Heritage in Practice: A Study of Two Urban Rivers

by

Leslie Dinkin

A Thesis Presented to the
FACULTY OF THE USC SCHOOL OF ARCHITECTURE
UNIVERSITY OF SOUTHERN CALIFORNIA
In Partial Fulfillment of the
Requirements for the Degree
(MASTER OF HERITAGE CONSERVATION/
MASTER OF LANDSCAPE ARCHITECTURE)

May 2024
ACKNOWLEDGMENTS

This thesis was a collaborative effort, none of which would have been possible without my community of friends, family, classmates, mentors, and professors who supported me every step of the way. Reflecting on the past three and half years of graduate school, I am grateful for every winding conversation, each reassuring moment, and every shared instance of laughter and joy. I would like to thank my thesis committee, Cindy Olnick, Trudi Sandmeier, and Alexander Robinson, who tirelessly read every word of my thesis multiple times and challenged me to keep pushing my ideas forward. Cindy is an exceptional cheerleader and a considerate editor. Trudi is strong in her convictions and knows everything there is to know about Los Angeles. Alex is dedicated to his practice and has continuously encouraged me to do the same.

To my writing partner, Kira Williams, thank you for our weekly check-ins.

To my amazing and dedicated professors at USC, Alison Hirsch, Jessica Henson, Takako Tajima, Vinayak Bharne, Aroussiak Gabrielian, Esther Margulies, Meredith Drake Reitan, Lauren Elachi, Farre Nixon, and Jasmine Benyamin, among others, thank you for your time and for expanding my world as a student and as an individual. I hold on to your lessons and wisdoms firmly. To all of my river mentors, Nathan Nuñez, Tina Orduno Calderon, Char Miller, Dennis Mabasa, Jessica Rodriguez, Steve Dywer, Tilly Hinton, Steve Appleton, Issac Brown, Lino Jubilado, Kat Superfisky, Lauren Bon, Sue Yank, Graham Coffman, and Vincent Michael, among so many others, thank you for generously sharing your connection and love for rivers with me. To my classmates in Heritage Conservation and Landscape Architecture, I am entirely indebted to you all for your encouragement, your complex ideas, and your friendship. I would also like to express gratitude toward USC Arts-in-Action, President Folt’s President’s Leadership Funds for Sustainability, the Landscape Architecture Foundation, and the USC Arts and Climate Collective for your mentorship and financial support. Special thanks to Lucy Zepeda for your continuous guidance.

To my walking team, Nina Weithorn, Camille Shooshani, and Hannah Flynn, this thesis would not have existed without the three of you. Thank you for embarking on such an unusual yet exciting journey with me along the Los Angeles River. Each of you
brought a perfect blend of expertise and playfulness to the project. To Lucia Bayley, with whom I’ve discussed the Los Angeles River endlessly, thank you for your creativity and your enthusiasm for adventure. To Rio Asch Phoenix who walked and photographed both the Los Angeles River and the San Antonio River with me, thank you for your endless support, your grounding, and your eye for light. To my dear friends who have listened to endless stories about rivers, thank you for your love and your curiosity. To my family who have given me everything I could ever ask for, thank you for your unwavering encouragement and for always picking up the phone. To my grandma who I can never thank enough, thank you for our weekly conversations, your thoughtful questions, and your generosity. To my dad, who would have walked with me anywhere, thank you for always believing in me.
TABLE OF CONTENTS

Acknowledgments ... ii
List of Figures .. viii
Abstract .. xiv

Introduction
- Defining Heritage .. 1
- Comparing Two Urban Rivers ... 3
- Who am I? .. 5
- Research Methodology ... 6
 - Why Walking? ... 6
 - Limitations .. 7
 - Preconceived Notions ... 9

Chapter One: History of the San Antonio River
- Yanaguana ... 10
- Spanish Settlement and the Missions ... 15
- “Little Infrastructure” ... 19
- Whose Water is it... Anyways? .. 27
- Flooding in the San Antonio River .. 32
- Shifting Perspectives ... 42
- The River Park ... 49
- Selecting their River as a Site of Heritage ... 52

Chapter Two: Walking the San Antonio River
- Our Route ... 54
- Day One: Olmos Dam and the San Antonio River’s Headwater Springs 56
- Day Two: Brakenridge to the Great Bend ... 61
 - Brackenridge Park ... 61
 - The Historic Pearl ... 69
- South of Highway 35 ... 74
- The Great Bend ... 79
Day Three: The Great Bend to the Espada Mission .. 84
 King William .. 88
 South Town ... 93
Confluence Park ... 102
The Mission Reach ... 105
Espada Mission ..113
Impressions ..116

Chapter Three: History of the Los Angeles River ... 117
Paayme Paxaayt ... 119
Spanish Settlement and the Missions .. 122
“Little Infrastructure” .. 123
Whose Water is it... Anyways? ... 129
“Big Infrastructure” ... 131
Flooding and the Los Angeles River ... 133
Alternative Proposals ... 146
Burying their River in Concrete .. 148

Chapter Four: Walking the Los Angeles River ... 152
Our Route .. 152
Day One: Canoga Park through Sherman Oaks .. 155
 The Headwaters .. 155
 Sepulveda Basin .. 174
Day Two: Sherman Oaks through Glendale .. 188
 Studio City .. 197
 Burbank .. 200
Day Three: Glendale through Frogtown .. 205
 Atwater ... 217
 Frogtown .. 221
Day Four: Frogtown through Vernon .. 226
 Arts District ... 226
 Boyle Heights .. 238
 Vernon ... 243
Day Five: Vernon through North Long Beach .. 247
Chapter Five: Comparing Two Urbans Rivers 279
Comparing the Rivers’ Histories ... 279
Walking the San Antonio River And Los Angeles River 282
Heritage and the Future of the Los Angeles River 286
Heritage Persists ... 288
The Turning Point ... 289

Conclusion and Future Research ... 291
Future Research ... 291

Bibliography .. 293
LIST OF FIGURES

Figure I.1 Photograph from the Orange Bridge, Los Angeles River 8
Figure I.2 Photograph from the Orange Bridge, Los Angeles River 8
Figure 1.1 Map of the San Antonio River and the Headwater Springs 11
Figure 1.2 Photograph of the San Antonio River, 1895 .. 13
Figure 1.3 Photograph of the San Antonio River, 1895 .. 13
Figure 1.4 Photographs of the Five San Antonio Missions 17
Figure 1.5 Photograph of the San Antonio de Valera Mission, 1980 18
Figure 1.6 Photograph of the Espada Acequia, 1969 .. 20
Figure 1.7 Map of San Antonio’s Acequia Network in San Antonio 21
Figure 1.8 Postcard of the San Antonio River, 1859 ... 23
Figure 1.9 Photograph of the San Antonio River, 1895 .. 25
Figure 1.10 Photograph of the San Antonio River, 1895 .. 25
Figure 1.11 Photograph of Brackenridge Park Bridge, 1968 27
Figure 1.12 Photograph of an Artesian Well, 1891 .. 23
Figure 1.13 Map of Flowing and Non-Flowing Artesian Wells in San Antonio 30
Figure 1.14 Map of San Antonio de Bexar, 1836 .. 33
Figure 1.15 Photograph of Flooding in San Antonio, October 1913 35
Figure 1.16 Photograph of Flooding in San Antonio, December 1913 35
Figure 1.17 Photograph of Flooding in San Antonio, September 1921 37
Figure 1.18 Photograph of Flooding in San Antonio, September 1921 37
Figure 1.19 Photograph of St. Mary’s and Travis Streets, September 1921 38
Figure 1.20 Map of the Extent of Flooding in San Antonio, 1923 39
Figure 1.21 Photograph of the Red Cross Headquarters, 1921 39
Figure 1.22 Postcard of the Olmos Dam, 1926 .. 40
Figure 1.23 Map of the Great Bend ... 41
Figure 1.24 Postcard of Students Boating in the San Antonio River, 1907 43
Figure 1.25 Hand-Colored Photograph of “Surkey’s Sea Walls” 46
Figure 1.26 Photograph of Robert H. H. Hugman’s Design for the Great Bend 50
Figure 1.27 Construction Drawing of Hugman’s Arneson River Theatre 51
Figure 2.1 Map of our Walking Route Along the San Antonio River 55
Figure 2.2 Photograph of Olmos Dam, View Northwest.. 57
Figure 2.3 Photograph of Olmos Dam, View Northwest.. 58
Figure 2.4 Photograph of Olmos Dam, View Southeast....................................... 59
Figure 2.5 Photograph of Vegetation in the San Antonio River.............................. 59
Figure 2.6 Photograph of the Blue Hole Spring .. 60
Figure 2.7 Photograph of Mud Downstream of the Blue Hole................................. 60
Figure 2.8 Photograph of an Amphitheater within Brackenridge Park..................... 62
Figure 2.9 Photograph of Amenities within Brackenridge Park............................. 62
Figure 2.10 Photograph of Stairs Leading to the San Antonio River......................... 63
Figure 2.11 Photograph of No Swimming or Wading Signs................................... 63
Figure 2.12 Photograph of the San Antonio River within Brackenridge Park............. 64
Figure 2.13 Photograph of the San Antonio River within Brackenridge Park............. 64
Figure 2.14 Photograph of Brackenridge Park Bridge... 66
Figure 2.15 Photograph of an Unchannelized San Antonio River............................. 67
Figure 2.16 Photograph of a Closed River Walk, South of Brackenridge Park........... 68
Figure 2.17 Photograph of a Seating Area along the River Walk............................ 70
Figure 2.18 Photograph of Landscaping along the River Walk............................... 70
Figure 2.19 Photograph of the Historic Pearl... 71
Figure 2.20 Photograph of Small Seating Areas along the River Walk..................... 72
Figure 2.21 Photograph of the Newell Street Bridge.. 72
Figure 2.22 Photograph of Artists Donald Lipski’s Sunfish..................................... 73
Figure 2.23 Photograph of VFW Post 76 Sam Houston Post 74
Figure 2.24 Photograph of the San Antonio River Lock & Dam............................... 76
Figure 2.25 Photograph of the Mosaic beneath St. Mary’s Street............................ 77
Figure 2.26 Photograph of a Decorated Storm Drain... 78
Figure 2.27 Photograph of a Rescue Ladder... 78
Figure 2.28 Photograph of the Cypress Trees along the River Walk....................... 80
Figure 2.29 Photograph of the Great Bend... 81
Figure 2.30 Photograph of Hugman’s Copper Plaques... 82
Figure 2.31 Photograph of the Arneson River Theatre... 82
Figure 4.16 Photograph of Nina Weithorn Collecting a Plant Sample 169
Figure 4.17 Photograph of Water Bubbling up from the Cracks in the Concrete 171
Figure 4.18 Photograph of Puddles on the Los Angeles River Channel Floor 172
Figure 4.19 Photograph of Seagulls Flying Above the Los Angeles River 173
Figure 4.20 Photograph of the Entrance of the Sepulveda Basin 175
Figure 4.21 Photograph of Trash and Debris in the Sepulveda Basin 176
Figure 4.22 Photograph of a Broken Shopping Cart in the Sepulveda Basin 177
Figure 4.23 Photograph of a Clothesline Hung Across the Los Angeles River 178
Figure 4.24 Photograph underneath Balboa Boulevard .. 180
Figure 4.25 Photograph of the Los Angeles River within Sepulveda Basin 181
Figure 4.26 Photograph of a Bucolic Los Angeles River 182
Figure 4.27 Photograph of Lake Balboa .. 183
Figure 4.28 Photograph of a Hole in the Fence at Woodley Lakes Golf Course 184
Figure 4.29 Photograph of Sunflowers growing along Woodley Creek 185
Figure 4.30 Photograph underneath Burbank Boulevard 186
Figure 4.31 Photograph of the Sepulveda Dam at Sunset 187
Figure 4.32 Photograph of a No Trespassing Sign ... 189
Figure 4.33 Photograph of the Los Angeles River as a Box Channel 190
Figure 4.34 Photograph of a Ruler along the Los Angeles River Channel Wall 191
Figure 4.35 Photograph of a Frog Gate Entrance .. 193
Figure 4.36 Photograph of a Surfboard along the Los Angeles River 194
Figure 4.37 Photograph of Neighboring Apartments .. 195
Figure 4.38 Photograph of a Large Billboard Towering over the River 196
Figure 4.39 Photograph of the Tujunga Wash/Los Angeles River Confluence 197
Figure 4.40 Photograph of Los Angeles River, Facing East on Vineland Avenue ... 198
Figure 4.41 Photograph of the River Trail at Tujunga Avenue 199
Figure 4.42 Photograph of the Equestrian Trail near Burbank 201
Figure 4.43 Photograph of a Lawn adjacent to the Los Angeles River 202
Figure 4.44 Photograph of the Tunnel underneath the 134 Freeway 203
Figure 4.45 Photograph of Mariposa Bridge .. 204
Figure 4.46 Photograph of the Los Angeles River in Burbank 206
Figure 4.78 Photograph of a Buffalo Gourd Growing Along the Levee 245
Figure 4.79 Photograph of Broken Concrete in the Channel 246
Figure 4.80 Photograph of Riverfront Park ... 248
Figure 4.81 Photograph of Grass Growing in the Channel .. 249
Figure 4.82 Photograph of Cracked Mud along the Concrete 250
Figure 4.83 Photograph of a Warehouse along the Los Angeles River 251
Figure 4.84 Photograph underneath the 105 Freeway .. 252
Figure 4.85 Photograph of an Individual Exercising within the Channel 253
Figure 4.86 Photograph of the Team Walking with Sun Umbrellas 254
Figure 4.87 Photograph of Cargo Containers Stacked on top of Each Other 256
Figure 4.88 Photograph of a Mile Marker Sign ... 257
Figure 4.89 Photograph of Horse Stables Neighboring the Los Angeles River 258
Figure 4.90 Photograph of a Lone Shopping Cart in the Middle of the River 259
Figure 4.91 Photograph of the Los Angeles River Levee in North Long Beach 260
Figure 4.92 Photograph of the Los Angeles River Bike Path in North Long Beach .. 260
Figure 4.93 Photograph of the Trapezoidal Channel in North Long Beach 261
Figure 4.94 Photograph of Algae Growing along the Channel Floor 263
Figure 4.95 Photograph of the Virginia Country Club/Dominguez Gap Wetlands 264
Figure 4.96 Photograph of the Wide Concrete Channel in Long Beach 265
Figure 4.97 Photograph of the Wrigley Greenbelt in Long Beach 266
Figure 4.98 Photograph of West Willow Street Bridge ... 268
Figure 4.99 Photograph of a Los Angeles River with a Soft, Muddy Bottom 269
Figure 4.100 Photograph of a Red Toy Cay and Sunflowers in the Riverbed 270
Figure 4.101 Photograph of the Transition Point between the River and the Ocean .. 272
Figure 4.102 Photograph of the Port of Long Beach on the Opposite River Bank 273
Figure 4.103 Photograph of a Burned Informal Structure along the River 274
Figure 4.104 Photograph of the Los Angeles River Estuary 275
Figure 4.105 Photograph of the Queen Mary and the Pacific Ocean 276
Figure 4.106 Photograph of the Estuary and the Port of Long Beach 277
Figure 5.1 Photograph of a Drainage Hole .. 285
ABSTRACT

Despite sharing similar histories, the Los Angeles River and the San Antonio River, both of which run through sprawling metropolitan areas, diverge significantly in their contemporary perception, management, and everyday human experience. While the San Antonio River is revered as the “crown jewel of Texas” and a site of heritage, the Los Angeles River, despite current revitalization efforts, is still seen by many as little more than a flood control channel. This research delves into the nuanced values assigned to each river in the early twentieth century, analyzing how these sentiments manifested in radically different river infrastructure design. Additionally, this study explores the contemporary relationship between these two urban landscapes and their natural elements through extensive fieldwork. As both cities navigated severe flood risk, I believe the disparity can partially be attributed to whether or not decision makers regarded their river as heritage and integral to their city’s narrative for future generations to understand and celebrate. When contrasting the present experiences of the two rivers, it is obvious that the choices we make in selecting and protecting certain heritage can have a profound impact well into the future. Additionally, it becomes clear that heritage intrinsic to natural landscapes like rivers can withstand remarkable challenges.
INTRODUCTION

Any inheritance of heritage involves a selection process. Whether it is a single building or an entire national park, at some point in time, a group of individuals decided that certain heritage should be preserved for future generations. Conversely, at other times, different aspects of heritage were overlooked or entirely neglected. This thesis, which examines the histories and current experiences of two urban rivers, seeks to explore the profound influence that the process of selecting heritage can have on a city-wide scale. Despite sharing similar histories, the San Antonio River and the Los Angeles River diverge significantly in their contemporary perception, management, and everyday human experience. While the San Antonio River is revered as the “crown jewel of Texas” and a site of heritage, the Los Angeles River, despite current revitalization efforts, is still seen by many as little more than a flood control channel. Chapter One of this thesis delves into the historical account of the San Antonio River in the early twentieth century, focusing on its transformation from a natural or wild river to a more urbanized landscape. Chapter Two then explores the contemporary relationship between San Antonio and its river through extensive fieldwork and narrative ethnography. Chapters Three and Four follow a comparable framework, this time focusing on the Los Angeles River. When contrasting the present experiences of the two rivers, it is evident that the choices we make in selecting and protecting certain heritage can have a profound impact well into the future. Additionally, it becomes clear that heritage intrinsic to natural landscapes like rivers can withstand remarkable challenges.

DEFINING HERITAGE

I find it incredibly difficult to apply any single definition to heritage as heritage operates at multiple scales and encompasses almost anything that anyone deems important (if they have the necessary tools or influence to advocate for its conservation). Whether as heritage conservationists or simply humans, we are constantly confronted with the responsibility of determining where to focus our attention and consequently, what should be prioritized and conserved. While almost anything might be eligible, only
selected elements are passed on as heritage to the next generation. In the face of inevitable change, choices must be made. In their book, *Dissonant Heritage: The Management of the Past as a Resource in Conflict*, J.E. Tunbridge and G.J. Ashworth suggest that within the process of heritage, “The present selects an inheritance from an imagined past for current use and decides what should be passed on to an imagined future.”\(^1\) Indeed, the present and its current circumstances dictate which links to the past should be maintained, and therefore which links are sustained for future generations. In the introduction to her book, *Uses of Heritage*, Laurajane Smith expands on the idea that heritage involves a selection process, suggesting that the choices made serve as a reflection of societal values. She states,

> Heritage is heritage because it is subjected to the management and preservation/conservation process, not because it simply ‘is.’ This process does not just ‘find’ sites and places to manage and protect. It is itself a constitutive cultural process that identifies those things and places that can be given meaning and value as ‘heritage,’ reflecting contemporary cultural and social values, debates and aspirations.\(^2\)"}

Certainly, what could constitute as heritage extends far beyond what is formally recognized as heritage. Therefore, the aspects we choose to acknowledge and celebrate provide insights into the dominating cultural and social values of a particular time. In their book, *Managing Cultural Landscapes*, Ken Taylor and Jane Lennon affirm, “Heritage results from a selection process, often government-initiated and supported by official regulation; it is not the same as history, although this, too, has its own element of selectivity.”\(^3\) From Taylor and Lennon, we learn that the process of selecting heritage is often political and intertwined with contemporary economics and cultural systems. In the following chapters, I explore the impacts of this selection and cultural process on urban rivers in two large cities, San Antonio and Los Angeles. By examining the histories of the two rivers, we can begin to understand the profound influence of choosing to manage and protect certain threads of heritage and not others.

COMPARING TWO URBAN RIVERS

The “Rivers and Heritage” initiative, launched in 2012 by the United Nations Educational, Scientific and Cultural Organization (UNESCO), “proposes to support the process of cultural development of rivers and to contribute to the protection and the management of river sites. For the territories concerned, the river is considered a resource with multiple cultural, economic, environmental and social values.”4 In this statement, UNESCO acknowledges the numerous benefits associated with rivers. However, what does the practical implementation of “the management of river sites” actually look like in practice, and how has it functioned in the past? In his 1965 publication, *The City is the Frontier*, author Charles Abrams paints a very different picture of waterway management in the United States in the last century. He writes,

> Water has been the age-old magnet for people—the Roman bath, the fountain, falls, village well, beach, spa, and more recently the resort swimming pool. Yet while preservation of natural access to water has been the pride and stabilizing force of great cities, American cities have been relinquishing their waterways so recklessly that the last vestige of the acqueous will soon be the laundromat.5

Despite serving as the essential bedrock upon which most cities are built, urban rivers today are often neglected. When confronted with selecting a topic for my thesis, I found myself particularly intrigued by the diverse strategies employed by different cities to ‘manage’ their rivers. I was curious what these strategies might reveal about historic and contemporary relationships between a city and its urban waterways. More broadly, I wondered what these strategies might unveil about a city and its consideration for its surrounding environment and beyond.

Los Angeles and San Antonio are two metropolitan cities, both characterized by arid climates and vulnerability to flooding. Additionally, each city is home to a river that shares its name. In their book, *The River Returns: An Environmental History of the Bow*, authors Christopher Armstrong, Matthew Evenden, and H.V. Nelles state, “A river is an

archive; it records and retains what has been done to it and by it. The conditions of rivers is in some sense the measure of the societies dependent on them.\(^6\) Until the early twentieth century, both San Antonio and Los Angeles relied almost entirely on their rivers as their primary source for water. As the two cities expanded, however, with both rivers drained nearly dry, each city looked for alternative sources to supplement their water needs. At this point in the story, the two rivers and “what has been done to [them]” deviate considerably.

As one of the longest concrete waterways in the world, the Los Angeles River stands as an example of a waterway designed without consideration of its historical significance to its city. While one million people live within a ten-minute walk of the Los Angeles River, the fifty-one-mile channel was not designed for them.\(^7\) Since it was fated to be lined with concrete in 1938, the river’s singular purpose has been to defend the city from flooding.\(^8\) Once a symbol of the city’s vitality, the river was transformed into an overlooked and neglected large landscape infrastructure project, mostly hidden from view and often littered with trash. Most of the time, the river exists as a tiny stream in a sun-bleached gray vat. Over the past century, a strange intersection between the industrial, ecological and social has emerged from and within the Los Angeles River. However, this phenomenon is almost in defiance of its hostile design rather than being facilitated through programming or adequate accommodating features.

Despite its crucial role as a flood control channel, the San Antonio River, in contrast, was intentionally designed with considerations that extend beyond flood control. Several different flood control methods are employed to preserve the river’s visual appeal, protect its historic trees, and maintain an intimate pedestrian landscape. These alternative techniques contributed to the gradual development of the San Antonio River Walk, where the aesthetic heritage of the river is central to its design. Indeed, in the case of San Antonio, not all heritage was valued. Civic groups led by affluent white

women in the early twentieth century advocated for the protection of the downtown river stretch, neglecting entirely the rich Indigenous heritage in the region and the predominantly Latino west side of San Antonio.9 Swimming is also forbidden due to the high levels of water pollution. However, acknowledging and preserving certain aspects of the river’s heritage, such as its appearance and general ambiance, yielded a markedly distinct outcome compared to the Los Angeles River, which did not consider heritage at all in its construction.10 As both cities navigated severe flood risk, I believe the disparity in infrastructural design can partially be attributed to whether or not decision makers regarded their river as heritage and integral to their city’s narrative for future generations to understand and enjoy.

WHO AM I?

I attended high school just two hundred feet from the northern stretch of the Los Angeles River, but I was completely unaware of the river’s historical and ecological significance to the region. I remember teachers and friends used to mock the nearby ‘oversized gutter,’ but we never actually ventured to explore it. In his journal article titled, "51 Miles of Concrete: The Exploitation and Transformation of the Los Angeles River," Blake Gumprecht states, “To many southern Californians, the Los Angeles River is a joke.”11 My experience as a child aligned with this perspective.

After high school, I moved to Colorado and majored in anthropology, engaging in both field work and narrative ethnography. For almost a decade, I committed myself to areas of designated wilderness—leading backpacking trips into the Rocky Mountains with students from across the country. We drank water from rushing rivers if we were lucky and water from cow troughs if we were not. When the sky looked clear enough, we slept under the stars and scrambled up 14,000 foot mountains. Way up there, we

9Char Miller, \textit{Westside Rising: How San Antonio’s 1921 Flood Devastated a City and Sparked a Latino Environmental Justice Movement} (Maverick Books, 2021), 46.
10Interview with Charles S. Dwyer, United States Army Corps of Engineers, November 10, 2023; Interview with Char Miller, Historian and Professor at Pomona College, December 1, 2023.
debated definitions of nature and stewardship. We asked ourselves where we belonged in this rugged landscape, and if humans and wilderness could coexist.

When I returned home to Los Angeles in pursuit of a master’s degree in landscape architecture, I hoped my studies would give me an intellectual framework to see cities just as alive and dynamic as the mountains. I approach heritage conservation through the lens of landscape architecture, where I have found heritage is often an afterthought. In addition to conservationists who likely already recognize the importance of integrating heritage into design, my thesis targets individuals who may be less familiar with this concept.

RESEARCH METHODOLOGY

Having thoroughly explored the historical narratives of the San Antonio River and the Los Angeles River in Chapter One and Three respectively, concentrating particularly on the late nineteenth and early twentieth centuries, I walked along both waterways, taking detailed notes and photographs. In early August 2023, I completed a six-day walk of the entire length of the Los Angeles River. Subsequently, in late September 2023, I embarked on a three-day walk along the first sixteen miles of the San Antonio River, traversing through the city’s urban core. I sought to understand and physically experience the impact of previous decisions on both rivers’ present-day state. On a bodily level, I was curious—what did each waterway hear, smell, feel, and look like? How did these current sensations directly correlate to each rivers' historical background and the intricate process of heritage selection?

Why Walking?

Although walking is not conventionally utilized as a methodological tool in academia, the practice has been used to study vernacular landscapes.12 For example, journalist Dick Roraback with the Los Angeles Times completed a full exploration of the Los Angeles River, titled “In Search of the L.A. River,” beginning in Long Beach and

walking upstream in 1985. Geographer and urbanist Mathew Gandy explored the Los Angeles River on foot in 2006 and wrote about his journey in the form of narrative ethnography in his journal article titled, “Riparian Anomie: Reflections on the Los Angeles River.” In my experience, walking has enabled a thorough and intimate exploration of both the San Antonio River and the Los Angeles River. At the slow speed of walking, I noticed subtle shifts in the ground terrain, listened to the mission bells and a reoccurring chorus of frogs, and recognized the significance of shade. I paused and conversed with people, lingered when I wanted to, and captured hundreds of photographs. In his journal article, “Viewpoint: Walk this Way,” William Littman describes a similar experience after completing a week-long walk with his son across Los Angeles in 2020. He writes,

The walk … helped us see the landscape in a richer and more granular way. We noticed small changes in elevation or terrain, heard music coming out of parks or churches, smelled the cooking in apartments and restaurants, and saw the buildings and artifacts that are nearly impossible to perceive when driving in the car.

Or to witness digitally, for that matter. Rebecca Solnit in her book, Wanderlust: a History of Walking, suggests that the mind operates at about the same speed as walking, about three miles per hour. A walking pace provided me the space and time to wander, feel, listen, and question.

Limitations
The utilization of walking and narrative ethnography as primary research methods comes with some constraints. Firstly, perhaps most importantly, like all humans, I am biased thinker. As I walked, I took extensive notes and translated them into narrative ethnographies, capturing what I saw along each journey. Chapters Two and Four consist of my personal observations and initial impressions, shaped and informed by my studies in anthropology, landscape architecture, and heritage conservation. Secondly, in walking these landscapes thoroughly only once, it is

14 Gandy, “Riparian Anomie,” 139.
inevitable that I missed certain details. I caution my readers against presuming that the way I perceived the landscape during one particular week in August or September 2023 is the only perspective or the persistent reality. Los Angeles, for instance, experienced a particularly wet winter and summer in 2023, possibly resulting in a greener landscape than what is typically expected in August (Figure I.1, I.2). Indeed, the well-quoted fifth-century BCE Greek philosopher and academic, Heraclitus stated, “No man ever steps in the same river twice, for it’s not the same river and he’s not the same man.”17 I believe this to be true. Indeed, both explorations capture a distinct moment in time for each river and hopefully can serve as historical records in their own right.

Figure I.1: Looking south off of the Orange Bridge in Frogtown on September 4, 2022. This photo and the photo below, captured in the same location, intend to demonstrate the diversity of conditions witnessed within the Los Angeles River throughout the year. Photo by author.

Figure I.2: Looking south off of the Orange Bridge in Frogtown during a significant rain event on January 9, 2023. Photo by author.

Preconceived Notions

Before embarking on both river walks, I anticipated a significant difference in difficulty between the two journeys. I expected to encounter more people along the San Antonio River than the Los Angeles River. I also expected to see a far lusher landscape in San Antonio than Los Angeles. In San Antonio, I looked forward to discovering heritage prominently displayed with historical explanations around every river bend. Conversely, in Los Angeles, I anticipated finding more trash and graffiti with only subtle hints of heritage. I hoped that walking both rivers would provide me with the confidence to speak about each waterway and overcome my hesitancy to overstep as a visitor (I am still working toward this).

I travelled to San Antonio hoping to learn about the strategies they use to enhance accessibility and promote connection to their river, with the goal of implementing similar techniques along the Los Angeles River. I heard the San Antonio River was called the “crown jewel of Texas” and thought perhaps it could be used as a model for revitalizing the river in Los Angeles. What I found in San Antonio was exactly what I imagined—there were benches, water fountains, native trees shading the River Walk, art, and countless signs and maps, providing context to each particular stretch of the river. The flood control features built to tame the river are enormous, but easy to ignore among the overwhelmingly pleasant feeling of walking alongside the well-maintained, landscaped waterway. In contrast, walking the length of the Los Angeles River was challenging for the majority of the time. There is very little shade, many sections are fenced off and inaccessible, there are few bathrooms or water fountains, and the concrete expanses make it impossible to ignore its sole purpose as a flood control channel. What the Los Angeles River does, however, is confront you with the reality of what was lost. Because walking along the San Antonio River is so pleasant, it allows its visitors to forget that it is also a flood control project. Even though both rivers are heavily manipulated, only one asks its visitors to reckon with what could have been and what could be.
CHAPTER ONE: HISTORY OF THE SAN ANTONIO RIVER

This chapter traces the historical narrative of the San Antonio River and its transformation from a natural feature to a multi-functional flood control channel, focusing specifically on moments of human interaction and protest. Demonstrating similarities with the Los Angeles River across numerous aspects and following a similar timeline of transformation, the history of the San Antonio River emerges as a relevant case study for further examination. Understanding the river’s various societal roles and its context is essential for comprehending its current state and significance. In this chapter, we explore how the river served the city in the past, examine its current functionality, analyze the priorities in its infrastructure design, and identify what and who were excluded from the planning process. Despite sharing almost parallel histories with the Los Angeles River, the San Antonio River is now celebrated as one of Texas’ most well-visited sites.

YANAGUANA

The story of human engagement with the San Antonio River and the surrounding area, both originally called Yanaguana, begins eleven thousand years ago.18 For millennia, the Payaya, the predominant Indigenous community of the region, and their predecessors depended on the San Antonio River and surrounding water bodies such as the San Pedro Creek, a tributary of the San Antonio River, as a vital source for food and water.19 The 240-mile-long San Antonio River follows a gentle slope from its northern source in central Bexar County to the Guadalupe River near the Gulf of Mexico.20 The upper stretch of the river once looked very different than it does today. The region was host to a diverse ecosystem comprising lowlands, uplands, terrestrial

19 Char Miller, San Antonio: A Tricentennial History (Texas State Historical Association, 2018), 3. A tributary is a stream or river that flows into another often larger river. In this case, the San Pedro Creek flows into the San Antonio River.

and riparian areas, as well as woodlands and prairies. The headwaters of San Antonio River originate from a collection of springs just four miles north of the present-day downtown San Antonio (Figure 1.1). In his book, San Antonio: A Tricentennial History, professor Char Miller points out that geographer James F. Peterson calls this part of Texas “the Texas Spring Line” with springs bubbling up from the Edwards Aquifer stretching from Del Rio to Austin, passing directly through San Antonio. Supplementing the river’s flow, Olmos Creek also empties into the San Antonio River just below its headwaters.

21 Miller, San Antonio, 3.
23 Miller, San Antonio, 3.
24 Donecker, “San Antonio River.”
The topography, geography and climate of the area makes San Antonio very vulnerable to flooding. San Antonio sits within the transition zone between the Great Plains, known in Texas as the Edwards Plateau, and southern coastal plain extending to the Gulf of Mexico. The changes in topography and landforms produce significant shifts in weather patterns, switching between prolonged periods of drought and heavy rainfall. Due to the severity of these weather fluctuations, the National Weather Service nicknamed the region “Flash-Flood Alley.” In his book Westside Rising: How San Antonio’s 1921 Flood Devastated a City and Sparked a Latino Environmental Justice Movement, Miller writes, “Within moments, the almost dry San Antonio River and its arroyo-like tributaries could become churning torrents.” In between major flood events however, Miller continues, “… the San Antonio River have attracted and sustained generation of Indigenous communities and in time Spanish, Mexican, and American settler-colonists” (Figure 1.2, 1.3).

25 Miller, Westside Rising, 4.
26 Miller, Westside Rising, 4.
28 Miller, Westside Rising, 6.
29 Miller, Westside Rising, 6-7.
Figure 1.2: A shallow San Antonio River in 1895. Source: Library of Congress.

Figure 1.3: Diverse ecology within the San Antonio River in 1895. Source: Library of Congress.
While the San Antonio Valley was fertile due to intermittent flooding, under typical conditions, the river rarely exceeded a width of twenty feet and a depth of fifteen feet. Miller describes the region pre-channelization as having “life-sustaining properties” and an “ecological abundance.” The area was known to be rich with roots, seeds, grasses, prickly pear cactus, and various nuts including pecans, which grew abundantly throughout most of the year. The Indigenous population also relied on a variety of mammals for their diet; fossilized remains of ancient mastodons and giant bison have been found buried in the floodplain. The Coahuiltecan Indians, which include the Payaya, Pajalat, Xarame, Orejonos, Borrados, and Manos de Perro, were mostly foragers, not known to practice agriculture. Álvar Nuñez Cabeza de Vaca, a Spanish explorer and participant in the Conquest of Mexico, who found himself shipwrecked on the Texas coast in 1528, noted that “nothing is planted [in] support” of the Indigenous communities’ diet. Archaeologist Karen Stothert highlights the effectiveness of the Payaya People’s hunting and gathering practices, noting that they “were able to support themselves because they defined such a wide range of biomatter as food.” The Payaya People along with other tribal bands in the area were highly mobile due to flood risk among other factors, contributing greatly to their self-sufficiency and prosperity in the region.

In 1691, Domingo Terán de Los Ríos and Father Damian Massanet journeyed through the area, calling it San Antonio de Pádua. The name honored the current date of their expedition, June 13, which in the Spanish calendar corresponds to the feast day dedicated to St. Anthony of Pádua. Terán and his crew, who approached San Antonio from the south, following the path of the Medina River, described the landscape as “a fine country with broad plains—the most beautiful in New Spain.” Near the San Pedro Springs, Terán noted clear water and abundant oaks and cedars supported by the

34 Miller, *San Antonio*, 4.
36 Miller, *San Antonio*, 3.
38 Miller, *San Antonio*, 2.
region’s fertile soils. The Spanish explorers wrote about the Payaya People, for what is believed to be the first time. Terán stated in his diary, “Here we found certain rancherías in which the Peyaye [Payaya] live.” Massanet also recorded the original name of the region, “In the language of the Indians, it is called Yanaguana… I called this place San Antonio de Pádua, because it was his day.” This act of renaming places was not unusual; Spanish explorers frequently renamed different locations during their colonial conquest. While Terán and Massanet endeavored to convert the Payaya People to Catholicism, the Spanish would not establish a lasting residence in San Antonio for several decades. Instead, multiple expeditions, led by both the Spanish and French, would document the landscape’s suitability for settlement until the Spanish finally established their first mission in 1718 and four more by 1731.

SPANISH SETTLEMENT AND THE MISSIONS

In 1709, during an expedition led by the Spanish Captain Pedro de Aguirre, who commanded the presidio of the Río Grande del Norte, Fray Isidro Félix de Espinosa documented that the San Pedro Creek, which runs parallel and eventually flows into the San Antonio River, showed significant potential. He stated, “The river, which is formed by this spring, could supply not only a village, but a city, which could easily be founded here because of the shallowness of said river.” Miller highlights that “of utmost concern to these early town planners was a ready supply of water, which Spanish visitors assessed in relation to the size and significance of the community it could support.”

In 1714, Louis Juchereau de Saint Dennis, hoping to establish a French trade relationship between Louisiana and Mexico, stopped near the headwaters of the San Antonio River during an expedition, believing the area to be an ideal location for a

39 Miller, San Antonio, 2.
40 Miller, San Antonio, 2.
41 Miller, San Antonio, 2.
42 Miller, San Antonio, 2.
43 Miller, San Antonio, 3; Claude B. Aniol, San Antonio: City of Missions (New York, 1942), 1.
45 Miller, San Antonio, 10.
46 Miller, San Antonio, 9.
permanent settlement.47 Robert Carlton Clark in his journal article titled, “Louis Juchereau de Saint-Denis and the Re-establishment of the Tejas Missions,” documents that Saint Dennis and “the party continued the journey, passing the San Antonio River, where was an Indian village. Saint-Denis remarked on the spot, observing that it was very suitable for a village, and worthy of a good presidio.”48

In 1716, Spanish Captain Domingo Ramón documented the same region in his diary, describing the “scenery along the San Antonio River [as] very beautiful, for there are pecan trees, grape vines, willows, elms, and other timbers.”49 Having observed a shallow level of streamflow, Captain Ramón evaluated that there was “sufficient water here for a city of one-quarter league” or a little bit less than one-mile wide.50 Two years later, due to Ramón’s reports and a looming French threat, the viceroy of New Spain directed Martín de Alarcón, the newly appointed governor of Texas, to establish a chain of missionaries and Spanish communities from San Antonio to East Texas.51 Alarcón decided his settlement, Villa de Béxar, would be built between the San Antonio River and the San Pedro Creek.52 Professor Miller notes that while the soils were rich because the new development was located within the floodplain, it also “meant that from the very beginning, rampaging floodwaters would be a troubling (and frequent) hazard in San Antonio.”53

Five Spanish colonial-era Catholic missions were established on the banks of the San Antonio River in the early 1700s. The first mission, originally named San Antonio de Valera, but more widely recognized as the Alamo, was founded in 1718, further establishing a permanent Spanish presence within the floodplain.54 Historian Félix Almaráz notes that “throughout the entire colonial period the proximity of church and state institutions in a riparian environment contributed to an atmosphere of cooperation

47 Aniol, San Antonio: City of Missions, 1; Clark, Robert Carlton, “Louis Juchereau de Saint-Denis and the Re-establishment of the Tejas Missions,” Texas Historical Association Quarterly (July 1902): 25.
49 Miller, San Antonio, 10.
50 Miller, San Antonio, 10.
51 Miller, San Antonio, 10.
53 Miller, San Antonio, 12.
54 Chavana, “Reclaiming Tribal Identity,” 24
and conflict.”55 By the late 1720s, about three-hundred people resided along the San Antonio River.56 The other four missions—Nuestra Señora de la Purísima Concepción de Acuña, San José y San Miguel de Aguayo, San Juan Capistrano, and San Francisco de la Espada—were all constructed by 1731 to form an eleven-mile stretch of religious establishments along the San Antonio River (Figure 1.4, 1.5).57 During this period, multiple bands of Coahuiltecan Indians, suffering from diseases introduced by the Spanish and attacks by the Apaches and Comanches from the north, occupied the missions periodically.58 Historian Pekka Hämäläinen confirms, “the nomadic Coahuilteco speakers steered clear of Spanish settlements but incorporated Spanish missions into their season cycle as resource depots.”59

Figure 1.4: The five San Antonio missions—San José y San Miguel de Aguayo, Nuestra Señora de la Purísima Concepción de Acuña, San Antonio de Valera, San Juan Capistrano, and San Francisco de la Espada—in 1895. Source: Library of Congress.

55 Andrés Resendéz, The Other Slavery: The Uncovered Story of Indian Enslavement in America (Boston: Houghton Mifflin Harcourt, 2016), 175, as cited in Miller, San Antonio, 15.
56 Miller, San Antonio, 13.
58 Chavana, “Reclaiming Tribal Identity,” 24
Only a week after the missions were officially established along the San Antonio River in 1731, sixteen families from the Canary Islands, known locally as Isleños, settled in the recently founded presidio, San Fernando de Béxar, named in honor of the heir to the Spanish throne, Fernando VI. The new settlement was located just east of the presidio established in 1718 between the San Antonio River and the San Pedro Creek. Forty-nine additional families, who were not affiliated with the missions or the presidio, lived in the area as well, but the region’s population as a whole remained small. Due to San Antonio’s remote location and infrequently used surrounding trail system, growth and development was notably slow over the next half-century. While the missions were initially populated in the 1730s, they would eventually face decline.

60 Aniol, *San Antonio: City of Missions*, 2; Miller, *San Antonio*, 15. Olmsted notes that San Antonio was founded by a colony of twelve families from the Canary Islands, contrary to the sixteen families mentioned by other sources. He elaborates, "The town of San Antonio was founded in 1730 by a colony of twelve families of pure Spanish blood, from the Canary Islands. The names of the settlers are perpetuated to this day by exiting families which have descended from each, such as Garcia, Flores, Navarro, Garza, Yturri, Rodríguez" (see Frederick Law Olmsted, *A Journey Through Texas: A History of the Lone Star State on the Eve of the Civil War* (1856), 152).

62 Miller, *San Antonio*, 16.

As a result, the Canary Islanders were offered many incentives to continue to live in the region. Historian Gerald E. Poyo wrote that they were offered “full control of the town’s cabildo, or city council. Ten Isleños received life appointments to govern the new villa, San Fernando de Béxar.” This authority also included the Islanders’ rights and jurisdiction over the region’s water resources. Juliana Barr, in her journal article, “Beyond their Control: Spaniards in Texas,” wrote that the Canary Islanders “claimed rights to virtually all the non-mission land west of the San Antonio River and sought to monopolize water from the river itself and the San Pedro Creek.” Subsequently, water was strictly managed through acequias, narrow irrigation canals that extended from the San Antonio River and the San Pedro Creek. By 1750, only five-hundred settlers, just two-hundred more people than several decades before, lived in the presidio.

“LITTLE INFRASTRUCTURE”

To transport water, Spanish engineers constructed a system of acequias, providing water to both residential homes and the five missions several blocks away. This canal technique was introduced to San Antonio by the Moors from North Africa. The earliest acequia, called the Concepción or Pajalache, was built in 1729 and was thought to be so large that residents could row small boats within it. The Concepción acequia experienced continuous use until it was abandoned in 1869. The San Francisco de la Espada Mission acequia was constructed between 1731 and 1745, featuring the stone Espada aqueduct (Figure 1.6). The Espada aqueduct is recognized today as the last operational Spanish structure of its kind in the entire country and is a National Historic Landmark.

64 Resendéz, *The Other Slavery*, 175, as cited in Miller, *San Antonio*, 16.
71 Long, “Acequias.”
Figure 1.6: The Espada Aqueduct photographed in 1969. Source: Historic American Engineering Record.
Figure 1.7: A map of the extensive acequia network in San Antonio, drawn by Gary Rogers in 1973. Source: Historic American Engineering Record.
The acequia madre, which translates to “mother ditch,” is located near the Blue Hole, one of the primary springs of the San Antonio River. Because the river meandered back and forth, many of the homes were built within the bends of the river in a long and narrow fashion, enabling each house to have street access in the front and access to an acequia on the other side. In certain sections, due to the numerous bends in the waterway’s path, it reportedly took thirteen miles of river to travel only six miles on foot. For well over a century, a fifty-mile network of canals supported residents in the region, which was host to the most extensive acequia system in the entire state (Figure 1.7). In his book, A Journey Through Texas: A History of the Lone Star State on the Eve of the Civil War, published in 1856, landscape architect Frederick Law Olmsted, who traveled through San Antonio in 1853 reports that “the system of aqueducts (acequias), for artificial irrigation, extends for many miles around San Antonio… in the immediate neighborhood of the city they are still in use, so that every garden-path may be flowed at will.” The canals, however, were costly to build and maintain. As a result, irrigated land, predominantly owned by the Canary Islanders, was limited and expensive.

As San Antonio’s water system developed, the city focused on building up its surrounding infrastructure as well. The first documented pedestrian bridge crossing the San Antonio River was constructed in the 1730s and was located at the end of Commerce Street near the Alamo. The first weight-bearing wagon bridge was built on the same street in 1842, but the bridge was washed out by a flood only a couple of years later. During the same period, prior to the construction of private bathhouses in

72 Fisher, American Venice, 2.
73 Interview with Vincent Michael, Director of the San Antonio Conservation Association, October 3, 2023.
76 Long, “Aacequias.”
77 Long, “Aacequias.”
78 Fisher, American Venice, 6.
79 Fisher, American Venice, 6.
the 1840s, residents would bathe in the river (Figure 1.8).80 During his visit, Olmsted writes,

The temperature of the river is of just that agreeable elevation that makes you loath to leave a bath, and the color is the ideal blue. Few cities have such a luxury. It remains throughout the year without perceptible change of temperature, and never varies in height or volume. The streets are laid out in such a way that a great number of houses have a garden extending to the bank, and so a bathing-house, which is in constant use.81

In San Antonio, the river played a large role in the daily life of its residents. For example, women washed their clothes in the river and hung them to dry on neighboring shrubs.82 As another instance, despite the river’s modest drop in elevation of only thirty-five feet from its headwaters to the edge of downtown, waterwheels were built in the San Antonio River to support small mills.83 Multiple local businesses, including two iron foundries and two ice factories, would stack stones to redirect water from the river toward the wheels, which would then power belt-driven equipment.84 Olmstead recorded in 1853 that “the fall of the river is such as to furnish abundant water-power, which is now used but for a single corn-mill.”85

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.8.jpg}
\caption{The San Antonio River, due to its moderate temperature, saw regular year-round bathing. Source: Frank Leslie’s Illustrated Newspaper, January 15, 1859.}
\end{figure}

80 Fisher, \textit{American Venice}, 9.
81 Olmsted, \textit{A Journey Through Texas}, 153.
82 Fisher, \textit{American Venice}, 11.
83 Fisher, \textit{American Venice}, 10.
84 Fisher, \textit{American Venice}, 10-11.
85 Olmsted, \textit{A Journey Through Texas}, 153.
Beyond its utility, the river was highly admired among residents and visitors for its beauty (Figure 1.9, 1.10). During his visit, Olmsted described the river’s waters as “rich blue and as pure as crystal.”86 Observing the San Antonio River from a bridge “close down upon the water,” Olmsted continued, “We irresistibly stop to examine it, we are so struck with its beauty… flowing rapidly but noiselessly over pebbles and between reedy banks. One could lean for hours over the bridge-rail.”87 In his book, Olmsted explored the cluster of springs at the river’s headwaters as well, offering praise for the lush landscape and recognizing its role as one of beauty and use. He writes,

The San Antonio Spring may be classed as of the first water among the gems of the natural world. The whole river gushes up in one sparkling burst from the earth. It has all the beautiful accompaniments of a smaller spring, moss, pebbles, seclusion, sparkling sunbeams, and dense overhanging luxuriant foliage. The effect is overpowering.88

From his extensive notes and descriptions, it is clear the San Antonio River and its headwaters captivated the landscape architect's attention. Olmsted was also well aware of the river’s relationship to the surrounding soil’s fertility. He documented that, “the soil in the neighborhood of the city is heavy and sometimes mixed with drifts of limestone pebbles and deposits of shell, but is everywhere black and appears of inexhaustible fertility if well cultivated and supplied with moisture.”89

87 Olmsted, A Journey Through Texas, 149-150.
88 Olmsted, A Journey Through Texas, 153.
89 Olmsted, A Journey Through Texas, 153.
Figure 1.9: A wild and lush San Antonio River in 1895. Source: Library of Congress.

Figure 1.10: A photograph capturing the San Antonio River in 1895, offering a glimpse into what the landscape used to look like. Source: Library of Congress.
Following the Civil War, San Antonio's population increased from roughly three thousand people in 1850 to more than twelve thousand people in 1870, prompting the city to assess its water system and surrounding infrastructure. As new neighborhoods formed upstream, the acequias alone were no longer sufficient to meet the increasing demand for water. Exacerbating the issue, prompted by the introduction of rail to the region, the city's population would continue to grow over the next several years. In 1877, a rail line east from Houston shortened travel time from San Antonio to the coast from multiple days to a mere number of hours. Subsequently, another rail line was constructed extending both north and south, and then one more running westward to reach California. By 1880, San Antonio's population surged to over twenty thousand people. The expanding population necessitated additional infrastructure, prompting city officials to seek alternative water sources and build additional bridges to facilitate easier river crossings (Figure 1.11).

Rail also brought new industries and development to San Antonio neighboring the river including the City Brewery—eventually the Pearl Brewing Company—and the Lone Star Brewing Company in the early 1880s. While these new businesses were exciting for both residents and visitors, expanded development along the riverbanks and within the watershed increased the city's susceptibility to flooding. Decreased permeability inhibits the absorption of rainwater, resulting in water flowing more swiftly into the river.

91 Long, “Acequias.”
WHOSE WATER IS IT... ANYWAY?

Throughout the nineteenth and twentieth centuries, ownership of water in San Antonio was tumultuous, transitioning from the public sector to the private sector and back to the public sector again. In the 1840s, the acequia system had reached its limits, partially due to residents disposing of their waste in the channels, consequently putting the public’s health at risk.\(^97\) Epidemics from water-borne diseases such as cholera in 1846, 1849, and 1866 claimed the lives of over three hundred residents.\(^98\) On September 30, 1866, the San Antonio Board of Health made recommendations concerning the stagnant water and waste floating in the acequias. The numerous epidemics had caused both physical and spiritual hardships on the residents.\(^99\) Doctor Ferdinand Peter Herff later described the prevailing conditions in San Antonio during

\(^{97}\) Miller, *San Antonio*, 58.
this period, which included “muddy streets, filth-infested vacant lots, polluted river water, and grossly ineffectual methods of sanitation.” Deteriorating conditions expanded beyond the acequias as well. During his visit in 1853, for example, Olmsted described his experience visiting the missions. He wrote, “Not far from the city, along the river are these celebrated religious establishments … The Alamo was one of the earliest of these establishments. It is now within the town, and in extent, probably a mere wreck of its former grandeur.”

In 1877, a group of private investors took matters into their own hands and developed a more modern water system, incorporating pumps and reservoirs as essential components. Although Jean Baptiste Lacoste started the San Antonio Water Works Company, within two years of its initiation, George W. Brackenridge became its president and majority stock owner. As president, Brackenridge personally purchased additional land along the San Antonio River, including the river’s headwaters to ensure an ample water supply for the company. In his book, Spanish Water, Anglo Water: Early Development in San Antonio, Charles R. Porter reports that “Brackenridge knew water was the key to the growth of cities, and as cities grew, ownership of land with water frontage would deliver great power and influence…” Indeed, on April 3, 1877, after extensive public debate, the San Antonio Water Works Company was given an exclusive twenty-five-year contract to provide “pure and wholesome water from the San Antonio River, San Pedro Creek or any other source of supply” for the city. Historian Lewis F. Fisher reports that while a municipal water system would be more hygienic, “it was not sanitation but the need for more water for fighting fires that in 1877 finally prompted the city to change directions and sign up with the new San Antonio Water Works Company.” By controlling the headwater spring, the purest of waters without any contamination from downtown, Brackenridge had
positioned his company as indispensable. Alderman Nelson Mackey accused Brackenridge—who also owned the San Antonio Bank—of being a “monopolizer” and a “war profiteer.” In the *San Antonio Daily Express* in 1886, Mackey published, “If Brackenridge owns the head of the river, he can govern the city by curtailing the supply of pure water. If the city owns it, we can govern him.” Despite multiple efforts, Mackey was unsuccessful in limiting the president of the San Antonio Water Works Company’s power.

In order to distribute water from the headwaters to downtown, it was first necessary to direct the water through a raceway, an artificial channel, and then pump it into an open reservoir. To Brackenridge’s dismay, however, this process discolored the water due to algae in the mains, a large pipe network. According to Basil Young Neal, who interviewed M. C. Judson, an associate of Brackenridge, “Mr. Brackenridge and his associate … tried various means to prevent this growth from forming in the water, but with no permanent success. Finally they decided that the only permanent pure supply would have to be artesian in source,” demonstrating the city’s first formal shift in reliance away from the San Antonio River and upon other sources of water.

In 1887, the San Antonio River experienced “an almost unprecedented lack of water,” which caused city-wide alarm. Porter writes, “The river and springs were simply not adequate to fulfil the demand of the new population,” which would reach almost forty thousand people by 1891. Historian Fisher reports that, “Waterwork officials pleaded for limits to commercial and industrial water use and the watering of lawns and gardens.” In 1893, after drilling a number of fruitless wells and completing a thorough review of the land conditions, Brackenridge and Judson successfully drilled a deep well on land owned by Brackenridge south of Market Street. The *San Antonio*
Express exclaimed, “The fresh water supply of San Antonio is apparently unlimited. It has increased three million gallons for each twenty four hours by a splendid strike in the artesian well being drilled on the property of George Brackenridge.” According to Porter, the well supported the city’s increasing water demands for multiple years. Due to the artesian well’s success, by 1896, nearly seventy wells were drilled into the Edwards Aquifer in Bexar County alone (Figure 1.12, 1.13).

117 *San Antonio Express*, January 10, 1893, as cited in Miller, *San Antonio*, 60. An artesian well is a specific type of well that taps into an underground aquifer. Due to the difference in pressure within the aquifer and the ground surface, when an artesian well is drilled, water rises from the aquifer to the surface without the need of a pump.

At the turn of the century, the city of fifty-thousand people no longer relied on the river nor the acequias for its water supply.119 Porter explains that, “Pure water was no longer available from the river in reliable quantity to meet the city’s needs, and its needs were growing by leaps and bounds.”120 Instead the waterworks company pumped water from the Edwards Aquifer, but not without serious consequences. Local springs, which were also fed by the Edwards Aquifer, were run completely dry and the flow of the San Antonio River waned significantly. Brackenridge, in a letter to a friend in 1897 wrote, “I have seen this bold, bubbling laughing river dwindle and fade away. It is now only a little rivulet, whose flow a fern leaf could stop and its water are hardly enough to quench the thirst of a red bird. This river is my child and it is dying, and I cannot stay here to see its last gasps. It is probably the sinking of many artesian wells.”121 Subsequently, Brackenridge sold his waterworks shares to other investors and established a riverfront park, donating two hundred acres of riverfront land.122

Two decades later, in 1920, the City finally purchased the private San Antonio Water Works Company and established the City Water Board.123 Efforts to institute a public system, however, progressed very slowly. Forty years passed before the Water Board created a citywide water-distribution system.124 Historian David Johnson notes that during this period in San Antonio while private investment in the city was welcomed, public investment lagged far behind.125 He writes, the City “did nothing to promote or to provide for it.”126

\begin{flushright}
\begin{footnotesize}
119 Porter, \textit{Spanish Water}, 115.
120 Porter, \textit{Spanish Water}, 115.
122 Miller, \textit{San Antonio}, 61.
123 Miller, \textit{San Antonio}, 61.
124 Miller, \textit{San Antonio}, 61.
125 Miller, \textit{San Antonio}, 61.
\end{footnotesize}
\end{flushright}
FLOODING IN THE SAN ANTONO RIVER

The earliest recorded hundred-year-flood event in San Antonio occurred in 1819. In his book, *American Venice: The Epic Story of San Antonio’s River*, Fisher reports, “...a *culebra de agua*—a serpent of water or cloudburst—fell into the drainage area of Olmos Creek. Waters surged into the San Antonio River, already swollen by rain. They joined floodwaters overflowing San Pedro Creek and rampaged through Main and Military Plaza, washing away a dozen adobe and stone buildings.”\(^{127}\) Tragically, sixteen people died. Then Governor Antonio Martínez stated of the flood that “no special incident has occurred in this province under my command so terrible that no object could resist its fury.”\(^{128}\) He continued, admitting it “was impossible to give immediate aid to the miserable souls who struggled against death because no one could do anything except look out for himself.”\(^{129}\) The 1819 storm destroyed bridges, government offices including important documents, residential property, and agricultural lands.\(^{130}\) Governor Martínez pleaded with his superiors to send supplies or resources, but Commandant General Arredondo apparently sent no money or aid, revealing the disorder of New Spain at the time.\(^{131}\)

In 1845, another flood struck San Antonio. Mayor Edward Dwyer proposed constructing an ambitious dam near the mouth of Olmos Creek to help contain torrential floodwaters.\(^{132}\) Less than a decade later, in 1852, a severe storm caused the river to surge eight feet above normal, flooding the city again. During the storm’s aftermath, Mayor Dwyer’s successor revisited the idea of building the Olmos Dam, however, still no significant measures were taken by the city due to its high expense.\(^{133}\)

\(^{131}\) Miller, *San Antonio*, 27.
\(^{133}\) Miller, *San Antonio*, 50.
As expected from the region’s history, San Antonio flooded once more on March 26, 1865.134 Driftwood piled up forming an informal dam, causing water to pool downtown, and at least three people drowned (Figure 1.14). Miller reports, “By 1865, many of the town’s nearly 10,000 residents no longer could accept this pattern of destruction as a condition of living in the floodplain. They demanded action…”135 San Antonio subsequently formed a study committee and hired three engineers to assess the benefits of building a dam that would span Olmos Creek just north of its confluence with the San Antonio River, as Mayor Dwyer had suggested two decades before.136 Instead of building the dam however, the committee chose less expensive methods to manage potential flooding, such as removing obstructions in the floodplain.

134 Fisher, \textit{American Venice}, 18.
135 Miller, \textit{San Antonio}, 50.
136 Miller, \textit{San Antonio}, 50.
At the turn of the century, despite another moderate flood in 1903 and minimal investment in flood control, Miller describes a strange calmness that fell over San Antonio after a lengthy period of drought in the late 1800s. To illustrate the sentiment, a journalist during this time wrote that, “every possible danger from the Olmos has been averted merely by converting the hard unbroken prairie into cultivated fields. The man who would venture to predict an overflow today would be called an idiot.” Due to the effects of little rain and the rapid drilling of artesian wells, the San Antonio River’s flow had slowed to a mere dribble. Fisher writes, “Downstream, the river dwindled to a trickle through the slime of refuse no longer swept away by a swift current.”

In 1913, however, an October storm delivered nine inches of rain to the region, racing from Olmos Creek into the San Antonio River (Figure 1.15). Four people drowned, reminding the city of the storm of 1865. Just two months later, still in the midst of a citywide clean up from the October deluge, another series of storms flooded San Antonio (Figure 1.16). The prevailing sense of calmness and apathy towards flood control quickly dissipated.

The ensuing year, 1914, a notable storm year for Los Angeles as well, witnessed yet another storm following the same path from Olmos Creek into the San Antonio River. Within three hours, five inches of rain rushed through the town leaving behind a trail of debris and sediment. An additional nine people drowned, and two thousand residents lost their homes. These three consecutive disasters launched a second flood study enlisting Rhode Island engineer Samuel M. Gray to assess the situation. After his initial report, the city decided against supporting a more in-depth study of the river conditions due to the engineer’s high fees.

138 *San Antonio Express*, July 15 1887, as cited in Miller, *San Antonio*, 64.
141 *San Antonio Express*, October 3, 1913, as cited in Miller, *San Antonio*, 72.
142 Miller, *San Antonio*, 72.
Figure 1.15: October storm floods East Houston Street, 1913. Source: General Photograph Collection, UTSA Special Collections.

Figure 1.16: A flooded St. Mary’s street in December, 1913. Source: General Photograph Collection, UTSA Special Collections.
In 1920, due to persistent flooding, San Antonio finally did complete a six-month long hydrological analysis study with Boston firm Metcalf & Eddy to come up with a lasting solution for the city.144 They recommended constructing a dam at Olmos Creek, widening and deepening the channel downtown, and straightening the San Antonio River at six strategic points through the city’s developing core, with an estimated project cost of $4 million.145 They also suggested that all vegetation and trees be removed from the banks, to prevent any obstructions to swift-moving flood waters. Obstacles in the channel could result in water dragging or pooling and potentially overflowing into the surrounding city. The San Antonio city commissioners adopted the firm’s suggestions in December of 1920.146 Miller describes that, “Metcalf & Eddy, which had a good sense of the community’s penny-pinching proclivities and its historical amnesia, warned against inaction.” To illustrate, the Boston firm stated,

\begin{quote}
We doubt the citizens realize the ruinous loss which would result today with the present condition of the river channels, from such a flood as of that of a century ago (1819). When such a flood will recur, no man can say. But that it will recur is certain… We counsel the wisdom of pushing this work… while the memory of recent floods is vivid, lest the public mind relapse into inaction in a false sense of security when the inevitable flood shall come. We urge that your citizens shall remember that this flood is just as likely to come next year as at any other time.147
\end{quote}

Sufficiently forewarned, a mere nine months later, San Antonio would face the most destructive storm in its history.148

Professor Miller states that, “Late in the evening of September 9, San Antonio went under water. So did the other communities lying along the Texas Spring Line… Farms, ranches, and feedlots were inundated. Houses and barns were swept off their foundations and careened downstream” (Figure 1.17, 1.18, 1.19, 1.20, 1.21).149

\begin{flushleft}
145 Fisher, “San Antonio River Walk [Paseo Del Rio].”
146 Fisher, “San Antonio River Walk [Paseo Del Rio].”
147 Fisher, \textit{American Venice}, 51-53; Miller, \textit{San Antonio}, 74.
148 Miller, \textit{San Antonio}, 94.
149 Miller, \textit{San Antonio}, 94.
\end{flushleft}

Figure 1.18: Another destroyed bridge following the 1921 flood at Romana Street. Source: Ellsworth, C. E. “The Floods in Central Texas in September, 1921.” Department of the Interior. United States Geological Survey. Prepared for the State of Texas. 1923. 487.
Miller continues, “Upstream ditches and creeks rose swiftly and then slammed into San Pedro Creek and the San Antonio River, which could not contain the turbulent waters, sending wave after wave down alleys and avenues. The peculiar nature of the city’s siting proved disastrous.”\footnote{Miller, \textit{San Antonio}, 94.} A ten-foot wall of water tore through the city’s business district. A thousand acres of the city flooded and more than fifty people died, most from the West Side of San Antonio, home to a Latino barrio.\footnote{Miller, \textit{San Antonio}, 94; Fisher, “San Antonio River Walk [Paseo Del Rio].”} The \textit{San Antonio Light} on September 10, 1921 read, “Area two miles wide and six miles long in city swept by most disastrous flood in San Antonio’s history, which comes without warning after cloudburst in Olmos Valley… Estimates of loss of life vary from 100 to as high as 500… Thousands rescued by police, firemen, soldiers, and volunteer workers… Funds urgently needed.”\footnote{\textit{The San Antonio Light}, “37 Bodies Found; Dead May Total 200 Property Loss Estimated 5 Million. Relief Work Proceeds at Rapid Pace,” September 10, 1921, accessed October 3, 2023, \url{https://www.mysanantonio.com/150years/major-stories/article/The-1921-flood-caused-death-destruction-new-6177194.php}.} The front page in the \textit{Austin American} reported that the “placid rivulet of water became a rushing torrent in less than half an hour.”\footnote{Miller, \textit{San Antonio}, 95; Gunn et al., “Cultural Benefits from Metropolitan River Recreation,” 11.}

Figure 1.19: At the intersection of St. Mary’s and Travis Streets, following the 1921 Flood. Three men canoe in the street. Source: San Antonio Light Photograph Collection, MS 359, University of Texas at San Antonio Libraries Special Collections.

Figure 1.21: The Red Cross Headquarters at City Market in downtown San Antonio following the 1921 San Antonio River flood. Source: Library of Congress.
The flood of 1921 was the tipping point for San Antonio. It took three years to finalize the flood prevention plans and to approve $2.8 million in municipal bonds to begin the project. The Olmos Dam, a structure measuring 1,900 feet in length (over five football fields long) and 80 feet in height, was completed in 1926 (Figure 1.22). A bypass channel which cut off a major bend in the meandering river running through downtown San Antonio, dubbed the Great Bend, was finished in 1930 (Figure 1.23). Samuel F. Crecelius, a retired colonel in the United States Army Corps of Engineers, oversaw the project.

156 Fisher, American Venice, 78.
Figure 1.23: A bypass channel was built in 1930 to help mitigate the risk of flooding in downtown San Antonio. Map by author.
SHIFTING PERSPECTIVES

Despite sharing historical similarities, flood control measures in San Antonio differed greatly from strategies employed in Los Angeles. While the Los Angeles River was engineered exclusively to channel water to the ocean, discussed further in Chapter Three, the San Antonio River’s design fundamentally integrated social programming and an aesthetic ambiance with extensive flood control measures to protect its residents.\(^{157}\) Despite the significant loss of life and costly destruction caused by numerous floods throughout San Antonio’s history, for over a century, several civic groups and local leaders have continuously fought to protect their river.

In 1887, the *San Antonio Express* published an anonymous writer’s wishes for the river to become a park. The author wrote that the riverbanks “could be converted into flowerbeds, and pleasure boats [could] afford recreation to hundreds.” The writer continued, “Many of our citizens are prone to look entirely upon the utility side of every question, and the river as an ornament would be likely to excite ridicule, but… our river would be the crown jewel of Texas,”—the same words are used to describe the San Antonio River today.\(^{158}\) A couple of years later, the newly established Civic Improvement Association, suspicious of tree trimmers damaging the large trees lining the river’s banks, protested at city hall. As a result, city officials vowed “to beautify the stream and protect it in every manner possible.”\(^{159}\) The following year, at the annual spring festival, the spring festival’s chosen king, who typically made his ceremonious arrival to the festival at the railroad station, made his grand entrance by boat as part of the city’s inaugural river parade.\(^{160}\) During the same period, Park Commissioner Ludwig Mahncke personally funded the planting of three-hundred cypress tree saplings along

\(^{160}\) Fisher, “San Antonio River Walk [Paseo Del Rio]”; Mrs. Willard E. Simpson, Jr., “Fiesta San Antonio,” *Texas State Historical Association*, 1979, updated September 1, 2023, accessed December 12, 2023, https://www.tshaonline.org/handbook/entries/fiesta-san-antonio. In the early years of the Spring Festival tradition, also known as Fiesta San Antonio, the coronation of a king was an integral part of the week’s festivities. Initially, the kings were chosen by the Spring Carnival Association, the Downtown Business Club, and the Chamber of Commerce.
the river’s course. With deep structural roots, these trees helped stabilize the surrounding soils.\footnote{Fisher, \textit{American Venice}, 25.}

The Civic Improvement Association continued their work, installing permanent lighting and planting flowers along three sections of the San Antonio River. In 1910, during a drought year, the association built a twenty-foot canoe as their float with a banner that stated “What the Civic Improvement League is going to do with the San Antonio River.”\footnote{The \textit{San Antonio Light}: “River Illumination,” April 23, 1910, 5, as cited in Fisher, \textit{American Venice}, 27.} Concurrently, the Sisters of Charity of the Incarnate Word encouraged boating among their students and sought to maintain sufficient water levels at the river’s headwaters (Figure 1.24).

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{San_Antonio_River_Canoe.png}
\caption{A 1907 postcard features students boating in the San Antonio River near campus. Source: Edwards Aquifer Website by Gregg Eckhardt, www.edwardsaquifer.net.}
\end{figure}

Efforts to enhance the river aligned with the prevailing City Beautiful movement. Popular in the early 1900s, the movement encouraged civic pride and participation and advocated for a comprehensive approach to urban planning, highlighting the benefits of community centers and parks.\footnote{Ida Yalzadeh and Naomi Blumberg, “City Beautiful Movement,” \textit{Britannia}, accessed October 4, 2023, \url{https://www.britannica.com/topic/City-Beautiful-movement}. The City Beautiful Movement has since faced criticism for prioritizing aesthetics over broader social and economic concerns, often neglecting the needs of marginalized communities.} The movement originated following a significant period of industrialization in the United States.\footnote{Jon A. Peterson, “The City Beautiful Movement,” \textit{Journal of Urban History} 2, no. 4 (1976): 416.} The American League for Civic Improvement,
one of the leading national City Beautiful organizations defined its goals as “the promotion of outdoor art, public beauty, town village, and neighborhood improvement.” During this period, people were divided about what to do with the downtown portion of the San Antonio River. On one end were individuals who envisioned a beautified river complete with a shaded river walk, while on the other were businessmen hoping to stimulate economic development. The latter group’s plan involved paving over the river through downtown San Antonio, effectively transforming it into an underground sewer while creating space for prime real estate on top. Both daily newspapers endorsed the proponents of the River Walk. In 1911, for example, the Express published, “Few cities possess so great a natural asset as a winding, tree-shaded stream, such as the San Antonio River… [With] its banks beautified, dredged and made a clear, swift stream as it was in the ‘the old days,’ it would be the chief factor in the San Antonio Beautiful.” Simultaneously, certain businessmen released a study completed by engineer William Simpson who outlined the possibilities of paving over the Great Bend downtown and constructing an underground conduit. Filling in the river would create a stretch of land seventy feet wide and over a mile-long suitable for development. Both plans gained national attention as tensions escalated between those who favored a utilitarian approach and those who sought a more aesthetic future for the river.

In response to the report, on September 26, 1911, three dozen residents organized at the Chamber of Commerce headquarters, establishing the San Antonio River Improvement Association. The City Federation of Women’s Clubs also endorsed the beautification efforts, eager to see the river flowing once again. Due to these group’s efforts, Mayor Bryan Callaghan approved a fifty-horsepower pump at an abandoned artesian well. Pumping 1,500 gallons a minute from the well into the river, water gradually soaked into the riverbed’s deep crevices and cracks. On October 22, 1911, an

166 Miller, San Antonio, 74; Fisher, American Venice, 30.
167 Fisher, American Venice, 30.
169 Miller, San Antonio, 75.
170 Fisher, American Venice, 32. The water from this particular abandoned artesian well no longer sufficiently flowed to the surface on its own and required a pump.
Express journalist reported that the new water “brought out the greenness and changed the appearance of everything in this valley.”\(^{171}\) The following year, the newly elected Mayor Augustus H. Jones prioritized beautifying the river and the city at the top of his agenda. One of San Antonio’s most well-known architects, Alfred Giles envisioned the river as a landscaped promenade with concrete walls and terraced banks adorned with flowers and trees. The Civic Improvement League’s director T. Noah Smith asserted that “No city plan will be complete that does not include space along its banks for flowers, colonnades, pergolas, etc.”\(^{172}\) The mayor appointed architect Atlee B. Ayres to lead the City Plan Committee. Only four days after Ayres’ appointment, the committee endorsed architect Harvey L. Page’s plan to both line a thirteen-mile stretch of the riverbed with concrete and add a series of bridges and dams to help maintain the river’s water level. The Express supported the committee’s recommendations. To demonstrate their commitment to the river, one of their headlines read: “City Beautiful in Sight.”\(^{173}\)

River Commissioner George Surkey, a proponent for shops and colorful lights at the river level, carried out the first major phase of the beautification efforts. He led the effort to standardize the river’s width in the downtown core and lined the banks with low concrete-covered rock walls, known as the “Surkey’s Sea Wall” (Figure 1.25).\(^{174}\) He also sought the use of a second artesian well to increase the river’s flow. The Chamber of Commerce’s promotion booklet of 1915 celebrated the river’s “blue waters rippling between banks that are being parked into green esplanades of flowering shrubs and plants.”\(^{175}\)

\(^{171}\) San Antonio Express, “Irrigation Ditches Dry,” October 22, 1911, 39-B, as cited in Fisher, American Venice, 32.

\(^{172}\) The San Antonio Light, “The San Antonio River,” August 18, 1887, 4, as cited in Fisher, American Venice, 33.

\(^{173}\) San Antonio Express, “Plan to Change,” September 6, 1912, 14; San Antonio Express, “San Antonio River,” September 8, 1912, 1, as cited in Fisher, American Venice, 34.

\(^{174}\) Fisher, American Venice, 34.

\(^{175}\) Fisher, American Venice, 45.
In 1919, as the river beautification project gained traction, *Architectural Record* sent reporter I. T. Fray from New York to San Antonio to review the city’s progress. He writes,

> Few municipalities recognize the possibilities for civic improvement, which are to be found in even a small stream of water. Fewer still develop these possibilities when they are recognized. Occasionally there is a city, however, in which a stream is appreciated and is regarded as something more than part of a drainage system. Among these may be recorded the name of San Antonio, Texas… The average City Council would have built an intercepting sewer, the stream would have disappeared from view and the city would have become as commonplace as any other good hustling, enterprising town…. Winding about as it does, it passes under a myriad of bridges, each bridge affording the passersby delightful vistas of fresh green foliage and quiet waters, a welcome relief from the torrid heat and scorching sun of southern summer days.\(^{176}\)

Through the 1910s, residents persisted in their efforts to protect their river. When the Fiesta de San Jacinto Association’s yearly tree decorating permit was denied, as there would be “nothing to decorate but the walls” due to the recommended removal of all vegetation, San Antonians jumped into action.177 One protester, quoted in the \textit{Express}, stated, “I think that the man who would lift an ax to remove the beautiful old trees and landmarks along the San Antonio River should be ostracized from the community.” The next day, the mayor and parks commissioner told the public that they would find another way to manage flooding.178

However, as previously discussed, the devastating flood of 1921 challenged the river’s fate, serving as the ultimate catalyst for greater flood control measures.179 Still, Mayor John W. Tobin assured the city, “The river is one of San Antonio’s real assets, and we are to develop plans that will make it a thing of beauty and something visitors will remember and comment on long after their leave.”180 The newly formed San Antonio Conservation Society vigorously advocated to preserve the city’s natural beauty, as well.181 To support the efforts, the Conservation Society organized a boat ride through the river with Mayor Tobin, Park Commissioner Ray Lambert and project lead, Samuel Crecelius. During the two-hour boat ride, Crecelius explained that the large trees could lead to further flooding issues. Margaret Lewis, the Society’s Chairman of Natural Beauty and the president of the Battle of Flowers Association apparently yelled in reference to a cottonwood, “That does NOT have to go.”182 The city’s new flood engineer suggested an alternative to wide-spread tree removal: building a 650-foot-long underground box culvert to carry overflow water past the Great Bend downtown.183 Author of the “San Antonio Conservation Society Newsletter” in September 1966, Emily Edwards stated that saving the cottonwood was the San Antonio Conservation Society’s first victory.184

\footnotesize
\begin{itemize}
 \item 177 Fisher, \textit{American Venice}, 45.
 \item 178 Fisher, \textit{American Venice}, 54.
 \item 179 Fisher, \textit{American Venice}, 75.
 \item 180 Fisher, \textit{American Venice}, 80.
 \item 181 Gunn et al., “Cultural Benefits from Metropolitan River Recreation,” 10.
 \item 183 Fisher, \textit{American Venice}, 82.
 \item 184 Fisher, \textit{Saving San Antonio}, 183.
\end{itemize}
Over the next several years, as mayorship of San Antonio continued to change hands, debates over the width of the channel would ensue. The businessmen also reintroduced their idea of paving over the Great Bend (sometimes referred to as the Big Bend or Horseshoe Bend), citing that the covered riverbed could be sold for between $2 million and almost $15 million.185 Again, the civic clubs, particularly several women’s clubs, opposed the plan. In support of the civic groups, the new mayor C. M. Chambers declared, “As long as I am in this office, the Big Bend Channel will never be filled up. I am absolutely against abandoning the river. In my opinion the San Antonio River is the biggest asset of this city.”186

Construction of the cutoff channel to divert flood waters away from the Great Bend and downtown resumed in March 1929.187 To create the cutoff channel, certain historic buildings, such as the 1855 French Building located in the path of the future channel, needed to be sacrificed. Limestone blocks from the demolished structure were used to line sections of the riverbanks.188 The construction crews initially used concrete, but Mayor Chambers called the new channel "one of the biggest eyesores of the city." Subsequently, he dismissed the operating planning firm and ordered the city engineer to build a wider channel with dirt instead. Quoted in the Express, Mayor Chambers exclaimed, “Dig to Hades! I had rather spend a half million dollars beautifying this river than a million dollars making it a concrete-lined sewer.”189 City Hall rejected both Crecelius’ proposal to line the river with concrete and Metcalf & Eddy’s idea to straighten and widen the entire channel. This was a big win for the conservationists who wanted to maintain the beauty of their natural river.

Just a few months later, however, the battle between developers and conservationists persisted. The Swiss Plaza Company proposed the construction of two identical sixteen-story towers, necessitating tree clearing and the straightening of a river bend. In response, the Woman’s Club, the Conservation Society and a committee formed from the Federation of Women’s Clubs formally filed protests with City Hall,

186 Fisher, \textit{American Venice}, 84.
187 Fisher, \textit{American Venice}, 86.
188 Fisher, \textit{American Venice}, 86.
stating their “united opposition” to any modifications to the river’s course upstream.190 With major concessions, the Swiss Plaza Company’s plans were eventually approved, but because of the imminent Great Depression, their plans quickly fell into disarray.191 Historian Fisher states, “As the 1920s passed and flood control elements took final form, public attention was shifting from “Where should the river go?” back to “How should the river look?”192 This shift in mindset marked another significant victory for the conservationists. Though a long challenging road filled with conflict lay ahead, a linear river park would eventually be established.

THE RIVER PARK

By the end of 1929, two competing concepts for the river emerged. Harland Bartholomew and Associates, the nation’s top urban planning firm at the time who also co-wrote a 1930 plan for Los Angeles, proposed a linear pastoral park along the river with all commercial activity confined to the street level. Their intention was to preserve a bit of tranquility amidst an otherwise bustling city.193 Robert H. H. Hugman, a young architect who had just returned to San Antonio from New Orleans, had a very different idea.194 He believed the river could serve as the vibrant heart of the city, featuring commercial buildings along its banks as well as the street level. Historian Fisher writes of Hugman’s position, “If New Orleans could capitalize on its French heritage, why shouldn’t San Antonio benefit along the river by drawing on its Spanish heritage?”195 Drawing inspiration from the old cities of Spain and Mexico City, he named his proposed colorful downtown core “Shops of Aragon and Romula,” and envisioned a busy river filled with people shopping, dancing, and dining (Figure 1.26). Mayor Chambers appreciated Hugman’s ambition, stating that the plan would be “a municipal

\begin{footnotesize}
\begin{enumerate}
\item San Antonio Express, “Women’s Clubs to Oppose,” September 8, 1929, 28, as cited in Fisher, American Venice, 88.
\item The San Antonio Light, “City Accepts Swiss Plaza,” January 27, 1930, 1, as cited in Fisher, American Venice, 88.
\item Fisher, American Venice, 88.
\item Fisher, American Venice, 97.
\item Gunn et al., “Cultural Benefits from Metropolitan River Recreation,” 10.
\item Fisher, American Venice, 91.
\end{enumerate}
\end{footnotesize}
improvement that will do much to preserve the enthusiastic support of our loyal citizenship.” ¹⁹⁶

After some dispute, Hugman’s proposal was ultimately deemed an “idle dream” and instead, Bartholomew and his firm produced a four-hundred-page report with the last section titled, “Proposed Treatment of the San Antonio River in the Central Business District.” ¹⁹⁷ Bartholomew imagined tall evergreen cypresses, date and banana palms and only a few benches placed along the riverbanks for very moderate recreation. The proposal, however, was formally published in March 1933 during the peak of the Great Depression, which had pushed an already toiling San Antonio into a deep economic slump.

Figure 1.26: Hugman’s 1929 plan for the Great Bend of the San Antonio River including shops and hotel at river level. Source: Photo by author of a sign on the River Walk.

¹⁹⁶ C. M. Chambers, “To Whom It May Concern,” May 29, 1929, as cited in Fisher, American Venice, 94.
¹⁹⁷ Fisher, American Venice, 95-96; Harland Bartholomew, and Associates. A Comprehensive City Plan For San Antonio (St. Louis: 1933). Hugman’s proposal was called an “idle dream” by Newton H. White, the chairman for the City Plan Committee.
Even still, three years later and well into the Great Depression, the city continued to celebrate its river, hosting a fiesta river parade. The excitement generated from this event eventually led the construction of the River Walk. Enthralled by the parade, businessman Jack White resurfaced Hugman’s plans, and Hugman revised his proposal which included stone pathways, limestone walls, and the Arneson River Theater (Figure 1.27). White declared of the architect’s recommendations, “The committee believes that the river can be made the outstanding beauty spot of this country. Other cities can have beautiful parks, great zoos, magnificent stadiums and other attractions, but we know of no city that has a beauty spot as we propose to make the river.”\footnote{Fisher, \textit{American Venice}, 105.} Subsequently, Mayor Maury Maverick channeled almost half a million dollars of Work Progress Administration (WPA) funding into the long discussed River Walk project.\footnote{Miller, \textit{San Antonio}, 113; Gunn et al., “Cultural Benefits from Metropolitan River Recreation,” 11.} In 1938, the initial funds were committed to “river beautification” from a WPA grant, coinciding with the same year of the great flood of 1938 in Los Angeles.\footnote{Harrison Price Company, “A Study of Historic Development of San Antonio’s River Walk” (1994), Harrison “Buzz” Price Papers, University of Central Florida, 1.} Construction in San Antonio on the initial portion of the River Walk began in 1939.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{arneson_river_theater_section_b.png}
\caption{Section of Hugman’s Arneson River Theatre depicting an outdoor amphitheater on one bank of the river and a stage on the opposite bank. Source: Library of Congress.}
\end{figure}
SELECTING THEIR RIVER AS HERITAGE

Choosing to select different aspects of the San Antonio River’s heritage such as its aesthetic appeal in the 1920s and 30s caused a domino effect that influenced subsequent improvement efforts and master plans in the region. Over the ensuing decades, the San Antonio River Walk and its network of pathways and bridges have been maintained, enhanced, and extended on multiple occasions. While the River Walk received minimal attention in its first two decades following its initial construction, the Chamber of Commerce established the Paseo Del Rio Association in 1964. The Association’s mission statement included ecology and heritage as two of their primary goals: 1. “Protect the environmental integrity of the San Antonio River by working in cooperation with the Department of Parks and Recreation and the San Antonio River Authority.” And 2. “Preserve the charm and historic significance of the River Walk Architecture by working closely with the Historic Design and Review Committee and the San Antonio Conservation Society.”201

In the late 1960s, the Walk Advisory Commission and the Tourist Attraction Committee commissioned the Paseo Del Rio Master Plan. As a result, the River Walk was expanded to connect to the Tower of Americas, a 750-foot-tall observation tower, in preparation for the HemisFair ’68, an international exposition commemorating San Antonio’s 250th anniversary.202 In 1973, the city published the River Corridor Feasibility Study, which established long term river objectives and supported the preliminary planning for the San Antonio Missions National Historic Park.203 In 1981, a pedestrian walkway connecting the Alamo Plaza and the River Walk opened to the public, prioritizing the city’s native planting palette.204 By 1992, any new construction on the River Walk needed approval from the Board of Directors for the Department of Planning, Historic Preservation and Urban Design Division. John M. Keeling’s 1994 report, “A Study of Historic Development of San Antonio’s River Walk,” states, “The

purpose of having such a Board is to protect the park like setting and historical heritage from development that would be inconsistent with the rest of the River Walk.”205

In 1998, Bexar County, the City of San Antonio, and the San Antonio River Authority formed the San Antonio River Oversight Committee (SAROC) to identify potential areas for river improvement and revitalization.206 In 2001, SAROC published the San Antonio River Improvements Project Concept Design with the SWA Group, a landscape architecture, planning, and urban design firm. The Master Plan imagined a four-mile extension known as the Museum Reach to the north and a nine-mile extension called the Historical Mission Reach to the south.207 The guiding design principals consisted of three major components: “hydrology, nature, and people.” One of the plan’s guidelines states, “Design solutions will enhance the appreciation of the river’s historic significance in the life and development of San Antonio.” The plan also ensures, “A key goal of the Master Plan is to not compromise the current floodwater capacity of the river and to increase it, if possible.”208 The city opened the Museum Reach in 2009 and the Mission Reach in 2011. The entire project amounted to almost $400 million.

Today, the San Antonio River comprises a sixteen-mile linear park, equipped with an array of extensive flood control measures, running through the city’s urban core. A. Gunn, D. J. Reed, and R. E. Couch in their 1970-1972 report for the Texas Water Resources Institute, “Cultural Benefits from Metropolitan River Recreation—San Antonio Prototype” wrote that the San Antonio River was “an outstanding design and development of a park-business complex along a natural river in the heart of a major city.”209 They continue, “a small amount of water can become a powerful social force,” and the river “is an object of great pride, intensive use, and strong social value for both citizens and visitors.” While fully functioning as a flood control channel, San Antonio serves as a compelling case study as a city that embraced both its river and its river’s aesthetic heritage.

206 SWA Group, “San Antonio River Improvement Project Concept Design: Design Guidelines,” prepared for Bexar County, the City of San Antonio, the San Antonio River Authority, and San Antonio River Oversight Committee (July 2001), 6.
CHAPTER TWO: WALKING THE SAN ANTONIO RIVER

From September 29 through October 1, 2023, I spent three days walking along the San Antonio River with photographer Rio Asch Phoenix. Our focus area encompassed the river’s confluence with Olmos Creek and continued to the southern end of the Mission Reach, concluding at the Espada Mission, nearly sixteen miles south of the river’s headwater spring. This chapter intends to take the reader on a journey, offering my firsthand experience of what it feels like to walk the San Antonio River in 2023. From the foundation of Chapter One, which delves into the history of the San Antonio River, I aim to illustrate how decisions made during the early twentieth century as well as the city’s early emphasis on preserving its river as heritage have materialized on the ground roughly a century later. Although I had studied San Antonio's river history and had collected hundreds of current and historic photographs of the river, I had never visited the city prior to this study. I was excited to explore a landscape that was entirely new to me, yet strangely familiar due to my research.

On our walk, we carried essential items in our backpacks including water, snacks, sunscreen, our phones, notebooks, and two cameras, one digital and one film. We photographed anything that captured our attention and documented our conversations with the people we encountered along with any sudden realizations that occurred during our walk. I focused specifically on flood control infrastructure, access points, and moments celebrating heritage. Temperatures averaged in the high eighties.

OUR ROUTE

- September 29: We walked from Brackenridge Park along the Museum Reach through the historic Great Bend, a total of 8.55 miles.
- September 30: We walked from the southern end of the Great Bend to the Espada Mission, a total of 12.49 miles.
- October 1: We returned north and explored the Olmos Dam and the San Antonio River’s headwater springs including the Blue Hole.
Using the Strava app, we recorded our exact route (Figure 2.1). For clarity and to prevent confusion, although we explored the headwaters of the San Antonio River on our last day, I will discuss our walk proceeding from the Olmos Dam and the headwater springs to the Espada Mission, sixteen miles downstream. Crisscrossing the river repeatedly, from September 29 to 30, we covered slightly more than twenty-one miles on foot.

Figure 2.1: Our walking route following the first sixteen miles of the San Antonio River from September 29 - October 1, 2023. Map by author.
DAY ONE: OLMOS DAM AND THE SAN ANTONIO RIVER’S HEADWATER SPRINGS

We began our day at Olmos Dam, about four miles north of San Antonio’s downtown. The dam, constructed between 1925 and 1927 following the destructive flood of 1921, appears like a concrete mountain and opens up to an incongruously manicured turf grass field with a sampling of trees (Figure 2.2). The concrete is a rich smattering of yellowish-gray. Completely smooth from end to end, the wall is far too steep to climb. Despite my curiosity to see what lay behind the dam, Rio and I refrained from attempting the ascent. A chain-link fence blocks off pedestrian access to the water (Figure 2.3 and 2.4). The south side of Olmos Dam marks the very beginning of the San Antonio River, lined with thick concrete walls. The river floor retains a soft, muddy bottom, abundant with vegetation (Figure 2.5).

Walking south and descending a hill, we reached the Blue Hole located on the University of the Incarnate Word’s campus (Figure 2.6). Rising from the Edwards Aquifer, the Blue Hole is the largest spring that feeds the San Antonio River. In 1857, Frederick Law Olmsted described his astonishment of the spring. He wrote, “… It is beyond your possible conceptions of a spring. You cannot believe your eyes, and almost shrink from sudden metamorphosis by invaded nymphdom.” When we visited, the stone-lined well and the creek bed had both run dry, but the surrounding area was lush and green (Figure 2.7).

Figure 2.2: Looking north-east towards Olmos Dam. The towering structure spans 1900-feet.
Source: Rio Asch Phoenix.
Figure 2.3: The Olmos Dam was completed in 1927 to mitigate flooding downstream. Just past the concrete barrier and chain-link fence, the land descends, and the river begins its course. Source: Rio Asch Phoenix.
Figure 2.4: A chain-link fence blocks pedestrian access to the water. Photo by author.

Figure 2.5: Abundant vegetation grows from the San Antonio River's muddy, soft bottom. Photo by author.
Figure 2.6: Rising from the Edwards Aquifer, the Blue Hole is one of the largest springs that feeds the San Antonio River. Photo by author.

Figure 2.7: While the Blue Hole spring was dry when we visited, the ground just downstream of the spring was muddy and cracked. Source: Rio Asch Phoenix.
DAY TWO: BRACKENRIDGE PARK TO THE GREAT BEND

We began our day at the northern edge of Brackenridge Park, a sprawling 349-acre site, recognized as a Texas State Antiquities Landmark and listed in the National Register of Historic Places in 2011. In 1899, George W. Brackenridge, former president of the San Antonio Water Works Company, donated over half of the acreage that now constitutes the current riverside park.

Brackenridge Park

We followed the river trail within the park, meandered down River Road, and briefly lost our way within the Brackenridge Park Golf Course during an all-women’s golfing tournament. Brackenridge Park was filled with wandering children wearing backpacks accompanied by their parents and their teachers. A man camped at one of the picnic tables neighboring the river asked us if it was Friday, and we told him that it was. Large oak trees shade the decomposed-granite river path, while stone vertical walls line the riverbanks. Passive programming includes stone benches arranged to create an informal amphitheater (Figure 2.8), pedestrian bridges enabling visitors to approach the water, and numerous picnic tables on circular concrete slabs, each with their own trash and recycling receptacle (Figure 2.9). After a little while, the path turns to concrete. I found myself particularly drawn to the moments where the river’s infrastructure leads visitors right to the water’s edge, seemingly asking them to reach out and dip a hand in (Figure 2.10), despite red and brown signs dug into the ground every hundred feet or so explicitly prohibiting swimming and wading in the river (Figure 2.11). There is no lack of flood control infrastructure in the park; small check dams and strategically positioned stones slow the velocity of the river’s flow (Figure 2.12). During

our visit, ducks gathered within the pooling water and rested on the evenly spaced stones (Figure 2.13); we watched as children pondered the ducks curiously.

Figure 2.8: An informal amphitheater inside Brackenridge Park along the San Antonio River. Photo by author.

Figure 2.9: There are numerous picnic tables with accompanying trashcans and recycling receptacles within Brackenridge Park. Photo by author.
Figure 2.10: An example of infrastructure within the park that bring visitors directly to the water’s edge. Photo by author.

Figure 2.11: No swimming or wading signs are scattered throughout the park. Photo by author.
Figure 2.12: Strategically placed stones, attenuation structures, slow the water down. Photo by author.

Figure 2.13: Several ducks grazed in the pooling waters. Photo by author.
Early in the morning, we crossed Brackenridge Park Bridge, which was constructed in 1890 (Figure 2.14). Maps and informational signage are abundant in the park. The first sign we saw was titled “San Antonio River” and provided us with a very brief history of the surrounding region, including a historic picture of the river channel under construction. The caption read “Stone retaining walls were built by the WPA to prevent erosion and channel flood waters in the upper park of Brackenridge Park. The natural channel has been preserved in the southern part of the park” (Figure 2.15). The river trail continues through a tunnel under Highway 281, but “due to construction until further notice,” we had to navigate around the freeway to reconnect with the river on East Josephine Street (Figure 2.16). The San Antonio River Tunnel Inlet Facility and the Flood Control Tunnel Inlet Park are just south of Highway 281. Completed in December of 1997, through a joint effort by Martin K. Ebay Construction Company, Inc, the United States Army Corps of Engineers, and the San Antonio River Authority, a diversion tunnel, twenty-four feet wide and constructed one-hundred-fifty feet underground, carries excess water from the river three miles southward to help manage flooding within downtown San Antonio. From this point on through the city’s urban core and along the Museum Reach, completed in 2009, the river’s water levels are carefully managed, and pedestrians have the choice to either walk at street level or along the concrete-lined riverbank several feet below.

212 Sign along the San Antonio River.
213 Sign along the San Antonio River.
Figure 2.14: The Historic Brackenridge Park Bridge was constructed in 1890. Source: Rio Asch Phoenix.
Figure 2.15: The San Antonio River is unchannelized through the Brackenridge Park Golf Course, allowing it to flood the surrounding region. Source: Rio Asch Phoenix.
Figure 2.16: The River Walk was closed underneath Highway 281. Photo by author.
As one walks along the San Antonio River, the pedestrian experience is varied. While the concrete pathway runs mostly adjacent to the river on both sides, several platforms extend into the river, offering spaces to sit closer to the water (Figure 2.17). This region of the river is heavily landscaped. Both formal and informal planter beds line the River Walk with towering cypress trees overhead (Figure 2.18). Early in the day, we passed by the Pearl Brewing Company, originally founded in 1883, and since transformed into a twenty-three-acre mixed-use development space (Figure 2.19).215 Spanning the entire site, the former brewery’s infrastructure has been repurposed at multiple scales for reuse as restaurants, fountains, and planters. Another informal amphitheater, built in 2011, sits right at the water’s edge in front of the old brewery. Visitors can access the Historic Pearl from both the street above and the river below.

Throughout the morning, we passed by several people jogging or walking their dogs. Noticing a considerable ten or fifteen-degree temperature difference at river level, we discussed how pleasant it was to walk along the San Antonio River repeatedly. At nearly every bend, there are additional benches for resting or new signs for reading (Figure 2.20). Each bridge is distinctly marked with the street name above, assisting visitors with navigation (Figure 2.21), and overhead lighting spaced about fifty feet apart illuminates the channel at night. Apartments and hotels with balconies, oriented to face the water, offer scenic views of the river for both visitors and residents.

The San Antonio River Foundation pays special attention to underpasses experienced by pedestrians while walking along the river. Under Highway 35, for example, artist Donald Lipski designed and fabricated twenty-five seven-foot-long-eared sunfish, which hang underneath the freeway bridge and light up at night (Figure 2.22). The artwork was installed in 2009 and was made possible through private donations to the San Antonio River Foundation.216 The water reflects each fish, native to the San Antonio River.

216 Sign along the San Antonio River.
Figure 2.17: There are several places to sit along the River Walk. Photo by author.

Figure 2.18: The landscape balances both formal and informal planting. Photo by author.
Figure 2.19: The Historic Pearl, a mixed development site, repurposes the Pearl Brewing Company through adaptive reuse. Source: Rio Asch Phoenix.
Figure 2.20: Small seating areas are dispersed all along the River Walk. Photo by author.

Figure 2.21: Each bridge is marked with the street name above. Photo by author.
Figure 2.22: Artist Donald Lipski crafted twenty-five sunfish that suspend underneath Highway 35 and light up at night. Photo by author.
South of Highway 35

While walking, I was struck by the range of colors we observed, especially how green it was along the river’s edge. Vegetation drapes over the concrete retaining walls, and purple and yellow flowers are abundant. We noticed several wayfinding markers, including mile markers set into the concrete walkway, brown metal River Walk signs identifying significant streets or landmarks above, and detailed mosaics embedded into the channel walls. Some of the mosaics are more decorative while others illustrate a story or a specific moment in San Antonio’s history. We strolled past the VFW Post 76 Sam Houston Post, a large white and stone Queen Anne style house featuring a two-level porch (Figure 3.14). Also known as the Petty House, it is listed as both a San Antonio Historical landmark and a Texas State Historical landmark, recognized as the last remaining house of the pre-1900 neighborhood, Milam Bend. The VFW Post was founded in 1917 by Spanish American War veterans, and now functions as a gathering space with a stage adjacent to the river.

![Figure 2.23: VFW Post 76 Sam Houston Post along the San Antonio River. Photo by author.](image)

Completed in 2009, the San Antonio River Lock & Dam is just southwest of “The Oldest Post in Texas” and allows boats to travel further upstream.218 The dam’s gates operate by either opening or closing in order to maintain the water levels required for boat travel.219 With two locks, two boats can successfully travel upstream and downstream at the same time. We observed a lone individual wearing a blue shirt and a sun hat operating the lock system traveling northeast upriver (Figure 2.24). Amenities next to the dam include a public restroom and a shaded pavilion featuring a compass-like mosaic embedded into the concrete ground. A short distance downstream, an intricate mosaic beneath St. Mary’s Street maps out the five San Antonio missions and the neighboring San Antonio River (Figure 2.25). The tiles are blue, white, green, and yellow—despite the prevalence of concrete, the channel walls often exhibit moments of color.

218 Sign along the San Antonio River.
219 Sign along the San Antonio River.
Figure 2.24: A river boat heads upstream through the San Antonio River Lock & Dam. Source: Rio Asch Phoenix.
Figure 2.25: A detailed mosaic beneath St. Mary's Street depicts the five San Antonio missions and the San Antonio River. Photo by author.
I found the “little infrastructure” we observed along the way particularly exciting. Rainbow tiles and stone line the drainage ditches and outlets, each serving as small moments of celebration and demonstrating an acute attention to detail. I appreciated this personal touch in what could otherwise be overlooked infrastructure, designed to be somewhat invisible. Elements such as alternating patterns within the river path or concrete molded to look like opened seashells were welcomed and surprising (Figure 2.26). A rescue ladder integrated into a stone retaining wall that separated the river level from the street level, reminded me that we were indeed in a box channel (Figure 2.27). Even with the diversion tunnel, safety measures such as ladders are necessary in case flood waters ever rush through this portion of the river again, and people need to escape the channel quickly.

Figure 2.26: An elaborately detailed storm drain. Photo by author.

Figure 2.27: A rescue ladder integrated into the retaining wall. Photo by author.

\footnote{In urban areas, the box channel is widely used for flood control. Its rectangular shape is designed to effectively manage and control water flow.}
The Great Bend

As the concrete pathway turns to limestone, we approached the historic River Walk and the Great Bend, conceived by architect Robert H. H. Hugman in the early to mid-1900s and built in the late 1930s and early 1940s. \(^{221}\) The Great Bend was intentionally cut off from the main river in 1929 and a cutoff channel was constructed to help mitigate flooding downtown. \(^{222}\) Although water still flows through the Great Bend, flood gates can be deployed to prevent flooding during periods of intense rain. In the downtown area, towering cypress trees loomed over us—potentially descendants of the saplings planted by Park Commissioner Ludwig Mahncke in the late 1800s (Figure 2.28). \(^{223}\) As anticipated, this portion of the River Walk was expectedly crowded.

Restaurant patios line the San Antonio River with tourists filling almost every seat (Figure 2.29). There are no barriers between the path and the water, yet swimming is still not permitted. I could see colorful lights and umbrellas everywhere I turned. During our visit, water reflected underneath several round pedestrian bridges. I was curious if anyone else was as excited about the patterns created by the light and the river current. Several boats filled with passengers floated in both directions. In multiple locations in the Great Bend, elevators are available to bring visitors from the street level to the river level and vice versa. Signs detailing different river reconstruction projects are numerous. Copper plaques (Figure 2.30) indicate the specific infrastructure that was designed by Hugman including the Arneson River Theater, built in 1941, with stone amphitheater seating on one side of the river (Figure 2.31) and a small stage with copper bells on the other.

Neighboring the River Walk, visitors can tour historic sites such as the Alamo or La Villita, part of a UNESCO World Heritage Site and a Historic District respectively. Both locations were filled with people. We overheard discussions about what actually happened at the Alamo and recommendations for the best place to eat in San Antonio. We ate lunch at a small taco shop along the river and enjoyed the shade. With an extensive network of braided roots, the cypress trees look to be over a century old.

\(^{221}\) Gunn et al., “Cultural Benefits from Metropolitan River Recreation,” 10.
\(^{222}\) Fisher, American Venice, 86.
\(^{223}\) Fisher, American Venice, 25.
(Figure 2.32). As we finished our walk for the day, we passed by the Kallison Love Lock Bridge, covered in thousands of locks (Figure 2.33).

Figure 2.28: Through the Great Bend, the San Antonio River is adorned with tall cypress trees. Photo by author.
Figure 2.29: Tables with colorful umbrellas line the River Walk and the water reflects underneath the pedestrian bridge. Source: Rio Asch Phoenix.
Figure 2.30: Copper plaques along the River Walk identify the structures designed by Robert H. H. Hugman. Photo by author.

Figure 2.31: The Arneson River Theatre was designed by Hugman and constructed in 1941. Photo by author.
Figure 2.32: The cypress trees look to be over a century old and provide a historic feel to the River Walk. Photo by author.

Figure 2.33: Locks cover every inch of the Kallison Love Lock Bridge. Photo by author.
DAY THREE: THE GREAT BEND TO THE ESPADA MISSION

We started our day observing an orange and pink swirling mural painted on the river’s vertical walls by artist Joseph Ramey, as part of the city-wide “Art Everywhere” project (Figure 2.34). At this juncture, where the limestone walkway transitions back to concrete, the feel of the river shifts. This segment of the San Antonio River Walk was completed in the 2011, marking the most recent extension to the existing sixteen-mile river path. While still well-used, the pathway south of the historic Great Bend is noticeably more uniform. The walkway could be likened to any well-maintained sidewalk bordered by grassy lawns on both sides (Figure 2.35); occasional signs warn of potential flooding. In some areas, the lawn has been paved over but is permeated with small circular openings, allowing small plants to grow (Figure 2.36). Early in the morning, we passed by an empty river passenger boat with a single driver and another Lock & Dam, allowing the passenger boat to travel upstream toward downtown. Informational signage continues to be numerous, and evergreen trees line both sides of the river, offering pedestrians plenty of shade. As we walked, the shadows on the concrete vertical walls were soft and continually shifting. Ramps and handrails are placed strategically for enhanced accessibility. Similar to the day before, I felt drawn to the moments when the river’s infrastructure design directed visitors toward the water’s edge (Figure 2.37).
Figure 2.34: A colorful mural adorns the channel wall. Source: Rio Asch Phoenix.
Figure 2.35: The River Walk just south of the Great Bend. Photo by author.

Figure 2.36: The concrete barrier is permeated with small openings, allowing plants to grow. Source: Rio Asch Phoenix.
Figure 2.37: Stairs bring visitors directly to the water’s edge. Photo by author.
King William

Known for its original Greek Revival, Victorian and Italianate style homes, King William was listed as a National Register Historic District in 1972.\footnote{City of San Antonio Office of Historic Preservation, “King William,” accessed November 6, 2023, https://www.sanantonio.gov/historic/scoutsa/HistoricDistricts/KingWilliam.} One sign along the San Antonio River titled “King William Neighborhood” read “Residents gathered at the usually tranquil waterway to swim, boat, and picnic and fled its high waters in times of devastating floods. The area thrived for over fifty years but fell into disrepair by the mid-1900s. Preservation efforts begun in the 1940s gained momentum in the 1970s and today King William is once again a premier riverside neighborhood.”\footnote{Sign along the San Antonio River.} Many of the two-storied colorful home’s backyards, complete with fire pits and outdoor dining tables, face the river, separated by chain-link fences.

By 9:30 a.m., we had already sauntered past several walkers and joggers and another dam at South Alamo Street. I wrote down in my notebook, “It’s all very pleasant. Not too hot, but I can feel the humidity creeping in. The river still feels very connected to the city above.” Most of the time, south of the Great Bend, the concrete walkway runs adjacent to the river, but in rare stints, the pathway floats above the river supported by concrete beams (Figure 2.38). While jotting down some notes, a man asked us what we were doing, mentioning that we were clearly not from there. We told him we were walking to the Espada Mission and that it was our first time in San Antonio. He pulled out his phone to show us a picture of sunflowers he had taken earlier that morning. “The river keeps changing. It gets more wild south of here,” he assured us, “Keep walking.” This individual had moved to the city just two months before.

\[\text{\footnotesize224}\text{City of San Antonio Office of Historic Preservation, “King William,” accessed November 6, 2023, https://www.sanantonio.gov/historic/scoutsa/HistoricDistricts/KingWilliam.}\ \text{\footnotesize225}\text{Sign along the San Antonio River.}\]
Figure 2.38: In certain segments, the walkway hovers over the river, upheld by concrete beams. Source: Rio Asch Phoenix.
Unlike the previous day, after a couple of miles, primarily crossing through residential neighborhoods, there are no longer any places along the river to purchase food or water. Planning ahead, we carried our lunches and stopped at Blue Star Provisions in the Blue Star Arts Complex, roughly two miles south of downtown for a cold drink and a bathroom break. As we proceeded along our route to the Espada Mission, we would still encounter numerous benches (Figure 2.39), informative signs (Figure 2.40), River Walk maps and landscaping (Figure 2.41), as well as several shade structures, bathrooms and water fountains, but the river’s infrastructure starts to change, adopting a less planned and more untamed character. After the Blue Star Arts Complex, the concrete vertical walls encasing the river gradually melt away and the only concrete remaining in the riverbed is the concrete walkway. With small rapids, overgrown plants including the sunflowers the man we met earlier that morning had taken pictures of, and river rocks in abundance, the San Antonio River begins to resemble what I typically envision when I think of a bucolic or natural river (Figure 2.42).

Figure 2.39: A decorated bench neighboring the River Walk. Photo by author.
Figure 2.40: Numerous signs about the history of the San Antonio River line the waterway. Photo by author.

Figure 2.41: The river is abundantly landscaped and well-maintained. Source: Photo by author.
Figure 2.42: The concrete barriers fade away and the river has a more bucolic feel. Source: Rio Asch Phoenix.
We spoke to several people near South Town. We met Lynn, an older woman wearing all blue except for hot pink plastic Birkenstocks while crossing the river along large alternating rectangular stones the size of toaster ovens (Figure 2.43). She has since moved to Houston but lived in San Antonio for over thirty years. She expressed a deep love for the River Walk, sharing that she and her husband, John, used to walk here all the time. She told us, “What I love most about [the river] is that it’s truly for everyone. You see all of San Antonio down here… It’s a treasure.” We briefly discussed another flood control project ongoing in Houston. Lynn stated while pointing to the water, “It’s a lot like this but worse.” I asked what this part of the river used to look like. “Not accessible,” she said, “a lot of social pathways, but it was hard to get down here. No walk or bike trails…” And “No condos,” John added. In every direction from where we stood, recent development, condos and apartments with orange and gray facades, loom in the distance. Still, I wrote in my notes, “I am astounded by all the trees and native planting. And the butterflies and the birds.”

Figure 2.43: Lynn, an individual we met along the way, crosses the San Antonio River. Photo by author.
Almost immediately, now walking along the east side of the river, we stumbled upon an individual listening to pop music blaring from a small speaker while fishing beneath a towering cypress tree. Holding up a small green sunfish still attached to the line (Figure 2.44), he shared, “I just come here to fish for the little ones. You can catch a whole bunch of them and just throw them back in. People fish right in downtown too. You wouldn’t think [the fish] would be there because of all the noise, but they’re there. Big ones too. I come here all the time, just for fun.” He told us he uses a light rod so even catching the little fish feels like “something.” We watched him cast his next line in the shade, a brief break from the increasingly hot sun. During this portion of our walk, we experienced a glimpse of how access to the river used to look and feel before the completion of the Mission Reach. The official River Walk trail continues only on the east side in this particular stretch of the river. The fisherman instructed us to follow the clearly defined dirt social trail (Figure 2.45), which would eventually meet up with the River Walk entrance on East Guenther Street.

After reuniting with the River Walk Path, we passed G. W. Brackenridge High School, named after the former president of the San Antonio Water Works Company, with baseball fields and tennis courts within eyesight of the river (Figure 2.46). Just south of the high school, noticing a resurgence of concrete paving and stonework, we rounded a bend and encountered the San Antonio River Flood Control Tunnel Outlet, a gray, round, armored structure with several gates oriented towards the water (Figure 2.47). An informational sign explains, “In times of flooding, river water flows to the inlet at the upper end, drops one hundred fifty feet though a shaft into the twenty-four-foot diameter tunnel, and travels three miles to the outlet here at Lone Star Boulevard. The $110 million tunnel project was completed only ten months before the devastating flood of October 1998, and it is credited with saving downtown from extensive damage.” 227 The concrete outlet structure is quite large and almost military-like. It stands out in the river, protruding from the water (Figure 2.48). From this point forward, we noticed an influx of bikers on the path, which now accommodates both pedestrians and cyclists.

227 Sign along the San Antonio River, “San Antonio River Flood Control Tunnel.”
Figure 2.44: A small green sunfish caught in the San Antonio River. Source: Rio Asch Phoenix.
Figure 2.45: An informal social trail along a short segment on the west side of the river. Photo by author.

Figure 2.46: G. W. Brackenridge High School with tennis courts neighboring the river. Photo by author.
Figure 2.47: The San Antonio River Flood Control Tunnel Outlet was completed in 1997. Source: Rio Asch Phoenix.
Figure 2.48: The San Antonio River Flood Control Tunnel Outlet features a gatehouse for tunnel water recirculation. Source: Rio Asch Phoenix.
South of Lone Star Boulevard

For a couple hundred feet, we followed behind two women carrying buckets and nets, wearing rubber boots curiously. They stopped at a set of wide stairs descending directly into the river and began poking around the water (Figure 2.49). They scooped what looked like pink eggs into a trash bag lining a white bucket. Their names are Rita and Alyssha and are volunteers for the San Antonio River Authority. One of them wore a blue hat with the embroidered words “River Warrior” across the front. They explained that they are searching for apple snails, which are snails the size of apples or softballs and without any known predators, have become highly invasive in the region. The snails lay bright pink eggs, sometimes in batches of a thousand or more (Figure 2.50). Alyssha and Rita along with a team of other River Authority River Warriors remove the snails and snail eggs in hopes to curb growing populations. They have a ten-day window to find the egg cases as it takes just under two weeks for the eggs to mature and hatch. I asked them why they volunteer for the River Authority. Rita shared, “I hope people can swim in [the river] again one day, if we can get it cleaned up.” We explain we are walking both the San Antonio River and the Los Angeles River and comparing the two pedestrian experiences. Alyssha responded, “I didn’t even know Los Angeles had a river, what’s it called?” At the same moment, two kayakers mounted their boats and took off downstream, and Rio pointed out a turtle wading in the water.

Figure 2.49: River Authority River Warriors search for snails and snail eggs to remove from the river. Photo by author.

Figure 2.50: Apple snails and snail eggs, removed by the River Authority River Warriors. Photo by author.
Confluence Park

Just before the confluence of San Pedro Creek and the San Antonio River on a former construction storage site, the San Antonio River Foundation opened a three-acre park in 2018 to commemorate the merging of these two natural water features. 229 Materials for the park design include concrete, natural rust finish steel, and sand-colored interlocking pavers. The large wave-line shade pavilion in the middle of the park reminded me of animal bones left out in the sun. The nearly thirty-foot high structure is engineered to funnel rainwater into a catchment system (Figure 2.51). We sat and enjoyed a snack under one of the concrete segments in the shade. We noticed only three other people in the park. Designed with a primary focus on environmental education, the entire San Antonio River Watershed protrudes from a board-form concrete wall. Across the terrace, there are multiple signs to help identify the various native grass species planted all around the park.

Just a bit downstream along the River Walk, we came across the confluence of San Pedro Creek to the east and the San Antonio River to the west (Figure 2.52). We observed a man in an orange vest letting his chocolate lab wade in the shallow water, while he waited on nearby wide stone and concrete steps. A red and white notice sign reminded visitors in English, Spanish, and visual symbols that swimming was not allowed. In this area, a riprap slope composed of concrete embedded with stone, serves to both control flooding and to protect adjacent soils from erosion. Check dams are also employed to maintain water levels upstream. 230 Some of the stone pavers feature an assortment of leaves engraved into their surface.

230 A check dam is a small structure built across a creek or a river to slow the velocity of water flow.
Figure 2.51: The thirty-foot high shade structure at Confluence Park. Source: Rio Asch Phoenix.
Figure 2.52: The confluence of the San Antonio River and the San Pedro Creek. Source: Rio Asch Phoenix.
The Mission Reach

Nearly four miles into our day, signs point us east towards Concepción Park and
the Concepción Mission. We were tempted to explore the first of the remaining four
missions, but we stayed near the river due to the persistently rising heat. In this portion
of the River Walk, the pathway is now highly exposed to the sun. The heat emanates
from the concrete, lingering around our ankles (Figure 2.53). We passed by a
prescribed burn area. A posted sign about the technique reads, “Since 2018, San
Antonio River Authority have been conducting prescribed burns along the Mission
Reach section of the San Antonio River Walk as part of our adaptive management
techniques for ecosystem restoration and to increase native plant species.” 231 While
one area we walk past appears recently scorched and rather dry, the area directly
adjacent is a vibrant green and overflowing with native vegetation (Figure 2.54).

![Figure 2.53: Aside from shade structures, the Mission Reach was highly exposed to the sun. Photo by author.](image)

231 Sign along the San Antonio River.
Figure 2.54: The River Authority conducts controlled burns to support plant rejuvenation. Source: Rio Asch Phoenix.
Far from being overlooked, the highway underpasses are used as gathering spaces, each featuring benches or picnic tables (Figure 2.55). The simple design takes advantage of the shade and offers visitors at least a ten-degree temperature drop compared to the surrounding area. Under one of the underpasses, we met Chris and his son Julius who were fishing by the river. They told us that they live in apartments just across the way, but they do not normally come to this location to fish. Instead, they usually fish by the bridge just downstream from where we were standing, but on this particularly hot day, the shade was appealing. Chris shared that Julius had caught “a little dink, just a bit ago.” He continued, “We go to the river all the time.”

As the day progressed into the afternoon, the temperature and humidity continued to rise. We encountered two more young boys fishing under the sun near the bridge Chris mentioned to us (Figure 2.56). The river widens as we proceed further south along the walk. A family with two sons and a daughter enjoyed a shaded wooden fishing dock suspended over the water. One of the boys held up a dead fish he had caught earlier and pointed out its tail and fins. The theme song of “Fairly Odd Parents” blared out of a cell phone positioned upright on the dock.

At this point, we were desperate for anything cold to drink. In the San Antonio Missions Historical Park parking lot, we saw three individuals purchase snow cones from the back of a white pick-up truck. We were elated as we rummaged through our backpacks in search of any cash. Rio ordered a grape snow cone, and I ordered “sal y limon.” We handed the man three dollars; his hands were dyed cherry red. We carried our snow cones across the Mission Parkway and sat alongside the Espada Dam in the shade. I wrote in my notebook, “The Espada Dam is massive. I am so sweaty and hot at 3 pm in San Antonio eating a snow cone.” Constructed in 1745, the Espada Dam is part of the UNESCO World Heritage site and is the only surviving dam built by the Spanish remaining in San Antonio (Figure 2.57). The purpose of the dam was to raise the river’s water level to support the acequia system.

Figure 2.55: Highway underpasses double as shade structures. Photo by author.
Figure 2.56: Two young boys use small rods to fish from the San Antonio River in the sun. Source: Rio Asch Phoenix.
With two miles remaining before we reached the Espada Mission, after some debate, we decided to try out the B Cycle bicycles available to rent along this portion of the River Walk. We stopped at the Espada Acequia, a concrete-lined canal filled with water and still in active use (Figure 2.58). We noticed several hoses drawing up water, placed in the acequia by neighboring residents, to water their gardens. Slightly uphill from the river, we explored the historic Espada Aqueduct, built in 1740 and recognized as the oldest Spanish aqueduct in the entire country (Figure 2.59). The canal is stone lined and carries water from the river southward toward the Espada Mission. This site is designated as a National Park, a National Historic Landmark, and is part of the UNESCO World Heritage Site. Following the Espada Aqueduct, we rejoined the River Walk and made our way south toward the Espada Mission, the last stop of our day. The vegetation in this portion of the river is so dense that the water was completely out of view.

Figure 2.58: The Espada Acequia, which diverts water from the San Antonio River into the surrounding areas. Source: Rio Asch Phoenix.
Figure 2.59: The stone-lined Espada Aqueduct. Source: Rio Asch Phoenix.
Espada Mission

The Espada Mission is the most southern of the five remaining missions in San Antonio. Established in 1690 as San Francisco de los Tejas near Weches, Texas, it was the first mission founded in the entire state. In 1731, the mission was relocated to its current site, situated directly next to the San Antonio River and renamed Mission San Francisco de la Espada. Just before reaching the mission, we came across The Arbol de La Vida: Memorias Y Voces de la Tierra sculpture (Figure 2.60). Designed by Margarita Cabrera and commissioned by the San Antonio River Foundation, the public art piece, a forty-foot-tall steel tree with over seven-hundred clay sculptures hanging from its branches, was unveiled in 2019.

Just before closing time, the vicinity surrounding the Espada Mission was quiet. We admired the church’s stone façade. One of its three bells lay on its side. We peeked inside briefly; several people sat in the pews and looked forward. From the mission, we could not see the river, yet its dependence on it was obvious. In the center of the church’s courtyard, we noticed a stone-lined well, and several oak trees shade the mission (Figure 2.61). Having completed our walk for the day, we returned to our hotel.

Figure 2.60: The Arbol de La Vida: Memorias Y Voces de la Tierra sculpture, designed by Margarita Cabrera. Photo by author.
Figure 2.61: The Espada Mission in the background and its well in the foreground. Photo by author.
IMPRESSIONS

San Antonio is host to a dynamic, colorful, and accessible urbanized river, centered around its city’s rich heritage and the river’s aesthetic charm. The connected pedestrian pathway is shaded by tall cypress trees and adorned with flowers. The underpasses are well-lit and full of community art exhibitions. Entrances to the River Walk are easily reached from both street and river levels throughout the city. In the foreword of historian Lewis F. Fischer’s book, *Saving San Antonio: The Precarious Preservation of Heritage*, T.R. Fehrenbach writes, “San Antonio is a unique city in many senses. Perhaps the most important of these is that it is a city where much of the past still seems alive.” The River Walk features narratives of San Antonio’s history portrayed through mosaic collages and abundant signage. Other measures include historical markers providing visitors with information about the location and construction date of significant structures, as well as guided walking and boat tours with a focus on history, prevalent both up and downstream. Numerous benches, shade structures, trashcans, and ramps also contribute to a comfortable and informative excursion along the San Antonio River. The scenic river that civic groups in the early twentieth century advocated for maintains a distinct connection to its present picturesque state.

Walking along the San Antonio River, in a single word, is pleasant. Seated on a wooden bench beneath the shade of a cypress tree, I remember discussing how the River Walk resembled Disneyland, carefully arranged with perfectly placed stones and trail markers. I relished my experience, slept soundly at night, and returned home to Los Angeles feeling as if I had just enjoyed a brief vacation. However, in its pleasantness, the river allows its visitors to overlook the scale of its transformation from a natural river to a carefully crafted, at times industrial, landscape that was designed to maintain a certain nostalgic ambiance. Despite its tangled history, decades of inaction, and the extensive infrastructure necessary to maintain the river’s tamed condition, the landscape is rather resolved. Visitors receive the context to comprehend the river’s significance to its city, but are not forced to reckon with its past or imagine what else could have been.

Chapter Three turns its attention toward another waterway, the Los Angeles River. The history of the Los Angeles River is a twisted and nuanced tale, one that renders a river that bears its city’s name, almost unrecognizable. 236 Today, encased in concrete and adjacent to several freeways, the industrial waterway is easy for most of the city’s residents to ignore. Nonetheless, the fifty-one-mile river serves as the hydrological bedrock upon which Los Angeles itself was built (Figure 3.1). This history has been retold numerous times, with each retelling digging a little deeper into not only the events that shaped the Los Angeles River, but also the underlying reasons behind what happened. What led to such a distinct transformation to one of Los Angeles’ most crucial natural elements? Was a total transformation of the river and 3.5 million barrels of concrete necessary for residents’ safety? How did the river once serve the city? How does the river currently function? What does the river’s infrastructure prioritize? What and who was left out of the planning process?

Similar to how Chapter One provided insights into the historical narrative of the San Antonio River, this chapter will offer an overview of the Los Angeles River’s history, spanning from eleven thousand years ago through the mid-twentieth century. Mirroring the approach in Chapter One, the primary focus of this chapter is on the 1920s and 1930s leading up to river’s channelization and complete transformation from a natural feature to a flood control channel. The discussion delves into the motivations and prioritizations that shaped the Los Angeles River during this crucial period.

Figure 3.1: A wild Los Angeles River near Griffith Park in 1920.
Source: University of Southern California Libraries and California Historical Society.
PAAYME PAXAAYT

Like the San Antonio River, eleven thousand years ago, the river looked very different than it does today. Known to the local Gabrieliño-Tongva Tribe as Paayme Paxaayt, which translates to “West River,” the river provided water and fertile alluvial soils for the Indigenous People living in the basin. During this period, the river did not carve a deep channel as it does today; instead, it meandered across a vast, mostly level floodplain spanning over five-hundred square miles. What is now known as the Los Angeles Basin was largely shaped by its three rivers, the Los Angeles, the San Gabriel, and the Santa Ana, which all flowed freely and often overlapped with one another (Figure 3.2). Throughout most of the region and for the majority of the year, these rivers comprised multiple faint and shallow streams running both above and below ground. Author and geographer, Blake Gumprecht refers to Los Angeles River in its pre-channelization state as “an upside-down river” because most of its flow did not originate from the mountains, but instead surfaced from a substantial underground reservoir beneath the San Fernando Valley.

The Los Angeles River did not always empty in the San Pedro Bay; sometimes the river would alter its course and flow into the Santa Monica Bay following the present path of Ballona Creek. At times, the water did not even make it from the mountains to the ocean; instead, it saturated the soils in the basin, overflowing into marshes and shallow lakes, replenishing the groundwater system. At this time, the surrounding region was densely covered with willows, cottonwoods, and oaks, supporting one of the largest populations of Indigenous People in North America.

243 Gumprecht, The Los Angeles River, 10.
244 Gumprecht, The Los Angeles River, 10.
Figure 3.2: A historical map from 1854 depicts the confluence of the Los Angeles River and the San Gabriel River. In the present day, both rivers have been channelized to separately flow into the Pacific Ocean. Source: Custer, H., Jefferson Davis, John G Parke, and United States War Department. From San Francisco Bay to the Plains of Los Angeles: from explorations and surveys. [Washington, D.C, 1854] Map. https://www.loc.gov/item/98688426/.

120
Without a clearly defined course, occasionally, the Los Angeles River would flood, carrying large amounts of sediments across its floodplain.\(^{245}\) Intense winter storms in the mountains resulted in enormous torrents of water surging throughout the basin.\(^{246}\) It was only during these significant rain events that Los Angeles witnessed substantial above-ground surface water flow.\(^{247}\) There are clues all over Los Angeles that remind residents of the city’s once swamplier past; La Cienega, for example, translated from Spanish to English means “the swamp.”\(^ {248}\)

Despite its destructive potential, the flooding enriched the neighboring soils, rendering the region appealing for people to live there.\(^ {249}\) At one time, there were over forty-five Tongva Villages situated along the Los Angeles River.\(^ {250}\) The Siutcanga, for example, was a Tataviam and Tongva Village located close to a natural spring within the present-day Los Encinos State Historic Park, adjacent to the Los Angeles River.\(^ {251}\) The Maungna Village overlooked the Glendale Narrows.\(^ {252}\) The largest Gabriélino Village, the Suangna, was situated near the present-day Los Angeles River estuary in the San Pedro Bay.\(^ {253}\) The Tongva Village of Yangna was originally located near downtown Los Angeles, but was intentionally mobile in case of flooding.\(^ {254}\) Provided with year-round sustenance from an abundance of edible plants and animals, the villages were not known to practice agriculture.\(^ {255}\)

Apart from food and water, the river also supplied the Tongva with essential raw materials, serving various purposes.\(^ {256}\) For example, the Tongva constructed thatched houses using tule, a plant that thrives along the riverbanks, and utilized willows or

\(^{247}\) Gumprecht, The Los Angeles River, 11.
\(^{252}\) Gumprecht, The Los Angeles River, 31.
\(^{255}\) Gumprecht, The Los Angeles River, 32.
\(^{256}\) Gumprecht, The Los Angeles River, 33.
sycamore wood for structural framing.257 The doorways and floors of these houses were frequently woven from tule mats.258 Large bundles of tule and rushes, bound together, were also used to build rafts and canoes.259 Tule and willows proved versatile in crafting items as well, such as baskets and particular items of clothing like skirts and aprons. Additionally, some plants growing in the riverbed held medicinal properties.260 Marsh nettle plants, for example, were utilized in treating rheumatism. The lives of the Tongva people were closely intertwined with the river.

SPANISH SETTLEMENT AND THE MISSIONS

On September 28, 1542, the Spanish first arrived in the San Diego Bay, about one-hundred-twenty miles south of Los Angeles, during an expedition led by Rodriguez Cabrillo.261 Cabrillo and his crew ventured north along the coast, stopping at present-day Santa Monica, Catalina Island, and Point Magu in Malibu before continuing north on their journey.262 Written accounts from this time, as well as a subsequent expedition in 1602, did not mention the river.263 Almost two centuries later, however, during an expedition led by Gaspar de Portolá in 1769, the river was officially documented in written records for the first time.264 Father Juan Crespi, a member of the Portolá’s crew, kept a diary during the expedition and wrote extensively about what is now known as the Los Angeles River. His notes read, “This river can be seen flowing down, its bed not deeply sunken below the surrounding ground through a very green, lush, wide-spreading valley... it can truly be said to [be] a most handsome garden.”265 Crespi also wrote of the Arroyo Seco, a tributary northeast of the Los Angeles River, “Towards the north-northeast there is a large dry creek with a very large bed, so that it plainly must carry heavy floods,” demonstrating an understanding of the connection between

\begin{footnotes}
\item[259] Gumprecht, *The Los Angeles River*, 34.
\item[260] Gumprecht, *The Los Angeles River*, 34.
\item[264] Arroyo, “Culture in Concrete,” 39.
\end{footnotes}
flooding and the ground plain.266 The following day, on August 3, 1769, Crespí recorded, “After crossing the river we came into a great vineyard of wild grapevines, and countless rose-patches with a great many open flowers, the soil being all dark and friable. We took a westerly course, over the flat ground all covered with tall grasses; we had a clear view of the course of the river, with the trees and plain drawing toward the south.”267 His diary entries describe a very different landscape than the present-day Los Angeles basin.268

Crespí considered the Los Angeles River to be superior to the other two rivers his crew had recently passed (the Rio Hondo and the San Gabriel) and an ideal site for settlement.269 He predicted this area, “[a] pleasing spot among the trees on this pleasant river” would be well-suited for “a very large plenteous mission.”270 His diary reads, “The plains where the river runs is very extensive. It had good land for planting all kinds of grain and seeds, and is the most suitable site for a large settlement.”271 Just a short period later, El Pueblo de la Reina de Los Ángeles was established not far from this spot in 1781.272 The river provided the new Spanish settlers with drinking water and supported the rise of agriculture in the region.273

“LITTLE INFRASTRUCTURE”

The City of Los Angeles relied on the Los Angeles River for its water supply from the establishment of El Pueblo de la Reina de Los Ángeles in 1781 until the completion of the California Aqueduct in 1913.274 The initial pueblo occupied an area of approximately twenty-eight square miles, and the settlers’ first houses were believed to be constructed from willows and mud harvested from the river’s bottom.275 Two miles

\begin{footnotesize}
267 Wood, “Juan Crespi,” 213.
271 Juan Crespi, \textit{A Description of Distant Roads: Original Journals of the First Spanish Expedition into California}, 1769-1770, August 2, 1769, as cited in Gumprecht, \textit{The Los Angeles River}, 38.
272 Gumprecht, \textit{The Los Angeles River}, 39.
273 Gumprecht, \textit{The Los Angeles River}, 39.
275 Gumprecht, \textit{The Los Angeles River}, 44.
\end{footnotesize}
upstream from the pueblo, the settlers built a dam made from sand and willows near the Elysian Hills. Following its creation, the pool that formed behind the dam was a popular swimming hole for years.276

Accustomed to a Mediterranean climate with a sporadic rainfall pattern, the Spanish settlers recognized the inconsistency of rain in the region early on and established an irrigation system in the late 1700s. Most of the new pueblo’s water at this time was distributed through channels called zanjas, which translates to “ditches” in Spanish (Figure 3.3, 3.4, 3.5).277 The main irrigation ditch, called Zanja Madre (“mother ditch”) transported water from the river to the pueblo’s main plaza and fields laid out for agriculture.278 As the pueblo grew, so did the extensive network of zanjas, similar to the extensive network of acequias seen in San Antonio. In his article, “Water Qualities and Usage in the Zanjas of Los Angeles, 1781-1904,” Michael Holleran refers to the ditch systems as the city’s “little infrastructure” compared to the “big infrastructure” that would eventually transform Los Angeles and its river.

![Image](https://example.com/image.jpg)

Figure 3.3: The Los Angeles River near Griffith park, circa 1895 to 1898. Source: University of Southern California Libraries and California Historical Society.

276 Gumprecht, \textit{The Los Angeles River}, 44.
Figure 3.4: The Los Angeles River near Griffith park, circa 1895 to 1898. A man maintains a zanja (right, center). Source: University of Southern California Libraries and California Historical Society.

Figure 3.5: A concrete zanja runs along Figueroa Street, circa 1890. Source: C.C. Pierce Collection, Huntington Digital Library, Los Angeles CA.
During the mid-1800s, many different water systems in Los Angeles coevolved, and residents could choose between utilizing zanjas, mains (an underground pipeline system introduced by engineer William Mulholland), wells, or vendors. Holleran writes, “The range of agency here was broad—not only the freedom to choose from zanjas, mains, wells, and vendors but also the freedom to choose how to use the water from each source, for a variety of purposes.” Holleran compared the process of choosing the appropriate water system for residents to picking a beverage from a menu of options, each to their own preference.

As the city expanded and continued to build on previously undeveloped land, the ground grew increasingly impermeable. As a result, despite their original design not being intended for drainage, redirecting storm water into the zanjas became common practice. Holleran writes, “the drainage role of zanjas became explicit, in an ad hoc fashion.” He points to an example from 1869, when the city council officially instructed one street to be intentionally graded to drain into Zanja No. 5. This ad hoc approach reflects much of Los Angeles' water management over the next century, addressing issues retroactively rather than any significant pre-planning.

Repeatedly, early engineers underestimated the rise of urbanization’s impact on flooding within the city. To illustrate, in 1870, Frank Lecouvrear, the engineer responsible for the city’s first comprehensive drainage plan recommended installing large street gutters instead of storm drains. He reasoned that oversized street gutters would be able to effectively manage Los Angeles' rare yet intense storms. His report reads “street gutters of a somewhat unusually large size...[are] amply sufficient to take charge of all such extraordinary currents, until the nearest irrigation ditch receives and finally disposes of them.” This quote also sheds light on the city’s perspective on

286 Gumprecht, “51 Miles of Concrete,” 457.
water at the time; it was seen as a resource that could be discarded rather than conserved. The possibility that water could one day become scarce was not a prevailing consideration of these early city planners and engineers. Gumprecht confirms, “there seems to have been little concern at the time about whether [the river] carried enough water to satisfy the future needs of Los Angeles.”288 As long as the river flowed, it appeared as if there would always be water.

In the mid-1800s, as a consequence of receiving storm water runoff, zanjas experienced contamination from oil and gas (Figure 3.6).289 Residents consistently complained that the water in the zanjas was unsuitable for both drinking and agricultural use. Holleran reported that “a city council member who used the zanja called its water ‘unfit’ for any purpose.”290 Despite residents’ grievances, the oil and gas companies, however, exhibited a laissez faire attitude toward the contaminated water. They proposed that if the existing water system was polluted, the city could easily establish a second one, insinuating that there was (and always would be) enough water left in the river.291

![Figure 3.6: An oil field off Toluca St, circa 1895. Source: C.C. Pierce Collection, Huntington Digital Library, Los Angeles CA.](image)

In addition to oil and gas, Los Angeles needed to manage human sewage and waste. Gumprecht writes in his book *The Los Angeles River: Its Life, Death, and Possible Rebirth*, “The zanjas were... unsanitary and posed a health hazard. There were no bridges over the ditches, so livestock, wagons, and pedestrians regularly splashed through the public water supply. Dead animals were frequently removed from the ditches. Human bodies were occasionally found.” At one time, the city council narrowly deliberated if public sewer infrastructure was even necessary for the growing city, once again highlighting the lack of foresight in city planning. In the 1860s and '70s, some zanjas were converted into sewers—“carrying cesspool overflows, household drainage, and some sanitary waste from early water closets.” Around the same time, a city health officer recommended that efforts be “made to cut off the many foul drains that now do and have for years connected with the various zanjas.” This quote serves as yet another example that illustrates how the management and sanitation of water in Los Angeles were evidently afterthoughts.

In 1877, for the first time in its history, Los Angeles initiated a comprehensive plan to develop and improve its water infrastructure. The original dirt zanjas were lined with bricks and concrete, resulting in a network of more than seventy-five miles of canals. While the city owned some of the zanjas, others were owned privately. A local newspaper predicted for Los Angeles, “the plains below the city would be turned into orange orchards and vineyards, and from here to the sea would be a stretch of country as beautiful as the Vale of Cashmere seems from Moore’s description.” By 1880, over eight thousand acres of land were being irrigated with water sourced from the Los Angeles River. Vittoria Di Palma and Alexander Robinson in their article titled “Willful Waters,” wrote that, “In this way, the wild and unpredictable Los Angeles River was remade into a tractable urban water source...” While the Los Angeles River was

298 Gumprecht, *The Los Angeles River*, 70. Thomas Moore, an Irish poet, is known for his 1817 poem “Lalla Rookh,” where he depicts the Vale of Cashmere as a lush paradise surrounded by mountains.
largely unpredictable, the zanja system “supplied water calmly and consistently, and in all the right places.”301 Yet, due to extensive and widespread use, Di Palma and Robinson also report that “this modern water distribution system came close to draining the river dry.”302

WHOSE WATER IS IT… ANYWAY?

In 1850, Los Angeles was still considered a small town with fewer than two thousand residents. Outside of the main pueblo, the land was used mostly for agriculture and subdivided into ranchos.303 However, Gumprecht reports that after the Gold Rush in 1848 and California’s establishment as a state in 1850, the “demand for water increased and, for the first time, there was competition for the river’s supply, stirring division and provoking crime, even murder.”304 During this pivotal period of expansion, the river played an enormous role in the development of Los Angeles with land bordering the river and the zanjas holding significantly more value than non-irrigated land.305

Due to increased demand, the Los Angeles Water Works Company was founded in 1858 to oversee the management of the city’s water.306 A decade later, the Los Angeles Water Works Company was succeeded by the Los Angeles City Water Company, and city officials began to implement water fees for usage.307 As the city continued to grow, many open zanjas in denser areas were replaced with closed cement conduits and iron pipes.308 By 1886, over eleven thousand acres of land were irrigated using water from the Los Angeles River.309

In the late 1800s, as Los Angeles continued to expand following the arrival of the transcontinental railroads, the river could no longer fulfill the city’s increasing water needs.

301 Di Palma and Robinson, "Willful Waters," 2018.
302 Di Palma and Robinson, "Willful Waters," 2018.
303 Gumprecht, \textit{The Los Angeles River}, 57.
304 Gumprecht, \textit{The Los Angeles River}, 56.
305 Gumprecht, \textit{The Los Angeles River}, 78.
306 Gumprecht, \textit{The Los Angeles River}, 63.
308 Gumprecht, \textit{The Los Angeles River}, 71.
309 Gumprecht, \textit{The Los Angeles River}, 71.
demands.310 Between 1870 and 1880, the city’s population doubled.311 Similar to San Antonio at this time, the demand for water was so high that the Los Angeles City Water Company began extracting water from the river before it even reached the surface through artesian wells, which caused significant alterations to the landscape. The first well was drilled roughly two and a half miles west of Compton. By 1892, Los Angeles County was drawing up water from the underground aquifer through 627 different artesian wells.312 Gumprecht writes, “the once-beautiful stream, its flow plentiful near downtown Los Angeles even in summer, would soon become a dry wash for most of the year there as well.”313

Less water led to additional jurisdiction. In the \textit{Annual Publication of the Historical Society of Southern California}, published in 1893, author C. P. Dorland writes, “the City of Los Angeles has exercised and enjoyed exclusive control of all the water and all of the bed of the river within its limits so long the memory of no living man runs to the contrary; hence the right and title of the water by prescription is fully established.”314 In 1894, a State Supreme Court decision affirmed the City’s rights to all the water in Los Angeles.315 Dorland continues, “Thus it is established, not only by grant from the Spanish government, by continued use, but by acknowledged right by parties in interest, and also by the Supreme Court, that the city is the unqualified owner of all the water flowing in the Los Angeles River, necessary for all purposes of irrigation and domestic use within the city.”316 On February 13, 1902, the City of Los Angeles officially assumed its authority over its domestic water system.317 To gain popularity with residents, the newly-formed Department of Water first slashed water rates by fifty percent, and then to avoid any further disputes, enacted an amendment to prevent any future leasing or selling of the water in the Los Angeles River.318

310 Gumprecht, \textit{The Los Angeles River}, 79.
311 Gumprecht, \textit{The Los Angeles River}, 83.
313 Gumprecht, \textit{The Los Angeles River}, 80.
314 \textit{Annual Publication of the Historical Society of Southern California}, Los Angeles 3, no. 1 (1892): 31.
315 \textit{Annual Publication of the Historical Society}, 3, no. 1 (1892): 31.
316 \textit{Annual Publication of the Historical Society}, 3, no. 1 (1892): 35.
317 Gandy, “Riparian Anomie,” 136.
318 Gumprecht, \textit{The Los Angeles River}, 95.
“BIG INFRASTRUCTURE”

Due to the city’s swelling demand for water, the Los Angeles City Water Company started searching for water resources beyond the Los Angeles River. In 1883, the company had only ten employees, but in the twenty years that followed, the workforce would multiply many times over.319 During this time, the company constructed and expanded reservoirs to increase water storage, lined these reservoirs with concrete to reduce percolation, and installed new pipelines to harness the river’s subsurface flow. This resulted in parts of the river being so dry that construction crews began utilizing the riverbed as a source for sand and gravel.320 The surge in domestic water use led to a tightened supply for irrigation. In the midst of a multi-year drought in 1897, the water overseer informed the city council, “I wish to call your attention to the fact that there is an apparent shortage of water in the river. Irrigators are clamoring for water and it seems impossible for me to furnish the same to them.”321 Around the same time, the majority of the zanjas were either filled in or abandoned.322 The last zanja was closed in 1904.323

By 1910, Los Angeles was home to a population exceeding 300,000 people, and an impending water shortage was becoming increasingly certain.324 Newspapers made light of the river, now reduced to a mere trickle, aside from the occasional massive flooding event. One columnist joked that the river was “so dry eight months out of the year that a pollywog would have to stand on his head to get enough moisture to soothe a headache.”325 Astoundingly, despite its then-current water crisis, water consumption per capita in Los Angeles was thought to be the highest in the entire country. An engineering consultant reported that “there are few, if any, cities in the United States, consuming and wasting as much water per capita as the city of Los Angeles.”326

319 Gumprecht, \textit{The Los Angeles River}, 87.
320 Gumprecht, \textit{The Los Angeles River}, 87-88.
323 Gandy, "Riparian Anomie,” 137.
324 Gumprecht, \textit{The Los Angeles River}, 96.
Consequently, the city made intense efforts to both conserve water and expand its available water supply.327 The water department built four new reservoirs in the span of five years. However, despite their commitment, the demand for water continued to rise and the amount of available water was still insufficient. Engineer William Mulholland, who became the superintendent of the Water Company in 1886, warned, “there is a narrow margin… between us and a water famine.”328

In 1904, recognizing the inadequacy of the reservoirs to meet the city’s demand for water, Mulholland urged the city to capture water elsewhere.329 City officials had already considered alternative options, such as Lake Hemet in the San Jacinto Mountains. In addition, in 1892, former Mayor Fred Eaton and Mulholland’s former superior explored a plan to build a channel from the Owens Valley, two-hundred miles away, to Los Angeles.330 With a city teetering on the brink of a water crisis, Eaton persuaded Mulholland that water from the Owens Valley could support a population of over two million people. On July 29, 1905, the \textit{Los Angeles Times} proclaimed, “Titanic Project to Give City A River,” almost ignoring the fact that Los Angeles already has a river, one that Mulholland described in 1877 as a “beautiful, limpid little stream with willows on its banks.”331 Nonetheless, with strong voter support, the construction of the 233-mile-long Los Angeles-Owens River Aqueduct began in 1907 and was completed in 1913 (Figure 3.7).332 With the city no longer depending on the Los Angeles River as its main water source, the river’s increasing risk of flood was becoming a more significant and inexcusable problem.333 Di Palma and Robinson state, “No longer valued as a natural resource, the ever-wilder river was now feared as a “predator,” able to roam and strike wherever it wished.”334

328 Gumprecht, \textit{The Los Angeles River}, 99.
329 Gumprecht, \textit{The Los Angeles River}, 103.
330 Gumprecht, \textit{The Los Angeles River}, 104.
331 Gandy, “Riparian Anomie,” 137.
332 Gumprecht, \textit{The Los Angeles River}, 105. The aqueduct was eventually extended 105 more miles to reach Mono Lake in 1940.
333 Gandy, “Riparian Anomie,” 137.
FLOODING AND THE LOS ANGELES RIVER

The topography of Los Angeles, characterized by its broad basin and steep mountains, rendered the city susceptible to flooding. Recounted by Gumprecht, Emma H. Adams described one such event in a series of letters to an Ohio newspaper in 1884,

During the rainy season it enlarges to a broad river, with a powerful current and a dangerous shifting bottom. Widely overflowing its banks, it sweeps away real estate and personal property in a merciless fashion. Scarcely a season passes in which adventurous men do not lose their lives in attempting to cross it with teams when at its flood. Both driver and horses soon disappear beneath its restless quicksand. But let the early

Autumn come! Then the once raging torrent purls along, a narrow, shallow, garrulous brook, with bare-footed children may easily ford.336

As the population increased and the ground grew even more impervious, the city’s risk of flooding intensified. In his journal article, “A History of Flood Control in the Los Angeles County Drainage Area,” Stephen R. Wormer reported, “Prior to installation of flood control works, the coastal plain of Los Angeles County was probably subject to greater potential flood hazard than any area in the United States of comparable size.”337

The first recorded instance of flooding from the Los Angeles River dates back to 1811. A notable flood in 1815 actually changed the course of the river, destroying the Los Angeles Pueblo plaza and damaging agricultural fields in the process.338 A decade later, the river altered its course again during another major flood. Additional notable flooding events occurred in 1832, 1842, 1849, 1861, and 1867.339 Before the turn of the century, while these floods did cause some damage, comprehensive flood control was not yet a county-wide concern.340 In 1889, J. M. Guinn, a Los Angeles County historian, stated that, “While floods in other lands are wholly evil in their effects, ours, although causing temporary damage, are greatly beneficial to the country. They fill up the springs and mountain lakes and supply water for irrigation. A flood year is always followed by a fruitful year.”341 In the same year, despite Guinn’s positive outlook, the floods in 1889 prompted the city’s first widespread proposal for flood control. In 1894, the Board of Engineers published their proposal, which recommended widening the Los Angeles River channel as much as three-hundred-feet. However, during the subsequent drier decades that followed, general interest in larger flood control projects lessened and the report was set aside. One official during this period noted, “the effort to enlist the whole

336 Gumprecht, The Los Angeles River, 13; Emma H. Adams, To and Fro in Southern California with Sketches in Arizona and New Mexico (Cincinnati, 1887), 67-68.
337 “History, Functions, and Plans: Los Angeles County Flood Control District,” manuscript, Los Angeles County Flood Control District Library, 1955, as cited in Wormer, “A History of Flood Control in the Los Angeles County Drainage Area,” 56.
338 Wormer, “A History of Flood Control in the Los Angeles County Drainage Area,” 56. This study was funded by the United States Army Corps of Engineers.
339 Wormer, “A History of Flood Control in the Los Angeles County Drainage Area,” 58.
340 Wormer, “A History of Flood Control in the Los Angeles County Drainage Area,” 58.
population in a common scheme for the betterment of these flood conditions resulted in failure.342

As development and urbanization of the landscape expanded, Los Angeles became increasingly vulnerable to destruction from flooding (Figure 3.8). In 1913, County Flood Control Engineer Frank Olmsted recommended first to retain flood waters in reservoirs; second, to create artificial spreading grounds to recharge the water table; and third, to straighten and reinforce the river channel “so a maximum volume of water could be discharged to the ocean as quickly as possible, with the least amount of destruction.”343 He warned that “year by year the annual waste occasioned by not controlling the river will be more and more inexcusable and expensive.”344

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{image}
\caption{The Los Angeles River prechannelization near Union Station. Source: United States Army Corps of Engineers.}
\end{figure}

342 Gumprecht, \textit{The Los Angeles River}, 176.
343 Gumprecht, \textit{The Los Angeles River}, 175; Wormer, "A History of Flood Control in the Los Angeles County Drainage Area," 60.
344 Gumprecht, \textit{The Los Angeles River}, 175.
The floods during the winter of 1914 instigated the formation of the Los Angeles County Flood Control District. While the flood was not the most severe Los Angeles had experienced, the level of devastation far surpassed any previous event due to the city’s steep population growth and development in the floodplain (Figure 3.9). The disaster cost the city over ten million dollars. The newly established Flood Control District covered 2,760 square miles, encompassing nearly the entire area of Los Angeles County. According to its charter, the district’s primary purpose was to “… provide for the control and conservation of flood, storm, and other waste waters and to conserve such waters for beneficial and useful purposes.” To meet its charter, the district was given authority to exercise eminent domain, take on debt, and build infrastructure wherever they deemed necessary. Gandy states in his journal article, “Riparian Anomie: Reflections on the Los Angeles River,” “In the wake of the 1914 flood, there was growing momentum for a radical solution to the flooding problem.”

The first significant flood control project along the Los Angeles River was completed in 1923, near the river’s estuary in Long Beach. The work was completed by the Los Angeles District of the United States Army Corps of Engineers who built barrier dikes and realigned a five-mile stretch of the channel from the Dominguez Hills to the estuary, where the fresh river water meets the ocean water.

Over the next decade, while the Flood Control District continued to construct dams, spreading grounds, and reservoirs on other water bodies across the county, including Thompson Creek, Pacoima Wash, San Antonio Wash, and the San Gabriel River, minimal development was completed on the Los Angeles River. In fact, at this time, residents rejected bond issues to continue to support flood control efforts, and appeals for federal funds by the Flood Control District were also turned down. Gumprecht writes, “Many… who had witnessed the great floods of decades past…

345 Wormer, “A History of Flood Control in the Los Angeles County Drainage Area,” 60.
348 Gandy, “Riparian Anomie,” 137.
expressed skepticism that such floods could be prevented and that river could be controlled."353

However, everything would change on New Year's Day in 1934.354 As residents gathered in Pasadena for its annual Rose Parade, floodwaters laden with debris and sediment poured through the streets of Glendale, Montrose, and La Crescenta.355 Forty-one people lost their lives and many more lost their homes. A \textit{Los Angeles Times} reporter who visited the site three days after the disaster described the scene; “For hours I clambered over huge boulders, hundreds of which weighed not less than ten tons and were as large as automobiles. I saw sections of pavement ending over gorges ten feet deep, houses buried to their eaves, homes through which great rocks had passed, cleaning out the interiors…”356 The Flood Control District and Chief Engineer Eaton blamed the flood disaster on the rejected bonds to support further flood control. He noted that “in no case where permanent types of protection works were installed was serious damage experienced.”357

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{aftermath.jpg}
\caption{The aftermath of the 1914 Los Angeles River Flood. Source: University of Southern California Libraries and California Historical Society.}
\end{figure}

353 Gumprecht, \textit{The Los Angeles River}, 179.
354 Wormer, “A History of Flood Control in the Los Angeles County Drainage Area,” 83.
355 Wormer, “A History of Flood Control in the Los Angeles County Drainage Area,” 83.
356 \textit{Los Angeles Times}, January 5, 1934, as cited in Wormer, “A History of Flood Control in the Los Angeles County Drainage Area,” 83.
357 \textit{Los Angeles Times}, January 5, 1934, as cited in Wormer, “A History of Flood Control in the Los Angeles County Drainage Area,” 83.
After the deadly flood of 1934, the Flood Control District sought assistance from the War Department, resulting in the Emergency Relief Appropriation Act of April 8, 1935.\(^{358}\) Two months later, President Franklin D. Roosevelt approved almost $14 million in WPA funds to support the fourteen most urgent flood projects.\(^{359}\) The relief would fund the building of storm drains, permanent channel enhancements, and debris basins.\(^{360}\) The next year, Congress approved the Flood Control Act of 1936, which effectively reshaped the United States Army Corps of Engineers' role in Los Angeles from providing emergency relief for flooding to overseeing the development and implementation of permanent flood control plans for the Los Angeles River, as well as the Rio Hondo and the San Gabriel rivers. This law established the foundation for the Los Angeles County Drainage Area District (LACDA), which was overseen solely by the Army Corps of Engineers and resulted in the Los Angeles River losing its designation as a “river.” Theodore Wyman Jr., appointed as the District Engineer responsible for the project, presented plans for additional debris basins and further permanent channel improvements.\(^{361}\) At a public hearing in 1936, business leaders, government officials, and residents were reportedly supportive of the Army Corps’ extensive flood control endeavors. An engineer from Monrovia at the hearing stated, “I am pleased that, at present time, the army has moved into Southern California. I am not so sure that I don’t wish they had arrived about twenty years ago.” His comments were met with both laughter and applause.\(^{362}\)

The Los Angeles River floods of 1938 prompted even more extensive action.\(^{363}\) The January and February floods caused over a hundred deaths and $35 million in damages across the entire city, leading Congress to pass further legislation, the Flood Control Act of 1938 and the additional Flood Control Act of 1941 (Figure 3.10, 3.11, 3.12). Colonel Edward C. Kelton, who replaced Major Wyman as Los Angeles District Engineer, presented a comprehensive proposal for LACDA, requesting a budget of

\(^{358}\) Wormer, “A History of Flood Control in the Los Angeles County Drainage Area,” 83.
\(^{359}\) Gumprecht, The Los Angeles River, 138.
\(^{360}\) Wormer, “A History of Flood Control in the Los Angeles County Drainage Area,” 86.
\(^{361}\) Wormer, “A History of Flood Control in the Los Angeles County Drainage Area,” 86.
\(^{362}\) Gumprecht, The Los Angeles River, 208.
nearly $300 million. The plans included the building of “Hansen, Sepulveda, and Lopez flood control basins; construction of debris basins at the mouth of seventeen tributary canyons; improvements of 49.07 miles of main channel and 53.42 miles of tributary channels; and reconstruction of 109 bridges.” Immediately, work began near Elysian Park and Vernon. By May of 1939, five miles near Griffith Park were straightened and lined with concrete. The Sepulveda Flood Control Basin, with a capacity of 16,700 cubic acre-feet of water, was completed in October of 1941 and cost $6.7 million.

Figure 3.10: A flooded Los Angeles River and an eroded bank in 1938. Source: University of Southern California Libraries and California Historical Society.

366 Gumprecht, The Los Angeles River, 221.
367 Southwest Builder and Contractor, October 2, 1941, 14-15, 20, as cited in Wormer, “A History of Flood Control in the Los Angeles County Drainage Area,” 88; Gumprecht, The Los Angeles River, 221. This is roughly equivalent to almost a quarter million average-size swimming pools.
Figure 3.11: Bank erosion following the 1938 flood. Source: United States Army Corps of Engineers.

Figure 3.12: A house carried by the great flood of 1938. Source: United States Army Corps of Engineers.
Over the next three decades, flood control work was planned for 278 miles of rivers and tributaries throughout Los Angeles County. As the third largest city in the United States at the time, Los Angeles received national attention and extensive funding.368 Author Gumprecht writes,

Soon, construction crews were transforming the river from Canoga Park all the way to the sea. The last trees were removed from its banks, and vegetation was cleared from its channel. Fortress-like walls rose where willows had once stood. Stream shovels lowered the river’s bed and straightened its course. A smooth layer of concrete was applied atop its sandy bottom. Powerful floodlights enabled construction to continue twenty-four hours a day, five days a week (Figure 3.13, 3.14).369

An official at the United States Army Corps of Engineers commented that the early Spanish explorers “would never recognize the Los Angeles River as it is at this writing.”370 The entire project amounted to $116.7 million, created ten thousand jobs, and took twenty years to finish.371 Only three segments of the complete fifty-one-mile channel—the Sepulveda Basin, the Glendale Narrows, and the Long Beach estuary—retain a soft, muddy bottom instead of a concrete floor. In 1969, as the Los Angeles County Drainage Area Project was nearing completion, the flood control system tested during a period of continuous rainfall over nine days, with the amount of rain only exceeded by the rainfall in 1938. The flood caused minimal damage throughout the city, and no damage was reported near the channels constructed by the United States Army Corps of Engineers.372

368 Gumprecht, The Los Angeles River, 224.
369 Gumprecht, The Los Angeles River, 224.
Figure 3.13: Construction crews work on the Los Angeles River between Lankershim Boulevard and Tujunga Wash in 1948. Source: United States Army Corps of Engineers.

Figure 3.14: Building the Sepulveda Dam, completed in 1941. Source: United States Army Corps of Engineers.
Wormer concludes his journal article funded by the United States Army Corps of Engineers, with the assertion that “Los Angeles, after 60 years of construction, involving millions of dollars and a significant quantity of trial and error, has controlled the flood menace.” Referring to the river as a “flood menace” demonstrates the strong animosity directed toward the Los Angeles River, and Wormer celebrates the engineers’ success in “taming” it. However Jared Orsi, in his book *Hazardous Metropolis: Flooding and Urban Ecology in Los Angeles* paints a different picture, describing that the river “resembled nothing so much as an empty freeway… there were no plants, no rocks, no mud, no dust, no curves, just sun glinting off white pavement as far as the eye could see.” In his book, Orsi challenges what defines a victory, raising questions about what extensive flood control geared toward a single purpose may have cost the city. Nathan Holste, a hydraulic engineer at the United States Bureau of Reclamation, reiterates the sole intention of the 3.5 million tons of concrete, 147 million pounds of reinforced steel, and 460,000 tons of stone that currently encases the river. He states, “The L.A. River channel was designed exclusively to flush water to the ocean as quickly as possible and keep people dry.” However, was there a different path the engineers could have taken?

Historically in Los Angeles, urban expansion often conflicted with nature. In his book *Ecology of Fear*, Mike Davis highlights that engineers such as Mulholland seemed to believe that through their own manipulation of the land, they “fixed” nature, and that nature on its own was far less than anything that humans could design (Figure 3.15, 3.16, 3.17). In reference to super-engineers rescuing Los Angeles, the author writes, “A corollary of this promethean claim is the idea that beneath the artificial landscape is something sinister and barren, incapable on its own of sustaining even a tiny fraction of the current multitudes.” In inventing Eden, Davis argued that super-engineers thought of themselves almost like gods, if not outright gods, and the magnitude of their power was monumental; the modern-day Los Angeles River serves as an example. Davis

states, “we think ourselves gods upon the land but are still really just tourists.”378 The Los Angeles River was designed solely for flood control purposes and this substantial effort to control nature enabled developers to continue to build as close to the confined river as possible. Author Gumprecht affirms, “Flood control project made much of the new development possible, but by doing so they assured that the work already done would never be enough.”379

Figure 3.15: Constructing channel walls within the upper stretch of the Los Angeles River. Source: United States Army Corps of Engineers.

Figure 3.16: Upper stretch of the Los Angeles River pre-channelization in 1952. Source: United States Army Corps of Engineers.

Figure 3.17: The same upper stretch of the Los Angeles River following channelization in 1955. Source: United States Army Corps of Engineers.
ALTERNATIVE PROPOSALS

Not everyone supported the complete transformation of the Los Angeles River. Conservationists in the 1930s and ’40s advocated for more comprehensive upstream interventions such as reforestation, fire prevention, and building a series of smaller dams. Some people proposed restricting development within the floodplain and designating specific zones as hazardous. Due to politics and high real estate costs, neither of these alternatives reached the public eye and came to fruition. During this period, one formal proposal did challenge the river’s rigid channel design. Funded by the Los Angeles Chamber of Commerce, the Olmsted Brothers published a report with Bartholomew & Associates that proposed a network of parks connecting Los Angeles in 1930. Their 178-page report, *Parks, Playgrounds and Beaches for the Los Angeles Region*, focused on meeting the county’s parks and recreation needs, outlining a $124 million proposal. In the last chapter of the proposal, the planners suggested integrating recreational parks and flood control, doubling as spreading grounds. They argued, “Such land would have to be acquired only once, yet would serve a double purpose—flood-control use and park use—not conflicting but positively benefiting each other.” Like the other alternative proposals, however, after presumably only a day of newspaper coverage, the alternative was buried and never received significant public recognition. Orsi writes, “To the distress of many chamber leaders… the planners… proposed to create a new governmental authority that would have sweeping power to raise money and purchase and develop property for parks, roads, flood control, and other infrastructure.” As this new government entity would operate outside of the Chamber’s influence, Chamber members expressed concerns that it might encroach upon their authority. As a result, the Chamber’s directors scaled back the plan’s print

run from 7,500 copies to just two hundred. In their book *Eden by Design*, William Deverell and Greg Hise state, “... the report garnered almost no public attention. The response, in truth, was a resounding silence.”

Orsi writes of the Depression Era, The structure and culture of flood control politics in 1930s Los Angeles rendered these alternatives virtually invisible. Consequently, this crossroads decade ended with Southern Californians reembarking with renewed determination on the same technocratic path they had been on since the 1914 flood. Only this time, they had a powerful federal companion in the U.S. Army Corps of Engineers.

Orsi points out that the most impactful alternative would have been changing zoning laws closest to the river, especially considering that areas that are now under threat from flooding were largely undeveloped at this time. A 1942 State Planning Board report even stated that restricting future development in the floodplain would be more cost effective in the long run than constructing a concrete channel and building additional dams.

Orsi highlights that during the 1930s, it was widely understood that development increased the risk of flooding. As Gumprecht also noted, Orsi discusses the perpetual feedback loop in which “flood control works often created a sense of security that induced more development, which in turn necessitated more flood-control works.”

Even still, little action was taken. Los Angeles County only initiated amending its zoning ordinance to limit further development in one small area south of downtown in 1940. Orsi discusses that “the engineers, to whom flood control has been entrusted, were builders, not planners, and they designated the nontechnical aspects of flood control as outside the scope of their work.” The nontechnical aspects of the river, such as ecological, social, historical, recreational elements, and more, were, by this logic, left out of the engineer’s design, resulting in a unrelenting concrete drainage channel.

BURRYING THEIR RIVER IN CONCRETE

The initial design for the Los Angeles River, which lacked multi-functionality and neglected to incorporate any elements of heritage, set a precedent for subsequent plans. In the foreword of Patt Morrison’s book, published in 2001, *Río L.A.: Tales from the Los Angeles River*, Kevin Starr states, “Ever since it was buried under tons of concrete in the late 1930s, the Los Angeles River has all but lost its identity,” and in the process, regained a new one, if dystopic. Morrison writes, “In [the river’s] later days, its banks and beds have been plastered over with cement. It has been befouled by oil and DDT and cyanide and human sewage. It has had more market value as a movie set, more usefulness as a punch line, more potential as a freeway, than regard as a waterway.” Jared Orsi republished one writer from 1961 who describes the Los Angeles River as flowing “in a disciplined line bordered by miles of cemented beds, guarded by flood dikes, caged in wire fencing.” And another writer who discussed the construction of the Los Angeles River channel and its tributaries in 1966, “Gradually, and unnoticed, they have disappeared one by one with hardly a protest from the city dwellers.”

For several decades following the channels completion in 1960, the majority of the river was completely fenced off, and all access to the water was restricted with heavy fines. The floods of 1978 and 1980, which killed a combined fifty-five people and caused $500 million in damages, resulted in only more concrete. The occurrence of these two floods raised significant alarm as the amount of rainfall was well within the supposed capacity of the LACDA system. Scientists classified both storms between twenty-five to forty-year flood events—the concrete channel was designed to withstand a minimum of a fifty-year flood event. After evaluating the extent of the damages,

394 Charles Steve Dwyer, interview, November 10, 2023.
398 Orsi, *Hazardous Metropolis*, 134. In the early 1970s, there was one exception: the final segment of LACDA was not constructed in Sierra Madre, influenced by the growing environmental movement.
399 In 1977, the Los Angeles River/Rio Hondo Channel (LARIO) trail opened and twenty-one miles of bike and equestrian trails are built.
400 Orsi, *Hazardous Metropolis*, 141.
California Institute of Technology’s Norman Brooks concluded that the LACDA system was “necessary but not sufficient.” To manage the newly identified flood risk in the lower Los Angeles River, the United States Army Corps of Engineers proposed to widen the channel and construct two to eight feet high walls atop of the levee along twenty-one-miles of the drainage channel, further separating people from their river. The $364 million twenty-year plan was approved by Congress in 1990 and completed in 2001, five years ahead of schedule.

Although the project ultimately succeeded, it caused considerable opposition throughout Los Angeles, signaling a notable shift in attitude toward the river compared to the initial reception of the LACDA system. Orsi writes of Los Angeles mayor Tom Bradley’s Los Angeles River Task Force in 1990, “For the first time ever, the task force gathered engineers, environmentalists, city planners, politicians, artists, business leaders, recreation enthusiasts, and other concerned citizens to discuss issues affecting river management.” In an unprecedented turn of events in Los Angeles history, alternative possibilities were under consideration for the Los Angeles River, extending its role far beyond being solely a flood control channel as well as paving the way for more integrated endeavors in the future.

Over the past several decades, despite the river’s brutalist and unforgiving design, there have been numerous grassroots initiatives aimed at reintegrating the Los Angeles River and its surrounding communities. Artist Judith Baca and four-hundred students, for instance, painted the Great Wall of Los Angeles on the vertical concrete walls of the Tujunga Wash, a tributary of the Los Angeles River over the span of seven summers in the 1970s. The 2,754 feet-long mural was listed on the National Register of Historic Places in 2017. In another instance, for over forty years, artist and activist Leo Limón has painted cat faces on several Los Angeles River storm drains covers—he calls them Gatitas. In 1986, poet Lewis MacAdams, writer and founder of Friends of the Los Angeles River (FoLAR), cut a hole through a fence and declared the river “open

402 Orsi, Hazardous Metropolis, 146.
403 Orsi, Hazardous Metropolis, 151.
404 Orsi, Hazardous Metropolis, 151.
405 Orsi, Hazardous Metropolis, 152; Morrison, Río L.A., 118.
for the people." In 1993, Morrison documents that on Rosh Hashanah, “dozens of members of the Temple Beth Solomon of the Deaf … linked arms and walked to the riverbank, leaning over the railings to drop bread crumbs and watch them carried away in the crawling September waters, symbolic of the casting-off of sins” as well as a spiritual acknowledge of the river as a river. In 1995, Ernie LaMere adopted a maintenance road parallel to the river in Sherman Oaks, planting geraniums and marigolds, and installing benches. Today, the area is known as Ernie’s Walk. In 1997, Saber, a graffiti artist painted what is still known as “the largest graffiti painting ever” along the concrete banks of the Los Angeles River near the 5 Freeway. Among many other grassroots efforts, after the United States Army Corps of Engineers announced the channel was unsafe for recreation in 2008, George Wolfe and Heather Wylie kayaked down the river over three days and released a documentary called “Rock the Boat—Saving America's Wildest River.” Because of their project, the Environmental Protection Agency declared the river as “traditional, navigable waters” and protected it under the Clean Water Act in 2010.

In 1996, the Los Angeles County published the first Los Angeles River Master Plan, which prioritized aesthetics, economic development, environmental quality, flood management, public involvement, and recreation. A decade later, the city published the Los Angeles River Revitalization Master Plan with four primary principles: river revitalization, neighborhood greening, fostering community connections, and creating value. In 2015, the United States Army Corps of Engineers published the Los Angeles River Ecosystem Restoration Feasibility Study (also known as the ARBOR study), which evaluated an eleven-mile stretch of the Los Angeles River running from Griffith Park through downtown. Objectives in the study included the “creation and re-

409 Morrison, Río L.A., 123.

410 Saber.” Branded Artists. https://brandedarts.com/portfolio_page/saber/. The artwork, the size of a football field, was painted over by the United States Army Corps of Engineers in 2009.

establishment of historic riparian and freshwater marsh habitat," the reconnection of "the river to historic floodplains and tributaries," and "opportunities for passive recreation." The Los Angeles City Council adopted the study in the summer of 2016 and subsequently purchased a forty-two-acre brownfield site at Taylor Yard, one of the largest identified areas for restoration along the river in 2017. In 2022, Geosyntec, OLIN, and Gehry Partners, LLP published the most recent Los Angeles River Master Plan, an extensive 500-page document that outlines a framework for potential development in and around the riverbed. The authors use an extensive indexing system to understand the current conditions of the river—creating over two-hundred ‘river rulers’ from hundreds of Los Angeles based datasets ranging from flood conditions to demographics to neighborhood park needs. The authors states, “the LA River Master Plan seeks to build on prior planning efforts to continue to reimagine the LA River from a single-use corridor to a tangible, multi-benefit resource for the communities of LA County.”

Today, a river trail runs along a disjointed thirty miles of the channel, with the Department of Transportation, Bureau of Engineering, and Metro currently investigating measures to bridge the twenty-mile gap. Despite numerous vision plans and schematic designs for specific areas of opportunity along the channel, ninety-five percent of the river is still buried in concrete.

CHAPTER FOUR: WALKING THE LOS ANGELES RIVER

During the first week of August 2023, I walked the entire length of the Los Angeles River over six days with photographer Rio Asch Phoenix, documentarian Camille Shooshani, and two classmates also pursuing a master’s degree in landscape architecture, Hannah Flynn and Nina Weithorn (Figure 4.1). Curious by the prospect of experiencing a landscape typically observed only in pieces, we documented our fifty-one-mile trek starting from the headwaters in Canoga Park, passing through Encino, Studio City, Glendale, Atwater Village, Frogtown, Arts District, Vernon, Maywood, Compton, and Paramount, and concluding at the estuary in Long Beach. While walking along the San Antonio River was simple and straightforward, walking along the Los Angeles River was far more challenging. Originally called “Lario”, the Los Angeles River Trail, initially built in 1977, and the Los Angeles River Bike Path, first constructed in 1996, together span about thirty-miles parallel to the river.417 However, the path is not continuous, and the remaining twenty-miles are either in the planning stages or lack a trail altogether. As a result, the trip required extensive scouting, gathering insights from river experts, and studying Google Earth meticulously to identify a safe and navigable route along the entire river on foot. At times, to simply walk close to the water, we had to jump over fences, trespass on County and City land, and disguise ourselves as engineers in construction vests.

OUR ROUTE

- August 1: We walked 10.26 miles from the Los Angeles River’s headwaters through the Sepulveda Basin. We began our day on the Los Angeles River Trail, and then transitioned to walking within the channel when the trail ended about three miles into our day.

417 “History of the Los Angeles River.” Los Angeles River Master Plan, Appendix A, 1996. The Los Angeles River Trail is composed of dirt or decomposed granite, ideal for walking or jogging. In contrast, the Los Angeles River Bike Path is paved with asphalt, making it suitable for biking as well.
• August 2: We walked 12.74 miles from the east side of the 405 Freeway to the Mariposa Bridge in Burbank. In Sherman Oaks and Studio City, the trail is extensively fragmented, requiring several detours.

• August 3: We walked 10.48 miles from Mariposa Bridge to the southern edge of Frogtown. We started our day on the Los Angeles River Trail which transitions into the Los Angeles River Bike Path.

• August 4: We walked 11.45 miles from the southern edge of Frogtown to South Atlantic Boulevard in Maywood, where the southern segment of the Los Angeles River Bike Path begins. This particular day required walking for several miles within the channel, where no path was available.

• August 5: We walked 10.33 miles from South Atlantic Boulevard to the southern edge of DeForest Park in North Long Beach. Our route followed the southern segment of the Los Angeles River Bike Path, stretching twenty miles from Maywood to the Pacific Ocean.

• August 6: We walked 8.16 miles from DeForest Park to the Los Angeles River estuary, where the river meets the Pacific Ocean. Similar to the day before, we strolled along the southern segment of the Los Angeles River Bike Path.

Averaging roughly ten miles a day, Nina recorded our exact route using a GPS tracking device (Figure 4.2). While the river is fifty-one miles long, our group meandered in and out of the drainage channel and sometimes needed to take long detours when the bike path or river trail came to an end. In total, we walked 63.32 miles from Canoga Park to Long Beach.
Figure 4.2: Our walking route following the Los Angeles River from August 1-6, 2023. Source: Nina Weithorn.
DAY ONE: CANOGA PARK THROUGH SHERMAN OAKS

The Headwaters

We began our walk in Canoga Park, just east of the Canoga Park High School’s football field, at the confluence of Bell Creek and the Arroyo Calabasas, marking the designated headwaters of the Los Angeles River (Figure 4.3). Historically, as discussed in Chapter Three, a significant portion of the Los Angeles River’s flow surfaced from a substantial underground reservoir beneath the San Fernando Valley, and its original course did not reach this far west. This segment of the channel, located west of Havenhurst Avenue, was excavated in the 1930s and added seven miles to the river’s length. At six in the morning, the sky was fortunately still cloudy. Aware of the impending heat that would intensify later that morning, I appreciated the opportunity to slow down after a nervous drive in the dark and ground myself. Burning sage into an abalone shell, Tongva Elder and cultural keeper Tina Orduno Calderon met our group at the headwaters. She told us to notice the second river flowing beneath the concrete, the subsurface flow, urging us to pay attention to plant life and bubbling water emerging from the cracks. She explained that the river was sick, but still powerful and connected to her ancestors across time—past, present, and future. She gifted us with tobacco and encouraged the group to make an offering to the river whenever we felt inclined to. We each grabbed a small pinch of dried leaves, reached a hand over the black wire fence, and watched the wind carry away our offerings. To me, the headwaters of the Los Angeles River resemble a concrete funnel. With no major alterations since it was constructed in 1935, the confluence of Bell Creek and the Arroyo Calabasas was recognized as a historic resource in 2013. At twenty-feet tall, the channel’s vertical walls guide the river’s gentle flow. Facing west toward the confluence, I spied three palm trees mirrored in the pooling waters of Bell Creek and a Dodger blue Los Angeles River Sign pointing us downstream (Figure 4.4).

418 Gumprecht, “51 Miles of Concrete,” 470.
Figure 4.3: The headwaters of the Los Angeles River with the floodlights from the Canoga Park High School’s football field visible in the distance, facing west. Source: Rio Asch Phoenix.
Figure 4.4: The headwaters of the Los Angeles River facing south. Source: Rio Asch Phoenix.

Figure 4.5: A Los Angeles River sign at the entrance of the Los Angeles River Trail in Canoga Park. Photo by author.
After we said our goodbyes to Tina, we walked along the Los Angeles River Trail, a decomposed granite pathway running parallel to the river. We passed a couple of individuals with their dogs, until the black wire fence disappears about a half mile into our walk, allowing us to enter the channel. At this juncture, the channel walls are trapezoidal instead of vertical, making it easy to walk down and approach the water. Confined to a ten-foot-wide crevice at the center of the channel, the water moves rapidly (Figure 4.6). The heightened flow within the “low flow zone” is designed to prevent plant growth. Any vegetation in the channel poses a risk of impeding and slowing down water flow during significant rain events, increasing the possibility of the water surpassing the levee and flooding nearby neighborhoods. However, without any trees in this portion of the channel, shade is scarce with only vehicular and pedestrian bridges overhead offering some relief from the rising sun. Each bridge casts dark shadows with harsh edges, providing us with a welcome blanket of shade (Figure 4.7). As we walked, we began counting the orange and silver shopping carts we found concealed behind the structural supports of the bridge (Figure 4.8). Already by 8:00 a.m., there was a noticeable ten-degree difference between walking in the highly exposed channel or briefly standing within the shelter of a shadow.

420 The term “low-flow zone” refers to the crevice or depression in the middle of the channel of the Los Angeles River. During dry periods, water runs through this part of the river to maintain a fast flow, preventing algae growth.

Figure 4.6: A very exposed Los Angeles River. In the distance, Vanalden Avenue Pedestrian Bridge is visible, constructed in 1939 and recognized by SurveyLA as a historic resource, possibly significant as a pedestrian-oriented transportation feature. Source: Rio Asch Phoenix.
Figure 4.7: Passing beneath the Canoga Avenue bridge, constructed in 1956. Source: Rio Asch Phoenix.
Figure 4.8: One of many shopping carts found behind the structural supports of the bridges. Source: Rio Asch Phoenix.
Almost immediately upon stepping off the Los Angeles River Trail and descending twenty feet onto the channel floor, the concrete felt relentless, stretching as far as the eye could see (Figure 4.9). Under the overcast morning light, the concrete is multiple shades of gray, with various sections painted and repainted to cover graffiti (Figure 4.10). In the absence of numerous visitors, the paint and the concealed graffiti serves as a reminder of all the hands continuously at work in the riverbed. Walking along the channel floor, seemingly recent rectangular complexes, decorated in blue, salmon, and brown facades, loomed above us (Figure 4.11). Twenty feet beneath the city, it was strangely difficult to discern what neighborhood we were walking through. Bridges spray-painted with street names assisted with our orientation; otherwise, there were no signs or maps to guide us, except for the phones and maps we carried and the downward flow of the river (Figure 4.12). Looking up toward the southern edge of a Winnetka neighborhood, I could see palm and cypress trees, wooden and chain-link fences, and telephone wires.
Figure 4.10: White paint conceals years of graffiti along the concrete channel walls. Source: Rio Asch Phoenix.
Figure 4.11: New development along the Los Angeles River. Source: Rio Asch Phoenix.
Figure 4.12: Canoga Avenue spray painted beneath the Canoga Avenue Bridge, one of our only navigational markers. Source: Rio Asch Phoenix.
As we continued walking, we noticed fissures in the concrete, bursting with plant life. Despite the efforts to inhibit the growth of vegetation, riparian grasses emerge from every crack in the riverbed and thick bright green layers of algae swim along the bottom of the channel (Figure 4.13). We spotted small pink flowers of oleander and golden tails of crimson fountain grass (Figure 4.14). A young western sycamore grew in the direct path of a storm drain, and the drain water left behind an evident stain on the riprap barrier, concrete embedded with stone (Figure 4.15). Nina, the ecologist of the group, collected a small sampling of umbrella sedge and carefully pressed it into her notebook (Figure 4.16). A round and green tumbleweed sprouting out of the concrete excited the entire group. We paused beside it to reapply sunscreen and readjust layers. Together, we reflected on the harsh conditions the plants of the Los Angeles River endure—millions of barrels of concrete, sparse rain, and eighty years of maintenance and weed whacking. Seated against the slanted walls of the channel, we discussed the nearly impossible challenge for any plant to survive in such intentionally harsh conditions. Yet, surprisingly they do.

Figure 4.13: Algae marbles the concrete flood. Source: Rio Asch Phoenix.
Figure 4:14: Crimson fountain grass, among other riparian grasses and algae, grows in the cracks on the concrete channel. Source: Rio Asch Phoenix.
Figure 4.15: A young western sycamore grows in the direct path of a storm drain. Water from the drain has stained the concrete. Source: Rio Asch Phoenix.
Figure 4.16: Nina places a sampling of umbrella sedge into her notebook. Source: Rio Asch Phoenix.
Every so often, as Tina had mentioned to us earlier that morning, we observed water bubbling up from several cracks in the concrete (Figure 4.16). Rising from the groundwater below, the newly surfaced water created gentle ripples in the river’s current. I leaned down to listen to the bubbles and caught a subtle popping sound. As we walked, we noticed puddles formed along the channel floor, reflecting the clouds and nearby trees overhead (Figure 4.17). We spotted several seagulls grazing among the various patches of algae. At one point in the morning, I crossed the low-flow zone using an improvised bridge assembled from a series of flat rocks. We took a short break at a Starbucks on Tampa Avenue between Winnetka and Reseda to go to the bathroom and refill our water bottles. Only three miles into our day, it already felt strange to leave the river and find ourselves amidst six-lanes of traffic rushing by us in both directions. Inside the Starbucks, a large painted mural depicted a pastoral landscape featuring pink and green agricultural fields, perhaps a portrayal of what this portion of Los Angeles might have looked like in the past. Stepping back outside with our iced coffees and teas in hand, we were immediately slapped in the face by the relentless Southern California August heat wave. The clouds had dissipated, and the brief pause in air conditioning erased any temporary acclimatization we had made for the heat just fifteen minutes earlier. Somewhat reluctantly and without a crosswalk in sight, we crossed the street and reentered the river channel, now on the south side of the low-flow zone (Figure 4.18). I wrote in my journal, “The concrete is hard beneath my feet. Already my legs can feel it. Flat rock walking. New type of walking. I am not used to it.”

422 Journal Entry, August 1, 2023.
Figure 4.17: Water bubbles up from the cracks in the channel floor. Source: Rio Asch Phoenix.
Figure 4.18: The puddles along the channel floor reflect the clouds in the sky. Two members of the group can be seen walking far ahead. Source: Rio Asch Phoenix.
Figure 4.19: Several seagulls feed on the algae growing along the Los Angeles River. Source: Rio Asch Phoenix.
There are no informational signs marking the entrance of the Sepulveda Basin, but a flock of ducks, several piles of dirt atop the concrete and most notably, a thirty-foot tall wave of vegetation signaled its proximity (Figure 4.20). Like a tsunami, the wave swallows anything in its path—we found indiscernible trash and debris wrapped around fountain palms and willows (Figure 4.21). In these transition moments from concrete to a muddy soft bottom, the Los Angeles River’s unique ecology reveals itself. An ecology in which shopping carts are eaten by the plants and river around them, soaked and hardened mattresses resemble rocks, and plastic bags look like spider webs (Figure 4.22).

The United States Army Corps of Engineers constructed the Sepulveda Basin, a flood control basin spanning over two thousand acres, in 1941. It was one the earliest LACDA project built following the Flood Control Acts in the late 1930s. In the 1950’s, the City of Los Angeles Recreation and Parks Department allocated 1,060 acres of land for recreational purposes. Designed to experience periodic flooding to replenish the groundwater system, this two-mile stretch of the Los Angeles River remains unconcreted, swelling in size with abundant vegetation. Consequently, hindered by dense vegetation, we could barely see further than five feet in front of us. We decided to split up and explore the maze of informal social trails near the entrance of the basin, formed by individuals consistently treading the same unofficial path. Thick foliage surrounded Rio, our team’s photographer, and me, and we could hear loud music playing. We noticed a clothesline stretched across the water with several t-shirts and towels hanging to dry (Figure 4.23). We immediately retraced our steps in the same direction from which we had come. Even though we were walking on City-owned land, it felt like we were trespassing onto someone else’s property.

We opted instead to walk along the top of the levee between the riparian forest to our left and the fenced off baseball field to our right. Various pieces of furniture, including a bedside table and a desk chair, were scattered around the dirt, slowly decomposing in the hot sun. As we reached Balboa Boulevard around 11 a.m., I could feel the energy in the group draining. I suggested completing the final two miles of our
day through the rest of Sepulveda Basin later that afternoon when the heat subsided. Everyone agreed, and we all enjoyed a long lunch break.

Figure 4.20: A green wave of vegetation signals the entrance of the Sepulveda Basin. At this juncture, the channel shifts from a concrete floor to a soft, muddy bottom. Source: Rio Asch Phoenix.
Figure 4.21: Trash and debris wraps around trees and plants in the Sepulveda Basin. Source: Rio Asch Phoenix.
Figure 4.22: A shopping cart decomposes among riparian grasses in the sun. Source: Rio Asch Phoenix.
Figure 4.23: Clothes hang to dry along a clothesline near the entrance of the Sepulveda Basin. Source: Rio Asch Phoenix.
Around five-thirty the same afternoon, we reunited underneath Balboa Boulevard, twin bridges constructed in 1941 and 1964. The grates overhead cast geometric shadows onto the sand beneath the bridge (Figure 4.24). In this unique stretch of the Los Angeles River, the neighboring sycamores, pampas grasses, river rocks, and broken concrete (which, after years of exposure, now resemble river rocks) matched the bucolic imagery I typically associate with rivers (Figure 4.25). The water flows around the rocks, forming small, white ripples (Figure 4.26). We headed north, walking towards the concrete-lined Lake Balboa to cross Bull Creek, one of the many tributaries of the Los Angeles River. Each team member dipped a hand into Bull Creek and described the water in a single word. The unanimous choice was “viscous.” The water was thick and filmy; even though we were all hot and sweaty, I did not want to jump in. As ducks circled Lake Balboa (Figure 4.27), children and their parents picnicked around the park. Completed in 1992, Lake Balboa, spanning 27.5 acres, is filled with 72 million gallons of water from the Tillman Water Reclamation Plant, which began its operations in the San Fernando Valley in 1985. We followed the Lake Balboa Hiking Trail and watched a man cast his fishing line into the water with his two children. He told us they had caught a bunch of little fish but were hoping to catch something bigger. For a little while, joyful screams and resounding laughter replaced the constant rush of cars we had heard all morning.

424 Federal Highway Administration, National Bridge Inventory, accessed December 12, 2023.
Figure 4.24: The twin bridges of Balboa Boulevard cast geometric shadows onto the Los Angeles River below. Source: Rio Asch Phoenix.
Figure 4.25: Without a concrete bottom, vegetation thrives in this stretch of the Los Angeles River. Source: Rio Asch Phoenix.
Figure 4.26: With river rocks and riparian grasses, the Los Angeles River in this section more closely resembles a conventional river. Source: Rio Asch Phoenix.
Figure 4.27: Several ducks swim across Lake Balboa. Source: Rio Asch Phoenix.
During the final mile of our day, we followed an informal social trail along the river. We passed the Woodley Lakes Golf Course, which opened in 1975 and is separated by a broken chain-link fence from the river (Figure 4.28), as well as Woodley Creek, which is overflowing with sunflowers (Figure 4.29). While we walked by the Apollo 11 Model Aircraft Field towards Burbank Boulevard, model airplanes and drones flew overhead. Beneath Burbank Boulevard, another set of twin bridges constructed in 1974, we could see the Sepulveda Dam in the distance (Figure 4.30).\footnote{Federal Highway Administration, \textit{National Bridge Inventory}, accessed December 12, 2023.} As the sun set, we strolled toward the looming concrete barrier, our final destination for the day. The gently flowing river mirrored the light pink sky. To reach the base of the dam, we crossed over the Haskell Creek Bridge and walked along a narrow dirt path with riparian grasses on either side of us until we reached the large concrete structure.

\footnote{Federal Highway Administration, \textit{National Bridge Inventory}, accessed December 12, 2023.}

Figure 4.28: Broken fences allow access from the Woodley Lakes Golf Course to the social trail running along this stretch of the Los Angeles River. Source: Rio Asch Phoenix.
Figure 4.29: Sun flowers grow in abundance along Woodley Creek. Source: Rio Asch Phoenix.
Figure 4.30: The Sepulveda Dam can be seen underneath Burbank Boulevard. Source: Rio Asch Phoenix.
Composed of steep and smooth concrete and spray painted with graffiti, the Sepulveda Dam is fifty-seven-feet tall and prominent (Figure 4.31).427 Completed in December 1941 and recognized as historic resource for its association with flood control, the dam was constructed to enhance flood protection for Los Angeles in response to the 1938 destructive flood.428 While the smooth concrete was rather challenging to climb over, we found that ascending the riprap levee just northeast of the dam was much easier. On the other side of the dam, two motorcyclists performed wheelies on the large and flat concrete platform, drawing a crowd of people who cheered them on. From the top of the dam, the entire group sat next to each other and watched as the sun set dipped behind the mountains. Darkness fell over us quickly.

427 Sepulveda Basin Vision Plan, 2023.
DAY TWO: SHERMAN OAKS THROUGH GLENDALE

On the second day of our journey, we walked about eight miles from the Sepulveda Dam to the Mariposa Bridge, just north of Travel Town in Griffith Park. We met a little earlier than we had the morning before to beat the incoming heat. The sun was just rising, and the sky was pink and orange as we gathered and stretched on the east side of the 405 Freeway, a significant obstacle to walking the entire Los Angeles River. The only way around the freeway is a mile-long detour north-east on Burbank Boulevard and then south on Sepulveda Boulevard, a six-lane roadway, to reunite with the river. Our second day navigating the Los Angeles River on foot is characterized by obstacles hindering access like this.

The Los Angeles River Bike Path begins at Valleyheart Drive in Van Nuys and Sherman Oaks. We all sat, slightly fatigued but still eager, on a wooden bench as Camille, our documentarian, led us through a short meditation before we each offered the river more tobacco and began our day-long river walk. I was surprised by how sore my legs were from the previous ten miles. I recalled my journal entry from the day before, “The concrete is hard beneath my feet.” The paved bike path would be equally hard on my body, specifically my knees. The day also included frequent fence-hopping and encounters with numerous no-trespassing signs warning of $1,000 fines (Figure 4.32). One woman who was walking her dog told us we looked like very nicely dressed trespassers. At many points throughout the morning, we were confused and uncertain about whether or not we were permitted to be where we were walking. An opened gate would often lead to a locked gate only a few blocks downstream. While well maintained, the Los Angeles River Bike Path is highly fragmented on this stretch of the river.

After the Sepulveda Dam, the river transforms back into a box channel with tall vertical walls and a blue undulating iron fence, restricting any direct access to the water (Figure 4.33). We never successfully entered the river channel on our second day. Instead, we primarily walked alongside it, following bike paths and maintenance roads, documenting less than a foot of water lazily flowing down the box channel. I loved the

429 Journal Entry, August 1, 2023.
hand-painted river depth markers on the channel walls, evidence of the mysterious hands continuously at work in the river (Figure 4.34). The bike path guided our group to Kester Avenue, where we switched sides of the river and walked along Ernie’s Walk, a decomposed granite pathway underneath a row of Canary Island pines. In 1995, as previously noted, Ernie Lamere tended to this short stretch of the river, planting marigolds and geraniums. Following his passing, the pathway was named after him in his honor. For a couple of miles, we strolled next to the 101 Freeway. The pine trees, neighboring the river, shaded the group and hid the towering freeway barrier (Figure 4.35). The abundance of trees surprised the group. We could hear the cars rushing by us on the other side of the wall.

Figure 4.32: Trespassing signs are a common sight on this stretch of the river. Source: Rio Asch Phoenix.
Figure 4.33: The river is confined to a narrow box channel with the Los Angeles River Bike Path running alongside it. Source: Rio Asch Phoenix.
Figure 4.34: Rulers on the channel walls indicate the water’s depth. Source: Rio Asch Phoenix.
Similar to the day before, in the morning light, the concrete takes on several
different shades of gray. I wrote in my journal, “The shadows from the trees are
beautiful, they walk along the concrete walls, the gray is rich in the sunlight.” I
continued in the same entry, “The day is a lot of the same… Everyone is feeling very
hot. We’ve been taking a lot of short breaks under large oak trees and sycamores.”
We took a longer break at the Sportsmen’s Lodge Erewhon, a high-end grocery market,
in Studio City. In the early 1880s, the site was a popular natural fishing area,
supplemented by man-made lakes in the 1920s. In 1938, the Sportsmen’s Lodge was
known as ‘Trout Lakes and Lodge,’ where guests could catch their own fish for dinner.
Almost a century later, the shopping complex features a small lake, several stores, and
a hotel. The Sportsmen’s Lodge was identified by SurveyLA as a historic district in
2013. I was relieved to finally find a restroom after two miles of searching for one.
During the break, one of the group members, Hannah, decided to go home and rest for
the remainder of the day. Feeling ill, she wanted to make sure she maintained her
stamina for the second half of the journey. We joked that we were not running a sprint
but a marathon. I wrote about the break, “It felt funny to eat lunch outside Erewhon after
walking for miles. Re-emerging from the river into Studio City is bizarre. I felt like a
wetland creature escaping from a million tons of concrete, now waiting for the crosswalk
signal to change so I can safely traverse six lanes of traffic.” Hungry and tired, we ate
an early lunch and tasted several different types of organic gummies.

Around eleven in the morning, we continued walking along the box channel, re-
entering the Los Angeles River Trail through an iron gate shaped like a frog (Figure
4.35). At Whitsett Avenue, we needed to leave the channel, cross the street, reenter
the channel and keep walking—a recurring pattern throughout the day. Across the river,
we could just see the tennis floodlights from Weddington Golf and Tennis club, a historic
district, designated in 2021 and a Los Angeles Historic-Cultural Monument No. 1240. The tennis club is recognized as “an excellent example of a 1950s private recreation facility,” however, it is challenging to see from the public right-of-way. 436 We did, however, see a surfboard, miles away from the ocean (Figure 4.36), spotted several ducks floating in the water, and noticed an older apartment complex with several pieces of indigo clothing hanging out to dry on one of the balconies (Figure 4.37). The vegetation bordering the bike path looks somewhat wild and overgrown but offers minimal to no shade. Billboards along the river advertise various movies and streaming shows including Hulu’s “What We Do in the Shadows” (Figure 4.38). The sight of the billboard made me think of Gandy’s reflection on the Los Angeles River: “Buildings face away, billboards obscure its location, and its channel is mostly inaccessible behind of concrete levees.” 437 This observation felt fitting to characterize the day.

Figure 4.36: We found a surfboard on the Los Angeles River Trail several miles from the ocean. Source: Rio Asch Phoenix.
On a balcony that overlooked the river, garments dyed in indigo were laid out to dry.
Source: Rio Asch Phoenix.
Figure 4.38: A large billboard towers above the Los Angeles River. Source: Rio Asch Phoenix.
Studio City

Just outside of CBS Studio Center, a historic district designated in 2012 and one of the earliest studios in the San Fernando Valley, writers and actors marched along Radford Avenue in protest for better working conditions including increased wages and stricter rules for artificial intelligence. \(^{438}\) Our journey also led us north on Radford Avenue, along the Radford Art Walk. There is no river access through the CBS Studio Center, so instead, we walked along the Tujunga Wash, a tributary of the Los Angeles River until it flowed into the Los Angeles River just a couple hundred feet downstream (Figure 4.39). \(^{439}\) To the west of Gilligan’s Island Road, the start of a narrow two-foot-wide section is carved into the river channel’s floor. From this point on for several subsequent miles, the river water is funneled and confined within this low-flow zone. In this section, the Los Angeles River is transformed into a mere trickle inside a large and flat gray vat of concrete (Figure 4.40).

\(^{439}\) As mentioned in Chapter Three, the Tujunga Wash is home to Judith Baca’s renowned mural, “The Great Wall of Los Angeles.” Spanning between Burbank Boulevard and Oxnard Street, about two miles north of the Los Angeles River, Baca’s mural is one of the longest in the world.
Figure 4.40: Looking east on Vineland Avenue, toward the 101 Freeway in the distance. Source: Rio Asch Phoenix.
For the remainder of the day, our primary challenge involved figuring out ways to walk as close to the river as possible, as river access was highly fragmented and continuously obstructed (Figure 4.41). At Colfax Avenue, for example, we walked around to Kelsey Street, proceeding along a decomposed granite pathway until our route was blocked again at Tujunga Avenue. In this instance, we strolled along the busy Ventura Boulevard for a couple blocks. We then returned to the box channel through a hole in a fence at the back of the Studio Village Strip Mall and walked along a maintenance road. Makeshift or improvised access, such as holes in fences, is a common occurrence along the Los Angeles River.

Figure 4.41: The trail is blocked by Tujunga Avenue. We leave the channel, cross the bridge, and reenter on the opposite river bank. Source: Rio Asch Phoenix.
Much like the 405 Freeway, the 101 Freeway proved to be another impassable obstacle. Universal Studios, the Lakeside Golf Club, a historic district, and Warner Brothers Studio, situated on both sides of the river, also prohibited access to the waterway. A two-and-a-half-mile stretch of the river was entirely inaccessible to us. Consequently, we drove around the area and resumed walking at West Valley Heart Drive. At this juncture, the low-flow section carved into the box channel ends, and the river water once again flows along the entire floor of the box channel (Figure 4.42). Walking along the wide dirt equestrian trail, we passed Buena Vista Park, a grassy lawn with some picnic tables, and we could see the ABC Television headquarters on the Walt Disney Company studio lot in the distance. A man with two dogs asked us what we were doing. We told him we were trying to navigate the entire Los Angeles River on foot. He responded, “When the world ends, this river will be all we have left.” A massive gray concrete monument. During the hottest part of the afternoon, several sprinklers irrigated the grass (Figure 4.43). In May 1939, this five-mile stretch of the river bending around Griffith Park was among the initial sections to be straightened and lined with concrete.440

Burbank

The last mile of the day was by far the hottest. I wrote in my journal, “We are walking in August in ninety-degree heat. We felt it as soon as the sun was up. My eyes burn. My skin burns. I am sun-fried.” We quickly passed by some horses in residential stalls and ventured through the tunnel underneath the 134 Freeway, leading to the Disney Animation Building (Figure 4.44). We walked through a field of dried grass and ran around a dirt horse turnout with a lone woven chair, positioned for someone to watch. Finally, we reached Mariposa Bridge, relieved, hot, and tired (Figure 4.45).

440 Gumprecht, _The Los Angeles River_, 221.
Figure 4.42: A wide equestrian trail runs parallel to the Los Angeles River near Burbank. Photo by author.
Figure 4.43: During the peak heat of the day, sprinklers water a grassy lawn while the Los Angeles River flows nearby. Source: Rio Asch Phoenix.
Figure 4.44: Looking through the tunnel underneath the 134 Freeway, approaching the Disney Animation Building. Source: Rio Asch Phoenix.
Figure 4.45: Mariposa Bridge accommodates both pedestrians and equestrians across the Los Angeles River. Source: Rio Asch Phoenix.
DAY THREE: GLENDALE THROUGH FROGTOWN

On August 3rd, the third day of our journey, we walked just over eight miles from the Mariposa Bridge through Glendale, Atwater Village and Frogtown to the southern end of Egret Park on Riverside Drive. Following along the Los Angeles River Bike Path, our third day walking the Los Angeles River was much simpler than the day before. Early in the morning, we offered the river a pinch of tobacco and crossed the Mariposa Bridge, littered with wood chips, often used for horseback riding. Like the previous two mornings, the sky was pink and purple, and the sun was just rising (Figure 4.46). I had walked this section of the Los Angeles River many times before—we joked as a group that while we were all tired, at least our walk would be entirely legal.

Situated in the interstitial space between the box channel and the 134 Freeway, the first stretch of the river trail consists of dirt mixed with horse hay. The rushing sounds of cars emanating from the freeway overpowered the gentle flow of the water. In some stretches, the 134 Freeway is hidden by a thin wall of trees. In others, the cars sped right past us. A dark chain link fence divides the vertical descent into the river from the pathway. Having grown through the chain link, in certain segments, remnants of cut tree branches and tree trunks are still present. Tall telephone structures tower above us, and strings of telephone wires dangle in the air. In the golden light, the concrete again took on many shades of gray, painted and repainted in reachable areas from the bottom of the river floor (Figure 4.47). We noticed equally spaced horizontal lines running along the vertical walls, left behind from the wooden boards used during the channel's construction. Several tiny birds foraged for food in the shallow water. Across the river, we observed a man walking his dog (Figure 4.48) and a tractor carrying around mounds of dirt with the Verdugo Mountains towering in the background. As the dirt trail abruptly turned into a concrete path designed for cyclists, familiar with our route, we walked a bit faster than we had the day before.
Figure 4.46: Early in the morning, the sky is pink and purple as we cross the Mariposa Bridge to the opposite riverbank. Source: Rio Asch Phoenix.
Figure 4.47: Subtle horizontal lines along the vertical channel walls are remnants from the cast-in-place concrete method employed by the United States Army Corps of Engineers during the construction process. Source: Rio Asch Phoenix.
Figure 4.48: On the opposite bank of the river, a man strolls with his dog, and a tractor carrying dirt is visible in the distance. Source: Rio Asch Phoenix.
About a mile down river, the solid concrete floor transforms into a soft, muddy bottom, allowing for the growth of trees and vegetation in the middle of the river. This stretch, known as the Glendale Narrows, features a soft, muddy bottom because the water table was too high for the United States Army Corps of Engineers to bury it in concrete like the rest of the channel. The transition begins with an assortment of scattered rocks along the channel floor, followed by the emergence of riparian grasses and then willow trees (Figure 4.49). The channel walls also shift from vertical to trapezoidal, enabling us to walk much closer to the water than the day before. The chain-link fence along the channel’s edge was informally cut open in a number of places. Several suitcases, a wheelchair, and an umbrella were perfectly lined up around one of the openings (Figure 4.50). Through another opening, our group entered and descended into the channel. Right by the water, it felt windier, and the sounds from the freeway softened. As algae snaked along the river’s surface, we watched small fish and other vertebrates swimming around in the pooling water. The riparian grasses were as tall as my body. Near an improvised tent on one of the numerous dirt islands in the middle of the channel, we noticed a man fishing with a net.
Figure 4.49: The transition between a concrete floor and a muddy, soft bottom can be seen in the distance. Source: Rio Asch Phoenix.
Figure 4.50: Suitcases line one of the informal openings in the Glendale Narrows. Source: Rio Asch Phoenix.
We crossed under the Riverside-Zoo Drive Bridge, a Historical-Cultural Monument #910 constructed in 1938, and took a short water break underneath the 5 Freeway and discussed the changes we noticed in the river (Figure 4.51). We had already seen significantly more people compared to the day before. Rio switched his camera film, while Nina captured images of the light streaming in underneath the freeway. Just down the way, on the opposite bank, we could see the ABC7 and DreamWorks Animation studios (Figure 4.52). For a short stretch around Griffith Park, the river floor is covered in concrete again as it alters its course from a west-to-east flow to a north-south direction—a trajectory it maintains until it reaches the ocean. Near the end of the bend, the Verdugo Wash converges with the Los Angeles River as the 134 Freeway traverses the channel. For a few hundred feet, we walked directly alongside the 5 Freeway without much of a buffer at all (Figure 4.53). Camille told me, “It is loud. Shockingly loud.” Several bikers rode past us. The river was separated from Griffith Park by the 5 Freeway in 1960 and was one of the last segments of the channel to be completed. The bike path is isolated, situated between the 5 Freeway on one side and the Los Angeles River on the other. During this stretch, the concrete bottom gives way again to a soft bottom, and the riparian vegetation reappears (4.54). The entire group was eager to venture farther into the channel.

Figure 4.51: The shade is heavy and welcome underneath the 5 Freeway. Source: Rio Asch Phoenix.
Figure 4.52. An ABC7 sign towers over the neighboring trees and riparian grasses growing in the Los Angeles Riverbed. Source: Rio Asch Phoenix.
Figure 4.53: As we continue walking along the Los Angeles River Bike Path, the 134 Freeway looms ahead. Source: Rio Asch Phoenix.
Figure 4.54: The second transition to a muddy, soft bottom in the Glendale Narrows. Source: Rio Asch Phoenix.
Atwater

Around 9:30 a.m., we could feel the heat pick up. Exploring the river islands, accessible from the edge of the concrete channel, we observed moths and butterflies fluttering about and lingered underneath the trees (Figure 4.55). Covered in green moss, the river rocks are slippery—we wandered slowly, noticing the spider webs of trash bags and bed sheets that are wrapped around some of the branches deep in the riverbed. I wrote in my journal, “Curiosity is contiguous today. There is a lot of laughing, pointing, and exploring.”442 Passing underneath the North Atwater pedestrian bridge (Figure 4.56), we witnessed a maintenance truck driving along the edge of the channel floor. A man in a straw hat and orange long-sleeved shirt stepped out of the vehicle and began picking up trash trapped among the vegetation. He told us he worked for the Army Corps of Engineers and if we wanted more information, we could call the number on the truck.

Complete with ironwork, the bike path climbs over Los Feliz Boulevard. The Baum Bicycle Bridge opened in 2002 and was funded by Metro and the City to connect the Los Angeles River Bike Path.443 It is named for Alex Baum who founded the Los Angeles Bicycle Advisory Committee in 1973 (Figure 4.57). The Los Angeles River Bike Path then took us under the Glendale-Hyperion Viaduct, which was completed in 1929 and is designated as Historic-Cultural Monument #164. Former Chief Engineer of Bridges, Merrill Butler designed the structure with the intention to “preserve forever the unusual beauty of this viaduct by means of a park which will extend under and all around the bridge, making it an architectural jewel in a landscaped setting.”444 The construction of the 5 Freeway in the 1960s, however, isolated Butler’s bridge. Just south of the Glendale-Hyperion Viaduct, the Red Car pedestrian bridge, connecting Atwater

442 Journal Entry, August 3, 2023
Village and Silver Lake, opened in 2020. Adorned with a red handrail, it was named after the Red Car trolley that used to be prevalent all over Los Angeles.445

Figure 4.56: Staring up at the North Atwater Pedestrian Bridge, which opened in 2020, from the channel below. Source: Rio Asch Phoenix.
Figure 4.57: Crossing Los Feliz Boulevard using the Baum Bicycle Bridge, which opened in 2002. Many other people were also out walking. Source: Rio Asch Phoenix.
Frogtown

Following along the bike path, we crossed under the Fletcher Drive Bridge, constructed in 1927 and designated as Historic-Cultural Monument #323. Distinctive features include elaborate lanterns to light the bridge at night. The bridge was originally built as part of the “Great Fletcher Drive Improvement” plan, with the goals of establishing a grand boulevard.446 Walking beneath the 2 Freeway, I hurried to a public restroom within the four-acre Lewis MacAdams’ Riverfront Park, formerly known as Marsh Park, named after the founder of the Friends of the Los Angeles River (FoLAR).447 In 1986, as previously noted, MacAdams’ cut a hole in the fence near this spot, leading to the establishment of FoLAR, a non-profit organization dedicated to the revitalization of the Los Angeles River and fostering connections between people and the river.448 We walked by Spoke, a colorful bicycle cafe, and took a long break at La Colombe, a coffee shop neighboring the river. While seated at a table in the shade, we sipped on iced tea and closed our eyes for a couple of minutes. Just outside of La Colombe, three individuals lay on the concrete under a tree. We asked them why they chose this spot to rest. One of them, holding a guitar, told us, “It’s peaceful. We just listen to the water. It drowns out all the freeways. We just go to the river to hang out. And we think and drink coffee.” I have seen this group of three by the river before. He continues, “It’s meditative. We all live in neighboring places and get here in ten or fifteen minutes. I feel like we’re pretty privileged because some people don’t got no shade, and I like that we have free shade.” On one of the river islands, we found a solitary wooden and fabric-lined chair. I imagined someone sitting there and just listening to the river for a while (Figure 4.58).

Across from the Taylor Yard parcel, we spoke to another individual named Manny, who was lounging on a blue mattress underneath the Orange Bridge (Figure 4.58).

4.59), waiting for his friend. He shared with us, “[My friend] is still working so I thought, I am just going to lay under here. The river is going to keep me fresh. This bridge is going to give me shade. What else do I need? So, I’m chilling. That’s all we are supposed to do right now. It’s super hot…” He continued,

[The river] changes all of a sudden. You will find parts of it very full of nature. Birds and fish. Then all of the sudden, it’s super dry and no one is here. It changes all of the time. I am hoping things change for the better… There are new reasons for people to come and actually visit the river… I rode my bike here once or twice, but not the whole LA River. I would never do that. That’s torturous.”

Feeling sweaty and hot, we walked along the bike path during the final mile of our day (Figure 4.60), concluding at Egret Park. Looking downstream, we paused to see what tomorrow would bring—the concrete once again encases the channel floor and the 5 Freeway and Arroyo Seco Parkway cross the river just ahead (Figure 4.61).

449 Identified in The Los Angeles River Ecosystem Restoration Feasibility Study by the United States Army Corps of Engineers, the Taylor Yard parcel, a former railyard, is one of the largest opportunities along the river for restoration.
Figure 4.59: The Taylor Yard Bridge opened in 2022 and is opened to pedestrians with two viewing platforms. Source: Rio Asch Phoenix.
Figure 4.60: The Los Angeles River Bike Path running along the Glendale Narrows. Kayaking is permitted in this portion of the river during the summer months, as well as swimming “at your own risk.” Source: Rio Asch Phoenix.
Figure 4.61: The Los Angeles River Bike Path ends at the southern edge of Frogtown, and the 5 Freeway and the Arroyo Seco Parkway loom just ahead. Source: Rio Asch Phoenix.
DAY FOUR: FROGTOWN THROUGH VERNON

On our fourth day, we walked from the southern edge of Frogtown through the Arts District and Vernon to the South Atlantic Boulevard Bridge in Maywood. I was nervous in the early morning. In this section of the river, with railroads running in both directions on either side of the channel, there is no designated pathway. The only way to walk near the water is to walk along the channel floor for multiple miles without a clear way out. While the channel is mostly trapezoidal in this segment, five-foot vertical walls and fences adorned with barbed wire at the top of the levee complicated our route (Figure 4.62). Ultimately, after scouting certain sections, studying Google Maps meticulously, and confirming a midway point to rest and refill our water bottles, we decided to walk within the channel.

Arts District

Despite a sunnier forecast, the morning on August 4 was fortunately cloudy. I felt relieved and grateful for the sun cover as we climbed through the metal guard rail and descended down the channel wall at the southern end of the Los Angeles River Bike Trail. As a precaution, we wore construction vests and waterproof booties to cover our running shoes (Figure 4.63). Water drips from the circular drainage pipes along the channel wall, and riparian grasses grow in the droplets’ path. During our visit, several ducks and ducklings floated in the various small pools of water. Approaching where the 5 Freeway crossed the river, the concrete floor is carpeted with a layer of bright green algae (Figure 4.64). As hundreds of cars rushed along the freeways above us, walking through this part of the channel felt like we were underground (Figure 4.65). The 5 Freeway is followed by the Riverside-Figueroa Street Bridge and then the Arroyo Seco Parkway. The Riverside-Figueroa Street Bridge was originally constructed in 1927 and is designated at Historic-Cultural Monument #908. It was demolished during the 1938 flood and rebuilt in 1939 to connect Cypress Park and the Elysian Valley. In the early hours of the morning, we passed the Arroyo Seco Confluence, where the two box channels merge (Figure 4.66). I thought we would be alone in the riverbed for a while,

but I was mistaken—a man rode his bicycle down an access road beside the confluence and continued riding downstream. We followed far behind him until he eventually disappeared from our view. Moments later, a silver truck drove by us, and a man inside waved. Then another truck passed by and another car. I wrote in my journal, “I am surprised by the number of people down here. Not what I was expecting.” Avoiding the water in the middle of the channel, we walked almost grazing the trapezoidal walls. We were careful to sidestep any signs of oil (Figure 4.67). A Metrolink train crossed overhead, prompting the birds to fly away.

Figure 4.62: Five foot vertical walls and barbed wire blocks access in and out of the channel. Source: Rio Asch Phoenix.

Figure 4.63: We wore orange construction vests and waterproof booties as precautions navigating this section of the river. The 5 Freeway is just behind us. Source: Rio Asch Phoenix.
Figure 4.64: A carpet of bright green algae covered the concrete floor. Source: Rio Asch Phoenix.
Figure 4.65: Historic-Cultural Monument, Riverside-Figueroa Street bridge as seen from below. Source: Rio Asch Phoenix.
Figure 4.66: Looking north-east up the Arroyo Seco, a tributary of the Los Angeles River. Source: Rio Asch Phoenix.
Figure 4.67: The presence of oil in the river water. Source: Rio Asch Phoenix.
The trucks led us to Metabolic Studio's construction site in the middle of the river channel just north of the North Broadway Bridge. Constructed in 1911, this monumental Beaux-Arts bridge, the first in Los Angeles, is designated as Historic-Cultural Monument #907. (Figure 4.68). Lauren Bon, an artist, activist, and director of Metabolic Studio, is currently involved in diverting a portion of river water to irrigate Los Angeles State Historic Park. After several years of litigation and obtaining over seventy-five permits, she became the first private entity to hold a water right to the Los Angeles River since before the river was channelized.452 To cross the low flow channel, we utilized the temporary bridge established by Metabolic Studio. The water raced underneath the bridge through the low flow zone. We watched as several tractor trucks transported mounds of dirt. Just like the days before, we noticed openings cut into fences and several layers of paint hiding words and drawings from years before (Figure 4.69). The Arts District was surprisingly quiet when there were no cargo trains running by.

As we continued walking, we crossed under several historic bridges, pausing to observe each one. The concrete bridges look enormous from down below. Rio changed his film under the North Spring Street Viaduct, completed in 1929 and listed as Historic-Cultural Monument #900. Designed by John C. Shaw to alleviate heavy traffic in the area, it was constructed seventeen years after the construction of the North Broadway Bridge. We then walked under the North Main Street Bridge, constructed in 1910 and listed at Historic-Cultural Monument #901, followed by the Cesar Chavez Bridge, completed in 1926 and listed as Historic-Cultural Monument #224 (Figure 4.70). Right before the First Street Viaduct, completed in 1929 and listed as Historical-Cultural Monument #909, maintenance work in the channel forced us to walk along the trapezoidal wall (Figure 4.71). As we walked with one foot above the other, several individuals in yellow long-sleeved shirts swept the low-flow channel with large brooms. They informed us that they were cleaning out the algae before an upcoming inspection.

Figure 4.68: The Metabolic Studio “Bending the River” Project is in the foreground. The North Broadway Bridge in the background. The historic bridge, designed by Homer Hamlin and Alfred P. Rosenheim, was originally named the “Buena Vista Viaduct.” Source: Rio Asch Phoenix.
Figure 4.69: We noticed several openings cut into fences and several layers of paint concealing graffiti. Source: Rio Asch Phoenix.
Figure 4.70: As a component of the historic El Camino Real, the César Chavez Bridge is embellished with features inspired by the Spanish Baroque style. Source: Rio Asch Phoenix.
Figure 4.71: To clean the low-flow zone of algae, water was diverted away from the middle and toward the edge of the river channel. Source: Rio Asch Phoenix.
Boyle Heights

Midway into our day, at the edge of Boyle Heights, we ascended the trapezoidal channel, exited through an opening in the fence, crossed the train tracks, and took a short break at Studio MLA, a landscape architecture firm who authored the 2007 Los Angeles River Master Plan. After our break, we reentered the channel and continued on our way underneath the Fourth Street Viaduct, built in 1931 and listed as Historic Cultural Monument #906. Two trees sprout out of the concrete structure, and telephone towers line the channel. We then walked under the recently opened Sixth Street Viaduct (Figure 4.72). The new design is reminiscent of the original bridge it replaced. As the heat started to rise, we walked quickly along the channel floor underneath the Seventh Street Viaduct and the Olympic Boulevard Viaduct. Constructed atop an pre-existing streetcar bridge dating back to 1910, the Seventh Street Viaduct was finished in 1927 and is listed as Historic Cultural Monument #904. Historical-Cultural Monument #902, the Olympic Boulevard Viaduct, built in 1925, was originally named the Ninth Street Viaduct but was renamed in commemoration of the 1932 Olympics, hosted in Los Angeles. Just before the Washington Boulevard Bridge, built in 1931 and listed as Historic Cultural Monument #903 (Figure 4.73), the trapezoidal channel walls shift vertically and the low-flow zone is diverted from the middle of the channel to the channel edges. There were thousands of seagulls ahead of us, sitting along the channel floor (Figure 4.74). The green and brown algae covered almost every inch of the concrete (Figure 4.75). As we passed through the Industrial City of Vernon, we heard loud noises from adjacent trucks and large machinery.

454 7th street bridge: built in 1927/1910 and listed as a Historical-Cultural Monument #904. Olympic boulevard bridge: built in 1925 and listed as a Historical-Cultural Monument #902.
Figure 4.72: Resembling the original Sixth Street Viaduct, the new Sixth Street Viaduct opened in 2022. Source: Rio Asch Phoenix.
Figure 4.73: Birds fly past the Washington Boulevard Bridge. Source: Rio Asch Phoenix.
Figure 4.74: Hundreds of seagulls sit along the channel floor. Source: Rio Asch Phoenix.
Figure 4.75: Green algae grows all along the stretch of the river near the Industrial City of Vernon. Source: Rio Asch Phoenix.
Vernon

The last two miles of our day were particularly hot (Figure 4.76). We did not see any other individuals walking, only trains and telephone wires. In the southern section of Vernon, the channel widens with extensive stretches of flat concrete (Figure 4.77). Without any trees in sight, the channel is fully exposed. We could feel the heat simmer around our ankles as the water flowed swiftly by, confined to the low flow channel. The air almost seemed like it was vibrating. Perhaps a little delirious, the entire group was excited by a peculiar buffalo gourd growing on the levee. The leaves grew vertically towards the sky and looked geometric (Figure 4.78). As our day ended, we saw piles of broken concrete forming small islands in the middle of the channel with grass growing through the cracks (Figure 4.79). We noticed several ducks feeding on the algae. To exit the channel, we proceeded towards South Atlantic Boulevard. Several Fedex Trucks were parked in the Fedex Freight parking lot. Crossing over the South Atlantic Boulevard bridge, we stood in the middle and looked back towards downtown.

Figure 4.76: Walking along asphalt, we could feel the heat rising from the ground. Source: Rio Asch Phoenix.
Figure 4.77: The concrete bed in this stretch of the river is flat and unyielding. Source: Rio Asch Phoenix.
Figure 4.78: A buffalo gourd growing off the river levee surprised and excited the group. Source: Rio Asch Phoenix.
Figure 4.79: Broken bits of concrete form small river islands in the center of the channel, creating habitat for riparian vegetation and ducks. Source: Rio Asch Phoenix.
DAY FIVE: VERNON THROUGH NORTH LONG BEACH

On our fifth day, we walked from the South Atlantic Boulevard Bridge to the southern edge of DeForest Park in North Long Beach, passing through Maywood, Bell, Cudahy, Lynwood, Compton, and Paramount. As the sun rose, we began our walk at the start of the southern segment of Los Angeles River Bike Path, which extends all the way from Maywood to the ocean, roughly twenty miles downstream. Immediately, we passed several unhoused people living in the channel in informal structures. Two people gathered around a small fire, and a German shepherd barked loudly. Within minutes of walking on asphalt and sensing a hint of humidity, we could tell it was going to be a particularly hot day. We stopped briefly to find a public bathroom at the Riverfront Park just south of East Slauson Avenue (Figure 4.80). We entered through a blue iron gate that read, “Los Angeles River.”

A silver chain-link fence separates the wide concrete river channel from the bike path. We waited for a gap in the fence to enter the trapezoidal channel. We noticed some grass and flowers growing out of the cracks and holes in the concrete (Figure 4.81). Otherwise, there are no trees and absolutely no shade apart from the bridges. I noticed a layer of cracked mud on the concrete—it reminded me of a desert (Figure 4.82). Walking past a series of warehouses adjacent to the river, only the tops of the unmarked buildings are visible (Figure 4.83). Within the channel, at times, it was challenging to tell what neighborhood we were walking through.
Figure 4.80: Looking south into Riverfront Park in Maywood. The river is on the other side of the fence. Source: Rio Asch Phoenix.
Figure 4.81: Grass grows within the cracks in the channel. Source: Rio Asch Phoenix.
Figure 4.82: Cracked mud atop the concrete floor reminded of the desert. Source: Rio Asch Phoenix.
Figure 4.83: Walking in the channel, we could just barely see the tops of buildings. Sometimes it was challenging to discern which neighborhood we were in. Source: Rio Asch Phoenix.
Lynwood

After several miles, the concrete stated to feel endless. We heard trucks and trains in the distance, and watched people cycle up and down the bike path. We walked underneath several freeways (Figure 4.84). One individual used the flat concrete expanse as an outdoor gym, running sprints and doing pushups (Figure 4.85). Seeking respite from the sun, we took numerous breaks underneath the bridges. Halfway through our fifth day, despite carrying sun umbrellas, it was exceedingly hot (Figure 4.86). The river water is confined to a low flow channel, providing little to no breeze. I wrote in my journal, “The sun is powerful. All we see is concrete in every direction. It is rather homogenous.” During a longer lunch break beneath the shelter of a bridge, a man on a red bike leisurely pedaled around the expansive concrete floor. We stretched our calves on the trapezoidal channel wall.

Figure 4.84: Walking beneath the 105 freeway. Source: Rio Asch Phoenix.

458 Journal entry, August 5, 2023
Figure 4.85: An individual sprints back and forth along the concrete floor, alternating with sets of push-ups. Source: Rio Asch Phoenix.
Figure 4.86: Walking in the Los Angeles River Channel near Lynwood. Source: Rio Asch Phoenix.
Once the water spread across the riverbed, we crossed the Imperial Highway and returned to the bike path on the east side of the river. Cargo shipping containers are stacked up on the opposite side (Figure 4.87). From the asphalt pathway, we spotted an informational sign, one of the first we had seen all week.459 It read in both Spanish and English, “While more than one million people live within one mile of the LA River, less than ten miles of the river waterfront is dedicated to public space.”460 We also found a brown Los Angeles River Trail marker noting mile 9.75 (Figure 4.88). We used the public restroom just outside of Hollydale Regional Park. In the last mile of our day, we stumbled upon stables and rings for horses just south of Atlantic Avenue (Figure 4.89). A couple of riders rode past us on an adjacent dirt path. A long shopping cart stood upright in the middle of the channel (Figure 4.90).

In the evening, I reflected,

I love what become suitable lunch or snack spots… literally anywhere in the shade. Even putting sunscreen on or switching camera batteries is much better done in the shade… At times, the sun feels violent. The concrete feels like looking at snow — reflecting the sun rays right back at you. It’s weird being in-channel. You almost miss everything above. Following water. Concrete is stagnant. The only movement is water. The neighborhoods flow by. They are easy to miss down there. I like sitting on the concrete. I hate walking on the concrete. The undersides of the freeways and bridges amaze me.461

459 While frequently walking in the channel away from the Los Angeles River Trail and Bike Path, I imagine we overlooked some informative signs along the route.
460 Sign along the Los Angeles River.
461 Journal entry, August 5, 2023.
Figure 4.87: Cargo containers are piled atop each other on the opposite bank of the river. Source: Rio Asch Phoenix.
Figure 4.88: An L.A. County Trail Marker for the Los Angeles River Trail. Source: Photo by author.
Figure 4.89: Horse stables and riding rings run parallel along the Los Angeles River. We observed several riders riding the adjacent dirt pathways. Source: Rio Asch Phoenix.
Figure 4.90: A long shopping carts stands in the middle of the riverbed. Source: Rio Asch Phoenix.
DAY SIX: NORTH LONG BEACH TO THE PACIFIC OCEAN

On our final day, we decided to walk from North Long Beach to the Pacific Ocean in the afternoon, hoping to finish our six-day journey at sunset. Having just eight miles remaining of our journey, we gathered at the southern end of DeForest Park, applied sunscreen, and searched briefly for an entrance to the channel. From park level, visitors cannot see or hear the river (Figure 4.91). Through an opened gate, we ascended a dirt mound to the top of the levee and began our last walk of the week. Without any towering trees, the bike path on the levee is highly exposed (Figure 4.92). Similar to the day before, by two in the afternoon, the dark asphalt radiated heat. In this segment of the Los Angeles River, the channel is roughly eight hundred feet wide, and the trapezoidal walls are steep, almost prohibitive (Figure 4.93). There is no chain-link fence separating the levee from the river. We shuffled down into the channel early into our day, but it was steeper and more challenging than the days before. I slipped in some mud during our descent.

![Figure 4.91: From DeForest Park, visitors cannot see or hear the river. Photo by author.](image1)

![Figure 4.92: The bike path atop the levee is highly exposed to the sun with minimal shade. Photo by author.](image2)
Figure 4.93: While trapezoidal, the channel walls are fairly steep in this segment of the river. The vertical walls visible in the photo were added to supplement flood capacity in the 1990s. Source: Rio Asch Phoenix.
For the first four miles of our day, most of the river’s water is confined to a low-flow area, but some of the water overflows and pools on the concrete floor. Basking in direct sunlight, algae flourishes within the shallow water, creating an unexpected habitat for birds (Figure 4.94). Hues of orange and green stain the concrete. Running parallel to the Los Angeles River, the Dominguez Gap Wetland is planted with California native vegetation and offers trails for hiking and horseback riding. The forty-acre wetlands and spreading grounds project opened in 2008, one of five main demonstration projects proposed in the 2007 Los Angeles River Master Plan. The Virginia Country Club’s golf course is just east of the Dominguez Gap Wetlands. Walking along the levee, it was an interesting contrast to observe abundant greenery on our left (Figure 4.95) and a vast expanse of concrete on our right (Figure 4.96). We noticed benches, trash cans, and plaques (painted over) positioned every mile along the levee, but these rest stops provided no shade for visitors. South of the Dominguez Gap Wetland, the Wrigley Greenbelt, another linear park with picnic tables and a decomposed granite walking path, opened in June 2023 (Figure 4.97). With the young trees and recently planted vegetation, most of the tables are unshaded as well.
Figure 4.94: Algae flourishes in the shallow water pooling along the concrete channel floor. Source: Rio Asch Phoenix.
Figure 4.95: Virginia Country Club is visible in the distance, while the Dominguez Gap Wetland is in the foreground. Source: Rio Asch Phoenix.
Figure 4.96: In this stretch of the river, the riverbed is roughly eight-hundred feet wide. Source: Rio Asch Phoenix.
Figure 4.97: The Wrigley Greenbelt, a linear park just opened in June 2023. Source: Rio Asch Phoenix.
The Estuary

Crossing under the 405 Freeway felt like transitioning into a different atmosphere. For the first time, we could smell the ocean and feel the ocean breeze. Just ahead of us, we could see the very beginning of the Los Angeles River estuary—after twenty miles of uninterrupted concrete, we were relieved and excited to see the river once again shift from an impermeable concrete floor to a muddy, soft bottom. From the bike path, we also spotted the distant red and blue cranes from the Port of Long Beach (Figure 4.98). Immediately before the transition point, a series of concrete curbs divert the water from the central low flow zone of the channel to its edges. As an early initiative in flood control, this section of the river was shifted eastward by a mile to protect the two ports.462

After passing under the West Willow Street Bridge, we descended the trapezoidal channel wall onto a sandy island. Surrounded with sunflowers, river rocks, and riparian grasses, the landscape changes abruptly (Figure 4.99). The concrete trapezoidal wall transforms into a boulder field. Deep in the riverbed, amidst the willows, I briefly forgot I was in the middle of a city. In certain spots, the telephone wires and the freeways disappear almost completely, and I could hear the water trickling over cascades of rocks. We explored several social trails, enjoyed the shade and the ocean breeze, and scouted for a place to sit in the sand underneath the trees. After offering the river a pinch of tobacco, we sat for a while, indulging in peaches as we reflected on our journey. In the riverbed, we found a lot of river toys like a little plastic car (Figure 4.100). As we navigated through riparian grasses taller than our heads, we found a stroller, a laundry bin, and a detergent bottle.

462 Gumprecht, The Los Angeles River, 221.
Figure 4.98: The concrete gives way to a soft, muddy bottom just past the West Willow Street bridge. Source: Rio Asch Phoenix.
Figure 4.99: Just three miles from the Pacific Ocean, this stretch of the river is abundantly green. Source: Rio Asch Phoenix.
Figure 4.100: A broken red toy car sits in the middle of the riverbed. Source: Rio Asch Phoenix.
The estuary is where the fresh water meets ocean water. Just south of the W Anaheim Street Bridge, the river widens and the flow actually changes directions with the influx of ocean water (Figure 4.101). After an hour of exploring, we climbed back up to the levee and walked along the last stretch of the asphalt pathway. A hawk perched in a tree flew away, while a man cast his fishing line into the river; fish literally jumped out of the water. From atop of the levee, we could see the Port of Long Beach far more clearly now (Figure 4.102). As the sun began to set, one group member asked if we thought of our journey as more of a walk or a hike. Due to the extensive planning involved in finding a navigable route, the experience felt more like a hike to me. Several informal wooden housing structures line the river. One such structure was heavily burned (Figure 4.103). Nearby, a solitary chair was positioned next to a fire pit with two burning longs. Two people passed by us on Bird scooters.

Finally, we passed underneath the Ocean Boulevard bridge. At this juncture, both the bike path and the river curve eastward. We followed the path around the Golden Shore RV Resort and the Golden Shore Marine Biological Reserve (Figure 4.104). A Catalina Express boat approached the shore. Listening to the ocean waves, we walked toward Shoreline Park and the mini-pier. There were a lot of people enjoying Sunday night picnics amidst bright colorful lights emanating from downtown Long Beach. We saw the Queen Mary, a cruise ship that first launched in 1934 from England and docked in Long Beach in 1967 (Figure 4.105) and a full view of the Port of Long Beach, the second largest port in the United States (Figure 4.106). Just like the previous mornings, the sky was pink and blue.
Figure 4.101: The transition point from river water to ocean water. Source: Rio Asch Phoenix.
Figure 4.102: As we walked toward the ocean, the Port of Long Beach came into view. Source: Rio Asch Phoenix.
Figure 4.103: One informal structure along the Lower Los Angeles River was heavily burned. Source: Rio Asch Phoenix.
Figure 4.104: The Golden Shore Marine Biological Reserve and downtown Long Beach in the distance. Source: Rio Asch Phoenix.
Figure 4.105: As the sun was setting, we reach the Pacific Ocean and could see Queen Mary in the distance. Source: Rio Asch Phoenix.
Figure 4.106: The Long Beach Port is just on the other side of the Golden Shore Marine Biological Reserve. Source: Rio Asch Phoenix.
IMPRESSIONS

In some stretches, the character of the Los Angeles River changes greatly from one mile to the next. In other stretches, walking along the river feels like walking along a concrete treadmill, interrupted only by other visitors or emergent vegetation in the channel. The existing trail is mostly unshaded, and benches, trash cans, signage, outdoor lighting, and public bathrooms are scarce. In certain areas, it is challenging to tell if you are trespassing or not. An unlocked gate bearing a "No Trespassing" sign may be opened, while another gate lacking any signage might be locked and inaccessible to the public. Specific recreational activities are available in designated stretches. Seasonal kayaking, for example, is offered in the Sepulveda Basin and Frogtown, while horseback riding is popular in Burbank, Glendale, Compton, and Long Beach. Native willows thrive in the sections of the channel with a soft bottom, and spontaneous vegetation sprouts in almost every crevice in the concrete. Though steelhead trout have not yet returned, the algae mats growing atop the flat riverbed serve as a vital food source for the thousands of migratory birds that still take rest in the Los Angeles River.463 While the bridges and emergent ecology offer clues, very few formal locations along the fifty-one-mile concrete channel provide visitors with insight into the historical significance of the Los Angeles River. Its crucial role in the native ecology of the region, the initial establishment of Los Angeles, and its current function as a flood-control channel can all easily be overlooked by visitors. Yet, people are drawn to the river.

On our walk, the endless concrete sparked discussions on climate change, climate grief, and the spontaneous life that still thrives within the riverbed; the concrete challenged us to ponder the past as well as contemplate the future. In its total transformation, the Los Angeles River asks its visitors what constitutes a river. It asks its visitors to consider how far they would be willing to go to inhabit certain spaces. It also offers visitors an opportunity to discover and be amazed by both the power of the human hand and the incredible resilience of nature. I return over and over.

CHAPTER FIVE: COMPARING TWO URBAN RIVERS

The following chapter begins by comparing the historical narratives of the San Antonio River and the Los Angeles River, assessing the similarities and differences in their public perception and subsequent flood control strategies. It then delves into contrasting the present experiences of the two rivers, with a particular focus on examining the impact of incorporating or neglecting specific heritage in river infrastructure planning and management. Finally, the chapter shifts its attention toward the future of the Los Angeles River, while considering the heritage that endures despite the Los Angeles River’s hostile design.

COMPARING THE RIVERS’ HISTORIES

The histories of the San Antonio River and the Los Angeles River, both dating back eleven thousand years, share similar trajectories until the late nineteenth and early twentieth centuries. Prior to this pivotal junction, both rivers played a fundamental role as the foundation for developing their respective cities. Indigenous Communities, such as the Gabrieliño-Tongva People along the Los Angeles River and the Coahuiltecan People along the San Antonio River, inhabited specific locations adjacent to these waterways. Due to intermittent flooding and its positive impact on soil fertility, the Indigenous Communities in both regions led nomadic lifestyles and relied on resources provided by the land.

During the 1700s, Spanish-led expeditions resulted in the creation and establishment of missions in both areas, introducing new diseases and subjecting Indigenous People to enslavement. As the Spanish presence in each region continued to grow, the Spanish settlers founded new presidios in Los Angeles (El Pueblo de la Reina de Los Ángeles) and San Antonio (San Fernando de Béxar), each situated near, and dependent on, the water from their respective rivers. During this period, both the Los Angeles River and the San Antonio River were described as landscapes of great beauty and supported several aspects of daily life. For example, to

support the rise of agriculture, both emerging cities built extensive networks of canals, known as zanjas and acequias, to help transport water away from the river and irrigate surrounding lands. Without substantial preplanning for wastewater management, however, the canal systems eventually became polluted. This prompted both cities to search for fresh drinking water from alternative sources, specifically tapping into their underground aquifers.

At the turn of the nineteenth century, Los Angeles County extracted water from its underground aquifer through more than six hundred artesian wells, while Bexar County had drilled more than seventy artesian wells into its own underground aquifer. This extensive extraction of water contributed to diminished flows in both rivers. At this particular juncture, the public perception of the two rivers played a crucial role in influencing the management of both waterways in the aftermath of destructive flooding during the early twentieth century and beyond. To illustrate, despite the reduced flow of the San Antonio River, in 1904, the recently formed Civic Improvement Association protested tree trimmers who were causing damage to the large trees along the San Antonio River’s banks. As a result, city officials vowed “to beautify the stream and protect it in every manner possible.”466 Just one year later in 1905, referring to the plans for the Los Angeles-Owens River Aqueduct, the Los Angeles Times published an article titled, "Titanic Project to Give City A River," seemingly dismissing the existing river in Los Angeles. The aqueduct was completed in 1913, alleviating Los Angeles’ dependence on its river, and by 1919, the Los Angeles Times was publishing jokes about the neglected waterway. These contrasting attitudes toward the two rivers laid the foundation for what was to follow.

In 1914, both San Antonio and Los Angeles faced widespread and destructive flooding from their rivers. Given the development within their respective floodplains, the damage in both cities was substantial and deadly, leading to discussions about comprehensive flood control. Initially hesitant due to its high cost, San Antonio eventually hired the Boston firm Metcalf & Eddy in 1920 to develop a lasting flood solution for the city. The firm proposed the construction of a dam at Olmos Creek, the widening, deepening, and straightening of the downtown channel, and the removal of all

vegetation and trees from the banks to prevent obstructions to swift-moving floodwaters. In Los Angeles, city officials formed a Flood Control District covering almost the entire area of Los Angeles County. This district was granted the authority to exercise eminent domain and construct infrastructure wherever deemed necessary to control flooding and was met with little objection.⁴⁶⁷

In 1921, San Antonio experienced its most destructive flood to date, prompting immediate action. By 1926, the city finished constructing the Olmos Dam and by 1930, completed the bypass channel, cutting off the Great Bend from the main river.⁴⁶⁸ However, the removal of trees and vegetation along the riverbanks triggered significant protests among civic groups in San Antonio. The recently formed San Antonio Conservation Society campaigned to preserve the river’s natural beauty. Then-Mayor John W. Tobin assured the city, “The river is one of San Antonio’s real assets, and we are to develop plans that will make it a thing of beauty and something visitors will remember and comment on long after their leave.”⁴⁶⁹ Debates about exactly what to do with the river ensued. While Harland Bartholomew and Associates proposed a plan to transform the river into a linear tranquil park, Robert H. H. Hugman suggested creating a bustling River Walk with shops and restaurants on both street level and river level.⁴⁷⁰ An alternative plan under consideration involved turning the river into an underground conduit through downtown and constructing real estate on top. Eventually, the city decided to move forward with the construction of the River Walk. Then-Mayor Maury Maverick secured funding through the WPA for “river beautification” in 1938, coinciding with the great flood in Los Angeles that same year.⁴⁷¹

Following the devastating floods in 1938, Los Angeles District Engineer, Colonel Edward C. Kelton, presented a comprehensive infrastructure proposal for the city. Initially made possible with WPA funding, over the next two decades, the project radically transformed the river, burying it under 3.5 million tons of concrete while creating ten thousand jobs in the process. Alternative proposals were considered, such

⁴⁶⁹ Fisher, American Venice, 80.
⁴⁷⁰ Fisher, American Venice, 97.
as the 1930 Olmsted and Bartholomew plan suggesting a network of interconnected parks serving as both flood control and recreational spaces. However, due to high real estate costs, disagreements over the distribution of governmental power, and an overall disregard for the river, these alternatives were largely ignored. By 1960, Los Angeles had effectively turned its river into a storm drain, neglecting any acknowledgement of the river’s historical and cultural significance to the city.

In the past two centuries, in order to safely reside within the historic floodplains of the San Antonio River and the Los Angeles River, both cities extensively altered their waterways. Since then, both San Antonio and Los Angeles have produced multiple master plans that address shared objectives: hydrology and flood management, ecology and water conservation, aesthetics and cultural significance, as well as recreation and economic value. However, building within floodplains positioned both cities to forever perpetuate their expansion of flood control measures. My two river walks, discussed in the following section, closely examine the present condition of each waterway.

WALKING THE SAN ANTONIO RIVER AND THE LOS ANGELES RIVER

Walking nearly all fifty-one miles of the Los Angeles River in August 2023, followed by the first sixteen miles of the San Antonio River in September of the same year, proved to be vastly different experiences. The former required extensive planning, scouting, and occasional trespassing, while the latter was easily navigable on foot with maps and signage narrating the story of the San Antonio River along the entire way. While the early-twentieth-century designs of the San Antonio River prioritized the river’s aesthetic heritage, designs for the Los Angeles River differed from these goals, focusing exclusively on flood control. As it was transformed from a wild, sprawling river to a massive, industrial project, every single section of the Los Angeles River was altered. Aesthetic qualities, ecological significance, social importance, and spiritual value—none of these aspects were taken into account and chosen as part of Los Angeles’ heritage. Fundamentally, Los Angeles and the United States Army Corps of Engineers ceased to perceive the river as a natural watercourse and instead regarded it as a constructed
drainage area. As a result, the river was hidden from view, with freeways constructed both above and beside it.

Reflecting on what caught my attention in each ethnography and along both rivers offers an intriguing lens. In Chapter Two, I dedicated considerable time discussing the trees, ground material, and art found along the San Antonio River Walk. In Chapter Four, I spent more time writing about how I was feeling or how we navigated around certain obstacles. As a pedestrian walking along the Los Angeles River, it was evident that any provisions for recreation and human connection to the waterway were incorporated as an afterthought to the original design. In contrast, San Antonio's commitment to preserving its scenic waterway was clearly the driving force behind its river design. Uniquely, swimming is permitted in the Los Angeles River ("at your own risk") while it is not in the San Antonio River. Although both rivers are now filled year-round with reclaimed water and have undergone major changes from their original states, the San Antonio River offers its visitors a predominantly shaded, colorful, and informative environment reminiscent of its historic appearance. Conversely, the Los Angeles River is challenging to navigate and bears almost no resemblance to what it once looked like. As previously noted, upon the completion of the Los Angeles County Drainage Area Project, a United States Army Corps of Engineers employee asserted that the early Spanish explorers "would never recognize the Los Angeles River as it is" today.

Interestingly, my favorite day of either journey was the fourth day of the Los Angeles River walk, navigating through the underbelly of downtown. On this particular day, dressed in construction vests in case anybody questioned us, we were unsure if we were going to make it. Through the Arts District, Boyle Heights, and Vernon, there are no paths, no signs, no maps, no benches, no neighboring trash cans, and no public restrooms, but it was by far the most exciting. Some of my feelings are in conflict with my studies in landscape architecture and heritage conservation as well as other portions of this paper, but on this day, I felt like an explorer stepping into a

472 Wormer, “A History of Flood Control in the Los Angeles County Drainage Area,” 89.
473 Signs along the Los Angeles River and the San Antonio River.
contemporary wilderness. Apart from a brief scouting trip where we looked down into the channel from the bridges above, the terrain was entirely new to us. In many ways, walking through this specific portion of the channel evoked a similar sensation to how I feel hiking at 14,000 feet in the Rocky Mountains. At such high altitudes, far from the trailhead, encounters with other people are rare, and everyone seems to share the same bewilderment upon seeing another face. For me, the absence of other humans is exciting—it always has been. Without a path, I was forced to concentrate on my feet, careful not to trip much like I do during hikes. In this way, I looked at the water, and I watched it wrap around river rocks and broken concrete. I noticed little bubbles popping up from the ground and loved the way my waterproof booties squished into the algae that envelops the concrete. I was surprised to discover such a calm and quiet space in the middle of downtown Los Angeles. In this context, certain areas within the Los Angeles River channel do bear a resemblance to the ambiance of being alongside a natural river. On this particular day, I marveled at two birds flying out of a drainage hole, surrounded by algae cascading down a concrete wall, and I listened to the gentle drip of falling water (Figure 5.1). The drainage channel may not look like a river, but for brief moments, it sometimes smells and sounds like one. Indeed, the Los Angeles River does not accommodate the majority of people, but for some, it sparks a strange curiosity. I appreciate that the challenging terrain confronts its visitors with the reality of how much we have altered our natural landscape. Unlike the San Antonio River, this is impossible to ignore.
Figure 5.1: Two birds emerge from a drainage hole in downtown Los Angeles. Photo by author.
The upper stretch of San Antonio River is beautiful, but fabricated. Despite San Antonio’s efforts to preserve its river’s aesthetic heritage, the urban waterway does not function like a wild or natural river. Several beloved aspects of the river’s original state are absent; for instance, the water is not suitable to drink or swim, and the majority of the river is also channelized. To mitigate the risk of flooding, water levels are carefully managed through dams, a bypass channel, and a tunnel that carries excess water away from downtown, twenty-four-foot wide and dug one-hundred-fifty feet underground. Counterintuitively, these major interventions preserve the ambiance and intimacy of the historic river, and the River Walk is immensely enjoyable, informative, and accommodating. I liked reading all of the signs and taking breaks on benches. I appreciated the lights underneath the underpasses, the abundance of flowers, and the overhanging vines. Our journey was easy. To plan our route, we simply downloaded a map. My primary critique of the San Antonio River is that it does not challenge its visitors to consider its significant transformation. Perhaps, that is the very point.

In contrast, I harbor many critiques of the Los Angeles River. Yet, those who actually venture to explore it seem to share a curiosity similar to mine. I hate it, and I love it. I despise the massive and violent scar we have inflicted upon the landscape. I detest its ugliness and its inaccessibility. I hate how the concrete fragmented ecological systems and divided neighborhoods. I hate that its majority looks nothing like its former self. But I love that ecology emerges from the cracks in the gray riverbed and offer glimpses of what the river once looked like and might look like again. I love that no matter how much concrete we continue to add, plants still grow.

HERITAGE AND THE FUTURE OF THE LOS ANGELES RIVER

In the process of writing this thesis, I have come to realize that there is an important distinction within the field of heritage conservation between historic architecture and natural landscapes such as rivers. Unlike the historic Pennsylvania Station for instance, which ceased to exist when it was torn down, a river retains its memory in the ground—a river persists even if it is confined by concrete. Since the enactment of the first Flood Control Act in the 1930s and the roughly ninety years of
construction and repairs that followed, the Los Angeles River has continued to flow both below and above ground. Despite rigorous maintenance efforts, riparian vegetation thrives in every crack and crevice of the concrete channel. And regardless of “no trespassing” signs and limited accessibility, people are continuously drawn to it. A river does not neatly conform within my initial definition of heritage as a selection process—because even though Los Angeles leaders actively chose not to preserve their river as part of their city’s heritage, the Los Angeles River inherently retains its own heritage—it continues to flow.

The Los Angeles River might never resemble its former self, but all rivers are continuously changing. The boundaries and lines established and enforced by cities and engineers, as highlighted by landscape architect and planner Dilip Da Cunha, are fundamentally “invented.”475 Within his book, The Inventions of Rivers, Da Cunha explores his interpretation of Heraclitus’s famous lesson.476 Da Cunha writes, “Change is in the nature of things.”477 In the last sentence of his journal article, “51 Miles of Concrete: The Exploitation and Transformation of the Los Angeles River,” Gumprecht asks the question, “Is the river already dead?”478 With each flood, each thriving cottonwood and willow, and each person who still finds connection within the river, I am convinced the river is very much alive. In her dissertation, “A Field Guide to Love and the Los Angeles River,” Tilly Hinton writes, “There is ample primary evidence of people using the river for all kinds of purposes, of people thinking about the river in all kinds of ways, of it being a place that has always mattered and continues to matter.”479 Whether cared for or neglected, rivers are a powerful force. Da Cunha references the words of Christof Mauch and Thomas Zeller in Rivers in History: “Sources of both abundance and destruction, life and death, rivers have always had a powerful hold over humankind. They run through every human landscape, whether mythical or actual.”480 Despite the

476 Graham, “Heraclitus,” 2021. Referenced in the introduction: “No man ever steps in the same river twice, for it's not the same river and he's not the same man.”
477 Da Cunha, The Invention of Rivers, 2.
478 Gumprecht, “51 Miles of Concrete,” 480.
concrete, people continue to visit the river, a tradition upheld in this region for thousands of years.

HERITAGE PERSISTS

In the following section, my intention is not to romanticize the total transformation of the Los Angeles River. Instead, my goal is to recognize the sheer power intrinsic to the Los Angeles River, along with the seemingly natural human inclination towards it. Even in a degraded state, whether celebrated or not, heritage within these landscapes persists. Historian of the American West, William Deverell, writes,

Rivers are saturated with the past. They can tell stories as much as they can be characters in stories if listened to and studied carefully. What is especially significant is that rivers can reveal as much about cultural transitions and cultural conflicts as about economic, landscape, or political change. The puny Los Angeles River, so unlike the noble Seine, is also a river in which human memory mingles with water. It is a river all about memory, a place where nature and culture surely flow together.481

Although heritage was not prioritized in the design of the Los Angeles River channel, there are numerous ways in which its heritage as a river emerges from the concrete—through the pure act of people paying attention to it. Lino Jubilado, for instance, fly-fishes in the concrete canyons of Long Beach every Sunday. Steve Appleton kayaks in the riparian forests of Frogtown. Lalo Sanchez spent his childhood learning to swim, building rafts with friends, and playing with guppies in the pooling waters of his own backyard.482 And Tina Calderon gifted us with tobacco to offer the river whenever we felt inclined to do so. Hinton states,

In spite of there being many impediments to emotional (and indeed physical) closeness, people have remained and grown to be deeply connected to this hybrid riverscape, a ribbon of places that can prompt explorations of nature, alteration, ecological responsibility, and the role of historical research in environmental policy and advocacy. The Los Angeles River is, and historically has been, meaningful to people against

apparent aesthetic and functional odds. It is a seemingly unlovable place, which is in fact loved by many.483

While walking the entire Los Angeles River, I encountered people walking their dogs, capturing moments with photos, lounging in the shade, and cycling along the water’s edge. I observed a continuous presence of emergent vegetation, along with thousands of birds, small fish, and various other vertebrates. During previous visits, I have witnessed individuals playing guitar, kayaking, flying kites, horseback riding and dancing along the riverbanks. Improvised benches for seating dot the trapezoidal channel, allowing people to pause and read or listen to flowing water. While this list of firsthand interactions is far from exhaustive, it provides a glimpse into how humans continue to engage with the Los Angeles River. Hinton continues,

\begin{quote}
When I’m researching in Los Angeles, I talk about the river with almost everyone. Again and again, I hear the same story, as if it’s a script clipped out of the Los Angeles Times. People smile. They tell me nobody in Los Angeles knows that the city has a river. Then they recount an intimate, personal story about this supposedly unknown 80-something kilometer watercourse. I am yet to meet someone in the know-nothing category.484
\end{quote}

Returning to Los Angeles in 2020 and directing most of my attention toward its river, I have undoubtedly and repeatedly shared the same experience. In a landscape designed to keep all life out, life seems to persist.

THE TURNING POINT

Today, the Los Angeles River’s fate is at a crucial crossroads with multiple entities and stakeholders reconsidering its design. We could continue as we have, treating the river as a regional-scale storm drain, fortifying it with yet more concrete to cope with increasingly severe storms exacerbated by climate change. Or, the river could become a city-wide corridor, reconnecting fractured communities and ecosystems while also acknowledging its historical significance to the city. Hinton states of the river’s

484 Hinton, \textit{A Field Guide to Love and the Los Angeles River}, 16.
present era, “This is a juncture as significant as that one in the late 1930s, which led to the river's entombment in concrete.”

Through walking the San Antonio River, I have witnessed firsthand the impact that recognizing and commemorating a river as a crucial part of a city’s heritage can have on a city wide scale. Similar to the San Antonio River, I believe visitors to the Los Angeles River should understand the historically significant and ongoing role the river plays within their respective city. Indeed, without either river, neither city would have existed. My hope is that acknowledging and recognizing the Los Angeles River as heritage will change the prevailing perception of the Los Angeles River, which for over the past century, has often been dismissed as nothing but a joke. The values we assign to the river today will without a doubt influence its design well into the future. To be clear, I am not proposing the Los Angeles River should mimic the San Antonio River in any way as they are very different cities and very different rivers. Instead, my thesis intends to illustrate that paying attention to and celebrating heritage can yield markedly distinct outcomes.

486 Gumprecht, “51 Miles of Concrete,” 431.
CONCLUSION AND FUTURE RESEARCH

In moving back to Los Angeles, I never expected to find myself so intertwined with its river. Yet I am captivated by its dominating presence in the landscape. Though often overlooked, the river played a pivotal role in the founding of Los Angeles. It is intentionally hidden from view and simultaneously runs through forty-four different municipalities across Los Angeles County. In contrast to when I was in high school, I have noticed a shift in how individuals discuss the river—some still regard it as a joke, while others are intrigued, and some know the landscape intimately.

During a week-long engagement at the river in April 2023, considering the future design for the Taylor Yard parcel adjacent to the waterway in Frogtown, several people asked me about the river and its history. They wanted to know why there was so much concrete and why the city could not simply remove it. Over and over, I shared the story of the Los Angeles River—I told them the history dates back eleven thousand years. It was once a meandering river that never cut a deep channel like it does today. However, due to flooding in the early twentieth century, the United States Army Corps of Engineers concretized its entire length to mitigate the risk of flooding in the region.

Yet, I wish the river and its infrastructure could tell the story itself, ensuring that every visitor to the Los Angeles River understands its historical and cultural significance to the region.

Yes—I repeated along the riverbanks in Frogtown—it was once a wild river.

FUTURE RESEARCH

Several questions, extending beyond the scope of my thesis, linger about the Los Angeles River and the San Antonio River. I am curious how each city might have looked today if alternative facets of heritage such as ecological considerations or Indigenous perspectives had been selected as driving forces behind the designs for each river. Notably, neither city moved forward with its Bartholomew plan, prompting the question: what if they had? William Deverell and Greg Hise closely examine this question for the City of Los Angeles in their book *Eden by Design*, but what about San Antonio?
I am also interested in exploring the slightly divergent timelines of the two rivers. The pivotal flood on 1921 in San Antonio coincided with the tail end of the City Beautiful Movement, whereas the pivotal flood of 1938 in Los Angeles occurred right in the midst of the active years of the WPA, in operation from 1935 to 1943. Does this fifteen-year difference play a crucial role in steering Los Angeles toward a technocratic strategy for flood control, in contrast to San Antonio’s multi-functional approach? In addition, within this crucial timeframe, Los Angeles had a population five times larger than San Antonio, and real estate costs were also much higher. How do these disparities also contribute to the distinct designs of the two rivers?

I am eager to create or find a map that delineates the construction timeline of the Los Angeles River, capturing its progress across various stretches of the river and different neighborhoods. What transpired over the twenty years it took to construct the channel? Aside from the protests in Sierra Madre in the early 1970s, did anyone voice opposition to the channelization in their stretch of the river?

Finally, over the last century, the Los Angeles River has taken on new life as one of the longest concrete channels in the entire world. Its cinematic legacy, featured in films such as *Chinatown* (1974), *Grease* (1978), *Terminator 2* (1991), and *Drive* (2011), coupled with its emergence as an ideal setting for graffiti raises the question: in the sixty years since its completion, has the Los Angeles Drainage Channel become a landmark in its own right?

The management of urban waterways offers an intriguing lens into a city’s relationship with its environment. Having walked almost a hundred miles along two urban waterways, I am eager to walk a hundred more. I am curious—what lessons can we learn from these two rivers that can be applied to other urban rivers? What will unfold in the upcoming decades? How will Los Angeles and San Antonio navigate increasing flood risk and worsening droughts? What heritage will we pass on?
BIBLIOGRAPHY

Adams, Emma H. *To and Fro in Southern California with Sketches in Arizona and New Mexico*. Cincinnati, 1887.

Chambers, C. M. “To Whom It May Concern,” May 29, 1929.

Clark, Robert Carlton. “Louis Juchereau de Saint-Denis and the Re-establishment of the Tejas Missions.” Texas Historical Association Quarterly (July 1902).

Crespí, Juan. A Description of Distant Roads: Original Journals of the First Spanish Expedition into California, 1769-1770.

Historic Places Los Angeles. “Historic Resource - Confluence of the Arroyo Calabasas and Bell Creeks, forming the start of the Los Angeles River.” Accessed

Los Angeles Times, January 5, 1934.

“Report of the Water Overseer, 1899,” Los Angeles City Archives.

San Antonio Daily Express, October 20, 1886.

San Antonio Express, “Irrigation Ditches Dry,” October 22, 1911, 39-B.

San Antonio Express, January 10, 1893.

San Antonio Express, July 15, 1887.

San Antonio Express, October 3, 1913.

San Antonio Express, “The San Antonio River,” August 23, 1887.

San Antonio Express, “Will the River Run Dry?” October 26, 1922, 8-A.

San Antonio Express, “Women’s Clubs to Oppose,” September 8, 1929, 28.

Southwest Builder and Contractor, October 2, 1941, 14-15, 20.

“Successful Civic Beauty Rally.” Home and Flower 10 (September 1901).

The Los Angeles Star, June 10, 1855.

The San Antonio Light, “City Accepts Swiss Plaza,” January 27, 1930, 1

