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Y Purpose of this Project

Mlnlmlze costs and time to model and monitor
reservoirs

Apply new developments that provide better
resolution and information about reservoirs

* Inexpensive instrumentation

* Automated data processing

* Automated earthquake source parameters
* Double-difference tomography

* Apply rock physics interpretation

* Utilize sophisticated visualization
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Approach 1

: ESDIVISION

Extract as much information as possible
from recordings of micro-earthquakes

* Obtain three-dimensional distribution of Vp, Vs
Qp, Qs at small node spacing (~250 m) from

* Tomography

*Obtain elastic constants: Poisson's ratio,
Lambda, Bulk and Young's moduli

*Obtain earthquake source parameters:
location, magnitude, stress drop, moment tensor
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I “O RRegrap n y

*Vp, Vs, Qp, Qs from tomography
*LLambda, Bulk, and Young's moduli and
Poisson's ratio from Vp, Vs & density
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Elastic Parameters -

=EAR EﬁﬁiSION
. POISSOn s ratio: ratio of transverse strain
to longitudinal strain

* Bulk modulus: measures the ratio of hydrostatic
pressure to change in volume

e Shear modulus: ratio of shear stress to shear
strain

* Lambda (M): ratio longitudnal stress to transverse
strain

* Young's modulus: is ratio of longitudinal stress
to longitudnal strain



ock Physics Interpretation .-

ESDIVISION.

* Develop quantitative relationships between
reservoir properties and Vp, Vs, Qp, Qs, and
elastic parameters

 Utilize laboratory and well-log data
* Develop rock physics models of the reservoir

* Utilize 3D visualization software
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INTERPRETATION

Basic axioms of rock physics
- Increase of velocity and decrease in attenuation with depth

- Decrease 1n velocity and increase in attenuation due to fracturing

- Decrease in velocity due to alteration

- Extreme temperature gradient works to decrease velocity with depth

- Fluid saturation stiffens pores; affects P-wave velocity, but not S-waves
- Attenuation due to scattering from fractures or heterogeneities (extrinsic)

- Attenuation also due to fluid migration at a range of scales (intrinsic)

- Attenuation and Vp changes (in space or time) can indicate saturation

- In a fully saturated homogeneous medium only extrinsic attenuation

- Saturation increases the density of the material and decreases both P- and S-velocity
- Shear modulus is independent of fluid in the absence of geochemical reactions

- Viscosity, porosity and permeability affects the degree of attenuation

- Dilatency can cause expansion and permeability

- Variation in lithology observed in elastic constants

- Decrease 1n Poisson's ratio occurs as porosity

- Compaction and lithification preferentially eliminate small aperture pores
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SESL)  Laboratory Studies

Laboratory study at constant confining pressure
and temperature, but changes in saturation
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Effects of liquids on Lambda
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State 2-14 Well
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= dnterpretation (red flag) =

We ob-ser'v':e'a monotonic decrease in PR, whereas
mechanical consideration would cause PR to
increase (Bonner and Schock, 1982).

This observation is an indication that something
besides the lithostatic load is causing this.

We hypothesize that geochemical alteration of the
pores structure my explain this because of the
systematic change in the pore shape from crack like
to round.

Below, PR behaves “normally”, as the chemical
alteration has completed the transition to "normal”

rancle
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Prati-32 Injection Test

Injection into previous pristine, competent rock;

below existing production zone
Well Prati 32

eismicity at 1he Geysers
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Buried sensors, pole mount. Internal sensors, base coupling plate,
satellite antenna.

The recording system is low-cost, and designed to be easily deployed with little
training. This will allow rapid deployment of large numbers of recording sites at
minimal cost.



Recording System

4.5 Hz geophone sensors—external or inside system
enclosure.

Simple user interface—3 LEDs indicate system status.
SD flash memory for data storage.

Satellite transmission of status and event summaries is also
available.

18 bit dynamic range--sufficient to record 0.5 <M < 3.0.
GPS for self locating and timing.

Powered by small 10-watt solar panel and 10 amp-hour gel
cell.
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ent Tensor solutions-
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P AT ; jlon of Tomograj 0

Overlapping ray paths
used to constrain relative
locations and tomography
between events




Poisson's ratio
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One Month After _
EEDIVISION

Bulk modulus Poisson's ratio, and Lambda increased.
Op and Vp increased, while Vs and Os decreased. We
interpret this observation to indicate that there 1s fluid
saturation along with fracturing around the well
bottom. Fracturing would decrease Vs & Vp, but
saturation would not affect Vs. Whereas, saturation
would increase Vp, even with fracturing. Saturation and
fracturing should have competing effect of intrinsic and
extrinsic (J. Saturation should increase intrinsic Op &
Os, but not affect extrinsic Os. Lambda and Poisson's
ratio increased, which 1s another indication of
saturation.
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Saturation and fracturing should have competing
effect of intrinsic and extrinsic Q

*There 1s very little pore fluids, so incrinsic Q 1s
minimal

* Saturation should increase extrinsic Op, but not affect
extrinsic Qs
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G —— B_-ﬁﬁ%%cond Month After _

* New anomalies have appread below the well bottom
-Vp 1s low and Vs remains low -->> steam with
fracturing

* The old anomalies at the well bottom have not moved
but increased 1n size

* We interpret these observations to indicate continued
saturation around the well bottom, but with increased
fracturing, and fracturing with steam below the well



ES DIVISION

Conclusmns & Observations

* Improvements in data collection and processing can
Improve reservoir monitoring and modelling

* Reduced costs in labor and hardware for data
collection

* Reduced time and labor for processing and analysis
* Allows for near-real time reservoir monitoring

* Micro-earthquake data can be used to provide a basis
for rock physics interpretations in geothermal fields
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