the set I of initial states will
produce a set of forward reachability onion rings {F 0, ..., Fn}, which is
the sets of new states encountered during the breadth-first search. For
the state transition graph in Part (1) of Figure 3.2, for instance, the set
of forward reachability onion rings is represented by F 0, F 1, ..., F 4. In
particular, F 1 = {3, 4, 5} is the set of states that can be reached in one
step from the initial states. Note that ¬p is first reached at the 3rd step
of the search. An analogous backward reachability analysis from the ¬p
state in the 3rd step would reach States {8, 9} at the 2nd step, {5} at the
1st step, and the initial state 2. That is the set of backward reachability
onion rings. Once the forward and backward reachable onion rings are
available, the intersection of the two sets of states at each corresponding
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step gives the synchronous onion rings,

S0 = {2}, S1 = {5}, S2 = {8, 9}, S3 = {12} .
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Figure 3.2. Ariadne’s bundle of synchronous onion rings.

The term “Ariadne’s bundle” is used to denote the subrelation TB in-
duced by considering only the transitions between a state at one step to
another state in the next step in the SORs. It comprises the bundle of all
shortest counterexamples, and no other counterexample. (There is an
interesting analogy between the abstract counterexamples and the magic
Ariadne’s thread: in the Greek mythology, Theseus needs the thread to
navigate through the Labyrinthus to kill the monster Minotaurus; in ab-
straction refinement, one needs the guidance of abstract counterexamples
to remove the “false negatives.”)

Note that the state transition graph of the Ariadne’s bundle has sig-
nificantly less states and transitions than the abstract model. In this
simple case, there are two shortest counterexamples, both of length 3.
In practice, however, the number of counterexamples in the SORs is
typically large.
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Multi-Thread Concretization Test

Once all the abstract counterexamples are captured in the SORs, we
need to check whether they are real paths in the concrete model. This,
unfortunately, cannot be accomplished by conventional simulation even
if a single abstract path is being reconstructed. This is because an
abstract path may not have a complete set of assignments to all the
input variables—one abstract transition often corresponds to multiple
concrete transitions. Therefore, the concretization test requires the use
of symbolic simulation techniques.

Various symbolic techniques have been proposed for concretization
test. In [CGJ+00], for instance, BDD based image computation was
used in the concrete model to reconstruct all the concrete paths inside
a single abstract path. In [WHL+01], the search of a concrete path
inside a single abstract path was performed by an ATPG (automatic
test pattern generation) engine. In [CGKS02, CCK+02], SAT solvers
are used to perform the reconstruction. However, one thing is common
to all these methods: concretization test deals with only a single abstract
counterexample.

We want to simultaneously concretize of all the shortest counterex-
amples in the SORs. This multi-thread concretization test can also be
formulated into a Boolean satisfiability problem, which can be solved by
a SAT solver. Given a set of rings in the SORs {S0, · · · , SL}, the SAT
problem can be defined as Ψ = ΨA ∧ ΨS , where

ΨA = I(V 0) ∧
∧

0≤i<L

T (V i, U i, V i+1) ,

ΨS =
∧

0≤i≤L

Si(V i) .

Formula ΨA represents the unrolling of the concrete transition relation
for exactly L time frames, and ΨS represents the constraints coming
from the abstract SORs. V i and U i are the set of state variables and
the set of combinational variables at the i-th time frame, respectively.
The predicate Si(V i) represents that states at the i-th time frame are
in the i-th ring of the SORs. We give a graphic illustration of the multi-
thread concretization test in Figure 3.3.

Formula Ψ is satisfiable if and only if there exists a concrete coun-
terexample inside the abstract SORs. When Ψ is satisfiable, the set of
assignments returned by the SAT solver represents a concrete path from
an initial state to a ¬p state.

In symbolic model checking, Si initially is a BDD representing the
set of states in the i-th ring of the SORs. To translate it into the CNF
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Figure 3.3. Multi-thread concretization test.

format, we need an encoding procedure that takes a BDD as input and
produces a conjunction set of clauses. The translation, as illustrated in
Figure 3.4, goes as follows: First, we translate the BDD into a combina-
tional logic circuit by replacing every internal BDD node with a 2-to-1
multiplexer. Since each multiplexer consists of 3 AND gates, this trans-
lation is linear. Once the AND-INVERTER graph is built, encoding it
into a CNF formula is straightforward. As we have explained before, the
transition relation of each AND gate can be encoded as three clauses, if
we are allowed to add auxiliary variables.

However, this linear encoding scheme requires the addition of a large
number of auxiliary variables, one for each the logic gate. An alterna-
tive approach is to enumerate all the minterms (or cubes) of the com-
plemented function ¬Si, and convert the minterms (or cubes) into CNF
clauses. A minterm (or cube) of a Boolean function corresponds to a
root-to-leaf path in its BDD representation. This encoding scheme has
been used in [CNQ03]. Although no auxiliary variable is required in this
approach, the number of root-to-leaf paths in a BDD can be exponential
with respect to the number of BDD nodes.
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Figure 3.4. Translating a BDD into a combinational circuit.

3.4 Further Discussion

Since the introduction of the general abstraction refinement frame-
work by Kurshan [Kur94], significant progresses have been made on the
refinement algorithms and the concretization test, through the incor-
poration of latest development of BDD and SAT algorithms [LPJ+96,
JMH00, CGJ+00, CGKS02, CCK+02, GGYA03]. However, in most of
these previous works, the abstraction granularity remains at the state
variable level. The fine-grain abstraction approach described in this
chapter is unique in the sense that it treats both state variables and
Boolean network variables as abstraction atoms. With fine-grain ab-
straction, the refinement strategies must search in a two-dimensional
space. Refinement in the sequential direction is comprised of the addi-
tion of new state variables only, which is typical of much of the pioneering
prior art of Clarke et al. [CGJ+00, CGKS02]. Refinement in the Boolean
direction is comprised of the addition of Boolean network variables only.
Boolean network variables belong to a special type of cut-set variables
in the circuit network.

In [WHL+01], Wang et al. proposed a min-cut model in abstraction re-
finement to replace the conventional coarse-grain abstract model. They
first defined a free-cut set of signal as those at the boundary of the tran-
sitive fan-in and transitive fan-out of the visible state variables. They
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then computed a min-cut set of signals between the combinational in-
puts and the free-cut signals; the logic gates above this min-cut were
included in the reduced abstract model. Since the transition relation is
expressed in terms of a smaller set of signals, it often has a smaller BDD
representation. However, the abstraction granularity of this method is
still at the state variable level. In particular, logic gates above the free-
cut are always in the abstract model, regardless of whether or not they
are necessary for verification. In [CCK+02], Chauhan et al. adopted a
similar approach to simplify the coarse-grain model. In their method,
the further reduction of abstract model was achieved by pre-quantifying
pseudo-primary inputs dynamically inside each image computation step.
This method shares the same drawback as that of [WHL+01].

In [GKMH+03], Glusman et al. computed a min-cut set of signals be-
tween the boundary of the current abstract model and the primary in-
puts, and included logic gates above this cut in the abstract model. Since
an arbitrary subset of combinational logic gates in the fan-in cone of a
state variable could be added, the abstraction granularity was at the gate
level. However, there are significant differences between their method
and the fine-grain abstraction. First, fine-grain abstraction aims at di-
rectly reducing the size of the transition relation by avoiding adding irrel-
evant elementary transition relations, while the method in [GKMH+03]
aims at reducing the number of cut-set variables. Second, with fine-grain
abstraction, we can differentiate the two refinement directions and can
control the direction at each refinement iteration, while the method in
[GKMH+03] does not differentiate the two directions. Third, in their
method, logic gates added during refinement cannot be removed from
the abstract model afterward – even if later they are proved to be re-
dundant. Under fine-grain abstraction, the removal of previously added
variables and intermediate logic gates is possible.

In [ZPHS05], Zhang et al. proposed a technique called “dynamic ab-
straction,” which maintains at different time steps separate visible vari-
able subsets. Their approach can be viewed as a finer control of abstrac-
tion granularity in the time axis, since they are using different abstract
models for at different time frames. However, at each time frame, their
abstraction atoms are still latches. Therefore, this approach is entirely
orthogonal to our fine-grain abstraction.

Applying BDD constraints to help solving the series of SAT prob-
lems in bounded model checking has been studied by Gupta et al. in
[GGW+03a]. In their work, the BDD constraints were derived from the
forward and backward reachability onion rings. They used such con-
straints primarily to improve the BMC induction proof by restricting
induction to the (over-approximate) reachable state subspace (instead
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of the entire universe). In our multi-thread concretization test, we have
used the same method as that of [GGW+03a] for translating BDDs into
CNF clauses. Another encoding scheme (from BDDs to CNF clauses)
was studied by Cabodi et al. in [CNQ03]. The idea is to complete the
given BDD and enumerate all the minterms (or cubes) of the BDD and
convert each into a CNF clause. The same authors also proposed a hy-
brid encoding scheme that combines the aforementioned two encoding
schemes and tries to make a trade-off between them.





Chapter 4

REFINEMENT

If the abstract counterexamples are all spurious, we need to refine the
current abstraction by identifying a subset of currently invisible variables
and restoring their bit transition relations. To improve abstraction ef-
ficiency, it is crucial to identify those variables that have larger impact
on removing false negatives. In most of the previous counterexample
driven refinement methods [CGJ+00, WHL+01, CGKS02, CCK+02], re-
finement variable selection was guided by a single spurious counterexam-
ple. This is “a-needle-in-the-haystack” approach, since in practice the
number of counterexamples tends to be extremely large.

In this chapter, we propose a refinement algorithm driven by all the
shortest counterexamples in the synchronous onion rings. The new al-
gorithm, called Grab, does not try to kill the entire bundle of spurious
counterexamples in one shot. Instead, it identifies critical variables that
are in the local support of the current abstraction by viewing refinement
as a two-player reachability game in the abstract model. Due to the
global guidance provided by the SORs and the quality and scalability
of the game-based variable selection computation, Grab has demon-
strated significantly performance advantages over previous refinement
algorithms—it often produces a smaller final abstract model that can
prove or refute the same property.

At the end of each refinement generation, i.e., a set of refinement steps
that are responsible for the removal of the spurious counterexamples of
a certain length, we also apply a SAT based greedy minimization to
the refinement set in order to remove redundant variables; the result is
a minimal refinement set that is sufficient to kill the entire bundle of
abstract counterexamples.
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4.1 Generational Refinement

In this section, we will illustrate the generic process of abstraction
refinement by using the simple example in Figure 4.1. Here we consider
the concrete model A as the synchronous (parallel) composition of three
submodules: M1, M2, and M3. That is,

A = M1 ‖ M2 ‖ M3 .

Each component Mi has one state variable vi. The state variable v1 can
take four values and thus must be implemented by two binary variables;
the other two state variables (v2, v3) are binary variables. Variable v4,
which appears in the edge labels in M1, is a primary input. Assume that
the property of interest is G(v1 6= 3), i.e., State 3 in M1 is not reachable
in the concrete model A.

The right-hand side of Figure 4.1 is the state transition graph of the
concrete model. It is clear that the given property fails in the concrete
model, as shown by the bold edges, which exhibit a concrete counterex-
ample of length 4: (000, 111, 200, 211, 300).

¬v2 ∧ ¬v3

210010 101 301

201001 110 310

000 111 200 311

011 100 211 300
¬v4

v4

v4

¬v4

I ¬p
v3

¬v3

M2(v2)

0

1

0

1

M3(v3)

0

1

2

3

v2 ∧ v4

M1(v1)

¬v2 ∧ v3 ∨ v2 ∧ ¬v4

Figure 4.1. An example for abstraction refinement.

The initial abstract model is Â = M1, which preserves only the state
variable appearing in the given property, and all the other state variables
are treated as pseudo-primary inputs. There is an abstract counterex-
ample of length 3: (0 , 1 , 2 , 3 ). This counterexample is spurious
because it is not concretizable in A; in particular, no direct transition is
possible from 200 to 3 .

Although this example is simple, it demonstrates an important aspect
of the abstraction refinement process. Refinement algorithms like those
in [CGJ+00, CGKS02], since they are actuated by a single counterex-
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ample, may pick only variable v2 for refinement. However, after this
refinement, an abstract counterexample of the same length still exists—
for instance, it can be (00 , 10 , 21 , 30 ). Therefore, the refinement
set {v2} is not a sufficient set to kill the abstract counterexample (0 ,
1 , 2 , 3 ), although it can separate the set of deadend states {200}
from the set of bad states {211, 210}. (In [CGJ+00], deadend states are
a subset of concrete states inside an abstract state ŝi that are reachable
from the initial states but can not reach any concrete states in ˆsi+1; bad
states are a subset of concrete states inside ŝi that can reach some con-
crete states in ˆsi+1.) This is suggestive of the danger of placing too much
refinement emphasis on a single abstract counterexample. Of course, it
is much more of a problem when the SORs contain an extremely large
number of counterexamples. In the presence of many counterexamples,
computing the set of refinement variables based on one arbitrarily chosen
counterexample can be ineffective.

We now illustrate the SOR based generational refinement framework
using the above example. In building the SORs, we have pruned away
self loops and back edges to focus on the shortest counterexamples in
the current abstract model. When Â = M1, the SORs contain just
the four states of M1, which are connected by the four forward edges.
The initial SORs are shown in Part (a) of Figure 4.2. Since the first
generation of shortest counterexamples are of length 3, the refinement
process starts by dealing with the SORs of length 3 until all paths in
them are killed. Note that in M1 only edges from State 2 to States 1,
2, and 3 are labeled. We will discuss below in Section 4.2 that these
edge labels cause the variable selection routine to pick v2 for the first
refinement iteration, and as a result, the refined model is Â = M1 ‖ M2.

However, Â is not constructed in the naive way of building the transition
relation for M1 and M2 again and conjoining them together, but by a
more efficient two-step process.

First, we split the states of M1 according to the labels on their out-
going edges, as shown in Part (b) of Figure 4.2. Because of the label
v2∧v4, the last abstract edge (2 ,3 ) is split into two rather than four
refined edges. State 20 is now backward unreachable from ¬p, so the
two incoming edges, (10 ,20 ) and (11 ,20 ), are removed. The outgoing
edges from the state 01 are removed because the state 01 is not an ini-
tial state. States like 20 are called the deadend states. The concept of
deadend states is critically involved in the refinement variable selection
algorithm, as discussed below in Section 4.2. Note that all splits that
make the SORs change from the one in Part (a) to the one in Part (b)
are done before M2 is brought in. The second step is to actually take
the composition of M2 with the remaining edges of the SORs. This kills
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(d) split states again
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Figure 4.2. The generational refinement process.
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the edges (11 ,21 ) and (21 ,31 ), and leads to the reduced SORs in
Part (c).

After the above refinement step, the number of length-3 spurious coun-
terexamples is decreased, but they have not been removed completely.
Now v3 is selected as the next refinement variable. We then proceed to
again take the first part of the two-step refinement process, as illustrated
in Part (d). The result is a disconnection of I from ¬p, because there is
no outgoing edge from the sole remaining initial state. At this point, it
has been proved that no concrete counterexample of length 3 exists, so
this generation of refinements is complete.

During the two refinements in the first generation, i.e., adding v2 and
adding v3, the SORs are updated incrementally since each ring of the
SORs is a subset of the corresponding ring of the previous SORs. The
BDD don’t cares associated with this incremental process lend critical
efficiency to the SORs refinement process.

Next, we build from scratch the new SORs, which are of length 4
as is shown in Part (e). This final set of SORs contains a single coun-
terexample that is concretizable in A, as discussed above in reference to
Figure 4.1. Therefore, the given property fails.

Figure 4.3. The effect of generational refinement, with refinement minimization.

To summarize, the proposed generational refinement algorithm does
not try to remove all the spurious abstract counterexamples in one shot.
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Instead, it identifies local variables that are critical to refinement by
exploiting the global guidance provided by the synchronous onion rings.
It may take a set of refinement steps, called a generation of refinements,
to remove all the abstract counterexamples of a given length.

The effect of generational refinement is illustrated in Figure 4.3. The
data are obtained from a real-world example in which the given invari-
ant property holds in the concrete model. The upper curve represents
the number of state variables in the abstract model at the different re-
finement steps, and the lower curve represents the length of the abstract
counterexample (ACE). Each flat segment of the lower curve corresponds
to a generation of refinement steps. A generation consists of a number
of consecutive refinement steps, all with SORs of the same length. Note
that within the same generation, the size of the abstract model keeps
increasing; every time the length of the shortest abstract counterexam-
ple changes (between generations), the number of abstract variables may
decrease, due to the greedy refinement minimization procedure that tries
to keep the abstraction as small as possible by removing redundant vari-
ables. Our experience shows that this greedy minimization is critical in
achieving a high abstraction efficiency.

The GRAB Algorithm

We now give the pseudo code of our abstraction refinement algorithm
in Figure 4.4. It is called the algorithm Grab, for Generational Refine-
ment of Ariadne’s Bundle. Grab accepts as inputs a concrete model A
and a property Φ of the form Φ = G p.

The initial abstract model Â contains only those state variables that
appear in the local support of the property. In Figure 4.1, for example,
the initial abstract model contains only variable v1, because the property
is G(v1 6= 3). Let {S0, S1, . . . , SL} be the length-L synchronized onion
rings, where S0 is a subset of initial states, SL is a subset of states
satisfying ¬p, and Sj is a set of states on the shortest abstract paths
from S0 to SL.

The outer loop is over the length, L, of the current generation of
SORs. With the abstract model being gradually refined, L is guaranteed
to grow monotonically in the outer loop. The action starts in Line 3,
where BDD based forward reachability analysis is used to compute the
forward onion rings from the initial states to ¬p states. If ¬p cannot
be reached in Â, it cannot be reached in A either. In this case of early
termination, Grab returns true. Otherwise, the first set of SORs are
computed.

A SAT based concretization test is then performed in the concrete
model. Here, it simultaneously tries to concretize all the abstract coun-



Refinement 65

Grab(A,Φ) {

1 Â = initialAbstraction(A,Φ);
2 while (true) { //Loop over SORs with different length

3 {Sl} = computeSORs(Â,Φ);
4 if ( {Sl} is empty )
5 return true;
6 CCE = MultiThreadConcretization(A, {Sl});
7 if (CCE not empty)
8 return (false, CCE);
9 {Sl

R} = {Sl};
10 while (true) { //Loop at the current length

11 Â = refineAbstraction(Â, {Sl
R});

12 {Sl
R} = reduceSORs(Â, {Sl

R});
13 if ({Sl

R} is empty)
14 break ;
15 }

16 Â = refinementMinimization(Â, {Sl});
} }

refineAbstraction(Â, {Sl}) {
17 wS = { }, wE = ŵ;
18 while (|wS | < threshold) {

19 v = pickBestVar(Â, {Sl});
20 wS = wS ∪ {v}, wE = wE \ {v};
21 }

22 return computeAbstraction(Â, wS) ;
}

Figure 4.4. The GRAB abstraction refinement algorithm.

terexamples in the SORs by one satisfiability instance. If any of these
counterexamples can be concretized, the property Φ is proved to be false,
and the concrete counterexample (CCE) is returned. If no concrete coun-
terexample exists, we start the inner loop over the refinements in this
generation.

In the inner loop, although the number of abstract counterexamples
in the SORs decreases monotonically, the length of the SORs does not
change. Since all the abstract counterexamples have been proved spu-
rious at the very beginning, no concretization test is needed inside this
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loop. We use {Sl
R} to represent the set of “reduced SORs.” Each time

the abstract model is refined, the synchronous onion rings are reduced
(Line 12) until all the spurious counterexamples disappear. Typically a
few passes through the inner loop produce the break-out, which implies
that the set of refinement variables added in the current generation con-
stitutes a sufficient set—a set of refinement variables, when added, kill
the entire length-L SORs.

Termination of the Grab procedure is guaranteed by the finiteness
of the model. The game based heuristic for picking refinement variables
will be presented in the next section, followed by a SAT based greedy
minimization of the refinement set.

Prior art in abstraction refinement algorithms [CGJ+00, CGKS02,
CCK+02] can also be described with a similar framework of pseudo
code, however, these algorithms are all based on the analysis of a single
counterexample. As we have pointed out earlier, even an optimal re-
finement algorithm based on a single counterexample cannot necessarily
guarantee a good overall refinement. We will compare Grab with these
alternative methods later in the experimental results section.
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4.2 Refinement Variable Selection

We consider the refinement variable selection problem as a two-player
reachability game in the abstract model. Given the abstract model Â
and a target predicate ¬p, the model checking of G p with respect to
a model Â can be viewed as a two-player concurrent reachability game
[EJ91, JRS02]. The two players of this game are the hostile environ-
ment and the abstract system; they play by controlling the values of the
pseudo-primary inputs of the abstract model. In Â, the pseudo-primary
inputs, denoted by x̌, are the set of invisible variables. We need to
partition the set x̌ into two subsets, x̌ = wE ∪ wS , among which wE

is controlled by the environment (player), and wS is controlled by the
system (player).

The positions of the game correspond to the states of the abstract
model. Let X̂, a valuation of the set of present-state variables x̂, be a po-
sition (similarly, let capital values of other vector names stand for their

valuations). From one position X̂ , the environment (player) chooses
values for the variables in wE and simultaneously the system (player)

chooses values for variables in wS . The new position is the unique Ŷ
determined by the abstract transition relation T̂ (X̂, X̌, Ŷ ). Note that

we are assuming that the model 〈T̂ , Î〉 is a closed system. This is not a
problem at all since any open system can be transformed into a closed
system by treating inputs as free state variables. The goal of the envi-
ronment (player) is forcing the abstract model to go through spurious
paths and reach a state labeled ¬p in spite of the opposition of the sys-
tem (player). A (memoryless) strategy for the environment is a function

that maps each state of Â to one valuation of the variables in wE . Like-
wise, a strategy for the system is a function that maps each state of Â
to one valuation of the variables in wS .

To relate this reachability game to our refinement problem, we con-
sider the environment the hostile player (and we want the system to
win). Next, we define the winning positions for the hostile environment.

Definition 4.1 A position X̂ in Â is a winning position for the hostile
environment if there exists an environment strategy such that, for all
system strategies, ¬p is eventually satisfied.

The concept of winning position is closely related to the refinement prob-
lem. Before the abstract model is refined, there are spurious paths from
the initial states to states labeled ¬p. This corresponds to the partition
(wE = x̌, wS = { })—the hostile environment controls all the invisible

variables. Assume that Â is deterministic, then the environment always
has a winning strategy because it can force any transition by controlling
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all the variables in x̌. In refinement, our task is to remove some variables
from wE and put them into wS . We wants to identify a small subset
of variables that, once being removed from wE , will significantly reduce
the number of winning positions for the hostile environment.

Therefore, the refinement problem can be stated as follows: among
all the possible partitions of x̌ = wE ∪wS , choose the one that gives the
environment the least number of winning positions. Once the partition
is identified, variables in wS together with their elementary transition
relations are added into the abstract model. In this two-player reacha-
bility game, the partition that favors the hostile environment the least
also favors the abstract system most.

Given an input variable partition x̌ = {wE , wS} and the spurious
counterexamples in the SORs {S0, S1, ..., Sj , ..., SL}, the environment’s
winning positions inside Sj are computed as follows:

∃wE . ∀wS . ∃ŷ. [Sj(x̂) ∧ T̂ (x̂, x̌, ŷ) ∧ Sj+1(ŷ)] ,

which is the subset of Sj states from which the environment can force
the transition to Sj+1 despite the opposition of the system.

The normalized number of winning positions for the hostile environ-
ment inside Sj is computed as follows:

N
{wE ,wS}
j =

|∃wE .∀wS .∃ŷ.[Sj(x̂) ∧ T̂ (x̂, x̌, ŷ) ∧ Sj+1(ŷ)]|

|Sj(x̂)|
.

Given a set S, we use |S| to denote the cardinality of the set. The nor-
malized number of winning positions, denoted by Nj , is a good indicator
of the impact of refining with respect to the variables in wS . For the
purpose of refinement, we prefer the partition that gives Nj the lowest
value.

We use universal quantification (∀) is mimic the impact of parallel
composition on the abstract model, since both reduce the number of
enabled edges. It can be shown that when an edge label has an essential
variable—a variable which factors out of its label (all the edges in Fig-
ure 4.5 except the edge from state 5 to state 7), composing that variable
with the abstract model splits the abstract edge into two edges (instead
of four). Furthermore, among the two new tail states created by the
splits, one has no fan-out—that is, it is a deadend split.

The abstract model in Figure 4.5 has S0 = {1, 2, 5, 6}, S1 = {3, 4},
and x̌ = {g, f}. When the partition of x̌ is such that wE = {g} and
wS = {f}, the set of winning positions for the hostile environment is
{1, 2}. State 1 is a winning position because when the hostile environ-
ment makes the assignment g = 1, the system player will be forced to a
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Figure 4.5. Illustration of the winning positions.

¬p state (either 3 or 4) no matter what value it assigns to f . A similar
argument applies to State 2 as well. According to the definition of Nj ,

N
{{g,f},{}}
0 = 1.0,

N
{{g},{f}}
0 = 0.5,

N
{{f},{g}}
0 = 0.25,

N
{{},{g,f}}
0 = 0.0.

It indicates that g is a better candidate than f for refinement, because
putting g alone in wS gives the hostile environment one winning position,
while putting f alone in wS gives it two winning positions.

A further explanation of the heuristic via state splitting is shown by
the two examples in Figure 4.6 and Figure 4.7. In the first example, g
is an essential variable to the label on the spurious transition 2 → 4,
and f is an irrelevant variable. A variable v is essential to a function
f(v) if and only if either f(0) = 0 or f(1) = 0. By intuition, one would
prefer refining with g, because f is irrelevant. This is the right choice
because it will split State 2 into two new states, (¬g,2) and (g,2), only
one of which has an out-going edge to state 4. Therefore, it is possible
to remove this spurious edge—in the case when State (¬g,2) becomes
unreachable after refinement. Refining with f , however, does not have
such an impact since both of the two new states, (¬f ,2) and (f ,2), will
have out-going edge to State 4. This is consistent with the game based
analysis—State 2 is a winning position for the hostile environment if it
controls g.
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Figure 4.6. An example for state splitting: g is a better refinement candidate.

f ,1

1 3

4

¬f ∧ g

f ∧ g

Refine with variable g

3¬f

4

f
g,1

¬g,1

Refine with variable f

4

3
g

g

¬f ,1

Figure 4.7. Another example for state splitting: g is still a better refinement candi-
date.

In the second example (Figure 4.7), it is no longer straightforward to
figure out that g is a better refinement candidate than f , because both g
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and f appear in the edge labels. However, the game based analysis tells
us that State 1 is a winning position for the hostile environment if it
controls g. Refining with g produces a similar deadend split—only one
of the two new states has an out-going edge to the next ring. Therefore,
it is possible to remove this spurious edge—in the case that State (g,1)
becomes unreachable after refinement. Refining with f , however, leaves
the spurious edges intact, since both of the two new states have outgoing
edges to the next ring. This is also consistent with the game based
analysis—There is no winning position for the hostile environment if the
abstract system controls g.

To summarize, our refinement algorithm selects a small subset of in-
visible variables into wS such that the partition {wE , wS} minimizes the

∑

0≤j≤l

N
{wE ,wS}
j , ∀{wE , wS} .

This is greedily approximated inside refineAbstraction: the one vari-
able that minimizes the above number is repeatedly picked (Line 19 in
Figure 4.4).

The computation of winning positions is similar to BDD based pre-
image computation. A normal pre-image would have ∃wE . ∃wS . ∃ŷ.
instead of ∃wE . ∀wS . ∃ŷ. . Since Sj(x̂) does not have any quantified
variable in its support, we can pull it out of the quantification operators.
Furthermore, the following common intermediate result

∃ŷ.[T̂ (x̂, x̌, ŷ) ∧ Sj+1(ŷ)]

can be shared among various partitions of x̌. Combining these simpli-
fications with the conventional early quantification techniques, we can
make the computation of Nj very efficient. Another thing we would like
to point out is that wE ∪ wS contains only invisible variables that are
in the local support of the current abstract model, not necessarily the
entire set of invisible variables.

The refinement method in [GKMH+03] also used more than one coun-
terexample. It was based on the classification of invisible variables into
strong 0/1 signals and conditional 0/1 signals. A strong 0/1 signal was
defined as in all counterexamples, the value of the signal at the given
step of the trace is always 0 or always 1, respectively. In other words,
only when a variable is essential with respect to the labels of all the ab-
stract edges from Sj to Sj+1, will it be classified as a strong 0/1 signal.
Otherwise, it will be classified as a conditional 0/1 signal. In practice,
however, strong 0/1 signals as defined in [GKMH+03] are very rare cases.
In fact, both f and g in Figure 4.5 are not strong 0/1 signals; according
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to [GKMH+03], both would be classified as conditional 0/1 signals, and
therefore are assigned the same weight in refinement variable selection.
In contrast, Grab can tell that g is actually a better refinement can-
didate than f . In general, Grab is often more accurate in identifying
important refinement variables.
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4.3 Keep the Refinement Set Small

In fine-grain abstraction, there are two types of elementary transi-
tion relations: one is associated with state variables, while the other is
associated with Boolean network variables. The addition of these vari-
ables to the abstract model indicates two different directions for the
refinement. In the sequential direction, we only add state variables (or
latches), which results in a potentially larger state space in the refined
model. In the Boolean direction, we only more logic gates in the fan-in
cones of the visible state variables, which means the state space will stay
the same but some transitions will be removed. Our experience shows
that if one makes no distinction between these two types of variables,
the final abstract model may contain many redundant state variables.
This suggests that the refinement procedure needs some guidance on the
proper direction.

Choosing the Refinement Direction

At every refinement step, the proper refinement direction needs to
be predicted. If going in the Boolean direction (i.e., without adding
any state variable) can remove the spurious counterexamples, then the
Boolean direction should be chosen to avoid a potentially larger state
space. A satisfiability check similar to concretization test can be used
to predict the refinement direction. We can formulate the SAT problem
as a constrained BMC instance such that it is satisfiable if and only if
the entire fan-in cones of the visible state variables makes the instance
unsatisfiable. This SAT problem differs from multi-thread concretization
test in that an extended abstract model, instead of the concrete model,
is unrolled exactly L time frames.

Definition 4.2 Given a fine-grain abstract model 〈T̂ , Î〉, the extended

abstract model 〈T̂ǫ, Î〉 is defined as the one that contains all the visible
state variables of the fine-grain model and the complete fan-in logic cones
of these state variables.

Refer to Figure 3.1, when the current (fine-grain) abstract model con-
tains Latch 1 and Gate 5, 7, and 9, the extended abstract model contains
Latch 1, and Gate 1, 2, 4, 5, 7, and 9.

Let T̂ǫ be the transition relation of the extended abstract model; then,
the refinement direction can be decided by solving the SAT problem of
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Ψǫ = ΨE ∧ ΨS , defined as follows:

ΨE = I0(X
0)

∧

0≤i<L

T̂ǫ(X
i, W i, Xi+1) ,

ΨS =
∧

0≤i≤L

Si(V i) .

Formula ΨE enables only paths of length L that are allowed by the
extended abstract model, and ΨS enables only paths embedded in the
abstract SORs. If Ψǫ is unsatisfiable, it means that the abstract coun-
terexample in the SORs do not exist in the extended abstract model.
In other words, it is possible to kill all the length-L counterexamples by
adding some logic gates that are in the fan-in cones of the visible state
variables; in this case, we opt for the Boolean direction. On the other
hand, if Ψǫ is satisfiable, it means that even adding all the logic gates
in the Boolean direction cannot kill the spurious counterexamples. In
this latter case, more state variables need to be added by going in the
sequential direction.

Minimizing the Refinement Set

Once the entire set of spurious counterexamples in the SORs are gone,
all the newly added variables forms a sufficient refinement set—that
is, they are enough to remove all the length L spurious counterexam-
ples. However, this refinement set may not be minimal. In previous
work [WHL+01, CCK+02], a trial-and-error based greedy minimization
has been used to remove redundant variables from the refinement set.
This kind of greedy minimization can also be applied here in Grab.
With fine-grain abstraction, however, the minimization must be applied
in both refinement directions, with respect to the entire SORs instead
of a single counterexample.

For the spurious counterexamples of a certain length, refinement is
performed first in the sequential direction. As soon as a sufficient set
of state variables is added, it is minimized with respect to the entire
bundle of counterexamples before refinement shifts to the Boolean di-
rection. When a set of state variables is being minimized, the extended
abstraction model induced by these state variables is unrolled to form
the SAT formula Ψǫ (referred to the previous section). We go through
all the state variables of the refinement set, one at a time, to check if any
of them is redundant. This is done by temporarily removing a state vari-
able from the abstract model and check whether Φǫ is still unsatisfiable.
Every time a state variable is removed from the refinement set, all the
Boolean network variables that are relevant only to this state variable
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are also pruned away. If removing a state variable does not cause any
spurious counterexample to reappear, then the variable is redundant and
will be dropped permanently. However, if after removing a variable, the
new formula Ψǫ becomes satisfiable, we need to add the variable back
and proceed to the next variable.

Note that a sufficient set of state variables only means that the ab-
stract counterexamples do not appear in the extended abstract model
(T̂ǫ), but may still exist in the fine-grain abstract model (T̂ ). After the
greedy minimization in the sequential direction, we will stay in the cur-
rent refinement generation and switch to the Boolean direction. After
refinement shifts to the Boolean direction, only Boolean network vari-
ables will be added until the same set of SORs is removed again. At this
point, the set of newly added Boolean network variables is also a suffi-
cient set and will be greedily minimized. The minimization procedure for
BNVs is similar to that for state variables, with the only difference being
that now we are using the fine-grain abstract model (with T̂ instead of

T̂ǫ).
We define the greedy refinement procedure more formally as follows:

Definition 4.3 Given a sufficient set of refinement variables and the
SORs, the refinement minimization problem can be defined as finding
the minimal subset of refinement variables that can kill the spurious
counterexamples.

Our minimization uses a SAT solver and the satisfiability checks are
similar to the multi-thread concretization test. BDDs are translated
into CNF formulae, as described in the previous chapter, to constrain
the SAT problem. In concretization test, the bounded model is the
unrolling of the concrete model, and it captures all the length-L paths
allowed by the concrete model. In refinement minimization, the bounded
model is the unrolling of an abstract model (extended abstract model for
minimizing state variables, and fine-grain abstract model for minimizing
Boolean network variables. Since the satisfiability checks are conducted
in the abstract models, which can be arbitrarily smaller than the concrete
model, these SAT problems are usually much easier to solve.
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4.4 Apply Sequential Don’t Cares

Previous work in abstraction refinement often divides the set of vari-
ables (state variables and BNVs) of the concrete model into two parts:
a set of visible variables and a set of invisible variables. Model check-
ing is applied to the abstract model that contains only the elementary
transition relations of visible variables. The elementary transition rela-
tions of invisible variables, on the other hand, are completely ignored.
Since their transition constraints are removed, the invisible variables are
treated as inputs during model checking—they can take arbitrary val-
ues at all times. This explains why counterexamples may exist in an
abstract model but not in the concrete model. The valuations of some
of these inputs that are responsible for triggering these counterexamples
may not be allowed in the concrete system.

Remaining SubmodulesAbstract Model

ψ

Figure 4.8. Sequential Don’t Cares from remaining submodules.

In this section, we show that with some additional analysis of the
invisible part of the system, we can further constrain the valuations of
these invisible variables. As illustrated in Figure 4.8, the invisible part
of the system is further decomposed into a series of submodules, each
of which contains a subset of the invisible latches. We then perform an
over-approximate reachability analysis of the set of submodules. Ap-
proximate reachable states of the invisible part can be computed by
first analyzing each submodule in isolation, assuming that the other
submodules are in any states that have already been estimated to be
reachable, and then propagating the result to other submodules to im-
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prove the reachability analysis on them. If there are circular connections,
the reachability analysis will be iterated Machine-By-Machine (MBM)
[CHM+96a, MKSS99] until a fixpoint is reached.

The set of approximate reachable states of the invisible part is an
upper bound on the set of exact reachable states. If certain valuations of
the invisible variables are not even in the set of approximate reachable
states, they will never appear in the original system. Therefore, this
set can be used to constrain the behaviors of the invisible variables, or
pseudo-primary inputs, of the abstract model. Conceptually, constraints
can be added by conjoining the set of approximate reachable states with
the transition relation of the abstract model. During symbolic model
checking of the abstract model, certain valuations of pseudo-primary
input will be disabled.

In the current implementation, we apply the machine decomposition
algorithm as suggested by [CHM+96b] to the entire model, and then use
the LMBM [MKSS99] approximate state space traversal algorithm to
compute the approximate reachable states. We compute this set of ap-
proximate reachable states only once before the abstraction refinement
loop starts. Inside the abstraction refinement loop, we use the set of
approximate reachable states at every iteration to constrain the forward
reachability analysis of the abstract models. Specifically, the BDD op-
eration constrain [CM90] is used to remove spurious transitions from T̂ ,
by using the approximate reachable states as the care set. This often re-
sults in a smaller BDD representation than conjoining the care set with
T̂ .

Constraints on the behavior of the abstract model due to the neighbor-
ing submachines prevent some spurious abstract counterexamples from
occurring, possibly leading to the decision of a property earlier in the
refinement cycle. A more systematic integration of machine decompo-
sition and approximate reachability analysis into the abstraction refine-
ment paradigm is possible. The result will be a multi-way partition
refinement process. Partitioning of the model into submachines can be
done so that the abstract model is one of the many submachines. In
this new context, refinement will be considered as merging the abstract
model with some other submachines. We leave this as an interesting
future work.
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4.5 Implementation and Experiments

The Grab algorithm and two competing refinement algorithms have
been implemented in VIS-2.0 [B+96, VIS]. In the implementation, CUDD
was used for BDD related computations and Chaff [MMZ+01] was used
as the back-end SAT solver. Our experiments were conducted on 26
hardware verification test cases, coming from both industry and the VIS
verification benchmarks [VVB]. The D-designs were kindly provided by
the authors of [CCK+02]. All the experiments in this section were run
under Linux on an IBM IntelliStation with a 1.7 GHz Intel Pentium 4
CPU and 2 GB of RAM.

Comparisons of Refinement Algorithms

We first compare two variants of the Grab algorithm against the de-
fault invariant checking algorithm in VIS (CI), Bounded Model Check-
ing (BMC), the SepSet algorithm [CGKS02], a variant of SepSet called
SepSet+, and the conflict analysis algorithm of [CCK+02]. The results
are presented in Table 4.1. The CI experiments consist of forward reach-
ability analysis with early termination. For BMC, only the times for fail-
ing properties are reported. (BMC in VIS checks for inductive invariants,
but none of these invariant properties can be proved by induction.) The
variant of Grab denoted by Grab– does not perform refinement mini-
mization. The variant SepSet+ differs from SepSet because it minimizes
the number of variables in the separation set, instead of the size of the
separation tree. In this section, we focus on comparing the performance
of the various refinement algorithms only. For the purpose of this con-
trolled experiment, the same coarse-grain abstraction and concretization
test are used for all abstraction and refinement methods.

Each model checking run was limited to 8 hours. Dynamic variable
reordering was enabled (with method sift) for all BDD operations. In
Table 4.1, the first column lists the names of the test cases. The sec-
ond column lists the number of binary state variables in the cone of
influence (COI) of the property. The third column shows the length of
the counterexample, or of the last ACE encountered by Grab if the
property holds (indicated by a T). CPU times are in seconds and are
all-inclusive. For each of the abstraction refinement methods compared,
ite is the number of refinement iterations; reg is the number of state
variables in the proof or refutation. If an experiment ran out of time,
the number of iterations performed up to that point and the number of
state variables in the last abstract model are given in parentheses. For
Grab we also report sat, the time spent in the SAT solver during ACE
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concretization. Note that in Grab ite can be larger than reg because
of refinement minimization.

Both variants of the Grab algorithm significantly outperform CI,
SepSet, and CA in terms of CPU time. BMC has the best times for
several failing properties, but is slow for the hardest problems and fails
for the passing properties. Note that the last two properties cannot
be proved or refuted by any method. Regarding the size of the BDDs
used through verification, Grab is much more efficient than CI; SepSet
and CA have even fewer BDD nodes, because they use the SAT solver
(instead of BDDs) to compute the refinement; unlike Grab, they do not
need backward reachability analysis. BMC uses no BDDs.

Table 4.2 compares the final abstractions of Grab and CA. In the
table, g denotes the cardinality of the final set of state variables pro-
duced by Grab, while c denotes the cardinality of the final set of state
variables produced by CA. The first three columns are repeated from
Table 4.1. Table 4.2 shows that in general there is very good correlation
between the final abstractions produced by CA and Grab. In the 22
experiments that both methods completed, Grab and CA produced the
same final abstraction in three cases. In another 10 cases, the abstrac-
tion produced by Grab is strictly better than the one of CA. Conversely,
in two cases, CA produces an abstraction that is strictly better than the
one of Grab. These differences are in part a consequence of applying
refinement minimization once every outer iteration in Grab, instead of
once for every single counterexample in CA. The other sources of differ-
ence are the order in which variables are selected for refinement (this is
what happens in D24-p2) and the order in which they are considered by
the greedy minimization procedure.

Although we exercised diligence in implementing the algorithms of
[CGKS02, CCK+02], there remain differences between the originals and
the rewritings. For instance, we used the coarse grain approach when
comparing various refinement methods. This is not the case of the orig-
inal methods of [CCK+02], and will in some cases impede the search
for a good abstraction. However, in this set of controlled experiments,
the drawback is shared by all methods we implemented, and therefore
should not have a major impact on the comparison we present.

Further evidence for the importance of global guidance, i.e., SOR
guided vs. single counterexample guided, is provided by an analysis of
abstraction efficiency for 80 medium size invariant checking problems
from the VIS Verification Benchmarks [VVB]. Each test case in this ex-
periment has a passing property and a non-trivial abstract model (it
requires at least one refinement iteration). The abstraction efficiency
is 0 (100%) if the final model contains all (no) state variables. Fig-
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ure 4.9 shows scatter plots of the abstraction efficiency of SepSet, CA,
and Grab. Note that each point below the diagonal represents a win for
Grab. SepSet+ behaves like SepSet. Scatter plots for the other pairs
of methods (not shown) show no clear winner.
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Figure 4.9. Comparing the abstraction efficiency of different refinement algorithms:
(1) Grab vs. SepSet; (2) Grab vs. CA.
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Refinement minimization, though essential for good performance of
CA, does not always improve CPU time when applied to the proposed re-
finement scheme. The time spent checking the variables for redundancy
and the additional iterations are not always offset by the reduction in
the size of the abstraction. Nonetheless, as one progresses toward larger
models, refinement minimization adds to the robustness of the method.

Experiments with Fine-Grain Abstraction

Experiments were also conducted to test the effectiveness of fine-grain
abstraction and the use of sequential Don’t Cares. In the experiments,
we set the BDD size threshold to 1000 for frontier partitioning. There-
fore, every time the BDD size of the transition function went beyond this
threshold, a Boolean network variable was inserted in the combinational
logic cones.

The first four columns of Table 4.3 repeat the statistics of the test
cases: the first column shows the names of the designs; the second and
third columns give the numbers of binary state variables and logic gates
in the cone of influence, respectively. The forth column indicates whether
the properties are true (T) or false (F). If the properties are false, the
lengths of the shortest counterexamples are given. The following six
columns compare the performance of three different implementations:
Grab uses the coarse-grain abstraction, +FineGrain uses the fine-
grain abstraction method, and +ARDC uses fine-grain abstraction plus
the use of sequential Don’t Cares. The underlying algorithm for pick-
ing refinement variables is the same game-based strategy for the three
methods. For each method, the CPU time in seconds and the number
of state variables in the final abstract model are shown.

The fine-grain abstraction approach shows a significant performance
improvement over Grab. First, it is able to finish the two largest test
cases that cannot be verified by Grab. Careful analysis of IU-p1 and
IU-p1, two problems from the instruction unit of the PicoJava micro-
processor, shows that some of their registers have extremely large fan-
in combinational logic cones. Without fine-grain abstraction, abstract
models with less than 10 registers would have been too complex for the
model checker to deal with. For the other test cases that both methods
managed to finish, +FineGrain is significantly faster than Grab. In
fact, the total CPU time required to finish the 24 remaining test cases
is 12,207 seconds for Grab, and 7,562 seconds for +FineGrain.

With the use of sequential Don’t Cares, the performance of +Fine-
Grain is further improved. +ARDC is significantly faster than both
+FineGrain and Grab on more than half of the 26 test cases, and is
also comparable for the remaining ones. The total CPU time required to
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finish all the 26 test cases is 10,724 seconds for +FineGrain and 8,130
seconds for +ARDC; this is an average of 25% speed-up.

Figure 4.10 shows the allocation of CPU time among the different
phases in abstraction refinement. The data were extracted with +ARDC;
therefore, they correspond to the last column in Table 4.3. The four fig-
ures at the left-hand side give in percentage the CPU time spent on
reachability analysis, on computing the SORs, on the multi-thread con-
cretization test, and on computing the refinement with Grab, respec-
tively. The four figures at the right-hand side give the corresponding
CPU time in seconds. In each figure, the 26 test cases are listed on the
x-axis in the same order as they appear in Table 4.3 (1 represents D24-
p1, 26 represents IU-p2). Note that other things also consume sometimes
non-negligible part of the CPU time, such as incrementally building the
BDD partitions, the creation and deletion of abstract FSM, etc.

Figure 4.10 demonstrates that the forward reachability computation
and computing refinement with Grab have consumed most of the CPU
time. The backward reachability computation for building the SORs,
on the other hand, often takes significantly less time than its forward
counter-part, even though it collects all the shortest counterexamples.
This is due to the application of forward onion rings as care sets in
the corresponding pre-image computations. Furthermore, the actual
run time of the concretization test is often small (as shown by the “in-
seconds” figure), even though it takes a significant amount in percentage
from the total CPU time (as shown by the “in-percentage” figure). On
this particular set of test cases, multi-thread concretization test is never
the performance bottleneck—on the harder problems, test cases 19-26,
its overhead becomes negligible.

The performance of the forward reachability computation is limited
by the capacity of the state-of-the-art BDD based symbolic techniques.
(However, there do exist other examples on which BMC is extremely
time-consuming; for them, the SAT multi-thread concretization test
may take a significant amount of CUP time.) As the abstract model
gets larger, BDD based computations become more and more expen-
sive. The size the abstract model also affects the overhead of the Grab
refinement algorithm—the size of the BDDs for representing the SORs
become larger as the model gets more complex. In addition, a larger
abstract model often has more invisible variables in its local support,
which means that more CPU time needs to be spent on scoring them.
In general, this trend is true for almost all abstraction refinement meth-
ods.
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4.6 Further Discussion

The Grab refinement algorithm differs from [CGJ+00, CGKS02] and
other single counterexample guided algorithms [CCK+02, BGG02] in
that: (1) it handles all shortest abstract counterexamples rather than a
single counterexample; (2) at each abstract counterexample level, a set
of abstract states, instead of just one abstract state, is used to constrain
the unrolled concrete model at each time step in concretization test; (3)
the refinement is based on the systematic analysis of all the spurious
counterexamples in the SORs with a game-based approach.

Since the Grab refinement variable selection method operates solely
on the abstract model and its local support variables, it is more scalable
than those methods that involve symbolic computations in the concrete
model. To our knowledge, the authors of [CGKS02, CGKS02] also had
some preliminary experiments with multiple counterexamples and trans-
lation of multiple counterexamples to the SAT problem for invalidation,
although the work has not been published.

The refinement algorithm in [GKMH+03] also relies on analyzing mul-
tiple counterexamples. In their approach, multiple abstract error traces
are represented by a data structure called the multi-valued counterex-
ample. However, their multi-valued counterexample do not guarantee to
capture all the shortest ones, making it incapable of catching concretiz-
able counterexamples at the earliest possible refinement step. Further-
more, their variable selection algorithm is based on the classification of
invisible variables into strong 0/1 signals and conditional 0/1 signals.
We have shown that strong 0/1 signals in particular are rare cases in
practice. As a result, their refinement is often less accurate than GRAB.

In [MH04], Mang and Ho proposed a refinement algorithm based on
controllability and cooperativeness analysis. Their cooperativeness anal-
ysis extracts a small subset of candidate input signals by applying a 3-
value simulation engine [WHL+01] to simulate the abstract counterex-
amples and then ranking all the inputs (i.e., invisible state variables
and BNVs) according to various criteria. Their controllability analy-
sis is independent of any particular counterexample; it is applied to a
subset of input signals by scoring them according to a game-theoretic
formula derived from the SORs. These two proposed analysis are then
carefully integrated together to better refine the abstract model. Their
controllability analysis is an improvement of the GRAB algorithm. Their
experimental results showed a significant improvement over both GRAB
and the RFN method in [WHL+01].

The proof-based abstraction refinement methods in [MA03, GGW+03b,
LWS03, LS04, LWS05, ZPH04, ZPHS05] also handle implicitly all the
counterexamples of a finite length. These methods differ from ours in
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that their refinement variable selection algorithms are all SAT based,
i.e., relying on the SAT solver’s capability to produce succinct unsat-
isfiability proofs. In contrast, our core refinement variable selection al-
gorithm is pure BDD based, even though we use SAT as well in pre-
dicting refinement direction and in the concretization test. We note
that a small unsatisfiability proof, i.e., the one with a small subset of
Boolean variables or clauses, does not automatically give a small refine-
ment set [LS04, GGA05].

Both proof-based and counterexample based methods have their own
advantages and disadvantages. A detailed experimental comparison of
GRAB with a proof-based refinement algorithm can be found in our
recent paper [LWS05], showing that these two kinds of methods comple-
ment each other on the various test cases. Amla et al. [ADK+05] also
published results of their experimental evaluation of the various SAT
and interpolation based abstraction methods. There is also a trend of
combining counterexample based methods and proof-based methods in
abstraction refinement [AM04].
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Table 4.1. Comparing invariant checking algorithms.

circuit COI cex CI BMC SepSet SepSet+ CA Grab– Grab
regs len time time time ite reg time ite reg time ite reg time ite reg time ite reg sat

D1-p1 101 9 45 1 48 11 38 74 9 21 98 15 26 9 18 21 9 18 21 1

D23-p1 85 5 7 1 8 2 21 17 2 21 11 1 21 29 5 23 20 5 21 1

D24-p1 147 9 >8h 27 1 0 4 1 0 4 1 0 4 1 0 4 1 0 4 1

D24-p2 147 T(9) >8h - 6982 2 8 7087 2 8 2153 34 77 1 3 8 3 3 8 1

D1-p2 101 13 1947 2 1774 27 45 962 23 38 423 28 44 27 25 28 51 37 23 1

D22-p1 140 10 58 2 615 3 133 1005 5 135 728 3 133 537 3 134 720 3 132 1

D1-p3 101 15 1157 3 623 22 36 446 19 32 636 25 39 39 23 27 56 34 25 2

D24-p5 147 T(2) >8h - 310 4 7 944 3 7 36 4 11 4 4 6 3 4 5 1

D12-p1 48 16 5 5 106 22 32 124 20 35 64 12 28 6 17 24 14 25 23 1

D2-p1 94 14 166 6 147 5 48 280 5 48 239 7 50 124 5 53 180 10 48 1

D16-p1 531 8 837 10 >8h (35) (41) >8h (36) (41) 890 3 16 282 9 14 92 9 14 5

D24-p3 147 T(3) >8h - >8h (1) (4) >8h (2) (4) 62 5 11 37 6 8 20 6 8 1

D5-p1 319 31 513 58 43 4 13 148 4 13 82 3 13 26 9 18 31 9 18 12

D24-p4 147 T(3) >8h - 545 4 7 711 4 7 70 5 11 29 6 8 43 6 8 1

D21-p1 92 26 63 3787 3790 39 88 2402 36 85 1922 28 79 1010 11 76 2817 26 66 3

B-p1 124 T(18) 7453 - 4359 14 27 4360 14 27 284 5 19 88 19 24 173 19 18 6

B-p2 124 17 12988 150 110 2 7 115 2 7 108 2 7 220 8 13 93 8 7 11

M0-p1 221 T(3) >8h - >8h (0) (3) >8h (0) (3) 1182 9 19 219 14 17 136 14 16 20

B-p3 124 T(4) 12466 - >8h (74) (80) >8h (95) (101) 167 6 42 144 35 52 223 35 43 2

D21-p2 92 28 152 10515 4146 36 85 2930 37 86 2962 30 83 2079 19 89 4635 41 70 6

B-p4 124 T(5) 7089 - 9255 49 67 10360 54 68 228 8 43 157 36 54 393 47 42 3

B-p0 124 T(17) 7467 - >8h (54) (61) >8h (39) (47) 2644 7 49 330 28 29 1256 32 24 10

rcu-p1 2453 T(2) >8h - 375 7 11 375 7 11 >8h 5 (9) 197 9 12 195 9 10 0

D4-p2 230 T(19) 765 - >8h (5) (16) >8h (10) (22) >8h (3) (171) 682 38 69 1103 69 38 6

IU-p1 4494 - >8h >8h >8h - - >8h - - >8h - - >8h - - >8h - - -

IU-p1 4494 - >8h >8h >8h - - >8h - - >8h - - >8h - - >8h - - -



86

Table 4.2. Correlation between the final proofs of Grab and CA.

circuit COI cex |g| |c| |g ∪ c| |g ∩ c| |g \ c| |c \ g| subset?

D1-p1 101 9 21 26 27 20 1 6 no

D23-p1 85 5 21 21 21 21 0 0 yes

D24-p1 147 9 4 4 4 4 0 0 yes

D24-p2 147 T(9) 8 77 77 8 0 69 strict

D1-p2 101 13 23 44 44 23 0 21 strict

D22-p1 140 10 132 133 133 132 0 1 strict

D1-p3 101 15 25 39 40 24 1 15 no

D24-p5 147 T(2) 5 11 11 5 0 6 strict

D12-p1 48 16 23 28 28 23 0 5 strict

D2-p1 94 14 48 50 50 48 0 2 strict

D16-p1 531 8 14 16 16 14 0 2 strict

D24-p3 147 T(3) 8 11 13 6 2 5 no

D5-p1 319 31 18 13 18 13 5 0 strict

D24-p4 147 T(3) 8 11 13 6 2 5 no

D21-p1 92 26 66 79 81 64 2 15 no

B-p1 124 T(18) 18 19 19 18 0 1 strict

B-p2 124 17 7 7 7 7 0 0 yes

M0-p1 221 T(3) 16 19 21 14 2 5 no

B-p3 124 T(4) 43 42 43 42 1 0 strict

D21-p2 92 28 70 83 85 68 2 15 no

B-p4 124 T(5) 42 43 43 42 0 1 strict

B-p0 124 T(17) 24 49 49 24 0 25 strict

rcu-p1 2453 T(3) 10 (9) ? ? ? ? strict

D4-p2 230 T(19) 38 (171) ? ? ? ? ?

IU-p1 4494 ? ? ? ? ? ? ? ?

IU-p2 4494 ? ? ? ? ? ? ? ?
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Table 4.3. Comparing Grab, +FineGrain, and +ARDC.

COI COI cex Grab +FineGrain +ARDC
circuit regs gates len time regs time regs time regs

D24-p1 147 8 k 9 1 4 1 4 1 4

D24-p2 147 8 k T 3 8 3 8 3 8

D24-p3 147 2 k T 20 8 4 6 2 5

D24-p4 147 8 k T 43 8 4 6 2 5

D24-p5 147 8 k T 3 5 4 6 2 5

D12-p1 48 2 k 16 14 23 24 23 19 24

D23-p1 85 3 k 5 20 21 3 21 14 21

D5-p1 319 25 k 31 31 18 42 13 32 13

D1-p1 101 5 k 9 9 21 12 20 14 20

D1-p2 101 5 k 13 51 23 27 23 29 23

D1-p3 101 5 k 15 56 25 32 23 33 23

D16-p1 531 34 k 8 92 14 25 14 21 14

D2-p1 94 18 k 14 180 48 108 49 59 48

M0-p1 221 29 k T 136 16 204 13 942 13

rcu-p1 2453 38 k T 195 10 188 10 216 10

B-p0 124 2 k T 1256 24 1507 24 1484 24

B-p1 124 2 k T 173 18 189 19 159 18

B-p2 124 2 k 17 93 7 95 7 90 7

B-p3 124 2 k T 223 43 76 43 62 43

B-p4 124 2 k T 393 42 101 43 108 42

D22-p1 140 7 k 10 720 132 242 132 191 132

D4-p2 230 8 k T 1103 38 204 38 195 38

D21-p1 92 14 k 26 2817 66 2725 70 622 67

D21-p2 92 14 k 28 4635 70 1748 75 868 67

IU-p1 4494 154 k T >8h - 2226 12 2263 12

IU-p2 4494 154 k T >8h - 930 14 699 12
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Figure 4.10. The CPU time distribution among the different phases of abstraction
refinement: forward reachability analysis, computing SORs, multi-thread concretiza-
tion test, and computing the refinement set with Grab.



Chapter 5

COMPOSITIONAL SCC ANALYSIS

In abstraction refinement, the given property needs to be checked
repeatedly in the abstract model, while the model is gradually refined.
Information learned from previous abstraction levels can be carried on to
help the verification at the current level. The major problem, however,
is to identify the information that needs to be carried on and apply it
to improve the computation efficiency.

In this chapter, we propose a compositional SCC analysis framework
for LTL and fair-CTL model checking. In this framework, the SCC
partition of the state space from the previous abstract model is carried
on to the next level. When we check the current abstract model, previous
SCC partitions can be used as the starting point for computing the new
SCC partition.

We also exploit the reduction in automaton strength during abstrac-
tion refinement to speed up the verification procedure. The strength of
a Büchi automaton affects the complexity of checking the emptiness of
its language. For weak or terminal automaton [KV98, BRS99], special-
ized fair cycle detection algorithms often outperform the general one. We
have found that composing two automata together may reduce, but may
never increase the automaton strength. Therefore, even if the abstract
model or property automaton is initially strong, its strength can be re-
duced through the successive refinements. In this chapter, we propose
a new algorithm that dynamically selects model checking procedures to
suit the current strength of the individual SCCs, and therefore takes
maximal advantage of their weakness.
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5.1 Language Emptiness

Checking language emptiness of a Büchi automaton is a core proce-
dure in LTL [LP85, VW86] and fair-CTL model checking [McM94], and
in approaches to verification based on language-containment [Kur94].
The cycle detection algorithms commonly used in symbolic model check-
ers fall into two categories: one is based on the computation of an SCC
hull [EL86, HTKB92, TBK95, KPR98, SRB02], and the other is based
on SCC enumeration [XB00, BGS00, GPP03]. Although some SCC enu-
meration algorithms [BGS00, GPP03] have better worst-case complexity
bounds than the SCC hull algorithms—O(η log η) or O(η) versus O(η2),
where η is the number of states of the system—the comparative study of
[RBS00] shows that the worst-case theoretical advantage seldom trans-
lates into shorter CPU times. In many practical cases, applying any of
these symbolic algorithms directly to the entire system to check language
emptiness remains prohibitively expensive.

In abstraction refinement, language emptiness is checked repeatedly
in the abstract model while the model is gradually refined. It is natural
to ask whether information learned from previous abstract models can
be carried on to the current level to improve the computation efficiency.
The major problem is to identify the kind of information that can be
carried on, and find ways to apply it to speed up the verification.

Although model checking applied to the abstract models may have
conservative result, the SCC partition of the state space computed in the
abstract model still provides valuable information for language emptiness
checking of the concrete system (or a more refined abstract model).

Given a model A and an over-approximation Â, every SCC in Â consists
of one or more complete SCCs of A. In other words, an SCC in the
concrete system must be either included in or excluded completely from
an SCC in the abstract model. Let Π be the set of SCCs in A; then
Π is a refinement of the set of SCCs in Â. Similarly, an SCC C in
A is a refinement of another SCC C ′ in A′ if C ⊆ C ′. If an SCC in
the abstract model does not contain a fair cycle, none of its refinements
will. Therefore, it is possible to inspect the fair SCCs in Â first, and
then refine them individually to compute the fair SCCs in A.

We will present a compositional SCC analysis framework for language
emptiness checking called DnC (for Divide and Compose), which is
based on the enumeration and the successive refinement of SCCs in a set
of over-approximated abstract models. By combining appropriate cycle-
detection algorithms (SCC hull or SCC enumeration) into the general
framework, we create a hybrid algorithm that shares the good theoreti-
cal characteristics of SCC enumeration algorithms, while outperforming
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the most popular SCC-hull algorithms, including the one by Emerson
and Lei [EL86].

The procedure starts by performing SCC enumeration on the most
primitive abstract model, which produces the initial SCC partition of
the set of states. The partition is then made more accurate on a refined
abstract model—one that is usually the composition of the current ab-
stract model and a previously omitted submodule. SCCs that do not
contain fair cycles are not considered in any more refined model. If no
fair SCC exists in an abstract model, the language of the concrete model
is proved empty. If fair SCCs exist, the abstract counterexamples can be
checked against the concrete model in a way similar to the SAT based
concretization test; the existence of a real counterexample means the
language is not empty. When the concrete model is reached, the proce-
dure terminates with the set of fair SCCs of the concrete model. Since
each concrete SCC is contained in an SCC of the abstract model, SCC
analysis at previous abstraction levels can drastically limit the potential
space that contains a fair cycle.

In language emptiness checking, the model is regarded as a generalized
Büchi automaton. The strength of a Büchi automaton is an important
factor for the complexity of checking the emptiness of its language. As
shown in previous work [KV98, BRS99], when an over-approximation
of A is known to be terminal or weak, specialized algorithms exists for
checking the emptiness of the language in A. These specialized algo-
rithms usually outperform the general language emptiness algorithm.
However, the previous classification of strong, weak, and terminal was
applied to the entire Büchi automaton. This can be inefficient, because
a Büchi automaton with a strong SCC and several weak ones would be
classified as strong. In this chapter, the definition of strength is extended
to each individual SCC so that the appropriate model checking proce-
dure can be deployed at a finer granularity. In addition, it is shown that
the strength of an SCC never increases during the composition, but may
actually decrease as submodules are composed. After the composition,
a strong SCC can break into several weak SCCs, but a weak one cannot
generate strong SCCs. DnC analyzes SCCs as they are computed to
take maximal advantage of their weakness.

The DnC algorithm achieves favorable worst-case complexity bound,
i.e., O(η) or O(η log η), depending on what underlying SCC enumera-
tion algorithm is used. This is valid even when it adds one submodule
at the time until the concrete system is reached. In practice, however,
the effort spent on the abstract systems can be justified only if it does
not incur too much overhead. As the abstract system becomes more and
more concrete through composition, SCC enumeration in the abstract
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model may become expensive. In such cases, the algorithm jumps di-
rectly to the concrete system, with all the useful information gathered
from the abstract systems. Based on the SCC quotient graph of the ab-
stract model, it disjunctively decomposes the concrete state space into
subspaces. Each subspace induces a Büchi automaton that is an under-
approximation of the concrete model; therefore, it accepts a subset of
the original language. The decomposition is exact in the sense that
the union of these language subsets is the original language. Therefore,
language emptiness can be checked in each of these subautomata in iso-
lation. By focusing on one subspace at a time, we can mitigate the BDD
explosion during the most expensive part of the computation—detecting
fair cycles in the concrete system.

To further speed up the search for fair cycles, we propose a new guided
search algorithm for the traversal of the exact state space. Early ter-
mination is promoted by examining first the promising areas where fair
cycles may reside, and by stopping the cycle-detection procedure as soon
as a fair cycle is found. In this targeted search, the approximate distance
from the initial states is used as the guidance.
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5.2 SCC Partition Refinement

We start with the definition of over-approximation of a generalized
Büchi automaton, followed by theorems that provide the foundation for
the SCC analysis algorithm. Automaton A′ is an over-approximation
of A, if S = S′, S0 ⊆ S′

0, T ⊆ T ′, F ⊇ F ′, and Λ = Λ′. An over-
approximation always simulates the original automaton, which is de-
noted by A ¹ A′. Given a set of automata defined in the same state
space and with an alphabet originated from the same set of atomic
propositions, the simulation relation ¹ induces a partial order.

Theorem 5.1 (Compositional refinement) Let A,A1, . . . ,An be a
set of labeled generalized Büchi automata such that A ¹ Ai for 1 ≤ i ≤ n.
Then, the set of SCCs Π(A) is a refinement of

Θ = {C1 ∩ · · · ∩ Cn | Ci ∈ π(Ai)} \ ∅ .

Proof: Every state in an SCC C ∈ Π(A) is reachable from all other
states in C. An over-approximation Ai preserves all the transitions of
A, which means that in Ai, every state in C remains reachable from the
other states in C. Therefore, for 1 ≤ i ≤ n, C is contained in an SCC
of Ai; hence it is contained in their intersection, which is an element of
Θ. Since the union of all SCCs of A equals S and distinct elements of
Θ are disjoint, Θ is a partition of S, and Π(A) is a refinement of it.

In particular, Π(A) is a refinement of an SCC partition of any over-
approximation of A; thus, an SCC of A′ is an SCC-closed set of A.
This theorem allows one to gradually refine the set of SCCs in the ab-
stract models until Π(A) is computed. It can often be decided early
that an SCC-closed set does not contain an accepting cycle. For lan-
guage emptiness checking, these non-fair SCC-closed sets are ignored.
By working on only “suspect” SCCs, one can trim the state space with
cheap computations in the simplified models.

Observation 5.2 Let C be an SCC-closed set of A. If C ∩ Fi = ∅ for
any Fi ∈ F , then C has no states in common with any accepting cycle.

Recall that we have defined the concrete model A as the synchronous
(or parallel) composition of a set of submodules. Composing a subset
of these submodules gives us an over-approximated abstract model A′.
For instance, let A = A1 ‖ A2, then both A1 and A2 can be considered
as over-approximations of A. It follows that an SCC in either A1 or A2

is an SCC-closed set in A.
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Definition 5.3 The strength of a fair SCC C is defined as follows:

C is weak if all cycles contained within it are accepting.

C is terminal if it is weak and, for every state s ∈ C and every propo-
sition a ∈ A, the successor s′ of s is in a terminal SCC. Terminality
implies acceptance of all runs reaching C.

C is strong if it is not weak.

Strength is defined only for fair SCCs. The strength of an SCC-closed
set containing at least one accepting SCC is the maximum strength of its
fair SCCs. The strength of an automaton is also the maximum strength
of its fair SCCs. Our definition of weakness is more relaxed than that of
[KV98, BRS99]. Previously, all the states of a weak SCC must belong
to all fair sets Fi ∈ F , and a terminal SCC must be maximal (i.e., no
successor SCCs). Our new definition is more relaxed, while still allowing
the use of faster symbolic model checking algorithms in the same way.

Lemma 5.4 Given a labeled generalized Büchi automaton A, if C is a
weak (terminal) SCC of an over-approximation A′ of A, then it contains
no reachable fair cycle in A if and only if EF EG C∩S0 6= ∅ (EF C∩S0 6=
∅) holds in A.

EF C is the subset of states in S that can reach the states in C, while
EG C is the subset of states in C that lead to a cycle lying in C. Assume
that C is a terminal SCC in A′, and a state s ∈ C is reachable from the
initial states in A. Since for every proposition a ∈ A, the successor s′ of
s in some terminal SCCs, all runs reaching s in A remain inside terminal
SCCs afterward. Due to the finiteness of the automaton, these runs form
cycles. Since terminal SCCs are also weak, all these runs are accepting.
Therefore, the language is not empty if and only if EF C ∩ S0 6= ∅. If C
is a weak SCC in A′, and a state s ∈ C is reachable from S0 in A and at
the same time s ∈ EG C, there exists a run through s that forms a cycle
in C. Since all cycles in the weak SCC C are accepting, the language is
not empty if and only if EF EG C ∩ S0 6= ∅. Note that for a strong SCC,
one must resort to the computation of EGfair true.

Theorem 5.5 (Strength reduction) Let A and A′ be Büchi au-
tomata such that A and A′ are complete and A ¹ A′. If C is a weak
(terminal) SCC-closed set of A′, then C is a weak (terminal) SCC-closed
set of A.

Proof: We prove this by contradiction. Assume that C is a weak set
of A′, but is a strong set of A. Then, at least one cycle in C is not
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accepting in A. As an over-approximation, A′ preserves all paths of A,
including this non-accepting cycle, which makes C a strong set of A′ too.
However, this contradicts the assumption that C is weak in A′. There-
fore, C cannot be a strong set of A. A similar argument applies to the
terminal case.

In other words, the strength of an SCC-closed set never increases as
a result of composition. In fact, the strength may actually reduce in
going from A′ to A. For example, a strong SCC may be refined into
one or more SCC, none of which is strong; a weak SCC may be refined
into one or more SCCs, none of which is weak. This strength reduction
theorem allows us to use special model checking algorithms inside the
abstraction refinement loop as soon as a strong SCC-closed set becomes
weak or terminal.

Deciding the strength of an SCC-closed set strictly according to its
definition is expensive. In the actual implementation, we can make con-
servative decisions of the strength of an SCC C as follows:

C is weak if C ⊆ Fi for every Fi ∈ F ;

C is terminal if C is weak, and either (EY C)\C = ∅, or (EY C)\C ⊆
Ct where Ct is a terminal SCC;

C is strong otherwise.

We use the example in Figure 5.1 to show the impact of composition.
The three Büchi automata have one acceptance condition (F = {F1})
and are defined on the same state space. State 01 is labeled ¬p; all other
states are labeled true implicitly. Double circles indicate that the states
satisfy the acceptance condition. In this figure, the parallel composition
of the two automata at the top produces the automaton at the bottom.
Note that only transitions that are allowed by both parent automata
appear in the composed system. Both automata at the top are strong,
although their SCC partitions are different. The composed system, how-
ever, has a weak SCC, a terminal SCC, and two non-fair SCCs. Its SCC
partition is a refinement of both previous partitions.
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Figure 5.1. Parallel composition of automata and its impact on SCCs.

5.3 The D’n’C Algorithm

Theorems in the previous section motivate the generic SCC analysis
algorithm in Figure 5.2. The Divide and Compose (D‘n’C) algorithm,
whose entry function is generic-refinement, takes as arguments a
Büchi automaton A and a set L of over-approximated abstract models,
which includes A itself. The relation ¹ among over-approximated mod-
els in L is not required to be a total order. The procedure returns true
if a fair cycle exists in A, and false otherwise.

The algorithm keeps a set Work of obligations, each consisting of a
set of states, the series of abstract models that have been applied to it,
and an upper bound on its strength. Initially, the entire state space is in
Work, and the algorithm keeps looping until Work is empty or a fair SCC
has been found. The loop starts by selecting an element (C, L′, s) from
Work and a new abstract model A′ from L. If A′ = A, the algorithm
may decide to run a standard model checking procedure on the SCC
at hand. Otherwise, it decomposes C into accepting SCCs and after
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type Entry = record

C; // An SCC-closed set of A
L′; // Set of abstract models that have been considered
s // Upper bound on the strength of the SCC

end

generic-refinement(A, L){ // Concrete and abstract models

var Work: set of Entry;
Work = {(S, ∅, strong)};

while (Work 6= ∅) {

Pick an entry E = (C, L′, s) from Work;
Choose A′ ∈ L such that no A′′ ∈ L′ with A′′ ¹ A′;
if (A′ = A or endgame(C, s)) {

if (model-check(A, C, s))
return true;

}
else {

Over-approx. reachability computation on A′;
C := scc-decompose(C,A′);

if (C 6= ∅ and A′ = A)
return true;

for (all C ∈ C) {
s := analyze-strength(C,A′);
insert (C, L′ ∪ {A′}, s) in Work;

}
}

}

return false;
}

model-check(A, C, s){ // Automaton, SCC-closed set, strength

case (s) {
strong: return Q0 ∩ EGF (C) 6= ∅;
weak: return Q0 ∩ EFEG(C) 6= ∅;
terminal: return Q0 ∩ EF(C) 6= ∅;

}

}

Figure 5.2. The generic SCC analysis algorithm D‘n’C.
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analyzing their strengths, adds them as new Work. At any stage, for
any entry (C, L′, s) of Work, C is guaranteed to be an SCC-closed set
of A, and the sets of states in Work are always disjoint. Termination
of the procedure is guaranteed by the finiteness of L and of the set of
SCCs of A.

The algorithm uses several subroutines. Subroutine scc-decompose,
takes an automaton A′ and a set C, intersects the state space of A′ with
C to yield a new automaton A′′, and returns the set of accepting SCCs of
A′′. The subroutine avoids working on any non-fair SCCs, as justified by
Observation 5.2. Subroutine analyze-strength returns the strength
of the SCC-closed set. Subroutine model-check returns true if and only
if a fair cycle is found using the appropriate model-checking technique
for the strength of the given SCC.

The way entries and abstract models are picked is not specified, and
neither is it stated when endgame returns true. These functions can
depend on factors such as the strength of the entry, the abstract models
that have been applied to it, and its order of insertion. In later sections,
these functions will be made concrete.

When decomposing an SCC-closed set C, the complement set C can
be used as the Don’t Care conditions to constrain and speed up the
computation. This is usually a significantly larger Don’t Care set than
reachability Don’t Cares; therefore, the use of C as Don’t Cares can lead
to a significant improvement in the computation efficiency. The time
spent on computing C is small because it is from an abstract model where
image and pre-image computations are cheaper than in the concrete
system. I

The reachable states of the current over-approximation are kept around
to discard unreachable SCCs. When the system is refined, the set of
reachable states is computed anew, but this computation is limited to
the previous reachable states, because the new reachable states are al-
ways contained in the previous reachable states as long as the new ab-
stract system is a refinement of the previous one. Therefore, previous
reachable states can be used as a care set in computing the new ones. Al-
though reachability analysis is performed multiple times (once for every
A′ ∈ L), previous work of [MJH+98] has shown that the use of approxi-
mate reachability information as a care set may more than compensate
for the overhead.

The proposed algorithm can be extended to include the use of under-
approximations as well. Whereas over-approximations can be used to
discard the possibility of an accepting cycle, under-approximations can
be used to assert its existence. Let A1 and A2 be under-approximations
of A. If A1 contains an accepting cycle, so does A. Furthermore, if an
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SCC C1 of A1 and an SCC C2 of A2 overlap, then A contains an SCC
C ⊇ C1 ∪ C2. Remember that SCC-enumeration algorithms [XB00,
BGS00, GPP03] compute each SCC by starting from a seed, which nor-
mally is a single state. Since we know that both C1 and C2 are subsets
of C, we can use C1 ∪ C2 as the seed to compute C. By doing so, part
of the work went into computing C1 or C2 can be reused.

Under-approximations of an SCC can also be used as Don’t Cares
(DCs) in BDD based symbolic algorithms to restrict the computation to
a state subspace. For instance, in SCC enumeration, as soon as we know
that C1∪C2 is a subset of an SCC, we can focus our attention on the state
subspace C1 ∪ C2. We can modify the transition relation of the model
to reflect this shift of attention (with the goal of finding smaller BDD
representations for the transition relation and sets of states). To better
understand the use of DCs, let us review some background information
about the implementation of BDD based image computation.

Image and pre-image computations are the most resource-consuming
steps in BDD based model checking. Since their runtime complexity
depends on the BDD sizes of the operators involved, it is important
to minimize the sizes of the representations of both the transition re-
lation and the argument to the (pre-)image computation—the set of
states. The size of a BDD is not directly related to the size of the set
it represents. If we need not represent a set exactly, but can instead
determine an interval in which it may lie, we can use generalized co-
factors [CBM89b, CM90] to find a set within this interval with a small
BDD representation.

Often, we are only interested in the results as far as they lie within a
care set K (or outside a don’t care set K). Since the language emptiness
problem is only concerned with the set of reachable states R, we can
regard R as a care set, and add or delete edges in the state transition
graph that emanate from unreachable states. By doing this, the image
of a set that is contained within R remains the same. Likewise, the part
of the pre-image of a set S that intersects R remains the same, even
if unreachable states are introduced into S by adding edges. This use
of the states in R as don’t cares, which is often called the Reachability
Don’t Cares (RDCs), depends on the fact that no edges from reachable
to unreachable states are added.

SCC-closed sets are care sets that are often much smaller than the
set of reachable states, and thus can be used to increase the chance of
finding small BDDs. We cannot, however, use the approach outlined
for the reachable states directly, since there may be edges from an SCC-
closed set to other states, as the one from State 4 to State 6 in Figure 5.3.
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Figure 5.3. An example of using don’t cares in the computation of SCCs.

We show here that in order to use arbitrary sets as care sets in image
computation, a “safety zone” consisting of the pre-image of the care set
needs to be kept; similarly for pre-image computation, a “safe zone”
must consist of the image of the care set.

Theorem 5.6 Let Q be a set of states and let T ⊆ Q×Q be a transition
relation. Let K ⊆ Q be a care set, B ⊆ K a set of states. Finally, let
T ′ ⊆ Q×Q be a transition relation and B′ ⊆ Q a set of states such that

T ∩ (K × K) ⊆ T ′ ⊆ T ∪ (K × Q) ∪ (Q × K), and

B ⊆ B′ ⊆ B ∪ EXT ′(K) .

Then, EYT ′(B′) ∩ K = EYT (B) ∩ K.

Proof: First, suppose that q′ ∈ EYT ′(B′) ∩ K, and let q ∈ B′ be such
that q′ ∈ EYT ′({q}) ∩ K. Since q′ ∈ EYT ′({q}), so q ∈ EXT ′(q′), and
because q′ ∈ K, we have q ∈ EXT ′(K). Hence, q ∈ B′ implies q ∈ B,
and q, q′ ∈ K, which means that q′ ∈ EYT ({q}) ∩ K. Finally, q ∈ B
implies q′ ∈ EYT (B) ∩ K.

Conversely, suppose that q′ ∈ EYT (B)∩K, and let q ∈ B be such that
q′ ∈ EYT ({q}) ∩ K. Now q, q′ ∈ K, and hence q′ ∈ EYT ′({q}) ∩ K, and
since q ∈ B′, q′ ∈ EYT ′(B′) ∩ K.

Hence, we can choose T ′ and B′ within the given intervals so that
they have a small representations, and use them instead of T and B.
Through symmetry, we can prove the following theorem.
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Theorem 5.7 Let Q be a set of states and let T ⊆ Q×Q. Let K ⊆ Q,
B ⊆ K, T ′ ⊆ Q × Q, and B′ ⊆ Q be such that

T ∩ (K × K) ⊆ T ′ ⊆ T ∪ (K × Q) ∪ (Q × K), and

B ⊆ B′ ⊆ B ∪ EYT ′(K) .

Then, EXT ′(B′) ∩ K = EXT (B) ∩ K.

Edges are added to and from states in the set K (states outside K),
while the safety zone for (pre-)image computation excludes the immedi-
ate (successors) predecessors of K. Note that the validity of the afore-
mentioned use of the reachable states as care set follows as a corollary
of these two theorems. Figure 5.4 shows a possible choice of T ′ given
the same T and K of Figure 5.3.

EXT ′(K)

K K

7

6

50

1

2 4

3

Figure 5.4. Another example of using don’t cares in the computation of SCCs.

For that choice of T ′, it shows, enclosed in the dotted line, the set
EXT ′(K). If B = {1, 2}, then EYT (B) ∩ K = {2, 3, 4}. Suppose B′ =
{1, 2, 4}. Then

EYT ′(B′) ∩ K = {2, 3, 4, 6} ∩ {0, 1, 2, 3, 4} = {2, 3, 4} = EYT (B) ∩ K .

Note that the addition of the edge from State 7 to State 3 causes the
former to be excluded from EXT ′(K).
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5.4 The Composition Policies

The SCC analysis algorithm described in previous section is generic,
since it does not specify:

1 what set of abstract models L is available;

2 the rule to select the next abstract model A′ to be applied to a set
S;

3 the priority function used to choose what element to retrieve from
the Work set;

4 the criterion used to decide when to switch to the endgame.

These four aspects make up a policy and are the subjects of this section.
We assume that A is the composition of a set of submodules M =

{M1, . . . , Mm}, and the set L of over-approximations consists of the
compositions of subsets of M :

L ⊆ {Mj1 ‖ · · · ‖ Mjp | {j1, . . . , jp} ⊆ {1, . . . , m}} .

We also assume that states of A are the valuations of a set of r bi-
nary variables V . The set of variables controlled by each module Mi

is nonempty and is a subset of V . Furthermore, let ηA and ηA′ be the
numbers of states in A and its over-approximation respectively, then
2ηA′ ≤ ηA.

The set of all over-approximations generated from subsets of M forms
a lattice under the relation ¹, as is shown in Figure 5.5 for m = 4. In
the case illustrated by this figure, the coarsest abstraction, which is the
set of no module, is the 1 of the lattice. Note that this abstraction is
never used in practice. The concrete system is the composition of all four
modules. For sufficiently large m, it is impractical to make use of all 2m

abstract models; consequently, we shall only consider efficient policies
in which any given state contained in the SCC-closed set is passed to
scc-decompose at most O(r) times.

Specifically, we shall stipulate that there is a constant λ, such that L
can be partitioned into subsets L1, . . . , Lr satisfying the following con-
ditions:

1 |Li| ≤ λ;

2 for every A′ ∈ Li, ηA′ ≤ 2i;

3 A ∈ Lr.

Two such cases are illustrated in Figure 5.5. The first one is called the
popcorn-line policy, which corresponds to the solid thick lines at the
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Figure 5.5. Lattice of approximations.

left of Figure 5.5. Let (j1, . . . , jm) be a permutation of (1, . . . , m) that
identifies a linear order of the modules. The set of approximations with
a popcorn-line policy is given as follows,

L = {Ai = Mj1 ‖ · · · ‖ Mji
| 1 ≤ i ≤ n} .

When an entry E = (S, L′, s) is retrieved from Work, the Ai of lowest
index that is not present in L′ is chosen as the next approximation
A′. With (j1, . . . , j4) = (1, 2, 3, 4) and λ = 1, the approximations in
Figure 5.5 are:

A1 = M1,
A2 = M1 ‖ M2,
A3 = M1 ‖ M2 ‖ M3,
A4 = M1 ‖ M2 ‖ M3 ‖ M4.

Another policy is called the lightning-bolt policy. In Figure 5.5, the
lightning-bolt policy is indicated by thick gray lines at the right. Let
(j1, . . . , jm) be a permutation of (1, . . . , m) that identifies a linear order
of the modules. The set of approximations with this policy is

L = {A2i−1 = Mj1 ‖ · · · ‖ Mji
| 1 ≤ i ≤ n}∪{A2i = Mji+1

| 1 ≤ i < n} .

When an entry E = (S, L′, s) is retrieved from Work, among the two Ai,
the one with lower index is chosen first. Let the the order of submodules
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be (4, 2, 3, 1); the set of approximations in Figure 5.5 is:

A1 = M4, A2 = M2,
A3 = M4 ‖ M2, A4 = M3,
A5 = M4 ‖ M2 ‖ M3, A6 = M1,
A7 = M4 ‖ M2 ‖ M3 ‖ M1.

In both cases, the times a state appearing in the set passed to scc-
decompose is bounded by the number of approximations in L. There-
fore, a popcorn-line policy tends to call scc-decompose fewer times.
A lightning-bolt policy may break up the SCC-closed sets with easy ap-
proximations ({A2i}) before applying harder approximations ({A2i−1})
to them, and therefore tends to use less memory.

The popcorn-line approach defines an SCC partition refinement tree,
whose roots are the fair SCCs in the most abstract model and whose
other nodes correspond to fair SCCs in the more refined abstract mod-
els. An example is given in Figure 5.6, which highlights the potential ad-
vantages of SCC refinement. The figure corresponds to a model of eight
dining philosophers, with a property that states that under the given
fairness constraints, if a philosopher is hungry, she eventually eats. The
system has nine modules, which are the property automaton and the
eight modules for the philosophers. The property passes in the concrete
model, i.e., no fair cycles exist in the system.

Only the nodes representing fair SCCs are shown in this tree. The
nodes at Level i are the fair SCCs of Ai, together with their numbers of
states. (A1 is the property automaton.) A separate reachability analysis
shows that there are about 47k reachable states in the concrete model.
Note that only very small sets of states remain after the composition of
the first four modules—the property automaton, the philosopher named
in the property, and her two neighbors. We are able to prune away a lot
of reachable states in the first few levels, and that no work is done on
the concrete system.

To define a policy, the order in which elements are retrieved from
the Work set also needs to be specified. Two obvious choices are FIFO
and LIFO order. As one would expect, the SCC refinement tree can
be traversed in breadth-first manner for a FIFO order, and in depth-
first manner for a LIFO order. When, as in Figure 5.6, there are no fair
cycles in A, the order in which the tree is visited is immaterial. However,
in the presence of concrete fair cycles, one strategy may lead to earlier
termination than the other may. If one assumes that fair cycles are
numerous, then depth-first search is particularly attractive. Breadth-
first search, on the other hand, can be implemented with low overhead,
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because at any time, only one abstract model needs to be constructed
and to remain active in the memory.
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Figure 5.6. An SCC partition refinement tree.





Chapter 6

DISJUNCTIVE DECOMPOSITION

6.1 Adaptive Popcorn-line Policy

It may not be practical to adopt the popcorn-line policy all the way
down to the concrete model, because

1 There may be too much overhead in analyzing all the abstract models;

2 if an SCC-closed set becomes weak or terminal, checking it directly
in the concrete model may be cheap.

In these two cases, one may decide to switch to the endgame. That is,
after spending a reasonable amount of effort on decomposing the SCCs in
the abstract models, we jump to the concrete model. When the endgame
comes, there are different ways of jumping to the concrete system—all
of them can be considered as variants of the popcorn-line policy.

The first variant is to go to A directly, and search for fair cycles inside
each SCC-closed set S in Work. Both SCC hull and SCC enumeration
algorithms can be used for the fair-cycle detection. Assume, for instance,
that A is the composition of the set of submodules {M1, ..., M8}, and
we decide to jump after composing the first three submodules. The first
variant of the popcorn-line policy can be described as follows:

A1 = M1,
A2 = M1 ‖ M2,
A3 = M1 ‖ M2 ‖ M3,
A4 = M1 ‖ M2 ‖ M3 ‖ · · · ‖ M8.

Alternatively, we can further trim the SCC-closed sets before search-
ing for fair cycles in the concrete model. Remaining submodules are
applied, one at a time, to further partition these SCC-closed sets. This
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variant, called the “Cartesian product” approach, is characterized as
follows:

A1 = M1,
A2 = M1 ‖ M2,
A3 = M1 ‖ M2 ‖ M3,
A4 = M4,

· · ·
A8 = M8,
A9 = M1 ‖ M2 ‖ M3 ‖ · · · ‖ M8.

Note that we are using A4−8 to further reducing the SCC closed sets, be-
fore going to the concrete model A9. Given the fact that each submodule
Mi is relatively small and we consider them one at a time, the calls to
scc-decompose in A4−8 are cheap. In fact, the partition of the state
space in A3 has been based on the assumption that the state variables of
other submodules are free variables (i.e., they can take arbitrary values
at all times); by calling scc-decompose on these remaining modules
individually, we can constrain their state variables resulting in further
partition of the SCC-closed sets. A direct analogy can be observed
between this approach and Machine-by-Machine state space traversal
algorithm of [CHM+94] in computing the set of approximate reachable
states.

The third variant, called the “one-step further composition” approach,
is characterized as follows:

A1 = M1,
A2 = M1 ‖ M2,
A3 = M1 ‖ M2 ‖ M3,
A4 = A3 ‖ M4,

· · ·
A8 = A3 ‖ M8,
A9 = M1 ‖ M2 ‖ M3 ‖ · · · ‖ M8.

We are using A4−8 to further fracturing the SCC closed sets. Note that
the previous Cartesian Product approach does not compose prior to mak-
ing the full jump; in contrast, this “one-step-further” approach invests
more heavily by composing A3 with each of the remaining submodules.
At each step from A4 to A9, we start with the refined SCC-closed sets
computed in the previous step. For a transition to exist in the compo-
sition, it must exist in both of the machines being composed. Whereas
the Cartesian Product approach never fractures SCCs by this joint con-
straint, this third variant does, ultimately leading to the partitioning of
these SCCs into smaller SCC-closed sets.
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Following this line to the extreme would lead us all the way back to the
original popcorn-line policy, which is considered the forth variant. These
four variants are only representatives in the general framework of adap-
tive popcorn-line policy. The first variant represents the least invest-
ment in compositional analysis, and therefore suffers the least amount
of overhead. However, when it performs the most expensive part of the
computation—cycle detection in the exact system—it must search in
larger state subspaces. Conversely, the fully iterative approach has the
smallest state subspaces to search in the concrete model, but incurs the
greatest overhead in analyzing abstract models.
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6.2 Disjunctive Decomposition Theorem

After switching to the endgame and further fracturing the SCC-closed
sets, we shall search for reachable fair cycles in the concrete system.
Since the concrete system often has a large number of states, it is desir-
able to decompose the entire state space into many subspaces and search
them separately. This requires the decomposition of state space to be
disjunctive – that is, the language accepted by each subspace is a subset
of the original language, and the union of these language subsets is the
original language.

Let the SCC quotient graph of a labeled generalized Büchi automaton
A be G = 〈C, C0, TC , FC〉, where C is the set of SCCs in A, C0 ⊆ C is the
set of initial SCCs, TC ⊆ C × C is the transition relation, and FC is the
set of fair SCCs.

Let G′ = 〈C′, C′
0, T

′
C , F ′

C〉 be a subgraph of G, where C′ ⊆ C, C′
0 ⊆ C0,

T ′
C ⊆ TC , and F ′

C ⊆ FC . In other words, removing some nodes or
edges of an SCC graph, or making some fair nodes non-fair, produces a
subgraph.

A subgraph of the SCC graph G(A) induces a new Büchi automaton.

Definition 6.1 Given the SCC quotient graph G of A and a subgraph
G′, the new induced automaton A ⇓ G ′ = 〈S′, S′

0, T
′, A,Λ,F ′〉 is defined

as follows:

S′ ⊆ S is the subset of original states that appear in C ′,

S′
0 ⊆ S0 is the subset of original initial states in C ′

0,

T ′ ⊆ T is the subset of original transitions among the states that
appear in C′.

F ′
i ∈ F ′ is the subset of Fi ∈ F that intersects the set of states in F ′

C .

Essentially, A ⇓ G′ is the original automaton A restricting its operation
only in the set of states S′. It follows that A ⇓ G(A) = A.

Since accepting runs in the induced automaton A ⇓ G′ are always
accepting in A, its language is a subset of L(A). Furthermore, the
pruning operation on the SCC graph, defined as removing nodes that
are not on any path from initial nodes to fair nodes, does not change
the language accepted by the corresponding automaton. This claim can
be extended to the SCC subgraph of any over-approximation of A.

Observation 6.2 Let A ¹ A′ and G′ be a subgraph of G(A′), then
L(A ⇓ G′) ⊆ L(A).

We define an SCC subgraph GCj (A) for every fair node Cj of G(A),
such that it contains all SCCs that are on the paths from the initial
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SCCs to Cj (including Cj); furthermore, all the nodes are marked non-
fair except for Cj . We can build GCj by marking Cj fair and all the other
nodes non-fair and then pruning the SCC graph. When the context is
clear, we will simply use GCj to denote such a subgraph. Each SCC
subgraph GCj induces a new automaton that accepts a subset of the
original language; the union of these subsets of languages is the same as
the language of the original automaton.

In addition, GCj can be further decomposed into subgraphs. An SCC

subgraph of this kind, denoted by G
Cj

i , represents the i-th path from an

initial SCC to Cj . The languages accepted by the automata A ⇓ G
Cj

i

also form a disjunctive decomposition of the language accepted by A ⇓
GCj . The claim can be extended to the SCC subgraphs of any over-
approximation of A. To summarize, we have the following theorem:

Theorem 6.3 (Disjunctive decomposition) Let A ¹ A′ and the

SCC graph G(A′) has a set of SCC subgraphs {G ′Cj

i } as defined above.

Then, L(A) = ∅ if and only if L(A ⇓ G′Cj

i ) = ∅ for every subgraph.

An new automata in the form of A ⇓ G
Cj

i is an under-approximation
of the exact system. Normally, an under-approximation can be used to
certify the existence of fair runs, but not to prove language emptiness.

However, Theorem 6.3 shows that the set {A ⇓ G
Cj

i } produced by dis-
junctive decomposition forms a complete set of under-approximations.
Therefore, they do not produce conservative results for language empti-
ness checking.

One advantage of applying this disjunctive decomposition theorem is
the ability of checking each of these new automata separately. When
we can restrict the search to a smaller state space, we increase the ef-
fectiveness of applying don’t cares in speeding up symbolic image and
pre-image computations.
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6.3 Guided Search for Fair Cycles

Theorem 6.3 allows us to disjunctively decompose the concrete sys-

tem into subautomata {A ⇓ G
Cj

i }, where G
Cj

i is an initial-fair path in the
SCC quotient graph of A′. Since each of these subgraphs corresponds
to a depth-first search path in the SCC graph, and contains a set of
abstract counterexamples, it is also called a hyperline. Our fair cycle de-
tection algorithm goes through all these hyperlines and checks language
emptiness on each of them in isolation.

Computing hyperlines requires not only all fair SCCs of A′, but also
the non-fair SCCs. These non-fair SCCs can be computed with scc-
decompose, and just like the fair ones, they can also be computed
incrementally. As one may expect, the number of hyperlines in an SCC
graph—a DAG—is exponential in the size of the graph. In order to
avoid an excessive partitioning cost on the over-approximations, with
the consequent exponential number of hyperlines, we apply the following
heuristic control on the size of the SCC graphs:

Skip scc-decompose on S if S is non-fair in G(A′) and its size
(number of concrete states) is below a certain threshold.

Switch to the endgame if the number of edges of the SCC graph G(A′)
exceeds a certain threshold.

Switch to the endgame if the number of fair nodes of the SCC graph
G(A′) exceeds a certain threshold.

With such a heuristic control, the number of hyperlines is bounded by
a constant value.

In the endgame, we disjunctively decompose the exact state space
into subspaces according to the different hyperlines of the last abstract

model. Every hyperline or G
Cj

i induces a subautomaton of the exact
system. Although subautomata may share states, we can avoid visiting
any state more than once by keeping a global set of visited states. Within

A ⇓ G
Cj

i , we search for cycles that are both reachable and fair. Although
reachability analysis shares the same worst-case complexity bound with
the best cycle-detection algorithm, in practice it is still much cheaper
than fair cycle detection. This motivates us to always make sure a
certain state subspace is reachable before deploying the cycle detection
procedure, in order to avoid searching unreachable states for a fair cycle.

In particular, fair cycle detection is triggered only after the reacha-
bility analysis hits one or more promising states—states that are in fair
SCC-closed sets and at the same time satisfy some acceptance conditions.
Recall that the symbolic SCC enumeration algorithms [BGS00, BGS05,
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GPP03] used in scc-decompose compute an SCC by first choosing
a seed. The promising states encountered during forward reachability
analysis are good candidates for the seed. We can give higher prior-
ity to promising states that are reached earlier in forward reachability
computation, in the hope of getting a shorter counterexample. In ad-
dition to the order in which they are encountered during the forward
search, promising states can also be prioritized according to the number
of acceptance conditions they satisfy: if two promising states are hit si-
multaneously by the forward search, whichever satisfies more acceptance
conditions is preferred. By prioritizing the seeds, we heuristically choose
the SCC that is expected to be closer to the initial states and more likely
to be fair; this may reduce the number of reachable states traversed by
forward search and may lead to a shorter counterexample. In prior art,
the algorithm in [HTKB92] was also designed to avoid visiting too many
reachable states in the search for fair cycles, but their approach was
significantly different from ours.

Although disjunctive decomposition have divided the entire state space
into smaller pieces, the reachable states of each subautomaton may still
be many. The ideal way of finding a fair cycle is to traverse only part of
the reachable states of the subautomaton, and go directly to a promising
state to start the SCC enumeration. To reach a promising state with the
least possible overhead, i.e., by traversing the least number of reachable
states, we need some guidance for such a targeted search.

The intermediate results of the reachability analysis of A′ can provide
guidance for such a targeted search. Reachability analysis with Breadth-
First Search (BFS) gives a set of reachability onion rings, denoted by
{R0, R1, . . . , Rl}; each ring is the set of states at a certain distance from
the initial states. For example, a state in R2 can be reached from an
initial state in two steps but not less. Suppose that R3 is the earliest
ring that contains a promising state, one wants to spend as little effort
as possible in traversing states in R1 and R2.

We now present a guided search algorithm for fair cycle detection,
called detect-fair-cycle. As shown in Figure 6.1, the procedure is
called by model-check for every hyperline G′. There are two global
variables Reach and Queue, representing the set of already reached
states and the SCC-closed sets that remain to be inspected, respectively.
The reachable onion rings of A′

sub from an abstract model, denoted by
absRings or {Ri}, are used to estimate the distance of an SCC closed set
to the initial states. We use the distance to rank the relative importance
of SCC-closed sets in the priority queue Queue. The procedure scc-
decompose-with-ET searches the SCC sets one by one for fair cycles;
the SCC closed set closest to initial states (measured by the distance in
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the abstract onion rings) is always picked up first. The global reachable
state set Reach may be updated after each SCC closed set is inspected,
if states not yet in Reach have been discovered by the forward search
of SCC enumeration. The entire procedure terminates when either all
reachable states in all Asub are visited, or a fair cycle is found.

Instead of using the conventional image computation, we use a heuris-
tic algorithm called sharp image computation for the targeted reacha-
bility analysis. The pseudo code for a sharp image computation is also
given in Figure 6.1. Let D be the from set (the set of states for which we
want to find the successors), and {Ri} be the set of reachable onion rings
from an abstract model. The procedure first finds the abstract onion
ring that is closest to the target and at the same time intersects D. The
intersection of this ring and D has the shortest approximate distance
to a promising state. This set is further compacted into D# by bdd-
subsetting [RS95, PH98]. As a generic function, bdd-subsetting
can return a minterm, a cube, or an arbitrary subset of (D ∩Ri) with a
small BDD representation. Finally, the image of D# is computed with
the conventional image operation. It is clear that the result is a subset
of EY(D).

Our guided search procedure with sharp image computation is differ-
ent from the high-density algorithm of [RS95], because our goal in com-
pacting the from set is to get closer to the fair SCCs, not increase the
density of its BDD representation. Nevertheless, our approach shares a
common problem with high-density search—namely, how to recover from
dead-ends. Since image# computes only a subset of the exact image, it
is possible for the frontier set, Front, to be empty before the forward
search actually reaches the fixpoint. Whenever this happens, we need
to backtrack with the standard image computation using the transition
relation of Asub and Reach.

Every time a promising state is encountered during the targeted reach-
ability analysis, it is picked as a seed for computing the SCC. If the SCC
containing this seed intersects all the fair sets Fi ∈ F , we can terminate
the entire procedure immediately. If the SCC is not fair, it is merged
into the set of already reached states Reach before the targeted reacha-
bility analysis is resumed (because the SCC has proved to be reachable).
Since every SCC found in this way is guaranteed to be reachable, the
SCC enumeration algorithms [BGS00, BGS05, GPP03] can be further
enhanced with early termination [SRB02]: they terminate as soon as a
fair cycle is found, as opposed to after both the forward and backward
search from the seed reach their fixpoints. This requires that after each
forward and backward step, we check whether the intersection of the
forward and backward results satisfies all the fairness conditions—if it
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detect-fair-cycle(A,A′,G′, Reach, Queue){
// model, abs model, hyperline,
// reached states, and scc-closed sets

A′
sub = A′ ⇓ G′;

Asub = A ⇓ G′;

absRings = compute-reachable-onionrings(A′
sub);

Front = Reach;

while (true) {

while (Front 6= ∅) and (Front ∩ Queue = ∅) {
Front = image#(Asub, F ront, absRings) \ Reach;
if (Front = ∅)

Front = image(Asub, Reach) \ Reach;
Reach = Reach ∪ Front;

}

if (Front = ∅)
return false;

if (scc-decompose-with-ET(Asub, Queue, absRings))
return true;

}
}

image#(A, D, {Ri}) {

i = |{Ri}|;
while (D ∩ Ri = ∅) {

i = i − 1;
}

D# = bdd-subsetting (D ∩ Ri);

return image(A, D#);
}

Figure 6.1. Guided search of fair cycles and sharp image.
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does, the union of the forward and backward search results contains a
reachable fair cycle.

When the language is indeed empty, all reachable states of the subau-
tomata must be traversed. Let ηA be the number of reachable states of
the exact system, and let the total number of hyperlines be a constant
value; then, the cost of deciding reachability in our guided search pro-
cedure is O(ηA). The total cost of fair cycle detection depends on the
underlying symbolic SCC enumeration algorithm, which we analyze in
the next section.
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6.4 Implementation and Experiments

Complexity Analysis

The refinement algorithm described thus far cannot improve the com-
plexity bound of the language emptiness check. On the other hand, it
does not make the theoretical complexity bound worse. In the follow-
ing, we show that the complexity of our incremental approach is within
a constant factor from that of the non-incremental one; this means
that it is O(ηA) when the linear time algorithm of [GPP03] is used
in scc-decompose, or when the Lockstep algorithm of O(ηA log ηA) if
[BGS00, BGS05] is used.

In the following theorem, we assume that the linear time algorithm of
[GPP03] is used.

Theorem 6.4 If the set L of approximations can be partitioned into
subsets L1, . . . , Lr such that, for some constant λ,

1 |Li| ≤ λ;

2 for every A′ ∈ Li, ηA′ ≤ 2i; and

3 A ∈ Lr,

then the generic SCC refinement algorithm runs in O(ηA) steps.

Proof: Both reachability computation and SCC enumeration take a
linear time, so the total cost of SCC analysis for A′ is bounded by kηA′,
for some constant k. Let the number of effective states of A′ be denoted
by ηA′, then

ηA′ ≤ ηA/2i .

Hence, the cost of analyzing all approximations and A itself is bounded
by

kηA(λ + λ/2 + λ/4 + · · · + λ/2r) ,

which is bounded by 2λkηA.

While we cannot hope for an improved run time in the worst case, we
expect that the refinement-based approach will be beneficial when the
state space breaks up into many small SCC-closed sets.

In some spacial cases, we can prove the following linear complexity
result—even when the n log n algorithm of [BGS00, BGS05] is used for
SCC enumeration.
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Theorem 6.5 Under the assumptions for L of Theorem 6.4, if for some
constant γ, the pairs (S,A′) passed to scc-decompose satisfy |S| ≤
γηA/ηA′, then the refinement algorithm runs in O(ηA) time.

Proof: The analysis of A consists of the decomposition of SCC-closed
sets of size bounded by γ. Their number is linear in ηA, and each decom-
position takes constant time. Hence, the total time for the analysis of A
is O(ηA). If |C| is the number of states in SCC C of A′, then |C|ηA′/ηA
is the effective size of C. The cost of analyzing A′ is therefore O(ηA′).
With reasoning analogous to the one of Theorem 6.4, one finally shows
that the total time is also O(ηA).

Experiments on SCC Refinement

First, we describe the details of two implemented policies for the SCC
analysis algorithm D’n’C. Both versions implement the basic popcorn-
line approach, and correspond to a breadth-first search of the SCC re-
finement tree. The set of submodules are generated and then ordered
according to a static refinement scheduling strategy of [Jan99]. It par-
titions the entire set of state variables into many smaller clusters. The
partitioning is based on the structural information of the model (e.g.,
latch connectivity). Each cluster is considered as a submodule, and the
parallel composition of all these submodules is the concrete system. The
submodules are heuristically sorted according to their distances from the
state variables appearing in the property automaton.

The two implemented D’n’C policies differ in when to switch to the
endgame: the first policy de-emphasizes compositionality in comparison
to strength reduction by performing only two levels of composition. At
the first level, it computes the SCCs of the property automaton, and
at the second level, it composes all the other modules of the system.
The second policy tries to exploit the full compositionality implied by
Figure 5.5 and 5.6. To avoid too much overhead on analyzing the over-
approximations, it heuristically stops the refinement at some point, and
then immediately composes all the remaining modules, thus proceeding
directly to the exact system. In the implementation, we stop the linear
composition after 30% of the state variables have been composed. Once
the exact system is reached, the emerson-lei algorithm is applied to
its SCC-closed sets. For ease of reference, we refer to the first policy as
the Two-level method, and to the second as the Multi-Level method.

In both policies, weak SCCs are grouped together and are checked for
cycles in the concrete system immediately after they are discovered. The
underlying assumption for the special handling of weak/terminal SCCs
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is that model checking these SCCs is cheaper in the concrete model.
If D‘n’C finds a concrete fair cycle, it terminates, otherwise it discards
these SCCs. At any abstraction level, if no SCCs are present, the al-
gorithm also terminates because there is no cycle in the concrete model
either.

The proposed algorithm has been implemented in the symbolic model
checker VIS [B+96][VIS]. The results of Table 6.1 were obtained by ap-
propriately calling the standard Language Emptiness command of VIS.
SCC analysis was performed with the Lockstep algorithm of [BGS00].
(Separate study showed that the algorithm of [GPP03] had a perfor-
mance slightly worse than Lockstep [BGS00, BGS05] in practice, because
of its additional bookkeeping overhead.) Prior reachability analysis were
used as don’t cares where possible.

In Table 6.1, all examples were run with the same fixed BDD order
(obtained with previous runs of dynamic variable reordering). For the
same set of models and property automata, a second table was also ob-
tained with dynamic variable ordering turned on for each example. Sim-
ilarly, a third table was obtained using the EL2 variant of the Emerson-
Lei algorithm [HTKB92]. The second and third tables were omitted for
brevity, since their characters of the results were not significantly differ-
ent. (The only exception to the statement was the fact that the example
nmodem1 took only 209 seconds with EL2, versus 4384 for the original
Emerson-Lei algorithm.) The experiments were conducted on an IBM
Intellistation running Linux with a 400MHz Pentium II processor with
1GB of SDRAM.

In Table 6.1 has four columns. The three fields of the first column give
the name of the example, a symbol indicating whether the formula passes
(P: no fair cycles exist) or fails (F: a fair cycle exists), and the number
of binary state variables in the system. The three fields of the second
column, obtained by directly applying the VIS Emerson-Lei algorithm,
give:

1 the time it took to run the experiment (T/O indicates a run time
greater than 4 hours);

2 the peak number of live BDD nodes (in millions); and

3 the total number of pre-image (EX) / image (EY) computations needed.

These same field descriptors also apply to the third and fourth columns
(for the Two-Level and Multi-Level versions of the D‘n’C algorithm),
except that the latter has an additional field that indicates how the
verification process terminates: ‘n’ means that the algorithm arrives
at some intermediate level of the refinement process in which there no
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longer exists any fair SCC; ‘w’ means that there is a weak fair SCC
found and it contains a fair cycle.

The property automata being used in the experiment are translated
from LTL formulae. In order to avoid bias in favor of the new approach,
each model is checked against a strong LTL property automaton. Note
that the presence of the ’n’ or ’w’ in the last field demonstrates that both
pruning of the SCC refinement tree and strength reduction are active in
these experiments.

Comparing the D‘n’C algorithm to the one by Emerson and Lei, we
find that, with only three exceptions out of 18 examples, there is a sig-
nificant (more than a factor of 2) performance advantage for the D‘n’C
algorithm. Comparing the Two-Level and Multi-Level versions, one sees
that with four exceptions (eisenb2, philo2, philo3, and shamp2), the two
policies give comparable performance. This is because most of the exam-
ples are simple mutual-exclusion and arbitration protocols, in which the
properties have little localities. We expect the compositional algorithm
to do even better on models with more localities. On the other hand, we
have found that the greater compositionality of the Multi-Level version
proves its worth, especially on the larger examples.

Experiments on Disjunctive Decomposition

Now we describe the details of another implemented policy for disjunc-
tive decomposition and the targeted search for fair cycles. This policy is
a variant of the popcorn-line approach, with breadth-first search of the
SCC refinement tree. Before jumping to the exact system, it trims the
fair SCC-closed sets further on the remaining submodules by the “Carte-
sian Product” approach. The enhanced algorithm, called D’n’C#, was
compared to D’n’C on the same set of test cases to study the effective-
ness of the added feature. The experiments are given in Table 6.2 and
6.3, which were conducted on a 400MHz Pentium II processor with 1GB
of SDRAM.

In Table 6.2, prior reachability analysis results were used as don’t
cares where possible. Note that this table are results under a some-
what ideal case—it assumes that the exact reachability computation
results are available. The table has four columns. The three fields of
the first column give the name of the example, a symbol indicating
whether the formula passes or fails, and the number of binary state
variables in the system. The next three columns compare the run time,
the total memory usage, and the peak number of live BDD nodes of
the three methods. Comparing the D’n’C# algorithm to D’n’C, we find
three wins for D’n’C# and 15 wins for D’n’C. This indicates that the
disjunctive decomposition is encumbered by overhead of maintaining and
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decomposing the SCC graph. However, among the 15 wins of D’n’C, only
four are for problems requiring more than 100 seconds to complete—
that is, the easy problems. In contrast, on the three wins of D’n’C#,
D’n’C took 1337, 1683, and 233 seconds. Therefore, we conclude that
in general the additional overhead of disjunctive decomposition is not
significant. On the harder problems, D’n’C# is as competitive as D’n’C
when advance reachability analysis is feasible.

In Table 6.3, the same set of test cases were checked with the approx-
imate reachability analysis results as the don’t cares where possible—
that is, with ARDCs as opposed to RDCs. (Approximate reachability
analysis is usually much faster than exact reachability analysis, and in
practice, may be the only feasible way of extracting don’t cares from
reachable states.) The table has four columns. The three fields of the
first column repeat the description of the test cases. The next three
columns compare the run time, the total memory usage, and the peak
number of live BDD nodes of the three methods. Comparing the D’n’C#

algorithm to D’n’C, we find 12 wins for D’n’C# and 6 for D’n’C. In ad-
dition, all the 6 wins for D’n’C are for problems requiring less than
100 seconds to complete; in contrast, D’n’C# wins more on the harder
ones—on eight out of its 12 wins, D’n’C timed out after 4 hours. The
difference here is that both D’n’C and EL depend heavily on full reach-
ability to restrict the search spaces, but the disjunctive decomposition
and sharp guided search of D’n’C# minimize this dependency.

We also conducted experiments on a set of much harder test cases, the
Texas-97 benchmark circuits. The property automata being used in the
experiments were also translated from LTL formulae. The experiments
were run on an IBM Intellistation with a 1700MHz Pentium-IV processor
and 2GB of SDRAM. The results are given in Table 6.4.

In Table 6.4, the comparison is with the results of approximate reach-
ability analysis as the don’t cares where possible. Note that exact reach-
ability analysis is infeasible for most of these circuits, except for MSI.
The table has four columns. The three fields of the first column give the
name of the example, a symbol indicating whether the formula passes
or fails, and the number of binary state variables in the system. The
next three columns compare the run time, the total memory usage, and
the peak number of live BDD nodes of the three methods. Comparing
the D’n’C# algorithm to D’n’C, we find five wins for D’n’C# and two
for D’n’C. Again, the two wins for D’n’C are easier problems, and the
five wins for D’n’C# are much harder—among them, two cannot be fin-
ished by D’n’C within 8 hours. Therefore, it demonstrates a decisive
advantage of the D’n’C# algorithm over both D’n’C and EL.
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6.5 Further Discussion

We have shown that over-approximations of the concrete system can
be used to gradually refine the SCC-closed sets to SCCs. The D‘n’C algo-
rithm has the advantages of being compositional, considering only parts
of the complete state space, and taking into account the strength of an
SCC to deplore the proper model checking algorithm. We have discussed
the different policies in traversing the lattice of over-approximated sys-
tems. In comparison to the original Emerson-Lei algorithm, the new al-
gorithm has demonstrate significant and almost consistent performance
improvement. This indicates the importance of the three improvement
factors built into the proposed algorithm: SCC refinement, composition-
ality, and strength reduction.

We have also shown that the analysis of SCC quotient graph of an
over-approximated system can be used to decompose the concrete search
state space. Based on disjunctive decomposition, our guided search al-
gorithm for fair cycle detection demonstrates further performance im-
provement. Our experiments show that for large systems or otherwise
difficult problems, heavy investment in these heuristics is well justified.

The simplicity of the implemented policies in comparison to the gen-
erality of our framework suggests that there can be many promising
extensions and variations. The joint application of over- and under-
approximations of the concrete system, for instance, can be an interest-
ing future work.

The generic framework can be highly parallelized by assigning dif-
ferent entries from the Work list, as well as the disjunctive state sub-
spaces, to different processors. Processors that deal with disjoint sets of
states have minimal communication and synchronization requirements.
Although the algorithm is geared towards BDD based symbolic model
checking, SCC refinement can also be combined with explicit state enu-
meration and SAT based approaches.
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Table 6.1. Comparing Emerson-Lei and D’n’C. With RDC’s.

Emerson-Lei D‘n’C D‘n’C
(VIS LE) Two-Level Multi-Level

Circuit P/ latch Time BDD EX/EY Time BDD EX/EY Time BDD EX/EY

and LTL F num (s) (M) (s) (M) (s) (M)

bakery1 F 56 212 5.1 5337/0 31 1.3 354/4 27 1.3 484/328

bakery2 P 49 69 3.4 526/0 20 1.3 10/4 20 1.3 62/73 n

bakery3 P 50 421 14 1593/0 46 2.5 90/4 43 1.8 537/428

bakery4 F 58 T/O - -/- 1950 3.4 1088/5 1337 4.7 947/96

bakery5 F 59 T/O - -/- 1009 6.1 127/5 623 6.1 216/243

eisenb1 F 35 23 1.0 416/0 16 0.9 21/4 16 0.9 21/4

eisenb2 F 35 T/O - -/- 4800 8.2 162/5 1683 7.7 105/93 w

elevator1 F 37 210 14 163/0 49 2.8 132/9 41 2.2 155/31

nmodem1 P 56 4384 11 5427/0 192 1.1 992/4 233 0.6 5007/71

peterson1 F 70 17 1.1 24/0 20 1.3 19/4 21 1.2 157/173

philo1 F 133 371 12 258/0 7 0.2 8/12 7 0.2 8/12 w

philo2 F 133 73 2.8 557/0 30 1.3 258/5 12 0.5 25/44 w

philo3 P 133 T/O - -/- T/O - -/- 115 1.2 993/224

shamp1 F 143 44 2.1 8/0 103 5.6 9/6 87 2.2 266/280

shamp2 F 144 T/O - -/- 1892 16. 74/6 101 2.9 345/349

shamp3 F 145 T/O - -/- 337 4.4 19/17 335 4.4 19/17 w

twoq1 P 69 12 0.4 25/0 4 0.1 7/9 4 0.1 7/9 n

twoq2 P 69 241 8.9 175/0 27 0.8 91/5 30 0.9 181/95
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Table 6.2. Comparing EL, D’n’C, and D’n’C#. With RDC’s.

Time (s) Memory (MB) BDD (M)

Circuit T/ latch EL D’n’C D’n’C# EL D’n’C D’n’C# EL D’n’c D’n’C#

and LTL F num

bakery1 F 56 212 27 159 262 75 125 5.1 1.3 1.5

bakery2 P 49 69 20 28 152 73 74 3.4 1.2 1.2

bakery3 P 50 421 43 1514 550 111 125 14 1.8 1.5

bakery4 F 58 T/O 1337 655 - 411 476 - 4.7 4.8

bakery5 F 59 T/O 623 737 - 555 554 - 6.1 9.9

eisen1 F 35 23 16 128 69 50 64 1.0 0.9 0.6

eisen2 F 35 T/O 1683 944 - 564 340 - 7.7 1.7

elevator1 F 37 210 41 192 489 132 369 14 2.2 10.3

nmodem1 P 56 4384 233 227 569 63 169 11 0.6 2.2

peterson1 F 70 17 21 41 73 83 78 1.1 1.2 1.2

philo1 F 133 371 7 56 401 26 37 12 0.2 0.1

philo2 F 133 73 12 58 145 44 42 2.8 0.5 0.3

philo3 P 133 T/O 115 207 - 119 329 - 1.2 7.0

shamp1 F 143 44 87 303 96 113 401 2.1 2.2 9.2

shamp2 F 144 T/O 101 239 - 187 268 - 2.9 3.5

shamp3 F 145 T/O 335 1383 - 478 500 - 4.4 5.8

twoq1 P 69 12 4 14 36 23 24 0.4 0.1 0.0

twoq2 P 69 241 30 289 333 47 509 8.9 0.9 7.9
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Table 6.3. Comparing EL, D’n’C, and D’n’C#. With ARDC’s.

Time (s) Memory (MB) BDD (M)

Circuit T/ latch EL D’n’C D’n’C# EL D’n’C D’n’C# EL D’n’c D’n’C#

and LTL F num

bakery1 F 56 T/O 7565 5367 - 609 447 - 17.6 8.0

bakery2 P 49 183 5 2 241 25 15 4.1 0.1 0.0

bakery3 P 50 2794 48 174 609 128 133 18.8 2.1 1.5

bakery4 F 58 T/O T/O 1964 - - 477 - - 4.0

bakery5 F 59 T/O T/O 1294 - - 416 - - 4.9

eisen1 F 35 23 6 107 36 26 73 0.3 0.3 0.5

eisen2 F 35 T/O T/O 1150 - - 365 - - 3.0

ele F 37 3504 2156 585 663 612 657 24.4 21.1 23.6

nullmodem P 56 T/O T/O 3375 - - 306 - - 2.6

peterson F 70 4 8 176 21 42 121 0.0 0.3 1.4

philo1 F 133 T/O T/O 385 - - 64 - - 0.9

philo2 F 133 T/O T/O 267 - - 144 - - 2.1

philo3 P 133 T/O 1139 241 - 609 119 - 21.4 1.4

shampoo1 F 143 12 T/O 168 21 - 127 0.0 - 2.0

shampoo2 F 144 T/O T/O 189 - - 153 - - 3.0

shampoo3 F 145 T/O 53 735 - 51 331 - 0.3 5.0

twoq1 P 69 12 4 23 37 14 24 0.4 0.1 0.0

twoq2 P 69 172 30 665 322 15 496 7.7 0.9 8.2
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Table 6.4. Comparing EL, D’n’C, and D’n’C#. With ARDC’s.

Time (s) Memory (MB) BDD (M)

Circuit T/ latch EL D’n’C D’n’C# EL D’n’C D’n’C# EL D’n’C D’n’C#

and LTL F num

Blackjack1 F 176 7296 2566 237 618 610 551 26.8 24.2 18.1

MSI1 P 65 T/O T/O 51 - - 83 - - 2.0

MSI2 F 65 T/O T/O 165 - - 342 - - 6.7

PIbus1 P 387 T/O 73 1700 - 243 539 - 3.5 13.4

PIbus2 F 385 501 292 1302 467 477 609 17.0 15.4 22.6

PPC60X1 F 67 1109 1690 651 609 611 445 20.1 22.4 10.6

PPC60X2 P 69 13459 2811 531 745 625 327 17.8 18.9 6.9



Chapter 7

FAR SIDE IMAGE COMPUTATION

In the next two chapters, we will apply the idea of abstraction fol-
lowed by successive refinements to two basic decision procedures in for-
mal verification, BDD based image computation and Boolean satisfia-
bility check. Image computation accounts for most of the CPU time in
symbolic model checking, while a Boolean SAT solver is the basic work
engine in bounded model checking.

In image computation, the peak BDD size is the controlling factor
for the overall performance of the algorithm. Don’t Care conditions
have been routinely used to the present-state variables to minimize the
transition relation. However, the use of Don’t Cares to the far side, or
next-state variables is often ineffective. In this chapter, we present a new
algorithm which computes a set of over-approximated images and apply
them as the care sets to the far side of the transition relations. The
minimized transition relation is then used to compute the exact image.
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7.1 Symbolic Image Computation

Image computation is the most fundamental operation in BDD based
symbolic fixpoint computation. It has been extensively used in sequen-
tial system optimization and formal verification. Given a state transition
system, image computation is used to find all the successors of a given
set of states according to a set of transitions. Existing algorithms for
computing images fall into two categories: one is based on the transi-
tion function [CBM89a], and the other is based on the transition rela-
tion [GB94, RAB+95, MHS00, CCJ+01b, JKS02]. In this chapter, we
focus on the transition relation based methods.

Except for small systems, the transition relation (TR) can not be
represented by a monolithic BDD. Instead, it is usually represented by
a collection of BDDs (called clusters) whose conjunction is the entire
transition relation. This representation is called the partitioned transi-
tion relation. When the partitioned transition relation is used, the image
is computed by conjoining the given set with all the transition relation
clusters and then existentially quantifying the present-state variables
and inputs.

Given a partitioned transition relation T = {T i} and a set of states
D, the image is computed as follows:

Img(T, D) = ∃x, w .
∧

1≤i≤k

T i(x, w, yi) ∧ D(x) . (7.1)

The performance of this computation depends heavily on the size of the
BDDs that represent the set of states, the transition relation, and the
intermediate products during the evaluation of this quantified Boolean
formula.

In the conjoin-quantify operation (Equ. 7.1), the way in which tran-
sition bit-relations are grouped into clusters, and the order in which
variables are quantified are all important. The problem of clustering
and ordering to minimize the peak size of the intermediate products is
called the quantification scheduling problem. A technique early quan-
tification if often used to exploit the fact that each T i usually depends
on a subset of the present-state variables and inputs, and some of these
variables can by quantified out before all the clusters are conjoined.

Let Q1, ..., Qk be a partition of the set (x∪w) of present-state variables
and inputs, then conjoin and quantify can be interleaved as follows:

Img(T, D(x)) = ∃Qk .{T k(x, w, yk) ∧ {
∃Qk−1 .{T k−1(x, w, yk−1) ∧ {
. . .
∃Q1 .{T 1(x, w, y1) ∧ D(x)}}}} .
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Temporary results produced in the middle of the computation, such
as ∃Q1 . {T 1(x, w, y1) ∧ D(x)}, are called intermediate products. The
peak sizes of the intermediate products are often essential in determining
whether a given symbolic image computation can be completed on a
given computer.

Studies on the effect of early quantification can be traced back to
the early work of [TSL+90, Bur91, GB94]. The quantification schedul-
ing problem was proved to be NP-complete in [HKB96]. A practi-
cally successful heuristic algorithm, known as IWLS95, was proposed
in [RAB+95]. The algorithm goes as follows: first, a heuristic score is
used to order the transition bit-relations; second, these bit-relations are
linearly clustered together until the BDD size exceeds a certain thresh-
old; finally, the clusters are ordered according to the same heuristic
score. The IWLS95 algorithm is a representative of a class of linear
quantification schedules. Recent progress along this line of research
includes the algorithm based on the Minimum Lifetime Permutation
(MLP) [MHS00, CCJ+01b] and the Fine-Grain image algorithm [JKS02].
Alternatively, image computation can be regarded as a problem of con-
structing an optimal parse tree for the image set. This results in more
general quantification schedules [HKB96, GYAG00, CCJ+01a].

The new method we introduce in this chapter is not another heuris-
tic for the quantification scheduling problem. Instead, it provides a
higher-level framework that can be implemented on top of any of these
heuristics.

Exact or approximate reachable states have been commonly used as
don’t cares in symbolic model checking to help the pre-image computa-
tion. Transitions from unreachable states can be added or removed in
order to reduce the BDD size of the transition relation without chang-
ing the results of fixpoint computations restricted to reachable states.
The constrain and restrict operators [CBM89b, CM90] are often used
in this context to accomplish the BDD minimization. Both of these two
operators are specific instances of a more general operation called the
generalized cofactor [SHSVB94, HBLS98]. A generalized cofactor of a
function T with respect to a set R, denoted by T ′ = T ⇓ R, can be any
characteristic function in the interval

(T ∧ R) ≤ T ′ ≤ (T ∨ ¬R) .

An important property of the generalized cofactor is

T ′ ∧ R = T ∧ R .
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Generalized cofactors heuristically make the choice so that the BDD
of T ′ is minimized in some sense. Therefore, the operation indicated by
(T ⇓ R) is called BDD minimization. In practice, BDD minimization
must be applied very carefully for it to be effective. When R has a large
BDD or when R contains many variables that do not appear in T , BDD
minimization using either restrict or constrain is ineffective. This is
precisely the case when one tries to minimize a sub-relation T i(x, w, yi)
with respect to the set R of (approximate) reachable states in next-state
variables, because T i often contains few next-state variables, but the set
of R contains most of the next-state variables. Previously, simplification
of the transition relation by applying reachability don’t cares to the far
side has not been in common use.
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7.2 The Far Side Image Algorithm

In this section, we present a new image computation algorithm which
applies approximate reachability don’t cares to the next-state variables
of the transition relation instead of the customary present-state vari-
ables. Two problems may arise when one tries to modify the far side
of the transition relation: First, if a transition is added from a reach-
able state into a non-reachable state, the result of image computation is
changed. Second, minimizing the BDD representation of the transition
relation on the far side with the entire approximate reachable states is
not effective due to the reason given above. Both problems are solved
by the proposed algorithm. For the first problem, we show how the
error states introduced by spurious transitions can be eliminated from
the result of each image computation. To solve the second problem, we
use local approximations of the reachable states, which are practically
effective at simplifying the transition relation representations.

The new algorithm, called FarSideImg, is presented in Figure 7.1.
The algorithm takes as arguments the partitioned transition relation
{T i} and the set D of states, and returns the exact image set of the given
states. In the pseudo code, the procedure Image represents a generic
image computation procedure, which computes the image using Equ. 7.1.
Given the appropriate quantification scheduling, the procedure Image
can represent any of the transition relation based image computation
methods described in [RAB+95, MHS00, CCJ+01a, JKS02]. In this
sense, our FarSideImg algorithm can be built on top of any transition
relation based quantification scheduling.

Since the transition relation T is a conjunction of the individual transi-
tion relation clusters, each cluster T i is considered an over-approximation
of T . Based on this observation, we first compute a series of upper-bound
images, one for each transition relation cluster, as follow,

R+
i (yi) = ∃x, w . T i(x, w, yi) ∧ D(x) .

Since D does not contain any input variable, w can be existentially
quantified out of T i before it is conjoined with D. A similar argument is
applied to the present-state variables that appear only in D (represented
by QA) and those that appear only in T i (represented by QB). The often
small BDD size of T i and the early quantifications of w, QA, and QB

make R+
i much easier to compute than the exact image R.

Next, the BDD of each T i is minimized with respect to the correspond-
ing approximated image. It is important to notice that we could have
used the set

∧
i R

+
i instead of R+

i to minimize T i. In theory, a smaller
care set (or a larger don’t care set as in this case) provides more degree of
freedom for minimization. However, the subsets of next-state variables
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FarSideImg({T i}, D) {

1 for each i ∈ {1, ..., k} do

2 xT ← present-state variables in the support of T i

3 xD ← present-state variables in the support of D
4 QA ← {xD} \ {xT }
5 QB ← {xT } \ {xD}
6 QC ← {xT } ∩ {xD}

7 R+
i = ∃QC .(∃w, QB . T i) ∧ (∃QA .D)

8 T̂ i = T i ⇓ R+
i

9 od

10 R̂ = Image ({T̂ i}, D)

11 R = R̂ ∧
∧

R+
i // clipping

12 return R

}

Figure 7.1. The Far Side image computation algorithm.

in different R+
i (yi) are disjoint. No next-state variable of R+

j (yj), where

j 6= i, appears in T i(x, w, yi). This makes the minimization of T i with
respect to the set

∧
R+

i ineffective. On the other hand, the local approxi-
mation R+

i (yi) contains only the next-state variables of T i(x, w, yi), and
both of them typically depend only on a small subset yi of the next-
state variables. Heuristic algorithms like constrain and restrict perform
much better in practice when minimization is with respect to R+

i (yi).
Among the two operators, restrict is more robust because it prevents
unwanted BDD variables from appearing in the result. Therefore, we
will use restrict in our implementation and experimental investigation.

The minimized transition relation cluster T̂ i is a characteristic func-
tion within the interval

(T i ∧ R+
i ) ≤ T̂ i ≤ (T i ∨ ¬R+

i ) .

Minimization can be regarded as adding or removing transitions point-
ing to ¬R+

i , as is illustrated in Figure 7.2. It may add, for instance,
transitions that are pointing to ¬R+

i , as represented by the dotted lines.
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Likewise, it may remove from T i transitions that are pointing to ¬R+
i ,

as described by the solid line marked by a cross.

R(y)

R+

i (y)

D(x)

Figure 7.2. Minimizing the transition relation.

Finally, we compute another over-approximation of the overall image,
R̂, by applying the generic image computation to the minimized transi-
tion relation. R̂ contains all the states of the exact image (represented
by R) and possibly some states in ¬R+

i due to the added transitions.
We use the clipping operation of Line 11 to get rid of those error states
by conjoining R̂ with all the other over-approximations.

The following theorem establish the correctness of the new algorithm.

Theorem 7.1 FarSideImg computes the same image set as Image
does. That is, given a partitioned transition relation {T i} and a set D
of states,

FarSideImg({T i}, D) = Image({T i}, D) .

Proof: Let the result of Image({T i}, D), as described by Equ. 7.1,
be denoted by R(y). Since the images computed in Lines 2-7 are over-
approximations, we have

R+
i (yi) ∧ R(y) = R(y) .

Because of the definition of generalized cofactors,

T̂ i ∧ R+
i = T i ∧ R+

i .
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By Lines 10-12 in Figure 7.1

FarSideImg({T i(x, w, yi)}, D(x))

= R̂(y) ∧
∧

R+
i (yi)

= Img(
∧

T̂i(x, w, yi), D(x)) ∧
∧

R+
i (yi)

= {∃x, w .
∧

T̂ i(x, w, yi) ∧ D(x)} ∧
∧

R+
i (yi)

because R+
i (yi) does not depend on x and w

= ∃x, w .{
∧

T̂ i(x, w, yi) ∧ R+
i (yi) ∧ D(x)}

by the property of the generalized cofactor

= ∃x, w .{
∧

T i(x, w, yi) ∧ R+
i (yi) ∧ D(x)}

= {∃x, w .
∧

T i(x, w, yi) ∧ D(x)} ∧
∧

R+
i (yi)

= Img(
∧

T i(x, w, yi), D(x)) ∧
∧

R+
i (yi)

= R(y) ∧
∧

R+
i (yi)

= R(y)

= Img(
∧

T i(x, w, yi), D(x))
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7.3 Experiments

We have implemented the FarSideImg procedure in the symbolic
model checker VIS 2.0 [B+96, VIS], on top of both the MLP image
computation algorithm [MHS00] and the Fine-Grain image computation
algorithm [JKS02]. The new algorithm was compared with the standard
MLP algorithm and Fine-Grain image computation algorithm in the
reachability analysis of 35 circuits from the public domain as well as
industry. The “S” circuits come from the ISCAS’89 benchmark [ISC],
the “D” circuits come from industry, and the others come from the VIS
verification benchmark [VVB]. All the experiments were conducted on
an IBM IntelliStation with a 1.7 GHz Pentium IV CPU and 2GB of
RAM. The data size limit for each process was set to 750MB.

Table 7.1 shows the comparison of the run time and memory usage
of the Far Side algorithm and MLP, with dynamic variable reordering
method “sift”. The image cluster threshold is set to the default value,
5000. Columns 1-3 are the name, the number of binary state variables,
and the number of inputs of each circuit. Columns 4-6 compare the
CPU time; Columns 7-9 compare the peak number of live BDD nodes
during the image computations. Note that none of the two methods can
complete the last 5 circuits, for which the run time and peak live BDD
nodes were up to the last step reached by both methods (indicated by
the number in parentheses in Column 1). The data of D14, for instance,
were up to 12 steps, as indicated by (12) in Column 1. Within the 8
hours time limit, FarSideImg was able to finish one more steps than
MLP (indicated by [13] in Column 5).

The total run time of the 35 examples was 171,876 seconds for the
original MLP, and 114,710 seconds for FarSideImg. Overall, this is a
33% improvement for FarSideImg. However, note that MLP ran out
of time on am2901 and palu, which means that the 33% win is a lower
bound.

Another way to analyze the data is to partition the examples into
groups and compare the performance on different groups. Group “easy”
consists of circuits whose reachability analysis can be finished within 15
minutes (the first 15 circuits); Group “hard” consists of circuits whose
reachability can be finished by at least one method within 8 hours; Group
“harder” consists of the rest of the circuits. The average run time and
the geometric mean of the peak live BDD nodes of the two algorithms
are compared separately for the three groups as follows: These data
show that the run time and the peak BDD size for Groups “hard” and
“harder” average an order of magnitude larger than those for Group
“easy”. On the “easy” problems, FarSideImg does not win because of
its additional overhead in approximation and refinement. On the “hard”
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Group “easy” Group “hard” Group “harder”
MLP FarSide % MLP FarSide % MLP FarSide %

CPU(s) 281 280 0 6871 4311 +37 14233 9972 +30

BDD(k) 157 161 -2 1181 845 +25 3348 2729 +18

and “harder” problems, controlling BDD size by applying Don’t Cares
to the far side inside image computation pays off.

Note that in one anomalous “hard” circuit, prolog, MLP outper-
forms FarSideImg by more than a factor of three. We believe that the
anomaly is due to the noise introduced by the BDD dynamic variable
reordering during reachability analysis. To verify this conjecture, the
BDD orders at the end of reachability analysis were stored, and with
these fixed variable orders we re-ran all the experiments. (For those
“harder” circuits whose reachability analysis can not be finished, the
default fixed variable orders generated by VIS’s static order command
were used.) The results are shown in Table 7.2.

With the fixed orderings, some circuits run much faster (such as pro-
log), some run much slower (s5378opt is about 4 times slower), and some
run out of time (such as s3271). It is important to notice that for the
anomalous circuit prolog, FarSideImg has a marginal win (94 seconds
vs. 104; 7200k BDD nodes vs. 9967k). This confirms that the anomality
in Table 7.1 was due to noise introduced by dynamic variable reordering.

With the fixed orders, the average run time (among those completed)
was 576 seconds for MLP and 607 seconds for FarSideImg. More im-
portantly, there are now 3 circuits in Group “hard” that can no be com-
pleted by either method because they run out of memory (M/O). The
peak number of live BDD nodes are often an order of magnitude higher
than those in Table 7.1. Given the fact that finding a good fixed order is
hard in practice, it is generally accepted that dynamic variable reorder-
ing is required when dealing with industrial-strength circuits. Therefore,
we claim that the data with dynamic reordering is more significant.

Our experiments with the Fine-Grain image algorithm of [JKS02]
demonstrated a similar performance improvement for FarSideImg.
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Table 7.1. Comparing FarSideImg and MLP with dynamic variable reordering.

CPU (s) Peak BDD nodes (k)
Design regs inputs MLP FarSide % MLP FarSide %

D12 48 16 6 7 -16 204 197 + 3

abs fabr 87 21 26 20 +25 43 46 - 5

D23 85 22 11 11 0 24 24 0

nosel 128 65 30 32 - 5 57 53 + 7

bpb 36 9 33 53 -60 94 108 -14

shampoo 140 21 55 79 -44 91 98 - 7

soap 140 11 73 85 -17 101 97 + 3

3 proc 62 18 103 106 - 2 213 183 +13

soapLtl3 142 11 360 329 + 8 341 296 +13

s1512 57 29 364 435 -19 91 89 + 2

Feistel 293 68 541 567 - 4 159 229 -43

D5 319 24 545 522 + 4 250 301 -20

D1 101 76 556 452 +18 665 610 + 8

s4863o 88 35 582 510 +12 402 402 0

cps1364o 134 97 598 672 -12 421 447 - 6

D21 92 6 626 610 + 2 466 474 - 1

D2 94 6 1024 862 +15 765 745 + 2

cps1364 231 97 1198 971 +18 363 372 - 2

s4863 104 49 1274 1037 +18 749 602 +19

D4 230 22 1370 1259 + 8 540 493 + 8

icctl 62 27 1462 1934 -32 1503 1515 0

s5378opt 121 35 1476 552 +62 508 335 +34

FIFOs 142 7 2129 1907 +10 1098 1021 + 6

prolog 136 36 2443 7907 -223 1935 2287 -18

s3271 116 26 2627 1788 +31 1085 820 +24

s1269 37 18 3513 2958 +15 3588 3529 + 1

D22 140 20 9351 12821 -37 3356 2834 +15

s3330 132 40 10733 2382 +77 3110 2922 +49

am2901 68 27 >28800 4827 >+83 - 2849 -

palu 37 10 >28800 19153 >+33 - 8985 -

D14 (12) 96 21 19978 6099 [13] +69 4833 3066 +63

D15 (31) 106 31 12021 9795 [35] +19 5855 4435 +24

D16 (16) 531 16 11264 6845 [17] +40 3142 3142 0

D18 (23) 507 200 11994 11458 + 4 1621 1385 +14

D20 ( 7) 562 31 15910 15666 + 1 2926 2561 +12
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Table 7.2. Comparing FarSideImg and MLP with fixed variable ordering.

CPU (s) Peak BDD nodes (k)
Design regs input MLP FarSide % MLP FarSide %

D12 48 16 1 1 0 67 74 - 9

abs fabr 87 21 36 35 + 2 3 2 +11

D23 85 22 1 1 0 58 63 - 7

nosel 128 65 1 2 -66 0.02 0.03 -43

bpb 36 9 66 65 + 2 0.5 0.5 0

shampoo 140 21 14 21 -53 1 1 0

soap 140 11 16 32 -101 925 1040 -12

3 proc 62 18 10 14 -42 1092 532 +51

soapLtl3 142 11 55 99 -81 4760 4836 - 1

s1512 57 29 837 1120 -33 24085 23469 + 2

Feistel 293 68 4 5 -29 744 684 + 8

D5 319 24 94 114 -21 4665 4158 +10

D1 101 76 82 87 -6 8469 8469 0

s4863o 88 35 57 54 + 5 646 646 0

cps1364o 134 97 19 21 -11 2080 1993 + 4

D21 92 6 224 305 -35 4649 3670 +21

D2 94 6 248 326 -31 3268 3149 + 3

cps1364 231 97 25 24 + 2 2021 1572 +22

s4863 104 49 59 35 +39 822 867 - 5

D4 230 22 79 117 -47 1035 1096 - 5

icctl 62 27 115 134 -15 3084 2268 +26

s5378opt 121 35 6960 6593 + 5 24160 20221 +16

FIFOs 142 7 444 424 + 4 4252 4710 -10

prolog 136 36 104 94 + 9 9967 7200 +27

s3271 116 26 M/O M/O - M/O M/O -

s1269 37 18 2668 2603 + 2 44928 44928 0

D22 140 20 2414 3158 -30 1736 1716 + 1

s3330 132 40 931 913 + 1 24735 24736 0

am2901 68 27 M/O M/O - M/O M/O -

palu 37 10 M/O M/O - M/O M/O -

D14 96 21 M/O M/O - M/O M/O -

D15 106 31 M/O M/O - M/O M/O -

D16 531 16 M/O M/O - M/O M/O -

D18 507 200 M/O M/O - M/O M/O -

D20 562 31 M/O M/O - M/O M/O -
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7.4 Discussion of Hypothesis

Our hypothesis is that, the performance gain of FarSideImg is due
to the reduction of peak BDD size inside the conjoin-quantify operation.
However, FarSideImg focuses on minimizing the BDDs used inside the
image computation, not the overall BDDs used in the reachable analysis.
Therefore, the overall BDD data in the previous two result tables are
less informative, since a large part of the BDDs are used for representing
the accumulated reachable states. The set of accumulated reachable
states can become quite large near the end of the reachability analysis.
Therefore, we also performed experiments that attempted to measure
data more relevant to the hypothesis.

In Figure 7.3, FarSideImg (solid line) and MLP (dotted line) are
compared on two different parameters: the BDD size of the intermedi-
ate products and the peak number of live BDD nodes. Note that the
latter includes the BDDs representing the accumulated reachable states.
The horizontal axis shows the image steps, from 1 to 43, indicating the
sequential depth of 43. The upper figure shows that except for a few
iteration steps (e.g., Steps 2,3,6 and 8), the minimization is effective at
reducing the maximum BDD size of the intermediate products.

Since run times are determined primarily by the maximum BDD size
of the intermediate products, the upper part in Figure 7.3 is more in-
structive in explaining the reason for the speed-up achieved by Far-
SideImg. In Figure 7.3, the peak occurs at iteration 21, where the
MLP size is about 3 times larger than the FarSideImg size. The Far-
SideImg size peaked near iteration 29, at which the MLP size was about
the same. The curve with fixed variable orders is similar.

Figure 7.4 shows the effect of the transition relation minimization
by FarSideImg, i.e., the BDD size reduction in percentage at different
steps of the reachable analysis. From top down, these data are for cir-
cuits s5378opt, prolog, and s3271. (Data for the other 32 circuits are
similar.) Each graph has two curves: one for dynamic variable reorder-
ing, and the other for fixed ordering. Note that 50% on the curve means
that the BDD size of the minimized transition relation is half of the BDD
size of the original one. For the first few iterations, the reduction in TR
size is substantial. As the iteration count grows, the size reductions
saturate at a marginal value (0 to 40%).

In the saturation phase (the right side of the curves), the reductions
are greater when a fixed ordering is used. The data for s5378opt in
Tables 7.1 and 7.2 show that even though the reductions never fell to
less than 30%, reachability analysis is 5 times slower for MLP with fixed
variable ordering than with dynamic variable reordering. This might
appear to be anomalous since we have attributed time reductions with
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Figure 7.3. s5378opt: The upper part is the BDD size of the intermediate products
at different steps during the reachability analysis; the lower part is the total number
of live BDD nodes, including BDDs representing the accumulated reachable states.
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Figure 7.4. The BDD size reduction of the transition relation, in terms of the ratio
of the BDD size of minimized transition relation to the original BDD size.
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BDD size minimization. However, note that these data are percentages,
not absolute values. The size of the minimized transition relation for
fixed variable ordering is still much larger than the size of the minimized
transition relation for dynamic variable ordering, as indicated by the
minimized absolute values in the lower part of Figure 7.3.

The plateaus for s5378opt correspond to calls by the BDD manager
to the reordering routine (these occurred at iterations 10, 17 and 27).
In between these calls, the reductions follow a saturating pattern similar
to the curves for fixed BDD ordering. Sometimes there is a final phase
of increased reduction (the right side of the curves), due to the fact that
image size decreases near the end of the reachability analysis. (A smaller
image makes a better constraint for minimization.)

For prolog, reachability analysis is more than an order of magnitude
faster with fixed ordering. (The size of the transition relation for fixed
ordering is about 2 times larger than for dynamic variable reordering.)
This is a case where the BDD reordering itself takes a larger proportion
of the time.

The bottom part of Figure 7.4 pertains to circuit s3271. With the
fixed variable ordering, this circuit can complete only 4 iterations be-
fore running out of the 750MB memory, whereas with dynamic variable
reordering, it can complete all 17 iterations in only about 30 minutes.
Thus even though dynamic variable reordering makes it difficult to iso-
late the effects of algorithmic improvement, it appears to be the only
viable option for some hard models.

To summarize, the performance improvement of the FarSideImg al-
gorithm based on compositional BDD minimization is significant on av-
erage, and especially significant on difficult circuits. For circuits requir-
ing more than 15 minutes to complete the reachability analysis, Far-
SideImg, implemented on top of MLP, is significantly faster than the
standard MLP in 16 out of the 19 cases. It is reasonable, therefore, to
conclude that the new method is more robust in large industrial-strength
applications.



Chapter 8

REFINE SAT DECISION ORDERING

In bounded model checking, the series of SAT problems for check-
ing the existence of finite-length counterexamples are highly correlated.
This strong correlation can be used to improve the performance of the
SAT solver. The performance of modern SAT solvers using the DLL
recursive search procedure depends heavily on the variable decision or-
dering. In this chapter, we propose a new algorithm to predict a good
variable decision ordering based on the analysis of unsatisfiability proofs
of previous SAT instances and apply it to the current SAT instance. By
combining the predicted ordering with the default decision heuristic of
the SAT solver, we can achieve a significant performance improvement
for SAT based bounded model checking.
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8.1 Unsatisfiability Proof as Abstraction

In bounded model checking, the existence of a finite-length counterex-
ample is formulated into a SAT problem. The Boolean formula that
encodes a BMC instance can be translated into the CNF format. The
satisfiability of a CNF formula can be decided by the Davis-Longeman-
Loveland (DLL [DLL62]) recursive search procedure, which has been
used by many modern SAT solvers. In the DLL procedure, the basic
steps are making decisions (assigning values to free variables) and prop-
agating the implications of these decision on the subformulae.

Like many other search problems, the order in which these Boolean
variables are assigned, as well as the values assigned to them, affects a
SAT solver’s performance significantly. In fact, different variable de-
cision orderings imply different binary search trees, whose sizes and
corresponding search overheads can be quite different. Because of the
NP-completeness of the SAT problem, finding the optimal decision or-
dering is unlikely to be easier; modern SAT solvers often use heuristic
algorithms to compute decision orderings that are “good enough” for
common cases. For instance, the SAT solver Chaff [MMZ+01] uses the
Variable State Independent Decaying Sum (VSIDS) heuristic. Some of
the pre-Chaff decision heuristics can be found in the survey paper by
Silva [Sil99].

SAT solvers are designed to deal with general CNF formulae. Us-
ing them to decide the SAT problems encountered in bounded model
checking requires the translation of the resulting formulae into CNF.
Useful information that is unique to BMC is lost during this translation.
In particular, the series of SAT problems that BMC produces for in-
creasing counterexample length is made up of problems that are highly
correlated; this means that information learned from previous SAT prob-
lems can be used to help solving the current problem. In this chapter,
we propose a new algorithm to predict a good variable ordering for the
SAT problems in BMC. This linear ordering is computed by analyzing
all previous unsatisfiable instances; the ordering is successively refined
as the BMC unrolling depth keeps increasing. We also give two different
approaches (static and dynamic) to apply this linear ordering. In both
cases, the newly created ordering is combined with the default variable
decision heuristic of the SAT solver to make the final decisions.

Recall that whenever a Boolean formula is proved to be unsatisfiable
by a SAT solver, there exists a final conflict that cannot be resolved by
backtracking. Such a final conflict, represented by an empty clause, is
the unique root node of a resolution subgraph.

An example of the resolution subgraph is shown in Figure 8.1. The
leaves of this graph are the clauses of the original formula (represented
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by squares on the left-hand side), and the internal nodes are the conflict
clauses added during the SAT solving (represented by circles in the mid-
dle). By traversing this resolution graph from the unique root backward
to the leaves, one can identify a subset of the original clauses that are
responsible for this final conflict. This subset of original clauses, called
the unsatisfiable core [ZM03, GN03], is sufficient to imply unsatisfiabil-
ity. In Figure 8.1, the conflict clauses that contribute to the final conflict
are marked gray; the black squares at the left-hand side form the sub-
set of the original clauses in the unsatisfiable core. The unsatisfiability
proof includes both the UNSAT core and the conflict clauses involved in
deriving the final empty clause.

Empty clauseConflict clausesOriginal clauses

Figure 8.1. Illustration of the resolution graph.

Because of the connection between the CNF formulae and the model
(circuit), the unsatisfiable core of an unsatisfiable BMC instance implies

an abstraction of the model. Let the abstraction be represented as M̂ =

〈V̂ , Ŵ , Î, T̂ 〉, where V̂ , and Ŵ are subsets of V and W , respectively. The
set of initial states and the transition relation of the abstract model,
denoted by Î and T̂ , respectively, are existential abstractions of their
counter-parts,

Î(V̂ ) = ∃(V \ V̂ ).I(V ) ,

T̂ (V̂ , Ŵ , V̂ ′) = ∃(V \ V̂ ), (W \ Ŵ ), (V ′ \ V̂ ′). T (V, W, V ′) .
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In other words, M̂ is constructed from M by removing some state vari-
ables, inputs, and logic gates. When a state variable v ∈ (V \ V̂ ) is
quantified out, the logic gates that belong to the fan-in cone of v but
not the fan-in cones of other state variables are also removed from T̂ .
Since all the clauses of the CNF formula come from the model and the
LTL property, a subset of these clauses induces a subset of registers,
inputs, and logic gates of the model. This subformula implicitly defines
an abstraction.

We illustrate this connection using the example in Figure 8.2. The top
squares in this figure represent the original clauses of the CNF formula,
and the bottom is one copy of the circuit structure. There are k copies
of the unrolled circuit structure in a depth-k BMC instance, one for
each time frame. Assume that the BMC instance is unsatisfiable. The
black squares represent clauses in the unsatisfiable core. Each clause
corresponds to some registers or logic gates of the model. A register is
considered to be in the abstract model if and only if its present-state or
next-state variables are in the UNSAT core. A logic gate is considered
to be in the abstract model as long as any of the clauses describing its
gate relation appear in the unsatisfiable core.

Original clauses

Circuit

Figure 8.2. From unsatisfiable cores to abstractions.

The abstract model induced by an UNSAT core as described above
is an over-approximation of the original model, because the elementary
transition relations of logic gates not included in the current abstrac-
tion are assumed to be tautologies. The abstract model simulates the
concrete model in the sense that, if there is no counterexample of a
certain length in the abstract model, there is no counterexample of the
same length in the concrete model. Had one known the current abstract



Refine SAT Decision Ordering 147

model by an oracle, one could have applied this information to speed up
the solving of the current BMC instance. The idea is to make decisions
(variable assignments) only on the variables appearing in the current ab-
stract model, since by definition, variables inside the unsatisfiable core
are sufficient to prove the unsatisfiability of the BMC instance. By do-
ing so, we are exploring a much smaller SAT search space since only
the logic relations among these variables are inspected, while the other
irrelevant variables and clauses are completely ignored. If the size of the
abstract model is small (compared to the entire model), this restricted
SAT search is expected to be much faster.

Of course, there is no way to know the current unsatisfiable core unless
one solves the current SAT problem. In practice, however, the series of
SAT problems produced by BMC for the ever increasing counterexample
length are often highly correlated, in that their unsatisfiable cores share
a large number of clauses. Therefore, abstract models extracted from
previous unsatisfiable BMC instance is a good estimation of the abstract
model for the current BMC instance. In bounded model checking, the
vast majority of the SAT problems are unsatisfiable. For passing prop-
erties, all instances are unsatisfiable (i.e., no counterexample); for failing
properties, all but the last instance are unsatisfiable. Often, there is a
sufficiently large number of previous abstract models for computing an
estimation of the current abstraction and refining the “estimation.”

The idea of identifying important decision variables from previous
unsatisfiable instances and applying them to solve the current instance
is illustrated in Figure 8.3. Each rectangle represents a copy of the
transition relation of the model for one time frame. The upper part of
the figure is a BMC instance for the unrolling depth 3, and the lower part
is a BMC instance for the unrolling depth 4. The shaded area represents
the unsatisfiable core from the length-3 BMC instance. The dotted line
indicates the abstraction of the model derived from an UNSAT core of
the length-4 BMC instance. Note that the UNSAT core for k = 3 if
already a good estimation of the UNSAT core for k = 4. Therefore, we
can record variables appearing in this first UNSAT core and give them
a higher priority inside the SAT solver when solving the length-4 BMC
instance.

In the best-case scenario, i.e., the estimation is perfect and the pre-
vious abstraction is already sufficient for proving the unsatisfiability of
the current SAT instance, no variable other than those in previous un-
satisfiable cores needs to be assigned before the SAT solver stops and
reports UNSAT. Even if there are some discrepancies between the esti-
mation and the reality, we still expect a significant reduction in the size
of the SAT search tree by making decisions on the variables of previ-
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k=4

Previous

model

Current

abstract

model

abstract

k=3

Figure 8.3. Previous abstractions to help solving the current BMC instance.

ous abstract models first. This predicted variable decision ordering can
also help when the current SAT instance is indeed satisfiable, since un-
interesting part of the search space will be quickly identified and pruned
away through the addition of conflict clauses.
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8.2 Refine the Decision Ordering

All the previous unsatisfiable SAT instances are used to predict the
variable decision ordering for the current instance. We can assign a
score to each Boolean variable of the SAT formula. Variables appearing
in previous unsatisfiable cores are assigned higher scores. The more
frequent a variable appears in previous UNSAT cores, the higher its
score is. These scores are combined together in solving the current BMC
instance, so that variables with higher scores are given higher priorities
in the decision-making.

The augmented bounded model checking algorithm is presented in
Figure 8.4. The new procedure, called RefineOrderBmc, accepts two
parameters: the model M and the invariant predicate P . List varRank
is used to store the scores of variables appearing in previous unsatisfiable
cores. Integer k is the current unrolling depth. Procedure GenCnfFor-
mula generates the CNF representation of the length-k BMC instance.
The satisfiability of F is decided by the SAT procedure SatCheck,
which is a Chaff-like SAT solver that also takes the predetermined or-
dering varRank as a parameter. Note that for the formula F , varRank
is often a partial ordering, since it may not have all the Boolean variables
of F .

When F is unsatisfiable, SatCheck computes the UNSAT core and
returns all the variables appearing in it. This set of variables, denoted
by unsatV ars, is used to update varRank. The heuristic used inside
UpdateRanking to update the variable ranking will be explained later.
After the unrolling depth k is increased, the updated ordering is applied
to SatCheck again. The entire BMC procedure terminates as soon
as F becomes satisfiable, in which case the property GP is proved to
be false, or the unrolling depth k exceeds a predetermined completeness
threshold, in which case the property is declared true.

Inside the procedure UpdateRanking, all the Boolean variables that
have ever appeared in any previous unsatisfiable cores are assigned non-
zero scores. In this scoring scheme, all previous unsatisfiable cores are
used to determine the current variable ordering, but we give a larger
weight to the latest UNSAT cores. Let bmc score(x) be the score for
the variable x; then we have

bmc score(x) =
∑

1≤j≤k

in-unsat(x, j) × j ,

where k is the current unrolling depth, and in-unsat(x, j) returns 1
if variable x appears in the unsatisfiable core of j-th BMC instance,
and returns 0 otherwise. The ranking of these variables is based on the
bmc score—the one with a higher score gets the higher priority. This
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RefineOrderBmc (M , P ) {

Initialize the list varRank;
for (each k ∈ N) {

F = GenCnfFormula (M, P, k);
(isSat, unsatV ars) = SatCheck (F, varRank);
if (isSat)

return FALSE;
else

UpdateRanking (unsatV ars, varRank);
}
return TRUE;

}

Figure 8.4. Refining the SAT decision order in bounded model checking.

is designed for the following two observations: (1) one wants to give
preference to the variables appearing in most recent unsatisfiable cores,
which usually have higher correlation to the current one; and (2) one
wants to avoid relying exclusively on any particular unsatisfiable core,
because it may not always be an accurate estimation of the current one.

In order to generate the unsatisfiable core after the SAT solver reports
UNSAT, additional bookkeeping is required during the SAT solving pro-
cess. In particular, for every conflict clause (new clause learned from
a conflict), its complete conflict graph must be recorded to memorize
all the clauses that are responsible for it. Since some of these clauses
may be conflict clauses themselves, at the end, one may have a Con-
flict Dependency Graph (CDG) [CCK+02], in which one conflict graph
depends on another. By definition, a CDG is a directed acyclic graph.
In the presence of a CDG, the unsatisfiable core can be easily identified
by traversing the CDG from the final conflict backward to the original
clauses.

To maintain a CDG, we need to record all the conflict clauses added
throughout the SAT search. Although some of them may not belong
to the UNSAT core, there is no way of identifying them in advance.
However, many modern SAT solvers, including Chaff, have a feature of
periodically removing conflict clauses that are regarded as irrelevant (or
less relevant) to the current search. For example, if a conflict clause
has not be used for a considerably long time, it will be deleted from the
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clause database. This can reduce the total number clauses that need
to be inspected during BCP. Disabling this feature may slow down the
SAT solver significantly when solving difficult SAT problems. On the
other hand, if conflict clauses are allowed to be deleted, the dependency
relation in the CDG may be broken, which makes the construction of a
complete unsatisfiable core impossible.

In order to generate a complete unsatisfiable core without slowing
down the search at the same time, we choose to maintain separately a
simplified version of the CDG. Our observation is that the details of the
conflict clauses are not needed in the CDG. For the purpose of identify-
ing the unsatisfiable core, which is a subset of the original clauses, only
the dependency relation of the conflict clauses are required. Therefore,
our simplification is mainly on representing the conflict clause—instead
of recording both the literals and the depended clauses, we replace the
conflict clause by a pseudo clause ID and retain only the dependency
relation between the clause IDs. The use of a separate simplified CDG
leaves the original clause database intact. Therefore, the periodic re-
moval of irrelevant conflict clauses is not affected. Compared to the
number of the literals in the conflict clauses, which is typically 100-200,
the overhead of using an integer for the pseudo ID is small.

In practice, the additional overhead of maintaining and finally travers-
ing the simplified CDG is relatively low. In our controlled experiments,
we have found that the additional runtime is about 5% of the total run
time, and the memory overhead is often negligible.

Applying previously computed variable decision ordering to the suc-
cessive SAT calls requires a slight modification of the SAT solver. Since
SAT solvers are different, the actual modification depends on the in-
dividual SAT solvers used in BMC. The following discussion is for the
SAT solver Chaff [MMZ+01]. However, the proposed method can be
easily adapted to other DLL based SAT solvers. Chaff’s default vari-
able decision heuristic is called VSIDS (for Variable State Independent
Decaying Sum): every literal l is associated with a score, denoted by
chaff score(l). The initial value is the number of clauses of the orig-
inal formula in which l appears, i.e., the literal counts. Every a certain
number of decisions, chaff score(l) is updated as follows:

chaff score(l) = chaff score(l)/2 + new literal counts(l) ,

where new literal counts(l) is the number of new conflict clauses con-
taining literal l. All the variables are sorted periodically by chaff score.
When it is the time to make a decision on free variables, the vari-
able l with the highest score will be selected. Depending on whether
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chaff score(l) is larger than chaff score(l), the variable will be as-
signed either 1 or 0.

The pre-computed score bmc score, in principle, can either replace or
be combined with chaff score to determine the final ordering. How-
ever, relying exclusively on bmc score may not be practical in all cases,
because the score is available only for a (usually small) subset of vari-
ables, and it is for variables instead of the two phases of the same
literals—both the positive and negative phase of a variable have the
same bmc score. Therefore, we choose to combine it with chaff score

in the decision-making, instead of using it as the only criterion.
Two different ways of combining the two types of scores are possible:

One is called the static configuration, and the other is called the dynamic
configuration. In both approaches, chaff score is updated as usual and
sorting of free variables inside the SAT solver is performed periodically.
However, sorting in the static configuration is primarily by bmc score,
with chaff score only as a tiebreaker. It is called static because the
sorting criteria is fixed throughout the entire SAT solving process.

In the dynamic configuration, the periodic sorting is initially based
primarily on bmc score with chaff core as a tiebreaker. However, if
the estimation (of the abstract model) is found to be inaccurate, the
SAT solver can automatically switch back to the default VSIDS heuris-
tic, which sorts exclusively by chaff core. The rationale behind this
approach is that, by starting with the ranking by bmc score, we can
quickly learn important clauses and prune away a significant portion
of the search space early on. On the other hand, the VSIDS heuris-
tic is designed to favor the most recently added conflict clauses, which
may eventually dominate in terms of literal counts for difficult problems.
Applying VSIDS heuristic in those cases allows the search process to be
driven primarily by recent conflict clauses.

The SAT problem is considered difficult when either the estimation
of the unsatisfiable core is not accurate, or proving the unsatisfiability
indeed needs almost all the variables. In both cases, the number of
decisions required to solve the problem is often large; therefore, we can
use the number of decisions to predict whether the problem is difficult.
In the implementation of the dynamic configuration, we switch back to
the VSIDS heuristic as soon as the number of decisions is greater than
1/64 of the number of original literals. (This heuristic threshold was
determined by empirical studies.)
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8.3 Experimental Analysis

We have implemented the RefineOrderBmc procedure on top of
the bounded model checking procedure in VIS-2.0 [B+96, VIS]. The
back-end SAT solver is Chaff [MMZ+01]. The BMC command in VIS
is based on the basic encoding of BMC as in [BCCZ99] and the basic
induction proof as in [SSS00]. Experimental studies were conducted
on the set of IBM Formal Verification Benchmark circuits [IBM], each
with an invariant property GP . The experiments were performed on a
400MHz Pentium II with 1GB of RAM running Linux, with the time out
limit set to 2 hours. In our experiments, the only difference between the
standard BMC command and RefineOrderBmc is their SAT variable
decision orderings. Trivial experiments that can be finished by both
methods within 10 seconds were excluded.

Table 8.1 compares the CPU time of the new method (with both
static and dynamic configurations) to the standard BMC command in
VIS. The first column is the name of the model. The second column
indicates whether the given property is true or false. If the experiments
cannot be finished within 2 hours, we compare the CPU time taken up
to the maximum unrolling depth that all methods can reach; in those
cases, the maximum unrolling depth is given in the parenthesis. The
next three columns give the CPU time of the standard BMC and the
new method with both static and dynamic configurations.

The last two rows of Table 8.1 give the corresponding total CPU time,
and the overall speedup of the new methods over the standard BMC. The
overall speedup of RefineOrderBcm with the static configuration is
38%; the overall speedup of RefineOrderBmc with the dynamic con-
figuration is 42%. Out of the 37 circuits, the new method has achieved
performance gains on 26 (for static) and 32 (for dynamic ) circuits. The
same results are also given in the scatter plots in Figure 8.5. Note that
dots that are under the diagonals represent the wins by the new method.

Figure 8.6 and 8.7 show the detailed information from the SAT solver
while it is solving the BMC instances of the example circuit 02 3 batch 2.
In all these figures, the horizontal axis represents the different BMC
unrolling steps. The two figures in Figure 8.6 compare plain BMC with
RefineOrderBmc (static) on the “maximum decision level” and the
“number of decisions.” The two figures in Figure 8.7 compare plain
BMC with RefineOrderBmc on the “number of conflict clauses” and
the “number of implications.”

With the help of the predicted variable decision ordering, the size
of the SAT search trees have been significantly reduced, as shown by
Figure 8.6. At the right-hand side of the figures (when BMC depths are
large), the reductions can be up to two orders of magnitude. In addition,
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Table 8.1. Comparing BMC with and without refining the SAT decision order.

True/False BMC time refine order bmc time
Model or (k) (s) static (s) dynamic (s)

01 batch F 39 25 24

02 1 batch 1 (41) 6613 7200 5677

02 1 batch 2 (28) 835 3648 894

02 3 batch 2 (65) 6944 494 476

02 3 batch 4 (65) 6906 433 475

02 3 batch 6 (59) 6861 352 368

03 batch (F) 214 222 238

04 batch (F 85 70 67

06 batch F 962 589 596

11 batch 2 (29) 3820 4533 2932

11 batch 3 (28) 4160 3102 3515

14 batch 1 (35) 201 2272 287

14 batch 2 F 35 30 35

15 batch F 12 13 12

16 1 batch (83) 6948 2256 4537

17 1 batch 1 (264) 7161 7114 6965

17 1 batch 2 (12) 29 816 44

17 2 batch 1 (167) 7160 4331 4629

17 2 batch 2 (141) 7181 3475 3268

18 batch (20) 1172 2999 1049

19 batch F 139 123 108

20 batch (28) 3748 5617 3992

21 batch F 93 80 76

22 batch (41) 6164 5134 3986

23 batch (25) 3968 3209 3644

24 1 batch 1 (22) 6045 748 1182

24 1 batch 2 (22) 4992 775 1053

24 1 batch 3 (22) 5075 782 1054

25 batch (90) 7107 3069 2922

27 batch F 34 27 37

28 batch F 782 855 683

29 batch (22) 4917 5397 4270

31 1 batch 1 (21) 5728 3831 4491

31 1 batch 2 (21) 5838 2292 3552

31 1 batch 3 (21) 4321 1904 3748

31 2 batch 1 (20) 5419 5215 2660

31 2 batch 2 (19) 6924 3180 5475

Total 138,632 86,212 79,021
Percentage 100% 62% 57%
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Figure 8.5. Scatter plots: plain BMC vs. BMC with the refined ordering.
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Figure 8.6. Reduction of the size of decision trees on Circuit 02 3 latch 2 : plain
BMC vs. BMC with the refined ordering.
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Figure 8.7. Reduction of the number of conflicts and implications on Circuit
02 3 latch 2 : plain BMC vs. BMC with the refined ordering.
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the number of conflicts and the number of implications are also reduced
significantly, as shown in Figure 8.7. These reductions in turn translate
into shorter CPU times.
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8.4 Further Discussion

We have presented a new algorithm for predicting and successively
refining the variable decision ordering for SAT problems encountered
in bounded model checking. The algorithm is based on the analysis of
the unsatisfiability cores of previous BMC instances. We have described
both the static and the dynamic configurations in applying this new
ordering to the decision-making inside SAT solvers, by using the SAT
solver Chaff as an example. Our experiments conducted on industrial
designs have showed that the new method significantly outperforms the
standard BMC. Further experimental analysis has indicated that the
performance improvement is due to the reduction of the sizes of the
SAT search trees.

The proposed algorithm exploits the unique characteristic of the SAT
problems in BMC: the different SAT problems are highly correlated.
It complements existing decision heuristics of the SAT solvers used for
BMC. We believe that the same idea is also applicable to SAT based
problems other than bounded model checking, as long as their subprob-
lems have a similar incremental nature.

Tuning the SAT solver for BMC was first studied by Shtrichman
in [Sht00], where a predetermined variable ordering was extracted by
traversing the Variable Dependency Graph (VDG) in a topological or-
der. The entire BMC instance can be regarded as a large combinational
circuit lying on a plane in which the horizontal axis represents different
time frames and the vertical axis represents different registers (or state
variables). By either forward or backward traversal of the VDG, Shtrich-
man sorted the SAT variables according to their positions on the “time
axis”. In contrast, our new method sorts the SAT variables according
to their positions on the other axis—the “register axis.”

Information from the circuit structure was also used in previous work
to help the SAT search. In [GAG+02], Ganai et al. proposed a hy-
brid representation as the underlying data structure of their SAT solver.
Both circuits and CNF formulae were included in order to apply fast
implication on the circuit structure and at the same time retain the
merit of CNF formulae. In [GGW+03b], Gupta el al. applied implica-
tions learned from the circuit structure (statically and dynamically) to
help the SAT search, where the implications were extracted by BDD
operations. In [LWCH03], Lu et al. proposed to use circuit topological
information and signal correlations to enforce a good decision ordering
in their circuit SAT solver. The correlated signals of the underlying cir-
cuit were identified by random simulation, and were then applied either
explicitly or implicitly to the SAT search. In their explicit approach, the
original SAT problem was decomposed into a sequence of subproblems
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for the SAT solver to solve one-by-one. In their implicit approach, cor-
related signals were dynamically grouped together in such a way that
they were most likely to cause conflicts.

The incremental nature of the BMC instances was also exploited by
several incremental SAT solvers [WKS01, ES03]. These works focused
primarily on how to incrementally create a SAT instance with as lit-
tle modification as possible to the previous one, and on how to re-use
previously learned conflict clauses. However, refining the SAT decision
ordering has not been studied in these incremental solvers. Therefore,
the method proposed in this chapter can be combined with the incre-
mental SAT techniques to further improve their performance.



Chapter 9

CONCLUSIONS

The purpose of this research is to apply model checking techniques to
the verification of large real-world systems. We believe that automatic
abstraction is the key to bridge the capacity gap between the model
checkers and industrial-scale designs. The main challenge in abstraction
refinement is related to the ability of reaching the optimum abstrac-
tion, i.e., a succinct abstraction of the concrete model that decides the
given property. In this book, we have proposed several fully automatic
abstraction refinement techniques to efficiently reach or come near the
optimum abstraction efficiency.

9.1 Summary of Results

In Chapter 3, we have proposed a new fine-grain abstraction approach
to push the granularity of abstraction refinement beyond the usual state
variable level. By keeping the abstraction granularity small, we add at
each refinement iteration only the information relevant to verification
into the abstract models. Our experience with industrial-scale designs
shows that fine-grain abstraction is indispensable in verifying large sys-
tems with complex combinational logic.

In Chapter 4, we have proposed a new generational refinement al-
gorithm Grab, in which we use a game-based analysis of all shortest
counterexample in the SORs to select refinement variables. By sys-
tematically analyzing all the shortest counterexamples, Grab identifies
important refinement variables from the local support of the current ab-
stract model. The global guidance from all shortest counterexamples
and the scalable refinement variable selection computation are critical
for Grab to achieve a higher abstraction efficiency. Compared to pre-
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vious single counterexample guided refinement methods, Grab often
produces a smaller final abstract model with less run time.

In Chapter 5, we have proposed the DnC compositional SCC analysis
algorithm which quickly identifies uninteresting parts of the state space
of previous abstract models and prune them away before going to the
next abstraction level. We also exploit the fact that the strength of an
SCC or a set of SCCs decreases monotonically with refinement, by tailor-
ing the model checking procedure to the strength of the SCC at hand.
DnC is able to achieve a speed-up of up to two orders of magnitude
over standard symbolic fair cycle detection algorithms, indicating the
effectiveness of reusing information learned from previous abstractions
to help the verification at the current level, .

In Chapter 6, we have proposed a state space decomposition algo-
rithm in which the SCC quotient graph of an abstract model is used to
decompose the concrete state space into disjunctive sets. A nice feature
of this composition is that we can perform fair cycle detection in each
disjunctive state subset in isolation without introducing inconclusives.
We have also proposed a new guided search algorithm for symbolic fair
cycle detection which can be used at the end of the adaptive popcorn-
line policy in the DnC framework. Our experiments show that for large
systems or otherwise difficult problems, heavy investment in disjunctive
decomposition and guided search can significantly improve the perfor-
mance of DnC.

In Chapters 7 and 8, we have proposed two new algorithms to improve
the performance of BDD-based symbolic image computation and the
Boolean SAT check in the context of bounded model checking. The
two decision procedures are basic work engines of most symbolic model
checking algorithms; for both of them, we have applied the general idea
of abstraction followed by successive refinements. In Chapter 7, we first
compute a set of over-approximated images and apply them as care
sets to the far side of the transition relations; the minimized transition
relation is then used to compute the exact image. In Chapter 8, we
first predict a good variable decision ordering based on the UNSAT core
analysis of previous BMC instances, and then use the new ordering to
improve the SAT check of the current instance. Our experiments on a
set of industry benchmark designs show that the proposed techniques
can achieve a significant performance improvements over the prior art.

In conclusion, the new algorithms presented in this book have signifi-
cantly advanced the state of the art for model checking. With automatic
abstraction, model checking has been successfully applied to hardware
systems with more than 4000 binary state variables. Evidence has shown
that the advantages of these new techniques generally increase as the
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models under verification get larger. Therefore, these techniques will
play important roles in verifying industrial-scale systems.

We regret not giving more results on benchmark examples with more
than 1000 state variables. At the time this research was conducted, there
were not many industrial-scale verification benchmarks in the public
domain (and there are not many even now). Most companies in the
computer hardware design and EDA industry are reluctant to share
their private designs with university investigators. We sincerely hope
that this situation will change in the future.

9.2 Future Directions

In this book, the quest for optimum abstraction has been put into
a synthesis perspective, where refinement is regarded as a process of
synthesizing the smallest deciding abstract model. An interesting open
question is related to the theoretical complexity of finding the optimum
abstraction. Although finding the optimum abstraction is at least as
hard as model checking itself, understanding the theoretical aspect of
this problem may shed light on designing more practical algorithms.
According to our own experience in design and analysis of VLSI/CAD
algorithms, good practical algorithms often come from formulating an
optimal algorithm and then making intuitive simplifications to deal with
complexity in practice.

The Grab refinement algorithm relies on the analysis of all the short-
est counterexamples. An interesting extension is to find, among all the
shortest counterexamples, the one counterexample with the maximum
likelihood, and apply the same variable selection heuristic to this maxi-
mum likelihood path. Note that when a property fails in an abstract
model, the abstract counterexamples in the synchronous onion rings
may have different concretization probabilities. In some cases, especially
when the property is mostly likely to be false in the concrete model, it
may be advantageous to focus on those counterexample that are most
likely to be concretizable.

In this book, we rely primarily on BDD-based symbolic fixpoint com-
putation to check whether the given property holds in an abstract model.
Recent advances in SAT algorithms have demonstrated the possibility
of replacing BDDs with CNF formulae in fixpoint computation [ABE00,
GYAG00, WBCG00, McM02]. The analysis of abstract models can also
be performed by using BMC induction proof techniques; in [LWS03,
LWS05], Li et al. have shown that SAT-based decision procedures often
complement BDD based symbolic fixpoint computation in the analysis
of the abstract models. Therefore, the integration of BDD-based algo-
rithms with SAT-based algorithms for the analysis of the abstract mod-
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els should lead to a more robust and powerful approach to abstraction
refinement.

In the more general area of symbolic model checking, research in at-
tacking the capacity problem can be classified into two categories. One
is at the “lower level,” which includes the improvement of both runtime
and memory performance of basic decision procedures. The other is at
the “higher level,” which includes methods like abstraction refinement,
compositional reasoning [AL91, Var95, McM97, McM98, HQR98], sym-
metry reduction [ES93, ID93], etc. There will be improvements on the
lower level algorithms in the years to come; however, we believe that to
bridge the existing verification capacity gap, the bulk of the improve-
ment has to come from advances in the higher level techniques. An
interesting future research direction is to apply techniques developed in
the abstraction refinement framework to compositional reasoning and
symmetry reduction. These methods share a common idea—simplifying
the model before applying model checking to it, even though the meth-
ods of simplification are significantly different.
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