Interlocking Obfuscation for Anti-Tamper Hardware

Avinash R. Desai, Michael S. Hsiao, Chao Wang, Leyla Nazhandali and Simin Hall
Department of Electrical and Computer Engineering
Virginia Tech
Blacksburg, Virginia, 24060
{aviraj,mhsiao}@vt.edu

ABSTRACT

Tampering and Reverse Engineering of a chip to extract the
hardware Intellectual Property (IP) core or to inject mali-
cious alterations is a major concern. Digital systems suscep-
tible to tampering are of immense concern to defense organi-
zations. First, offshore chip manufacturing allows the design
secrets of the IP cores to be transparent to the foundry and
other entities along the production chain. Second, small
malicious modifications to the design may not be detectable
after fabrication without anti-tamper mechanisms. Some
techniques have been developed in the past to improve the
defense against such attacks but they tend to fall prey to
the increasing power of the attacker. We present a new way
to protect against tampering by a clever obfuscation of the
design, which can be unlocked with a specific, dynamic path
traversal. Hence, the functional mode of the controller is
hidden with the help of obfuscated states, and the functional
mode is made operational only on the formation of a specific
interlocked Code-Word during state transition. No com-
parator is needed as the obfuscation is embedded within the
transition function of the state machine itself. A side benefit
is that any small alteration will be magnified via the obfus-
cated design. In other words, an alteration to the design
will manifest itself as a large difference in the circuit’s func-
tionality. Experimental results on an Advanced Encryption
Standard (AES) circuit from the open-source IP-cores suite
suggest that the proposed method provides better active de-
fense mechanisms against attacks with nominal (7.8%) area
overhead.

1. INTRODUCTION

The protection of sensitive information in a device is gen-
erally considered as a responsibility of the user. This in-
formation can be of critical importance for defense orga-
nizations, especially if the device falls in the hands of an
adversary. The adversary seeks to extract as much sensi-
tive information he/she can have from the device with the
help of sophisticated techniques. An adversary may also be
interested in learning about an enemy’s (or competitor’s)
latest design by stealing or capturing one or more proto-

Permission to make digital or hard copies of all or part of this work for

types/functional devices and dismantling it. To make things
worse, in recent years, outsourcing of manufacturing and
chip-fabrication requires revealing the design IP to external
entities, creating many opportunities for IP infringements,
counterfeiting, piracy, and/or insertions of malicious alter-
ations. The problem is exacerbated by contracting the off-
shore foundries to lower the labor and manufacturing costs.
Attacks are thus possible at major entities in the production
and supply chains during third party manufacturing. With-
out proper anti-tamper mechanisms, chips can be reverse-
engineered to extract the important IP within the chips. Pi-
rated chips can then be sold at a very low cost. In the same
way, insertion of malicious hardware (e.g., Trojans) by the
untrusted manufacturer may be easy without anti-tamper
features. Once inserted, the Trojan may be extremely dif-
ficult to detect, thereby compromising security. Additional
threats such as cloning, counterfeiting, reverse-engineering,
or re-marking of Integrated Circuits (IC) are possible when
there is lack of protection of the design. The estimated U.S.
sales losses due to copyright piracy in 2004 is approximately
$12.54 billion in total [1] with a significant contribution com-
ing from hardware IPs.

Many techniques have been proposed to protect the cir-
cuit at different levels, including both active and passive
methods. But with the increase in both strength and so-
phistication of the techniques used by the adversary, exist-
ing methods may not be strong enough. Our goal is to make
anti-tamper easy to implement, yet offer a strong protection,
of the design.

The proposed method is based on a new hardware obfus-
cation technique that hides the hardware from the attacker
with an interlocked Code-word in the transition function.
The methodology is implemented completely in the Reg-
ister Transfer Level (RTL) design such that a tight bond-
ing between the core logic and the protection circuitry is
achieved. Two stages are defined in this method: the en-
try mode and the functional mode. Both modes are hidden
from the adversary with the help of obfuscated states and
a dynamic, interlocked Code-Word. The Code-Word is not
stored anywhere on chip but is formed dynamically during
the entry mode. Code-Word is integrated into the transi-
tion logic such that no comparator is used. Existence of any
comparator compromises security since the adversary can

personal or classroom use is granted without fee provided that copies areuse the comparator to his/her benefit. Irrespective of the
not made or distributed for profit or commercial advantage and that copies value of the Code-Word, the functional mode is always en-

bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
CYIRW'12 Oct 30 - Nov 01 2012, Oak Ridge, TN, USA
Copyright(c) 2012 ACM 978-1-4503-1687-3/12/10 ...$15.00.

tered. This differentiates our method from existing methods
where an invalid key disallows entry to the functional mode.
However, in our design, the behavior in the functional mode

depends on the correct value of the Code-Word. By the
manner of our formulation, the core and obfuscation logic
are not separable as in existing methods where there is a
clear distinction of the modes of operation. This results in
a more secure design. Experimental results show that the
proposed approach is an effective method against tampering
with low area overhead.

2. CLASSIFICATIONSFORANTI-TAMPER

Existing defense mechanisms can be classified in two ma-
jor categories: (a) Passive Techniques and (b) Active Tech-
niques. Passive Techniques such as watermarking are those
in which the circuit does not prevent the user from using it
in the functional mode. But there are certain characteristics
and properties in the circuit which help the user to prove the
copyrights of the design and hence can file a case against the
adversary for counterfeiting and/or tampering. Active Tech-
niques are those in which the circuit has built-in capability
to protect itself against tampering. In this case the circuit
has embedded protection hardware so that unauthenticated
persons cannot have full access to the circuit. Encryption,
hardware metering [6] and obfuscation are placed in this
category.

2.1 ReverseEngineering Toolsand Methods

Reverse engineering is the process through which one can
obtain the details of the circuit for a given IC. An adversary
can use a range of techniques to identify the circuit objective
and underlying structure using a small set of known charac-
teristics collected through combotronics and/or using an old
version of similar kind of chip. Techniques used in reverse
engineering can be generally classified as Black Box Testing
[8], White Box Testing [8] and Side Channel Analysis (SCA)
[5]. In white box analysis, the complete circuit is available
to the user/attacker. Creating gate library and focusing on
areas dense in XOR is one of the methods proven helpful for
reverse engineering for cryptographic algorithms [8].

2.2 Requirementsof Effective Anti-Tamper

The adversary has some of the limitations on his side too.
Knowing these limitations can help us strengthen the cir-
cuit’s defense mechanisms. For example, complete func-
tionality of the circuit is unknown to the adversary. The
adversary also has limited resources such as time, money,
equipment, personnel, etc. As the circuit is large, the ad-
versary will try to attack the protection mechanism with the
help of software tools like test pattern generators. We will
need to devise techniques that can withstand such attacks.

In addition, obfuscated hardware used for protection should
be placed such that it is very hard to differentiate it from
the core logic of the function. Furthermore, the anti-tamper
mechanisms should not change the specifications of the chip.
Finally, the complexity of designing the protection mecha-
nism should be sufficiently low to be feasible.

2.3 Related Work

HARPOON [3] is a method where the emphasis of pro-
tection hardware to be kept close to the IP core is made.
The circuit is divided into an obfuscated mode and a nor-
mal mode. Circuit has to traverse obfuscated mode to reach
normal mode. Different induction points are used to drive
the circuit to faulty output. The drawback of this method
is that it does not offer protection in the normal mode.

Hardware IP Protection during Evaluation using Embed-
ded Sequential Trojan [7] is based on obfuscation of states
similar to HARPOON [3]. However, in this work, the imple-
mentation of obfuscated states is such that once on missing
the sequence of inputs, the core logic goes in a sequence of
states and goes on looping in this sequence. After a certain
number of incorrect inputs, the IP core goes into extended
states which activate certain hardware to force error in the
output. The protection mechanism does not act in the func-
tional mode and in the obfuscated mode the circuit loops in
the faulty states only.

RTL Hardware IP Protection Using Key-Based Control
and Data Flow Obfuscation [4] aims at protecting the hard-
ware by making changes in the data flow and control flow of
the original circuit. The circuit reaches the proper functional
mode on application of input sequence, i.e., an expected key.
If an incorrect sequence is entered, the control and data flow
of the circuit are altered with the help of alterations dataflow
graph. Thus, the circuit is not stuck at any state but moves
in a sequence of states producing an incorrect output. An-
other advantage is that the circuit is protected even in the
functional mode. Although this method provides a great
level of security, it fails to provide a dynamic nature to the
circuit for different set of inputs provided. In addition, the
use of conditions(comparators) weakens the method.

3. METHODOLOGY

Our proposed method is a low-complexity anti-tamper de-
sign at the RTL. Similar to previous methods, it implements
obfuscated hardware elements for protection. The hardware
can be unlocked only with a correct sequence of keys that is
given to the appropriate user. However, by looking at the
internals of the circuit, it is nearly impossible to separate the
anti-tamper logic from the rest of the circuit or to derive the
key. The strength of the protection can be increased by the
expansion of states, which is done by increasing the number
of present state elements in a Finite State Machine (FSM)
in core logic. The overall functionality of the circuit is like-
wise divided into two modes: Entry mode (obfuscated) and
Functional mode.

A Code-Word encodes the path executed by the circuit
from the inputs applied in the entry mode in order to reach
the functional mode. In each stage of the entry mode, Code-
Word is gradually formed. Code-Word is used for protection
of the circuit in the functional mode, but note that the ex-
pected value of the Code-Word is not stored anywhere on
chip. Instead, the Code-Word is integrated into the transi-
tion functions of the state machine. For example, the tran-
sition function in the functional mode is modified and the

Figure 1: State transition graph.

next state for a number of states is a function of both the
present state and Code-Word.

Therefore, the value of the obtained Code-Word plays a
key part in determining the transition relation in the func-
tional mode. The two modes of operation are integrated
and not easily separable. Figure 1 shows the state transi-
tion graph of a modified circuit. The states shown in red are
the invalid states used in the entry mode and to force faulty
path in functional mode. The valid states in the functional
mode are shown in green. Figure 1 also shows the embed-
ding of the Code-Word to compute the correct next state in
state “2”.

With such a setup, entry mode starts with a fixed initial
state. The correct Code-Word is formed only when the path
traversed is as desired (via a correct input sequence). Irre-
spective of the value of the Code-Word, the functional mode
is always entered. This differentiates our method from ex-
isting methods where an invalid key disallows entry to the
functional mode. However, the behavior in the functional
mode depends on the correct value of the Code-Word. The
implementation of the Code-Word logic is interlocked with
the original transition function and is protected from the
adversary by increasing the interaction with the FSM state
elements. Black holes and Gray holes [6] can also be formed
in the Entry mode to confuse the attacker if the designer
wishes to do so. Black holes are a set of states in which the
circuit loops once it goes inside. Gray holes are set of states
in which there is only one pattern when applied takes you
out of the loop of these states.

In the functional mode, the nodes with important compu-
tations and assignments are reached only with the correct
value obtained in the Code-Word. In other words, the value
of the Code-Word is not needed to compute the correct next
state for every present state. If the adversary reaches a valid
state in the functional mode, he/she is unaware of the next
state and also the dependence on the Code-Word. So even if
adversary reaches the functional mode via a different input
sequence, the next states reached may be different as the
value of the Code-Word is different. The functional mode
of the circuit adapts a different form with any change in
Code-Word. Hence the circuit behaves in a dynamic way
according to different values of Code-Word formed.

Figure 2 shows a RTL transformation of the code for the
transition graph in Figure 1. The Figure 2a is the original
design and Figure 2b shows the modified design. Modified
design shows the formation of Code-Word in entry mode
marked in blue. Code marked in red shows the usage of
Code-Word in state “0010” of functional mode. Note that
in this example, a variable “code_word” is used for clarifica-
tion purposes. In a real design if code has to be given to
untrusted entity, one can easily replace the variable name
with an obfuscated name.

3.1 Design Flow

The complete implementation is at the RTL level and can
be modeled using any Hardware Description language. For
demonstration of the idea, the proposed method was imple-
mented using designs from OpenCores [2].

Once the cores are obtained, the first step is to identify an
FSM which is the heart and controls most of the assignments
and computations. The states of this FSM are expanded and
classified into extended states and functional states. State
encoding for the functional states is kept as required for the

(a) Original Design

case STATE is
when "011" => if(inl = ‘1’) then STATE <= "101";
else STATE <= "010"; end if;
when "010" => STATE <= "100";
when "101" => STATE <= "111“'
when "111" => STATE <= "110";
when "110" => if(inl = ‘1’) then STATE <= "001";
else STATE <= "101"; end if;
when "001" => STATE <= "010";
when "100" => STATE <= "111"}
when others => null;
end case;

(b) Modified Design

case STATE is
when "0000" => if(inil
code_word <="0011"

€1’) then STATE <= "1101"

else STATE <= "1010"; code_word <="0110"; end if;
when "1010" => if(inl €1’) then STATE <= "1001";
code_word <= STATE or code_word;
else STATE<="1000"; code_word<=STATE and code_word; end if;
when "1000" => if(inl = ‘1’) then STATE <= "1100";
code_word <= STATE(3) & code_word(2 downto 0);
else STATE <= "1110"; code_word <= not code_word;end if;
when "1001" => if(inl = ‘1’) then STATE <= "1110";
code_word <= STATE(3 downto 1) & inil;
else STATE <= "1101"; end if;
when "1110" => STATE <= "0011";
code_word <= inl & code word(3downt01)
when "1101" => STATE <= "1100"
code_word <= code word(l downto 0) & STATE (3 downto 2);
when "1100" => STATE <= "111
code_word<= code word(S)&(not inl) & code_word(1downtoO);
when "1111" => STATE <= "001
code_word <= (not inl) & code _word(2 downto 0);
when "1011" => STATE <= "0111
when "0011" => if(inl = ‘1°) then STATE <= "0101";
else STATE <= "0010"; end if;
when "0010" => STATE <= STATE xor code_word;
when "0101" => STATE <= "0111"
when "O111" => STATE <= "0110";
when "0110" => if(in1 = ‘1’) then STATE <= "0001"
else STATE <= "0101"; end if;
when "0001" => STATE <= "0010";

when "0100" => STATE <= "0111";
when others => null;
end case;

Figure 2: Example obfuscated RTL design.

design. Entry mode state transition graph is designed such
that it contains loops of states and the correct path is diffi-
cult to figure out. Functional mode is modified and the value
of the Code-Word to be formed is calculated as per the func-
tion and the state encoding. Size of the Code-Word depends
on the area overhead allowed by the designer/user. Longer
Code-Words imply that the circuit can sustain higher levels
of brute force attack. The computations and assignments in
the entry mode graph are chosen such that the Code-Word
changes for any change in the input sequence and also state
transition. Finally, a set of inputs is then obtained to form
the key to make the circuit functional.

4. IMPLEMENTATION AND RESULTS

For implementation purposes, an open source core from
Open Cores [2] was taken. Circuit chosen for test was an
AES design. The following changes were made in the design:

(1) Only the core FSM of the AES design was padded up
with three more bits thus raising it from 5 to 8. Now
the number of states available in the extended state is
256-32 = 224.

(2) Code-Word was chosen to be of size 48 bits. For the
state transition in the entry mode, 64 inputs (out of 130
inputs present in the design) were used to reduce the
hardware overhead. Design was implemented in Virtex
7, and simulations were performed using Xilinx ISE.

Implementation of the Code-Word based control in the
functional mode helps to achieve dynamic nature of the cir-
cuit to various incorrect input sequences. It is very difficult
to distinguish between the Code-Word, the FSM state ele-
ments and other state elements in the whole circuit. Due to

implementation in the RTL level, the components protecting
circuit can be said to be highly obfuscated.

One of the worst possible scenarios is when the adversary
has a previous working model of a chip. The designer has
launched a new model which has improved performance met-
ric. In this case the adversary knows circuit completely. The
adversary can perform known answer tests to verify whether
he/she has unlocked the IC or not.

Consider that the adversary has obtained information of
other state elements in circuit except the main FSM and
the Code-Word as we have not altered the other parts of
the circuit. The best way to attack the chip is to separate
the Code-Word (48 state elements) and core FSM (8 State
Elements). The adversary knows the assignments made in
the states of the original circuit. So, it would be best for
him to find the main state elements and then the valid states
accordingly. Since there are 56 state elements (8 + 48) to
be searched for the number of combinations to find state

elements is i (56)
k

k=1

where, ‘k’ is all possible sizes of Code-Word

Next, he/she will try to find a state in which the assign-
ments performed are similar to the original circuit assign-
ments. The adversary has to identify the obfuscated 32
functional states.

No. of states in the old circuit(state elements 5) = n = 32

Number of computations required for comparison for pre-
dicting states with similar assignments= n. Thus the total
number of iterations involved is given by

56
<Z (‘3?)) % (n) = 2.30¢18
k=1

To find the next state, the best possible way is to find
the next state in the original circuit and map it to the state
in new circuit. These comparisons have been done in an
earlier step so there is no increase in computations. In cal-
culating this case, we have considered all the best possible
scenarios in terms of the attacker. But still the number of
computations required is 2.3e18, which is enormous.

In practice, the number of computations required would
be larger than this, especially if the adversary does not have
any other circuit to compare with. At each stage of the
combination he/she will have to guess the value of the Code-
word which requires 206=F) pumber of iterations. In that
case, the total number of iterations will be

56
> ((5k6> * 2<56*’°>) = 5.233¢26

Table I shows the hardware overhead in the implemen-
tation of these protection mechanisms. For the AES de-
sign, the area overhead of our method is 7.8%, compared to
a recent technique [4] that needed 8.6%. The strength of
our method provides a higher level of protection, in which
5.233e26 combinations is needed, while an average of 7.13e15
as needed in [4] using similar calculations. Average values
are considered here as the implemented designs are different.

Table 1: RESULTS

Area Overhead Number I;)iq(fl?gginations
Design Present ézziiizd Present Method Average
Method in [4] (min) (max) in [4]
AES 7.8% 8.6% 2.3el8 | 5.233e26 | 7.13eld

5. CONCLUSION AND FUTURE WORK

A new interlocking obfuscation technique is proposed for
active defense mechanisms of the circuit against tampering.
The area overhead for implemented design is less than 8%.
The circuit response to incorrect sequences is different due
to the dynamic Code-Word formed. As the Code-Word is
embedded within the transition function itself, it creates a
new dynamic nature to the circuit behavior making reverse
engineering more difficult. Our method suggests bypassing
of the important states with extended states to add up to
the confusion of the adversary. The specifications of the chip
are not altered and is identical to original specifications once
user is authenticated. Inputs and outputs are kept the same.
As a side benefit any minor change in the circuit by third
party gets magnified due to the obfuscated design.

Static algorithms for detecting the correct path to func-
tional mode may yield certain results but the method en-
sures that only one path in the entry mode when traversed
helps unlock the circuit. Higher levels of protection can be
achieved if one allows for a larger area overhead. Thus, there
is a tradeoff between area overhead and level of protection
achieved. The proposed method can be implemented di-
rectly at the RTL level; thus, any HDL can model this type
of circuit making it language and platform independent.

In the future, other methods can be used to decrease the
area overhead. The use of PUFs can provide high dynamic
nature to circuit output, hence a higher level of obfuscation.

6. REFERENCES

[1] Foreign infringement of intellectuaal property rights
implications on selected U.S. industries.
http://www.usitc.gov/publications/332/working_
papers/id_14_100505.pdf.

[2] Open Cores. http://wuw.opencores.org.

[3] CHAKRABORTY, R., AND BHUNIA, S. HARPOON: An
Obfuscation-Based SoC Design Methodology for
Hardware Protection. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, 2009.

[4] CHAKRABORTY, R., AND BHUNIA, S. RTL Hardware IP
Protection Using Key-Based Control and Data Flow
Obfuscation. In 23rd International Conference on VLSI
Design, 2010. VLSID ’10., pp. 405 —410.

[5] FaN, J., Guo, X., DE MULDER, E., SCHAUMONT, P.,
PRENEEL, B., AND VERBAUWHEDE, [. State-of-the-art
of secure ECC implementations: a survey on known
side-channel attacks and countermeasures. In IEEE
International Symposium on Hardware Oriented
Security and Trust (HOST),2010.

[6] KOUSHANFAR, F. Provably Secure Active IC Metering
Techniques for Piracy Avoidance and Digital Rights
Management. IEEE Transactions on Information
Forensics and Security, (feb. 2012).

[7] NARASIMHAN, S. AND CHAKRABORTY, R. AND
BHUNIA, S. Hardware IP Protection During Evaluation
Using Embedded Sequential Trojan. IEEE Design Test
of Computers, (2011).

[8] PORTER, R., STONE, S., KM, Y., MCDONALD, J.,
AND STARMAN, L. Dynamic Polymorphic
Reconfiguration for anti-tamper circuits. In
International Conference onField Programmable Logic
and Applications, 2009. FPL 2009. (2009).

