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3.1 The space set, ΛN , of the Moran process with H , S and R is indicated as dots in the phase
space, S2, when N = 10. Each state, (H,S,R) = (i,N − i− j, j), is assigned to a lattice
point in S2, where i-numbering goes next to the side, HS, and j-numbering lies on the
bottom of the side, SR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 The space set, ΛN , of the Moran process with H , S and R gets denser in the phase space,
S2, with the increase of the population size, N . For each N , |ΛN | is order of O(N2),
being equal to (N+1)(N+2)

2 . (a) N = 10, |ΛN | = 66; (b) N = 20, |ΛN | = 231; (c) N = 30,
|ΛN | = 496; (d) N = 40, |ΛN | = 861 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Local �xation probability for the Moran process at the state, (H,S,R) = (0.8, 0.1, 0.1),
approaches the proportion of area for the basin of attraction by the adjusted replicator
dynamics as the population size, N , increases although unexpected features such as
�xation to H are observed for a small N . (a) N = 100; (b) N = 500; (c) N = 1000 . . . . 55

3.4 The basins of attraction by the adjusted replicator dynamics with constant chemo
concentration, C := C(t), shows the smooth transition from the global attraction by S to
the global absorption to R with the increase of C , describing the competitive release of
resistant subpopulations with high chemotherapy concentration. The system experiences
bistability to S or R for an intermediate value of C . (a) C ≡ 0.29; (b) C ≡ 0.37; (c)
C ≡ 0.45; (d) C ≡ 0.53 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5 Fixation probability to R for the Moran process with constant chemotherapy concentra-
tions, C := C(t), shows the stochastic version of the competitive release of the resistant
cells with high concentration for each population size, N . For a �xed C , each region in a
phase space with either a high or a low probability respectively approaches the basin of
attraction to either R or S by the adjusted replicator system as N increases. (a) C ≡ 0.29,
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chemotherapy combinations overlap at di�erent times and generate a closed loop. . . . . . 60

3.7 Switching chemotherapy on and o� at adequate times traps a trajectory associated with
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Abstract

This thesis is concerned with modeling tumor growth and chemotherapy response using stochastic evolu-

tionary game theory models. In particular we develop stochastic N-cell models of a heterogeneous (mul-

tiple cell types) tumor using a Moran process model with frequency dependent �tness, which in the limit

N →∞ converges to the deterministic adjusted replicator dynamical system as its mean-�eld limit. This

limit and some of the details of our model and background literature are described in Chapter 1. Chapter

2 develops new results associated with the �xation probability of cell types that do not necessarily depend

on the assumption of weak selection, but are valid across the full range of selection strengths. Chap-

ters 3 and 4 develop our main results on adaptive chemotherapy scheduling using our stochastic N-cell

evolutionary game theory model, both single drug and multi-drug scheduling, with the goal of avoiding

chemo-resistance via the mechanism of competitive release, a concept borrowed from the ecology litera-

ture. The methods we develop are superior in measurable ways to more standard chemotherapy schedules

currently in use at cancer centers all over the world, such as maximum tolerated dose (MTD) schedules and

low-dose metronomic schedules (LDM). The �nal chapter describes potential future research directions.
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Chapter 1

Introduction

Cancer can be seen as a consequence of interactions of cells with their surrounding environment as well

as each other all of which contribute to its development. One approach to modeling the co-evolution of

cancer cell populations that make up a tumor is to apply evolutionary game theory, an approach ideally

suited to model the interactions dictated by the various �tness levels of the cells [37]. In the context

of evolutionary game theory, �tness means the success rate at reproduction of a cell whose genotype is

passed from generation to generation. This information is quanti�ed through a payo� matrix that de�nes

the game being played. Each group of cells is assumed to have a di�erent success rate which depends

not only on its own frequency in the population but also other types’ in a population. As the populations

co-evolve, success breeds success, and failure spirals downward, which is the essence of the replicator

dynamical system and reinforcement learning equations. From Darwinian evolutionary theory, we know

that natural selection is the key mechanism of evolution of a co-evolving population. With no selection,

the system proceeds under random drift. However, even under weak selection, some sub-populations can

develop higher �tness [12]. Eventually these frequency-dependent �tness functions determine and guide

the fate of groups of cells when it is compared to the averaged �tness of the entire population. These

ideas form the basis for the replicator dynamical system we use as our basic model, both in its mean-�eld

deterministic form and its stochastic �nite population form.
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Many people have attempted to mathematically model tumor evolution with the aim of controlling its

growth at a theoretical/computational level in order to guide and motivate clinicians to try new strategies

and test them in clinical trials. These e�orts in turn gives rise to important insights that can aid clinicians

in �nding and exploring to methods and avenues of possible treatments for their patients. Chemother-

apy is the most important clinical treatment that is executed for the purpose of alleviating/controlling

cancer at a systemic level. When it is administered to a patient in standard treatment schedules, it often

decreases the size of the tumor initially (tumor regression), but then can be followed by re-growth (tu-

mor recurrence) due to chemo-resistance. A working hypothesis in this thesis is that designing adaptive

chemotherapy schedules that change as the tumor evolves can sometimes be an e�ective tool in delaying

tumor recurrence. We develop computational models in this thesis (based on evolutionary game theory)

and test various hypothetical adaptive chemotherapy schedules for the purpose of designing schedules

that combat chemo-resistance. Much like adaptive control theory, the chemo-dosing adapts to the current

state of the tumor, which of course requires e�cient monitoring of the sub-populations of cells making up

the tumor.The idea in this approach is to focus more on controlling the tumor growth with an allowable

increase in its size than on eradicating all present cancerous cells [18, 19].

To better understand the role of chemotherapy in the evolution of the tumor, we divide (coarse-grain)

the tumor cells into three groups: healthy cells, chemo-sensitive cells, and chemo-resistant cells. Assuming

that cancer is the outcome of interactions of only these three di�erent types, modeling the interplay be-

tween cancer and a drug is then equivalent to designing a �tness landscape for each type by which selection

dynamics result, having the concentration of a drug as a controller of the system. We interpret the tumor

recurrence as a result of a continued drug use in the context of the competitive release, which demonstrates

that when two di�erent types of groups are competing against each other for limited resources, currently

subordinate subpopulations start proliferating and nearly take over the entire population when a catalyst

that decreases the �tness of presently dominant subpopulations is introduced into a population [11]. In
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other words, the sensitive cell subpopulations are dominant when no drug is administered since they have

higher �tness, but when chemotherapy is introduced, it lowers the �tness of the sensitive cell population

allowing the resistant population to proliferate. That is, a high enough concentration of a drug acts as a

catalyst that exchanges the �tness of two di�erent cancerous subpopulations competing each other and

eventually the fate of the system. With this understanding that the drug concentration is a controller of

the system, we let it enter the population equations through the selection of sensitive and/or resistant cells

such that a high dose reduces the �tness level of the sensitive cells.

We adopt a Prisoner’s dilemma (PD) game to assign the payo� that each cell receives from interaction

with another. In its original form, the PD game is a two-player game between a cooperator and a defector

from classical game theory, which is determined by what is called the Prisoner’s dilemma inequality [3]. It

describes that the rationality of players who are sel�shly interested in maximizing their own rewards in

playing a game eventually results in the sub-optimal scenario, both becoming defectors and receiving a

lower payo� than they would have gained if they cooperated. The PD game has received a great attention

in evolutionary game theory since the emergence of cooperation, which is often seen in nature but cannot

be understood if assuming rationality of participants as in classical game theory, can be explained when

this game is played repeatedly by a number of individuals in a population along with the natural selection

acting on [3, 21, 39, 42, 44, 55]. We model a payo� matrix for healthy, sensitive and resistant cells such that

healthy cells are cooperators whereas cancerous cells (resistant cells and sensitive cells) are defectors. For

the payo� from the interaction between resistant cells and sensitive cells, we take a cost of resistance into

account [8, 13, 20]. In many studies of drug resistance, it has been shown that resistant cells are present

in a population as a result of mutation long before any drug is administered, and there is a �tness cost

for cells becoming resistant. We adopt a PD game for the interaction between resistant and sensitive cells

such that resistant cells are cooperators (lower �tness) whereas sensitive cells are defectors (higher �tness).

The payo� matrix we use assures growth of the sensitive cell population under low drug concentrations,
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while allowing for the competitive release of resistant cells under drug concentrations at a high enough

threshold level.

In order to understand the co-evolutionary dynamics of these sub-groups in a �nite population, we

develop a Moran process model with three strategies, which is a discrete-time stochastic process [40, 51].

Knowing that the (adjusted) replicator dynamics, which assumes an in�nite size of population, is the asymp-

totic dynamic (N →∞) of the Moran process [53, 54] and that an adaptive chemotherapy schedule is able

to control the growth of a tumor by allowing a slight increase in size at an acceptable level as much as

desired by repeating several cycles when it is modeled with the replicator equations [36], we will apply the

adaptive chemotherapy schedule associated with the adjusted replicator dynamics to the Moran process

and investigate how long the application is successful in controlling tumor growth in a �nite population

or how badly this adaptation fails to be used as a proper treatment. Moreover, for comparative purposes,

the same investigation is carried out for two typical clinical chemo-schedules that ensure the same amount

of drug use as the adaptive schedule: the maximum tolerated dose (MTD) and the low-dose metronomic

schedules (LDM).

The natural extension of this study is obtained by generalizing the number of drugs. When more than

one drug is used simultaneously, then some combinations act synergistically while others act antagonis-

tically, compared to the case where each drug is independently delivered. The study of drug interaction

has a long history and drug interactions can be mainly divided into three cases: additive, synergistic or

antagonistic drug interactions [5, 9]. Following a drug interaction parameter introduced in [30] allows

those three cases to be distinguishable from each other. We the model the e�ect of two drugs on cancerous

populations by the Moran process with three sub-populations where there are two kinds of resistant cells

to each of two drugs as well as sensitive cells to both drugs. A similar but more complicated investigation

compared to a single drug model is achieved with this stochastic two drug chemotherapy model. This

thesis is concerned with �nding the optimal single drug and two-drug chemotherapy schedule that delays
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the time of the saturation of cancerous cells in a population, and discuss its advantage compared to the

standard clinical approaches.

1.1 Evolutionary game theory

Classical game theory, established by J. Von Neumann and O. Morgenstern in [35] in 1928, had been studied

sporadically in the 19th century. It has received great attention and been applied to various areas from

social science to ecology in the 20th century in an e�ort to understand how this decision-making model

from interactions of rational players results in human behavior [33]. A classical game theory is originally

evoked in a form of two-player games, where players participate in a game receiving a certain amount of

payo� according to the strategies of their choices, and are assumed to be rational and struggle for earning

a maximal possible reward being sel�sh. In 1950, a strict Nash equilibrium, a solution to a game, was

invented by J. Nash, which is a strategy with which a players cannot be bene�ted in payo� by switching

a strategy [34]. Game theory had not been signi�cantly considered valuable in biology until J. M. Smith

founded the �eld of evolutionary game theory by taking frequency dependence into account and applying

it to evolution in order to model Darwinism [12] in the early 1970’s in [46, 47, 48, 49] while similar attempts

had been preceded in the 1930s by population geneticist such as R. A. Fisher, J. B. S. Haldane and S. Wright

on the purpose of modeling random drift with the neglect of frequency in a �nite population. Evolutionary

game theory is distinct from classical game theory although they share some of the same ingredients of a

game such as the payo� matrix that players or populations of players receive from interactions. However,

being invented to describe the dynamics of subpopulations in a well-mixed reproductive population where

each individual has the ability to reproduce its copy and a genotype is passed on to its o�spring by heredity.

In a population of cells where each cell has unique genotypic characteristics, cells are players of a game,

genotypes are strategies, and �tness or success rate of a cell at reproductions is payo�. A group of cells

with a higher expected �tness produces more o�spring whereas a group with a lower expected �tness
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replicates less. Unlike classical game theory, the focus of evolutionary game theory is not necessarily

�nding an optimal strategy with which a group of cells obtains a maximal payo�, but at achieving a state

in which a sub-population is stable against invasion by an in�nitesimally small increase of the frequency

of a mutant population when a game is repeatedly played by a number of cells in a population. Thus,

evolutionary game theory is described by a dynamical system, whereas classical game theory is described

by a payo� matrix.

1.1.1 (Adjusted) Replicator dynamics in an in�nite population

After the term "replicator" was �rst invented by R. Dawkins in [14], the replicator equation has become

the most popular model that describes the dynamics of coevolving populations in a well-mixed population

assuming an in�nite size since its �rst introduction by P. G. Taylor and L. B. Jonker in [52] in 1978 [23, 41,

45]. For a game with two strategies, it is de�ned by

ẋA = (fA− < f >)xA,

ẋB = (fB− < f >)xB,

(1.1)

where ~x := (xA, xB)ᵀ is a frequency vector of A− and B−subpopulations such that xA + xB = 1,

fA := (M~x)1 = axA + bxB and fB := (M~x)2 = cxA + dxB are repectively the expected �tness of

A− and B−subpopulations, and < f >:= ~xᵀM~x = xAf
A + xBf

B is the averaged �tness in the entire

populations. Here,M is the payo� matrix de�ning the interactions of the two (or more) sub-populations. It

is a nonlinear deterministic ordinary di�erential equation that describes the relative growth of competing

subpopulations. It is clear from the frequency dependent equations in (1.1) not only that a certain type of

subpopulations grows faster in density when it is abundant in a population but also that it grows at the rate

of the relative di�erence of its expected �tness to the averaged �tness, < f >, of the whole population.

We only present the replicator equations for a game with two strategies but it is similarly de�ned for a
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game with any �nite number of strategies. Having xA + xB = 1, the equations in (1.1) are equivalent to

a single equation

ẋA = (fA − fB)(1− xA)xA (1.2)

which demonstrates that a certain type of subpopulations increases in frequency whenever it has a higher

expected �tness than other types of subpopulations.

Deterministic evolutionary dynamic is often explained by the adjusted replicator equation instead of

the regular replicator equation, which is de�ned by:

ẋA =
fA− < f >

< f >
xA,

ẋB =
fB− < f >

< f >
xB,

(1.3)

and with xA + xB = 1, is identical to

ẋA =
fA − fB

< f >
(1− xA)xA. (1.4)

As long as the �tness function, < f >, of the entire populations is positive, the equations (1.3) are not

qualitatively di�erent from equations (1.1), except for a di�erence in time scale. The replicator equation is

not the only one model that illustrates deterministic dynamical systems, and many studies in evolutionary

game theory have been conducted with other models including ODEs, di�erential inclusions, di�erence

equations and reaction-di�usion system as summarized in [22]. However, it is worth deserving its fame

when taking its equivalence to the Lotka-Volterra equation into account, which is a well-known model in

ecology to describe the interactions of two populations over time, having a long history [6, 43].
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1.1.2 Stochastic models in a �nite population

Although a deterministic model is often a convenient description of population dynamics, sometimes there

is a need for a model describing �nite population interactions which have inherent stochastic �uctuations.

D. Foster and P. Young suggested a continuous-time stochastic model that is designed by simply adding

the Wiener process to the deterministic replicator equation, presuming that the white noise is con�gured

by the Gaussian distribution in [17]. However, a discrete-time �nite-space stochastic model is enough to

characterize cell division and its inheritance from generation to generation as long as the model is equipped

with �tness. One of frequently used such models is a frequency-dependent Wright-Fisher process although

it was introduced a long ago by S. Wright and R. A. Fisher in 1930’s [16, 60] with the absence of frequency

[57, 25]. Suppose that a population of size N consists of cells who has unique genotype between A and

B. The number of cells in the subpopulation A then de�nes a state of the system, and it is assumed in this

model to be determined by N independent Bernoulli trials where the success and failure probabilities are

weighted by the expected �tness of A and B. In precise, the current state, i, changes to a state, j, in the

next step with a probability, Ti→j ,

Ti→j =

(
N

j

)(
ifA

ifA + (N − i)fB

)j (
(N − i)fB

ifA + (N − i)fB

)N−j
(1.5)

for j = 0, · · · , N . This sampling method, which is binomial for two strategies and multinomial for higher

strategies, produces nonoverlapping generations and de�nes a discrete-time �nite-space Markov chain

with nontridiagonal transition matrix, meaning that every states is reachable from any states except for

absorbing states, i = 0 or i = N . The power of this model is not only that it is built with a well-studied

distribution, but also the population size is adjustable at all times without being �xed so that the total

population size, N , at the current step can jump to, say, 2N in the following step, which is bene�cial in
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describing cell divisions. However, this process being a Markov chain with a nontridiagonal transition

probability even in a constant population case challenges computational complexity for analytical study.

Unlike the Wright-Fisher process not being a birth-and-death process, a birth-death process, so-called

a pairwise comparison process, has been studied in depth [2, 50, 54, 56, 58]. In this model, a randomly chosen

individual updates its strategy to another randomly chosen individual’s with a bigger probability than 1/2

if the partner has a higher payo� at each time step. Precisely, the probability, pFermi, that an A−individual

replaces a B−individual is given by

pFermi =
1

1 + e−β(fA−fB)
, (1.6)

where it is represented as a function of �tness di�erence, ∆f := fA − fB , and β ≥ 0 is the strength of

natural selection corresponding to the random drift when β = 0. Thus, an update is more likely to occur

as the �tness di�erence, ∆f , gets bigger. The fact that the number of individuals of a certain type can

change at most by ±1 in one time step and the total population size remains �xed in evolution de�nes a

Markov chain with a tridiagonal transition probability. For this pairwise comparison model, the transition

probability, T+
i , that the system increases the number of A−individuals from i to i+ 1 and the transition

probability, T−i , that it decreases the size of A−individuals from i to i− 1 are given by

T±i =
i

N
· N − i

N
· 1

1 + e∓β(fA−fB)
. (1.7)

The advantages of this model is that the selection intensity parameter, β, is unbounded and hence it can

be set as arbitrary strong as needed while either weak or strong selections are of major interests to be

analyzed. Also, the exponential form of probabilities in (1.6) and its expression only through the �tness

di�erence, ∆f , helps to obtain fruitful analytical observations such as �xation probability and �xation

time, which are of key interests for stochastic models and we will be discussed in Chapter 2. This pairwise
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comparison process is much more known as Fermi process with the recognition of use of the Fermi function,

stemming from physics, for probability of switching strategies in (1.6).

Having a speci�c function for switching probability (1.6), the Fermi process is one special case of a

local update model although it generalizes selection intensity to an unbounded interval. A local update

model instead has a switching probability, plocal update, given by

plocal update =
1

2
+
w

2
· f

A − fB

∆fmax
, (1.8)

where ∆fmax is the maximum possible �tness di�erence and 0 ≤ w ≤ indicates the selection intensity.

With this local update model, the transition probabilities similar to (1.7) are given by

T±i =
i

N
· N − i

N
·
(

1

2
± w

2
· f

A − fB

∆fmax

)
. (1.9)

The local update model has been mainly studied in 2 × 2 game especially in the comparison to other

stochastic processes [54, 57] and it experienced a generalization in the number of strategies of a game in

[53]. At the expense of complexity of functions of interest such as transition or �xation probability, it

can also be generalized by modifying the switching or imitating probability, shown in (1.8), such that it

possesses the same quality that the �tter grows more rapidly with a higher probability of switching and

that a bigger �tness di�erence leads to a higher updating probability. De�ning the updating probability

by a function, g(β∆f), of both selection and �tness di�erence such that g′(β∆f) is nondecreasing in ∆f ,

a generalized local update model was discussed in [61]. These local update models were discussed at a

group level as well as an individual level in the context of spatial dynamics in [44] with the consideration

that cells are more interacting with their neighbors than ones in a far distance.
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1.2 Moran process in a �nite population

Among many stochastic processes describing co-evolving �nite populations, the one that has attracted

many researchers in evolutionary game theory is the frequency-dependent Moran process since it was de-

veloped by M. A. Nowak et al. in [40] in 2004 [1, 2, 10, 29, 31, 32, 40, 51, 53, 54]. A local update model that

only requires local information, which is the �tness di�erence of two randomly chosen individuals, for an

update in each evolution time step is advocated by some researchers in the sense that cell interactions also

depend on the physical distance and it can be then easily extended to the study of spatial dynamics. How-

ever, the computational simplicity, leading to a wide range of analytical observations besides numerical

results while capturing the same amount of essence of description for selection dynamics acting on asex-

ual cell divisions as other processes do, is enough to have fascinated and convinced scientists the use of

the frequency-dependent Moran process. The Moran process was originally introduced by an Australian

statistician, P. A. P. Moran, in [31, 32] in 1958 to express population dynamics, especially random drift, in

a �nite population in the absence of frequency in describing �tness. That is, the model in his introduction

assumed that the each individual has a constant �tness that is never a�ected by the number of its own

groups’ or other groups’ �tness during evolution. However, M. A. Nowak et al. insisted that how fast a

mutant reproduces its o�spring takes the frequencies of all di�erent types into account and they modi�ed

it to be a frequency-dependent model.

1.2.1 Moran process: A birth-and-death process

The Moran process is a birth-and-death model that describes population dynamics in a well-mixed popula-

tion, in which all individuals compete and interact with each other for limited resources, without imposing

a population structure. For a basic Moran process, one individual is chosen and reproduces its o�spring

of the same type with a probability that is proportional to its expected �tness, and one individual, possi-

bly the same one, is randomly chosen and eliminated in one evolution time step. This reproduction and
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elimination in one time step thus results in a constant total population size during the whole evolution

though the number of subpopulations are ever changing until it get absorbed to a homogeneous state.

With this model, the number of at most two di�erent types of subpopulations are a�ected and each group

either increases or decreases at most by 1 in one time step, without both increasing or both decreasing,

while the number of other types keeps unchanged. For example, consider a population of size N with two

genotypes, A and B, in which every pair of two cells in one generation interact each other equally likely

and their �tness is evaluated according to the payo� matrix, M , in (1.1). A state of the Moran process is

determined by the number of subpopulations of one type, say type A, since a constant total population

size is maintained during the whole evolution process, and then the number of cells in the subpopulation,

B, is automatically given by the di�erence of the number of cells in the subpopulation, A, from the total

population size, N .

Knowing that the state of the Moran process can change at most by 1 in one time step, this de�nes a

discrete-time 1−dimensional Markov chain on a �nite space, {0, 1, · · · , N}, with a (N + 1) × (N + 1)

tridiagonal transition probability matrix. To be precise, let i be the number of individuals in the subpopu-

lation, A, at the current step. Let T+
i be the transition probability that the state, i, increases by 1 to i+ 1,

and T−i the transition probability that the state decreases to i − 1 from i. These are the only possible

nonzero transition probabilities with the probability, T 0
i = 1 − T+

i − T
−
i , that the system stays at the

current state under the assumption of no mutation. Both i = 0 and i = N are two absorbing states that

correspond to a homogeneous B−population and a homogeneous A−population, respectively, and these

obviously lead to T+
0 = 0 and T−N = 0, or in other words, T 0

0 = 1 and T 0
N = 1. At all other internal states,

the transition probability, T±i , at the state, i, is computed by considering the birth rate and the random
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death. The birth rate is assumed to be proportional to the expected �tness, fAi and fBi , of A and B which

interpret the expected payo�s, πAi and πBi , that are given by excluding the self-interaction:

πAi =
a(i− 1) + b(N − i)

N − 1
,

πBi =
ci+ d(N − i− 1)

N − 1
.

(1.10)

As introduced as a key mechanism by Darwin, it is common for the Moran process that natural selec-

tion whose intensity parameter, w, ranges between 0 and 1 goes through �tness function in a way that

when w = 0, it reduces to the background �tness which is usually normalized to 1 for all types while

when w = 1, it is exactly the same as the expected payo�s in (1.10). Thus, w = 0 corresponds to neutral

drift where all subpopulations of di�erent types are equally likely at reproduction whereasw = 1 is where

the payo�, on which the researchers’ preliminary knowledge and background about the components of a

game is re�ected, has the greatest in�uence on the selection dynamic. Fitness functions are then de�ned

by:

fAi := 1− wA + wAπAi = 1− wA + wA
a(i− 1) + b(N − i)

N − 1
,

fBi := 1− wA + wAπBi = 1− wB + wB
ci+ d(N − i− 1)

N − 1
,

(1.11)

where wA and wB are selection intensities of A and B, respectively. Finally, the birth rates of A− and

B−subpopulations at the state, i, are given by ifAi
ifAi +(N−i)fBi

and (N−i)fBi
ifAi +(N−i)fBi

, and these help to compute

the transition probabilities for the Moran process:

T+
i =

ifAi
ifAi + (N − i)fBi

· N − i
N

,

T−i =
(N − i)fBi

ifAi + (N − i)fBi
· i
N

(1.12)
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for i ∈ {1, · · · , N − 1}. It allows the Moran process to have an explicit (N + 1) × (N + 1) tridiagonal

transition probability, T , such as:

T =



1 0 0 · · · 0 0 0

T−1 T 0
1 T+

1 · · · 0 0 0

...
...

... . . . ...
...

...

0 0 0 · · · T−N−1 T 0
N−1 T+

N−1

0 0 0 · · · 0 0 1


. (1.13)

Due to the facts that the �tness functions in (1.11) become the expected payo�s in (1.10) when w = 1 and

that these �tness functions are factors of transition probabilities in (1.12), it is necessary to assume that

both fAi and fBi are nonnegative for all i’s. These are satis�ed if either selection intensities are small or all

entries of a payo� matrixP in (1.1) are nonnegative. It is common to implicitly assume that a, b, c, d ≥ 0 for

the Moran process when the process with the whole range of selection is aimed to be analyzed. Whenever

no one is �tter than another at all states, that is, fAi = fBi for all i’s , we have T+
i = T−i and neither

genotype is favored for reproduction at all states. This is the case to which the neutral drift case belongs.

Also, it is a random walk in Z+
0 though not simple since it still does not have a stationary property, in

fact, T±i 6= T±j for i 6= j. Thus, many known theories in a random walk in Z+
0 are ready-to-use, allowing

fruitful analytical results available.

Along the studies of evolutionary game theory by modeling a population with the Moran process

since its reinterpretation as a frequency-dependent model, it has experienced generalizations in many

aspects. For example, imposing a structure into a population by placing all individuals at vertices, and

giving a weight to a directed edge, which represents a probability that an adjacent vertex is replaced by

the o�spring of the vertex from which the edge �ies on a graph, a stochastic model can be designed to a

various extents by varying either structures and weights as discussed in [29] in 2005. From their design, a
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homogeneous population illustrated by the Moran process is considered as a particular case of a complete

graph on which all edges have the same weight. They deduced that evolution is greatly dependent on

the underlying structure and characterized graphs for which the quality of �xation coincides with that of

a homogeneous population when it is modeled by the Moran process. On the other hand, P. M. Altrock

and A. Traulsen proposed another generalization of the Moran process by introducing �tness-dependency

in death rate as well as in birth rate for 2 × 2 game in [1] in 2009. According to their design, a cell is

chosen for elimination not at random but at a probability proportional to inverse �tness, and the transition

probabilities, T±i , in (1.12) are then modi�ed as:

T+
i =

ie+w
bπA

i

ie+w
bπA

i + (N − i)e+wbπB
i

· (N − i)e−wdπB
i

ie−w
dπA

i + (N − i)e−wdπB
i

,

T−i =
(N − i)e+wbπB

i

ie+w
bπA

i + (N − i)e+wbπB
i

· ie−w
dπA

i

ie−w
dπA

i + (N − i)e−wdπB
i

,

(1.14)

where wb ≥ 0 and wd ≥ 0 are the selection intensities at birth and death, respectively, and the �tness

is de�ned in the form of an exponential function. Leaving these for further studies, we model a �nite

well-mixed population using the �tness-dependent Moran process in this thesis.

1.2.2 Connection of Moran process to the adjusted replicator dynamics

Evolutionary game theory, which classically began with the replicator dynamics equations for an in�nite

population, was later developed for a �nite (stochastic) population. How the stochastic process for a �nite

population is related to the replicator system for an in�nite population as the population size increases

was a natural question in this �eld. A. Traulsen et al. �rst proved in [54] in 2005 for 2 × 2 game that

the replicator dynamic is the expected system of a local update stochastic model de�ned with a switching

probability in (1.8) in the population size limit whereas the adjusted replicator dynamic is the mean system

for the Moran process. They generalized this result for a general stochastic process with an arbitrary �nite

number of strategies, where mutation is also allowed in [53] in 2006. We brie�y discuss the derivation of
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the adjusted replicator system from the Moran process in the population size limit for a 2 × 2 game and

the maximal selection intensity in this section since it captures the essence of the argument in its simplest

form, and the generalization to higher dimension is straightforward.

The Moran process with two strategies is described at a microscopic level in terms of the probability,

Pi(τ), that the system is in the state, i, at time τ , with the transition probabilities:

Pi(τ + 1)− Pi(τ) = Pi−1(τ)T+
i−1 + Pi+1(τ)T−i+1

− Pi(τ)T−i − Pi(τ)T+
i ,

(1.15)

where i is the number of agents in subpopulation A in a population of size N as before. This equation

(1.15) is called the master equation and it describes the net change in probability from state, i, in one time

step from time, τ . Letting

x = i/N, (1.16)

t = τ/N, (1.17)

T±(x) = T±i , (1.18)

the equation in (1.15) is rewritten in terms of the probability density function, ρ(x, t) := NPi(τ), as

follows:

ρ(x, t+N−1)− ρ(x, t) =ρ(x−N−1, t)T+(x−N−1) + ρ(x+N−1, t)T−(x+N−1)

− ρ(x, t)T−(x)− ρ(x, t)T+(x).

(1.19)
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For a largeN , the Taylor expansion at x and t for both the probability density function, ρ, and the transition

probabilities, T±, up to the �rst order term in N−1 gives rise to the Kolmogorov forward equation:

∂

∂t
ρ(x, t) = − ∂

∂x
[a(x)ρ(x, t)] +

1

2

∂2

∂x2
[b2(x)ρ(x, t)] (1.20)

with the drift term, a(x) = T+(x) − T−(x), and the di�usion term, b(x) =
√

(T+ + T−)/N . Applying

the Itô calculus on ρ(x, t), the equation (1.20) is equivalent to a stochastic di�erential equation, called the

Langevin equation:

dXt = a(Xt)dt+ b(Xt)dBt, (1.21)

whereBt is the one dimensional standard Wiener process andXt is the state of the system at time t. Noting

that the di�usion term, b(Xt), vanishes with the rate of 1/
√
N as N → ∞, the limiting system is solely

determined by the drift term, a(Xt), as follow:

ẋ = lim
N→∞

(T+
i − T

−
i ). (1.22)

By equations in (1.12), it becomes

ẋ = lim
N→∞

fAi − fBi
(ifAi + (N − i)fBi )/N

· N − i
N

· i
N

=
fA − fB

< f >
(1− x)x

(1.23)

and �nally the adjusted replicator equation in (1.4) is recovered in the limit ofN from the master equation

for the Moran process with x = xA.

This derivation is available in [53] even when the Moran process is applied to a population having

more than two strategies, say d strategies. However, this stochastic process with d > 2 strategies is no

longer a random walk on (Z+
0 )d−1. In the same manner, the Fermi process de�ned by (1.6) and the local
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update process de�ned by (1.8) are also shown to converge to the regular replicator system with a constant

factor that only re-scales the time.

1.3 Moran process and a chemotherapy concentration applied to the

selection

Chemotherapy is a standard systemic clinical approach and is ubiquitous in various cancers as a treatment

to alleviate disease by generally focusing on killing as many malignant cells as possible in order to reduce

the size of tumor. The goal of this thesis is to develop adaptive chemotherapy protocols that prevent the

deterministic adjusted replicator system from saturating the population with cancer cells, in the spirit of

[36] and [59], then to test these strategies with the stochastic Moran process model, both using the single

drug and multi-drug protocols. We will then highlight the advantages of using the adaptive chemotherapy

schedules with respect to avoiding chemo-resistance of the tumor.

Our approach is to view tumor growth as the outcome of the interactions of three subpopulations of

cells: healthy cells (H), sensitive cancer cells (S) and resistant cancer cells (R) to a drug. The model we

employ is the 2−dimensional Moran process for a population of size N with three cell types, H , S and

R. Since the Moran process keeps a constant population size during the whole evolution, the frequency

of the di�erent cell types determines the state of the system. We specify the number of healthy cells and

the number of resistant cells as independent variables, so 2−dimensional process, and let i be the size of

healthy subpopulations and j the size of resistant subpopulations. Then for each N , the set

ΛN := {(i, j) ∈ Z+
0 × Z+

0 |0 ≤ i ≤ N, 0 ≤ j ≤ N, i+ j ≤ N} (1.24)
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de�nes the space of states for the Moran process with three strategies, and the number of elements,

|ΛN | = (N+1)(N+2)
2 , of ΛN increases in the order of O(N2). When we refer to a state in ΛN in (1.24), we

interchangeably use (H,R) = (i, j) or (H,S,R) = (i,N − i− j, j).

We assume that a �nite population is well-mixed and every pair of cells in this population interacts

and each cell receives a payo� from that interaction according to a 3× 3 payo� matrix, A:

A =



H S R

H a11 a12 a13

S a21 a22 a23

R a31 a32 a33

. (1.25)

From those equally likely interactions, a cell of type X , X ∈ {H,S,R}, receives the expected payo�, πXi,j ,

at the state, (i, j), excluding self-interaction as it does for the 1−dimensional Moran process in (1.10):

πHi,j =
a11(i− 1) + a12(N − i− j) + a13j

N − 1
,

πSi,j =
a21i+ a22(N − i− j − 1) + a23j

N − 1
,

πRi,j =
a31i+ a32(N − i− j) + a33(j − 1)

N − 1
.

(1.26)

The expected �tness function, fXi,j , is de�ned, similarly to (1.11), by

fXi,j = 1− wX + wXπXi,j , (1.27)

where wX ∈ [0, 1] is the selection intensity of the type, X . Modeling the role of a drug on a population

committed to tumor regression/recurrence is then equivalent to shaping �tness functions based on the

scienti�c understandings about the relation between di�erent types of cells when a drug is on or o�. In
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order to complete the description of our model, we introduce some key concepts in the following two

subsections.

1.3.1 Prisoner’s dilemma game

A Prisoner’s dilemma (PD) game is a two-player-game, originally framed in classical game theory by M.

Flood and M. Dresher while working at the RAND Corporation in 1950. What makes this game a dilemma

game, in the context of classical game theory, is that rational decisions to maximize their own payo�

leads them to choose a strategy that instead provides them with a lower payo� than they would have

gained if they chose the alternative. Later, the game was used in an iterated form to capture the essence

of the emergence of cooperation [21, 38, 39, 42, 44, 55]. Being hard to be understood in the framework of

classical game theory, this altruism is easily seen in nature, especially in animal worlds. For example, in

some species, it is often seen that one gives an alarm for their peers when it encounters a predator in order

to let them hide while exposing itself to danger. It is also seen in global climate-change that all countries

take advantage from maintaining a stable climate, but any single country often hesitates to regulate CO2

emission, thinking of maintaining this behavior as being more bene�cial to itself than it would be if all

countries decided to reduce CO2 emission. This scenario has been dubbed ’the tragedy of the commons’.

Achievable altruism has been deeply studied in evolutionary theory with the variety of generalization from

iteration to the number of strategies.

In a classical Prisoner’s dilemma (PD) two-player-game, each player can choose to cooperate (C) or

defect (D) in playing a game each round. Given a 2× 2 payo� matrix

M =


C D

C R S

D T P

 =


C D

C 3 0

D 5 1

, (1.28)
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each receives R when both cooperate whereas each receives P when both defect. When two players with

di�erent strategies encounter, a cooperator receives S and a defector receives T . What makes this game

in (1.28) a Prisoner’s dilemma game is the Prisoner’s dilemma inequality:

T > R > P > S. (1.29)

Under this assumption, all rational players will end up playing D since it gives a higher compensation in

either cases when a partner cooperates or defects. This is called a Nash equilibrium. However, they would

have received a higher payo�, R, each if they cooperated. Any single combination of R, S, T , and P

that satis�es the inequality in (1.29) de�nes a Prisoner’s dilemma game, but the canonical choice is when

R = 3, S = 0, T = 5 and P = 1 as given in (1.28).

In evolutionary game theory, strategies are interpreted as genotypes which are selected and passed

to the next generation by natural selection depending on their frequencies in a population. Consider a

in�nite population of cooperators (C) and defectors (D). Let xC be the frequency of cooperators and xD

that of defectors, then we have xC +xD = 1. Letting the selection intensities, wC and wD , of C and D be

equal to 1 so that the payo� matrix, A, has the most in�uence on the �tness functions de�ned similarly to

(1.11) but in continuous way, the �tness functions, fC and fD , are given by

fC = (M~x)1 = 3 · xC + 0 · xD,

fD = (M~x)2 = 5 · xC + 1 · xD,
(1.30)

where ~x = (xC , xD)ᵀ. Then the averaged �tness function, < f >, in the entire population becomes

< f >:= ~xᵀM~x = 3x2C + 5xCxD + x2D (1.31)

and it is straightforward to show that < f > has the minimum value, 1.
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(a) (b)

Figure 1.1: Defectors (D) playing a Prisoner’s dilemma game outcompete cooperators (C), grow in a
S-shaped Gompertzian curve, and eventually saturate the entire population, eventually reaching a sub-
optimal state according to the adjusted replicator system. For simulation, we setR = 3, S = 0, T = 5 and
P = 1. (a) Initially nonzero defector subpopulations with the proportion, 0.01, keeps increasing over time
in a S-shaped curve and eventually saturating the entire population; (b) The averaged �tness function,
< f >, is unfortunately minimized at that evolutionarily stable strategy, D, meaning that xD = 1 is an
asymptotically stable but sub-optimal state.

Employing the adjusted replicator equation in (1.4) gives rise to

ẋC = −(1 + xC)(1− xC)xC
< f >

(1.32)

which implies that the deterministic system has �xed points at xC = 0, 1. It is easy to check that xC = 0

is asymptotically stable. Figure 1.1 illustrates that the proportion of defectors in an in�nite population,

that initially takes only 1% of the total population, increases along a S-shaped Gompertzian curve and

reaches plateaus at 1 [27], but the averaged �tness function, < f > is minimized at xC = 0 being equal

to 1. It is this Gompertzian growth law that makes the PD game useful as a tumor growth model. In fact,

the system is driven to the stable homogeneous state of purely defectors whenever there initially exists

the nonzero number of defectors, but that is a sub-optimal state. These two characteristics (Gompertzian

growth and sub-optimal �tness) allow us to adopt a PD game for describing interactions between healthy

and cancerous cells in our model by letting healthy cells be cooperators and cancer cells defectors.
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1.3.2 Cost of resistance and competitive release

As mentioned earlier, one main factor that makes chemotherapy challenging is tumor recurrence followed

by the initial tumor regression due to adaptive ability of a population, leading it to form resistance to

a drug. This chemo-resistance is often explained by the ecological mechanism of the competitive release

that was originally termed by J. H. Connell in [11] in 1961. The phenomenon unfolds when two species

compete for a limited resource, with one species out competing the other, thereby suppressing the growth

of the weaker species (i.e. the one with lower �tness). When a change in the environment occurs that kills

the dominating species, it releases the weaker one from the competition, thereby allowing it to grow. For

competing cancer cells, in the absence of chemotherapy, the dominant population are the chemo-sensitive

cells (higher �tness), and the sub-dominant ones are the chemo-resistant ones (lower �tness due to the cost

of resistance). With chemotherapy, the sensitive cells are mostly killed o�, which releases the resistant cells

from the competition and allows them to grow, rendering the tumor resistant. Though this term had been

supported later by a lot of in vivo experiments mainly in the �eld of chemical ecology, cancer can also

be modeled based on this notion in order to describe the chemotherapeutic response onto a population of

healthy, sensitive and resistant cells.

It is known that resistant cells to a drug as well as sensitive cells typically exist even before chemother-

apy is carried out as a result of pre-existing mutations. Typically, however, resistant cells are present in a

population only in small numbers due to the cost of resistance: it is inherently expensive for cancer cells

to maintain resistance. In other words, resistant cancer cells pay a �tness cost in the form of lowering

their reproductive success. It has been demonstrated in laboratory experiments that resistant cells are less

�t and less �ourishing than sensitive cells in the absence of chemotherapy [8, 13, 20]. The application

of chemotherapy, however, then lowers the �tness of the sensitive cell population, and the resistant cells

begin to �ourish. We will adopt these two notions to model the chemotherapeutic resistance of a tumor

population.
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1.3.3 Fitness landscape

We quantify the previous notions in our choice for the payo� matrix,A, in (1.25) to shape �tness landscape

of all types of cells together with drug concentration. We let the concentration, 0 ≤ C(t) ≤ 1, of a drug,

which is a function of time indicating the drug intensity rather than the absolute amount, enter the cell

population through selection functions, wH , wS and wR, in a following way:

wH(t) =w0,

wS(t) =w0(1− C(t)),

wR(t) =w0,

(1.33)

wherew0 is a constant which we will set equal to 1 for computational convenience since it can be scaled out

without changing qualitative features. This de�nition in (1.33) allows the selection functions of all types to

be time-dependent functions and quantitatively establishes that the concentration function,C(t), becomes

a controller of the system. When it is turned on, it lowers the �tness of the sensitive cell population, leaving

the others unchanged.

A Prisoner’s dilemma game is an adequate model to describe the relations between healthy cells and

cancerous cells in a way that under no chemotherapy, healthy cells are cooperators whereas cancerous

cells are defectors since it possesses two important features when it is interpreted by the replicator system

in the evolutionary game theory perspective: (i) initially nonzero portion of defectors eventually saturates

the entire population, and (ii) that asymptotically stable homogeneous state of defectors is sub-optimal.

Thus we impose the payo� matrix, A, to satisfy the Prisoner’s dilemma inequalities in (1.29) such that

a21 > a11 > a22 > a12, (1.34)

a31 > a11 > a33 > a13, (1.35)
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where (1.34) de�nes a PD game between healthy cells and sensitive cells whereas (1.35) de�nes a PD game

between healthy cells and resistant cells.

In addition, having a higher �tness, sensitive cells are abundant under no treatment though a small

number of resistant cells are present. However, when a drug is delivered, it lowers the �tness of the

sensitive cell population which, in turn, allows the resistant population to �ourish (competitive release).

In other words, the delivery of a drug, which is an arti�cial interference to a population, plays the role

of catalyst for the proliferation of resistant cells by lowering the �tness of sensitive cells, releasing their

competing agents (resistant cells), and allowing those resistant cells to use more resources, proliferate and

eventually survive. These features, that are termed as the cost of resistance and the competitive release,

convince us to adopt a PD game for interactions between sensitive cells and resistant cells where in the

absence of treatment, resistant cells are cooperators whereas sensitive cells are defectors. We design the

payo� matrix, A, to satisfy the following prisoner’s dilemma inequality

a23 > a33 > a22 > a32 (1.36)

as well as

a21 > a31 (1.37)

to guarantee that sensitive cells have a higher �tness than resistant cells at all time, that is, regardless of

the distribution of a population when chemotherapy is absent. Also, the fact that a drug administration at

a high dose causes sensitive cells to be less �t than resistant cells is re�ected by requiring that the �tness

function, fR, of resistant cells is greater than the �tness function, fS |C(t)≈1, of sensitive cells under a

constant high concentration. Knowing from (1.33) and (1.27) that the �tness of sensitive cells is almost
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equal to the background �tness, which is set to be 1, when the constant high chemo-dose is nearly equal

to 1, this is obtained if we further set

a31, a32, a33 ≥ 1 (1.38)

with all three not being equal to 1 simultaneously.

For two drug model, we will design the �tness of all types in an analogous manner based on PD

games, the cost of resistance and competitive release by letting drug concentration functions enter through

selection functions. This will be discussed further in Chapter 4.

1.4 Structure of the thesis

In a �nite population evolutionary game theory, what has received great attention by researchers are the

state that a single mutant successfully enters a homogeneous population and the state that that single

mutant survives and eventually takes over the whole population. The former is termed as invasion and

the later is termed as �xation. Between two, what distinguishes a stochastic process from a deterministic

system in modeling a co-evolving population is the �xation since it quanti�es a chance of observing a

new scenario driven by natural selection which would not be seen if it is modeled by the replicator system

assuming an in�nite population. Many researchers have devoted e�ort to �nding either �xation probability

or �xation time with many di�erent stochastic models, resulting in fruitful analytical results.

In Chapter 2, we brie�y go through the derivation of the exact formula of �xation probability for

stochastic processes with 2 strategies. In classical evolutionary game theory assuming an in�nite popu-

lation, the evolutionary stable strategy (ESS) is well established as a state that survives and persists, hence

is of great interest. However, this concept underwent modi�cation in a �nite population and we mention

this evolutionary stable strategy (ESSN ) in a �nite population, which is de�ned in terms of both �xation

probability and invasion. We also refer to both one well-known approximation to the rate of evolution,
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which is the multiplication of �xation probability and population size, under weak selection, and how the

de�nition ofESSN is sharpened with the use of this approximation. We point out that this approximation,

in the form of the truncated Taylor expansion with the degree of 1, is only valid under an extraordinarily

narrow weak selection window with the example of repeated Prisoner’s dilemma game, and precisely give

the upper threshold of those weak selection. We also show that the regular linear Taylor approximation

becomes a better approximation over those limited region of weak selection. Moreover, we suggest a global

approximation to the rate of evolution using Bernstein polynomial, which is de�ned on the whole selection

interval, and explains its e�ciency on a strong selection limit.

In Chapter 3, we adopt the frequency-dependent Moran process model with three strategies in order

to model the role of single drug chemotherapy acting on a �nite population of healthy (H), sensitive (S)

and resistant (R) cells, all participating in tumor development. We shape the �tness functions of cells

as discussed in section 1.3.3. Knowing that the �xation probability for the Moran process with three

strategies does exist but is, so far, only expressed as a solution to a linear system, proved by E. M. Ferreira

and A. G. M. Neves in [15], where the coe�cient matrix is order of O(N4) for the population size N , we

numerically compute �xation probability at |ΛN |many points distributed in phase space. Visualizing these

�xation probabilities asN increases, we show how the stochastic version of competitive release converges

to the basins of attraction for the adjusted replicator equation. Moreover, as a second part, the adaptive

chemotherapy schedule associated with the adjusted replicator equations, developed in [36] but with the

regular replicator equations, is applied to the stochastic Moran process to examine the chemotherapeutic

response. It is obvious that applying this chemotherapy schedule to the stochastic process will fail in

trapping the wiggly trajectory in a closed loop though it is designed to do for the expected deterministic

system. It is for the randomness, driven by the �nite population size, leads not only one single realization

but also the averaged system of many realizations to settle on a neighborhood instead of the exact initial

state after each evolutionary cycle. We quantify how badly this schedule works or how fast its use on the
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Moran process is not justi�ed as increasing the number of cycle. We later evaluate this adaptive schedule

in terms of tumor volume, that is quanti�ed as a sum of cancerous cells, by comparing it to the standard

clinical approaches that have the same amount of the total dose of toxin: the maximum tolerated dose

schedule (MTD) and the low-dose metronomic schedule (LDM).

In Chapter 4, we generalize Chapter 3 by introducing an additional drug, where the two drugs act

asymmetrically, meaning that they have di�erent response rates. Following [30], we equip our model

with a drug interaction parameter, −1 ≤ e ≤ 1, in order to distinguish antagonistic (e < 0), additive

(e = 0) and synergistic (e > 0) drug interactions from each other. We consider a �nite population that is

composed of sensitive (S) cells to both drugs, a group of cells (R1) that are sensitive to drug 1 but resistant

to drug 2, and a group of cells (R2) that are sensitive to drug 2 but resistant to drug 1. Shaping the �tness

functions of these three types of cancer cells analogously to but relatively more complex than that of a

single drug model, the evolution of a population of cancer cells is modeled by the Moran process with three

strategies. After we develop an adaptive chemotherapy schedule associated with the adaptive replicator

equations for each drug interaction case that use up the similar total dose of toxin from both drugs, we

apply each schedule to the Moran process. For the evaluation of these schedules, we separately adopt the

tumor-growth model, which is the nonlinear deterministic di�erential equation, to describe tumor volume.

With these two models, we study how successfully the adaptive chemotherapy schedule associated with

the adjusted replicator dynamic works and how long the application of this chemotherapy can be justi�ed,

just as done in Chapter 3. Evaluation of this adaptive two drug schedule is then made either across or within

drug interactions by comparing it to two standard clinical approaches such as MTD and LDM having the

same total dose.

Finally in Chapter 5, we will discuss future potential research directions which would generalize our

models in several important ways.

28



Chapter 2

Fixation probability for Moran processes with two strategies

Begun by M. A. Nowak et al. in modeling a �nite population that play 2 × 2 game with the frequency-

dependent Moran process, �xation has been intensively studied from �nding its probability to �nding the

time that the underlying stochastic process takes until its occurrence, across many stochastic processes [2,

29, 40, 51, 56]. Fixation refers to a state that a single (or, in general, a �nite number of) mutant is favored by

selection replacing resident subpopulations and eventually takes over the entire population. The reason

why this concept attracted many researchers is that this is what makes stochastic processes distinguished

from deterministic models and what quanti�es the randomness driven by �niteness in population size.

For example, as shown in [51] for a 2 × 2 game, the Moran process for a �nite population drives eight

selection scenario whereas the deterministic replicator system for an in�nite population leads to four

selection ones, and those extended categorization was made based on �xation probability. Also, the well-

established concept, evolutionary stability, in an in�nite population was modi�ed by M. A. Nowak et al. in

[40] by introducing �xation probability as an extra condition besides the original invasion condition when

adopting this concept into a �nite population.
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2.1 Fixation probability and evolutionary stability

Fixation probability has an exact formula for a 2 × 2 game though complex, and it was obtained by ex-

ploiting that 1− dimensional Moran process with two strategies can be considered as a random walk on

a subset of R and using well-known ready-to-use theorems. In fact, the closed form is available for any

birth-and-death processes as well as the Moran process. However, in general, the Moran process with d

many strategies is not a random walk in Rd−1 when d ≥ 3, and this makes the computation challenging

for a higher dimension. As far as we know, E. M. Ferreira and A. G. M. Neves were the �rst who recently

proved the existence of the �xation probability for d = 3, and they represented it as a solution to a sys-

tem of linear equations by formalizing the �xation probability as a solution of discretized 2−dimensional

Dirichlet problem for the Laplace equation in [15] in 2020. We will discuss more about it in the next chap-

ter, but for a while we mainly focus on the �xation probability for the Moran process with two strategies

in this chapter.

2.1.1 Computation of �xation probability

Consider the Moran process with two strategies, A and B, for a �nite population of size N , all interacting

equally likely each other and receiving a payo� according to the payo� matrix M in (1.1). We de�ne a

state of the Moran process by the number, i, of cells in the subpopulation, A, i = 0, 1, · · · , N . For each i,

let ρAi be the probability that imutants of typeA replace allB−mutants and take over the population, and

similarly ρBi for B. Since all states of the Moran process are transient, the stochastic system eventually

achieves the homogeneity of a population in either all A’s or all B’s, leading to ρBi = 1 − ρAi . Thus it is

su�cient to compute ρAi for a 2× 2 game. We will use ρAi and ρi interchangeably for convenience.
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If mutation is not allowed, the Moran process with two strategies has two absorbing states, i = 0 and

i = N , at which �xation probability is complete as follows:

ρ0 = 0,

ρN = 1.

(2.1)

For an intermediate states, i = 1, · · · , N −1, the state can have a jump only to either i+ 1 or i−1 besides

staying unchanged. Each jump is made at a probability, T+
i and T−i , respectively. Then it allows to have

a following recurrence relation in terms of �xation probability, ρi, and transition probabilities, T±i :

ρi = T−i ρi−1 + T 0
i ρi + T+

i ρi+1, (2.2)

where the probability, T 0
i , that the stochastic system remains unchanged is equal to T 0

i = 1− T+
i − T

−
i .

De�ning variables, φi := ρi − ρi−1 and λi := T−i /T
+
i , the equation (2.2) is re-written:

φ1 = ρ1,

φi+1 = λiφi

(2.3)

for i = 1, · · · , N − 1, and this is equivalent to

φi+1 = ρ1

i∏
k=1

λi. (2.4)

Summing (2.4) over i gives rise to
∑N

i=1 φi = (ρ1 − ρ0) + (ρ2 − ρ1) + · · ·+ (ρN − ρN−1) = ρN − ρ0 = 1

and it leads to

ρ1 =
1

1 +
∑N−1

j=1

∏j
k=1 λk

. (2.5)
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Using the same summation of (2.4) but up to as less number of terms as desired, it implies ρi = ρ1(1 +∑i−1
j=1

∏j
k=1 λk), and the general �xation probability, ρi, ofA starting from the state, i, is driven as follows:

ρi =
1 +

∑i−1
j=1

∏j
k=1 λk

1 +
∑N−1

j=1

∏j
k=1 λk

(2.6)

with equating
∑i−1

j=1

∏j
k=1 λk to 0 when i = 1.

The derivation of �xation probability in (2.6) has not made use of the underlying stochastic process

except for that it is a birth-and-death process so that a state can move at most by ±1 in one time step.

For this reason, the expression in (2.6) is valid for any 1−dimensional birth-and-death processes with no

mutation assumption. We end this subsection by specifying this �xation probability for the Moran process

for the later use. From (1.12), the variable, λi := T−i /T
+
i , can be explicitly written in terms of �tness

functions of A and B for the Moran process, and the �xation probability in (2.6) is nothing but

ρi =
1 +

∑i−1
j=1

∏j
k=1 f

B
k /f

A
k

1 +
∑N−1

j=1

∏j
k=1 f

B
k /f

A
k

. (2.7)

2.1.2 Evolutionarily stable strategy in a �nite population

Corresponding to the Nash equilibrium, which is a strategy with which no plyer improves its reward by

switching to another, in classical evolutionary game theory, one of the main interests in evolutionary game

theory is to �nd a strategy, pure or mixed, persistent to natural selection through time in a coevolutionary

population. Such strategy is what is called an evolutionarily stable strategy (ESS), originally invented by

M. Smith in [46, 47, 48, 49]. Assuming an in�nite population, ESS is a strategy that for an in�nitesimally

large population playing this strategy, an in�nitesimally small population playing a di�erent strategy is
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not able to invade into the nearly homogeneous population. Precisely in a 2×2 game with a payo� matrix

M in (1.1), a strategy, B, is said to be evolutionarily stable if either

(i)d > b or (2.8)

(ii)d = b and a < c. (2.9)

This condition is made by letting the �tness of the subpopulation, A, smaller than that of B when the

population is nearly composed of individuals of type B, so that natural selection opposes the spread of

in�nitesimally small fractions of A in in�nitely large populations of B.

As evolutionary game theory developed and the needs for more realistic models describing a �nite

coevolving population arose, this concept of evolutionary stability had been challenged to be adopted to a

�nite population. D. Foster and P. Young suggested a new concept of stability, which they called stochas-

tically stable equilibrium (SSE), for a stochastic system that is designed using the Wiener process added

to the deterministic replicator equations in [17] in 1990. By de�ning SSE as a long-run viability, they

convinced that attractors in dynamical system are not su�cient to be an alternative due to the dependence

of the limiting behavior of the system on the initial distribution. In fact, they de�ned SSE to be a state at

which the stochastic system asymptotically stays within its small neighborhood with a positive probability

as the stochastic e�ects decreases, where the decreased e�ects is measured as the shrinking variance of

the Wiener process.

Recognizing that a single mutant, successfully invaded a resident population, is possibly able to take

over the entire �nite population, M. A. Nowak et al. modi�ed the concept of EES, that M. Smith had

suggested, in [40] in a way that selection opposes both invasion and �xation, and began to be widely used
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in this �eld. Denoting it by ESSN , a strategy, B, is said to be evolutionarily stable in a �nite population

of size N for a 2× 2 game in (1.1) if followings are satis�ed:

(i)b(N − 1) < c+ d(N − 2), (2.10)

(ii)ρA1 <
1

N
. (2.11)

The condition in (2.10) is equivalent to fA1 < fB1 and guarantees that selection opposes A invading a

resident population of B whereas the condition in (2.11) describes that A is not favored taking over the

entire population by natural selection. The quantity, 1
N , in (2.11) is the �xation probability of A when the

selection is absent for both types such that the coevolutionary population evolves exclusively under the

neutral drift. Knowing λk = 1 in (2.5) under wA = wB = 0, this quantity is easily computed, and we

denote it by ρw=0
1 to specify no selection intervention.

2.2 Local approximation to �xation probability under weak selection

In Darwinian evolution theory, all species of organisms competing each other for the same limited re-

sources survive and reproduce being favored by the natural selection if �tter, where how �tter is slightly

di�erentiated from each other compared to the neutral drift. For this reason, the weak selection limit got

a great attention, and this is where abundant analytical results were obtained. Fixation probability for a

birth-and-death process has an exact formula for a 2× 2 game, but its complexity drove many researchers

to consider an approximation instead under weak selection. For a two-player-game in (1.1), one well-

known local approximation to the rate of evolution, Nρ1, which is multiplying the �xation probability by
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the population size, was suggested in [40] in the form of the �rst order truncated Taylor expansion with

the shared selection w := wA = wB as follows:

NρA1 ≈
1

1− (αN − β)w/6
, (2.12)

where α = a + 2b − c − 2d and β = 2a + b + c − 4d. We denote the rational function of w in the right

hand side of (2.12) by ΓN or by ΓN (w) to speci�cally the independent variable, w.

2.2.1 Equivalence of stochastic processes under weak selection

Using the local approximation in (2.12) or equivalently

ρA1 ≈
1

[1− (αN − β)w/6]N
(2.13)

under weak selection, the second condition ofESSN in (2.11) for a �nite population is sharpened, and the

de�nition of ESSN under weak selection in Section 2.1.2 is replaced by:

(i)b(N − 1) < c+ d(N − 2), (2.14)

(ii)αN < β. (2.15)

M. A. Nowak et al. in [40] linked the second condition to an unstable internal �xed point of a coordina-

tion game, which is de�ned with two constraints, a > c and b < d. According to the replicator equations,

this game has an internal equilibrium, x∗ := d−b
a−b−c+d such that the deterministic system is driven to the

homogeneous state of all B’s whenever the initial frequency of A is less than x∗ whereas it is attracted by

35



x = 1 (all A’s) if the initial proportion of A exceeds x∗. It is straightforward that for a large but �nite N ,

the inequality (2.15) is equivalent to a+ 2b < c+ 2d, and this can be re-written in terms of x∗ as

x∗ > 1/3. (2.16)

Surprisingly, this says that the A mutant is opposed replacing the resident population B by the natural

selection if the frequency of A is higher than 1/3 whereas favored otherwise. This is what is termed as a

’1/3 law’, and it is the key condition that is used to show the equivalence of any two stochastic processes.

The ’1/3 law’ for the Moran process was derived by M. A. Nowak et al. in [40] in 2004, and to this

model the equivalence of the Wright-Fisher model in [25], of the local update process in [57], of the Fermi

process in [58, 61], and of the generalized Moran process in [1] were shown in the sense that all of these

processes hold the ’1/3 law’ under weak selection, where its derivation for the Moran process exploits the

local approximation to �xation probability in (2.13). In fact, ’1/3 law’ was proven in [28] to be valid for

any processes under weak selection as long as it is in the domain of Kingman’s coalescence, and all the

stochastic processes mentioned earlier belong to this set, thus being equivalent to each other. However,

the violation of ’1/3 law’ was also discussed when the extra condition, Nw >> 1, is introduced in [57],

and when the �xation probability is approximated by a Taylor expansion with a higher degree than 1 in

[61].

We end this subsection by discussing the relationship between the traditionESS for an in�nite popula-

tion andESSN for a �nite population under the weak selection limit with two extreme cases of population

size. For N = 2, the conditions, (2.14) and (2.15), for ESSN reduce simply to b < c, and it implies that
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ESSN is a neither necessary nor su�cient condition for ESS, referring to (2.8) and (2.9). On the other

hand, when N is �nite but large, the conditions, (2.14) and (2.15), are re-written by

(i)b < d, (2.17)

(ii)x∗ < 1/3, (2.18)

meaning thatESSN is a su�cient but not necessary condition forESS. In summary,ESSN recovers the

traditional ESS asN increases, and this is compatible with the fact that a stochastic process converges to

the deterministic (adjusted) replicator equations in the increase of N .

2.2.2 Too limited validity of the local approximation

Despite of the height of its fame as a local approximation under weak selection, the approximation, ΓN ,

in (2.12) to the rate of evolution, Nρ1, in the form of the linear truncated Taylor expansion has its validity

on an extraordinarily small subinterval of [0, 1]. In fact, it is limited from above and the upper threshold

varies depending on the population size, N . This limited validity is due to the fact that for each N the

local approximation, ΓN (w), is a rational function in selection, w, and this takes negative values on the

majority part of the whole interval [0, 1] of selection, being inappropriate to be used in approximating a

positive function. Taking that the rate of evolution, Nρ1, is a positive function and ranges 0 to N into

account, an approximation is acceptable at least if it shares the same range, [0, N ]. Forcing 0 ≤ ΓN ≤ N

gives rise to an upper threshold of w whenever αN − β > 0:

w ≤ 6(N − 1)

(αN − β)N
. (2.19)

Denoting the right hand side of (2.19) by TRSN , we note that the upper threshold, TRSN , is order of

O(1/N2) and it shrinks to 0 as N increase if α > 0.
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In order to see how ine�ective the local approximation, ΓN , is, we come back to a Prisoner’s dilemma

game de�ned for two players in (1.28) with the Prisoner’s dilemma inequality in (1.29). First, we note that

the strategy, D, is an evolutionarily stable strategy for both a �nite and in�nite population. Recalling (2.8)

and (2.9), it is obvious thatD is an evolutionary stable strategy for an in�nite population since P > S. For

a �nite population modeled by the Moran process, it is straightforward to obtain (2.10), and we consider

the factor, λk, of products in (2.6) for the second condition of ESSN in (2.11). For the Moran process, we

have λk = fDk /f
C
k , and in the strongest selection temperature for both A and B it is equivalent, for a PD

game, to

λk =
Tk + P (N − k − 1)

R(k − 1) + S(N − k)
. (2.20)

Using the PD inequality in (1.29), it is easy to check λk > 1 and it implies that ρC1 < 1
N , meaning that a C

mutant is opposed by selection replacing D and taking over the resident D populations. As a result, D is

also an evolutionarily stable strategy for a �nite population. Thus, it is hard to understand the emergence

of cooperation if a PD game is played only one time. For this reason a repeated PD game for a �nite/in�nite

number of times was studied extensively in the �eld of both classical and evolutionary game theory with

the desire for the descriptive paradigm of the emergence of cooperation.

In a repeated PD game, players choose a strategy betweenC andD each round and a series of strategies

during the set number of times establishes a strategy for this game. For example, "Always cooperate (ALLC)"

is a strategy that a player cooperates all the time whereas "Always defect (ALLD)" is a strategy with which

a player joins a game by defecting all the time. Obviously, a player withALLD outcompetes another with

ALLC , receiving a higher payo� each round. In fact, ALLD is a strict Nash equilibrium. Besides these,

one strategy of direct reciprocity for a repeated PD game is what is known to be Tit-For-Tat (TFT), with

which a player cooperates at the �rst round and does whatever its opponent did in the previous round

from the second round. In other words, a player with TFT is just as generous as the opponent is but

never forgives once the opponent betrays. This strategy, TFT , was �rst invented by A. Rapoport and
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won the iterated PD game tournament held by R. Axelrod in 1984 [3] though it was only the best among

those of the participants. Later, the winner was replaced by a strategy taking a probability into account,

called Generous Tit-For-Tat (GTFT), and a player withGTFT forgives with a positive probability and keeps

cooperating even if an opponent defected in the previous round.

We consider an iterated PD game with the strategies, TFT and ALLD, during n rounds. Then the

payo� matrix between TFT and ALLD is as follows:


TFT ALLD

TFT nR S + (n− 1)P

ALLD T + (n− 1)P nP

. (2.21)

It is straightforward in an in�nite population that ALLD is an ESS in an in�nite population since nP is

always greater than S + (n− 1)P for all n since S < P . However, if nR > T + (n− 1)P is additionally

assumed, or equivalently

n >
T − P
R− P

, (2.22)

then TFT also becomes an ESS. The condition, (2.22), is established by forcing each TFT -individual to

receive a higher expected payo�, nR, than the expected payo�, T +(n−1)P , that eachALLD-individual

receives when TFT is abundant in a population. With this extra condition that requires a large enough

number of repetition of a PD game, the invasion of in�nitesimally smallALLD-subpopulation is opposed

by selection to an in�nitesimally large TFT -subpopulation. In this homogeneous state of all TFT ’s, all

individuals cooperate and the ultimate piece is achieved since no one defects in a population, and this

supports the emergence of cooperation in an in�nite population.

We now turn our gear to a �nite population under weak selection, particularly on [0, 0.01]. Unlike being

an ESS in an in�nite population, the strategy, ALLD, is no longer an ESSN for almost every N under
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weak selection. In order to specify the critical value of the population size over which the evolutionarily

stability of B is not guaranteed under weak selection, we consider two conditions in (2.14) and (2.15). The

condition in (2.14) is satis�ed if ALLD has a higher expected �tness than TFT when there is only one

TFT mutant in a population, which can be written as fTFT1 < fALLD1 . Assuming the shared selection

strength, w := wTFT = wALLD , for TFT and ALLD, it is then equivalent to show:

[S + (n− 1)P ](N − 1) < T + (n− 1)P + nP (N − 2), (2.23)

and this is rearranged to

(P − S)(N − 2) + (T − S) > 0. (2.24)

The Prisoner’s dilemma inequality in (1.29) allows the inequality in (2.24) to hold for all N ≥ 2. Hence,

selection opposes a single TFT mutant invading the resident ALLD population for all N . In fact, this

invasion inability of a single A-individual to the B-populations holds regardless of selection strength as

long as TFT and ALLD share the same selection strength. On the other hand, the �xation condition in

(2.14) is equivalent to

[nR+ 2S − T − (n− 1)P ]N < 2nR+ S + T − 2(n+ 1)P (2.25)

under weak selection. With the choice of parameters, T = 5, R = 3, P = 1, S = 0 and n = 10, (2.25)

leads toN < 43/14. Selection favors a single TFT mutant taking over the entire population for allN but

N = 2 and N = 3. Thus the strategy, ALLD, is not an ESSN if N ≥ 4 under weak selection, and this is

the new scenario that the deterministic system does not result.

Recall that the �xation condition in (2.14) ofESSN is obtained from adopting the local approximation,

ΓN , in (2.12) to the rate of evolution, NρA1 , under weak selection. For the numerical purpose, we plot the
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(a) (b)

(c) (d)

Figure 2.1: The local approximation, ΓN , in (2.12) to the rate of evolution, Nρ1, of a single TFT mutant
under weak selection has limited validity with the upper threshold of selection strength, TRS, which is
order of O(N) for the repeated Prisoner’s dilemma game between TFT and ALLD. (Parameters T = 5,
R = 3, P = 1, S = 0 and n = 10 in all panels) (a) N = 10, TRS = 0.05567010; (b) N = 102,
TRS = 0.00437730; (c) N = 103, TRS = 0.00042946; (d) N = 104, TRS = 0.00004287

exact value,NρTFT1 (= Nρ1), in red line together with its approximation, ΓN , in blue line for the repeated

Prisoner’s dilemma game under weak selection, precisely on [0, 0.01], for N = 10, 102, 103, 104 with the

choice of T = 5, R = 3, P = 1, S = 0 and n = 10 (Fig.2.1). Comparing to the rate of evolution,

Nρw=0
1 (= 1) (black solid line), in the random drift case, Nρ1 in Fig.2.1 shows that the �xation of TFT

is favored by selection under all weak selection on [0, 0.01] for all N = 10, 102, 103, 104 though how

fast a TFT mutant takes the entire population depends on the total population size, N . However, more

importantly, the well-known approximation, ΓN , that performs well on [0, 0.01] for an extraordinarily

small population size such asN = 10 becomes an invalid estimate on an increasing subinterval of [0, 0.01]

as N increases since ΓN approximates Nρ1 by a negative number once w passes the vertical asymptote.

The exact upper threshold, TRSN (blue dashed line), of weak selection below which the use of ΓN is
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acceptable was computed for each N in (2.19) and is also added to Figure 2.1. It is clearly shown that

TRSN shifts towards 0 as N increases, making ΓN work on a too tight window on which the regular

linear Taylor expansion performs even better.

2.3 Bernstein approximation: global approximation to�xationprobability

As seen in the previous section, the local approximation, ΓN , to the rate of evolution, Nρ1, is often used

under weak selection though it has limited validity, particularly for a large N . However, unlike the one

in [56] for the Fermi process using the fact that its �tness function is designed to cover any nonnegative

selection strength, none of global approximations on [0, 1] for the Moran process has been discussed so far.

We suggest one global approximation by using the Bernstein polynomial that was originally constructed

by S. Bernstein in [4] in 1912 and used to prove Weierstrass approximation theorem, which states that a

continuous function on a closed interval can be uniformly approximated by a series of polynomials.

Given a function, f(x), de�ned on the closed interval, [0, 1], the Bernstein polynomial of degree d of the

function f(x) is de�ned by:
d∑

k=0

f(
k

d
)

(
d

k

)
xk(1− x)d−k. (2.26)

Denoting (2.26) by Bd(f), it is proven that if f is continuous on [0, 1], then Bd(f) converges uniformly to

f on [0, 1] as d→∞ with an error bound:

| f(x)−Bf
d (x) |≤ (1 +

1

4
d−2)ω(f ; d−1/2), (2.27)

where the modulus, ω(f, d−1/2), of continuity of f is de�ned by

ω(f, d−1/2) = sup
x,y∈[0,1],|x−y|<δ

{| f(x)− f(y) |}. (2.28)
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Expanding the formula in (2.26), it is easy to check thatBd(f), which is a linear combination of polynomials

of degree at most d, is the weighted average of functions x, x2, · · · , xd. From its construction, obtaining the

global approximation, Bd(f), precisely requires to know d + 1 many function values at selection values,

w = k
d , k = 0, 1, · · · , d, that equally partition the interval, [0, 1], into d subintervals whereas getting

the local approximation, ΓN , is based on the stronger di�erentiability condition of Nρ1 but at only one

location w = 0.

For a �nite population of individuals playing a two-player game de�ned in (1.1), we denote by ri the

rate of evolution, Nρi, for i = 1, · · · , N − 1. Then this approximation object, Nρi, can be globally

approximated on [0, 1] by the Bernstein polynomials in (2.26) as follow:

Bd(ri;w) :=
d∑

k=0

ri(
k

d
)

(
d

k

)
wk(1− w)d−k. (2.29)

Furthermore, if the �nite population is modeled by the Moran process, then it presumes that all entries of

a payo� matrix are positive since it otherwise brings in a negative transition probability. This positiveness

guarantees that the �tness functions in (1.11) for the Moran process are continuous on [0, 1], and so is ρi

in (2.7). This completes the continuity of ri, and we have that for each i, Bd(ri) uniformly converges to ri

as d→∞.

We visit again the repeated Prisoner’s dilemma game between TFT and ALLD, de�ned in (2.21),

where this game is repeated more than T−P
R−P times to guarantee that selection opposes invasion of ALLD

into a homogeneous TFT -population, having the emergence of cooperation in mind. In order to model

a �nite population playing this game by the Moran process, it is necessary to assume that all entries of
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(a) (b)

(c) (d)

Figure 2.2: The Bernstein polynomials,Bd(r1), of degree, d, approximates the rate of evolution, r1 := Nρ1,
in (2.12) in the whole region of selection strength, being more accurate with the increase of d. For simu-
lation, we choose parameters, T = 5, R = 3, P = 1, S = 0 and n = 10, in all panels for the repeated
Prisoner’s dilemma game between TFT and ALLD. (a)N = 10. Both r1 and Bd(r1) are increasing func-
tion on [0, 1] being greater than the rate of evolution, rw=0

1 := Nρw=0
1 , under the neutral drift. Selection

favors TFT replacing ALLD for all selection strength; (b) N = 102. The same interpretation as for
N = 10 is made but with a higher rate of evolution; (c) N = 103. Selection favors TFT replacing ALLD
for weak selection while it does not for strong selection according to either the exact or approximate
functions with d > 1; (d) N = 104. Selection opposes TFT replacing ALLD for all selection strength
according to the approximation Bd(r1) for all d, however, it does not if selection is extraordinarily weak
according to the exact function.

(2.21) are positive to allow the whole range of selection for this selection dynamics. Using the Prisoner’s

dilemma inequality in (1.29), it is equivalent to

P > 0,

S + (n− 1)P > 0.

(2.30)
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With the choice, T = 5 , R = 3, P = 1, S = 0 and n = 10, the inequalities in (2.30) are satis�ed and

the uniform convergence of the Bernstein polynomial, Bd(ri), to the rate of evolution of a single TFT -

mutant is implied for this repeated Prisoner’s dilemma game. With this selection of parameters, we plot

the Bernstein approximation, Bd(r1), with a set of degrees, d = 1, 2, 4, 5, 10, 20, 25, 50, for each N =

10, 102, 103, 104 along with both the exact function of Nρ1 in black solid line and the rate of evolution,

Nρw=0
1 (= 1), under the neutral drift in black dashed line (Fig.2.2). For eachN , it is clearly seen thatBd(r1)

generally better approximates r1 as d increases and it is also supported by the reduced error, |Bd(ri)− ri|

(Fig.2.3). When N = 104, Nρ1 is nearly equal to 0 on the majority of selection except for weak selection

on which it slightly increases nearw = 0 and is followed by a sudden drop to almost 0. On the other hand,

all the Bernstein polynomials, {Bd(r1)}d, take the value, 1, at w = 0 and they monotonically decrease

to 0 as w increases though the higher d, the faster decrease. These approximations lead us to interpret

that a single TFT -mutant is opposed by selection replacing the ALLD-mutants regardless of selection

intensity whereas it is implied by the exact function, Nρ1, that selection opposes the �xation of TFT on

[0, 1] but on an extraordinarily small weak selection window.

This interpretation is compatible with the fact that the deterministic adjusted replicator system has a

bistability for this game so that the system is driven to all ALLD’s if the initial frequency of TFT does

not exceeds a critical proportion. Precisely, assuming the same nonzero selection intensity for TFT and

ALLD, the deterministic system is driven to TFT as long as fTFT > fALLD , where fTFT − fALLD for

this game is given by

fTFT − fALLD = [nRx+ (S + (n− 1)P )(1− x)]− [(T + (n− 1)P )x+ nP (1− x)]

= [(n(R− P )− (T − P )) + (P − S)]x− (P − S)

(2.31)
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with x := xTFT denoting the frequency of TFT in an in�nite population. Using the Prisoner’s dilemma

inequality and the assumption on the number of iteration in (2.22), both (n(R−P )− (T −P )) + (P −S)

and P − S are positive, and we have fTFT > fALLD if and only if

x >
P − S

n(R− P )− (T − P )) + (P − S)
=: x̂ (2.32)

and we denote the internal equilibrium by x̂. Our choice of parameters gives rise to x̂ = 1
17 . The initial

state, i = 1, in a �nite populations withN = 104 corresponds to the state, x0 = 10−4, in an in�nite popu-

lation. The initial state, x0, is de�nitely less than x̂, and it leads the deterministic system to allALLD’s by

(2.32). Noting that the adjusted replicator equation is the asymptotic system of the Moran process in the

large population size limit, it implies that for a �nite but large population selection is not likely to favor

a single TFT -mutant taking over the entire population if the initial proportion of TFT is less than the

critical value, x̂ = 1/17. This is what is shown in Figure.2.2d. Every Bernstein approximation, Bd(r1), of

any degree is strictly less than Nρw=0
1 (= 1) for all w 6= 0, meaning that selection opposes the �xation of

TFT . However, things interesting take place with the exact function, Nρ1, on an absolutely tiny interval

including w = 0. On that extremely small window, selection slightly favors TFT replacing ALLD, and

this is a new feature that is driven by stochasticity from the �nite population size and was not captured

by the deterministic system.

This new feature continues on a wider weak selection interval as N decreases due to the stronger

stochasticity. When N = 103, r1 is greater than 1 on weak selection, [0, 0.43), whereas it is less than

1 on strong selection, (0.43, 1]. Thus, the �xation of TFT is reached with the extended weak selection

intensity with this smaller population size, N = 103, compared to that with N = 104 (Fig.2.2c). This can

be similarly translated by Bd(r1) as long as d > 2 so that Bd(r1) crosses the horizontal line of Nρ1(= 1),

with the more accurate interpretation for a higher d. Eventually, when N becomes as small as N = 10 or
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N = 102, we observe that selection favors the saturation of TFT , though the rate is higher withN = 102,

according to either r1 and Bd(r1).

(a) (b)

(c) (d)

Figure 2.3: The error, produced by the Bernstein polynomial, Bd(r1), in approximating the rate of evolu-
tion, r1 = Nρ1, is reduced as much as desired by increasing the degree, d, for eachN although a relatively
higher degree is required for an intermediate value ofN . Despite of its universality as a global approxima-
tion on [0, 1], it does not behave well particularly under weak selection, producing a relatively high error.
(Parameters T = 5, R = 3, P = 1, S = 0 and n = 10 in all panels) (a)N = 10; (b) N = 102; (c) N = 103;
(d) N = 104

In summary, the Bernstein polynomial, Bd(r1), plays the role of a global approximation to the rate of

evolution, r1 = Nρ1, on [0, 1]. Its performance improves as d increase for each N so that the error can

be reduced as much as desired, and the major re�nement is achieved for strong selection. However, the

weakness of this approximation is on weak selection, especially nearw = 0, where it produces a relatively

bigger error compared to that on strong selection intensity. Despite of this bigger error near w = 0, this

error is overall smaller for either a small or a large population size, as shown in Figure 2.2a and Figure 2.2d.

On the other hand, the error remains big near w = 0 even with a higher degree for an intermediate value

ofN , particularly forN at which selection dynamic for �xation changes at some mild selection strength in
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(0, 1) as shown in Figure 2.2c. In fact, the numerical simulation for the repeated Prisoner’s dilemma game

with the same choice of parameters results that the regular linear Taylor expansion outperforms both the

Bernstein approximation, Bd(r1), and the local approximation, ΓN , on the weak selection window over

which ΓN is valid with the constraint in (2.19).
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Chapter 3

Stochastic single drug chemotherapy model

For our stochastic single drug chemotherapy model for a �nite population with health, sensitive and re-

sistant cells by the Moran process, we specify the payo� matrix, A, in (1.25) satisfying (1.34)-(1.38) as

follows:

A =



H S R

H 3 1.5 1.5

S 4 2 2.8

R 3.9 1 2.2

 (3.1)

Each state, (i, j), of the Moran process represents a population with i healthy cells, N − i − j sensitive

cells and j resistant cells, and it is assigned to a lattice point in a phase space that is 2−simplex, S2. Each

vertex of the phase space represents a homogeneous population and is denoted by its type, and at a point

in each side of S2 the population consists of only two types of subpopulations. i−numbering goes next to

the side, HS, and j−numbering lies on the bottom of the side, SR (Fig.3.1).

For example, When N = 10, there are 66 distinct states, and 30 of them consist of less than three dis-

tinct subpopulations and they are assigned to boundary points (black dots in Fig.3.1) in S2. The remaining

states correspond to the population with no vanishing subpopulations and they are mapped to interior

points (red dots in Fig.3.1).
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Figure 3.1: The space set, ΛN , of the Moran process with H , S and R is indicated as dots in the phase
space, S2, when N = 10. Each state, (H,S,R) = (i,N − i − j, j), is assigned to a lattice point in S2,
where i-numbering goes next to the side, HS, and j-numbering lies on the bottom of the side, SR.

The space set, ΛN , de�ned in (1.24), has exactly (N+1)(N+2)
2 elements, and more precisely this set is

a disjoint union of a set of (N−2)(N−1)
2 interior points and a set of 3N boundary points. The number of

interior points is order of O(N2) whereas the number of boundary points is order of O(N). The points

gradually expand as N increases and the state space of an in�nite population, which we denote by Λ∞,

eventually �lls in the whole 2−simplex, S2 (Fig.3.2). Letting xH and xR the frequencies of healthy cells and

resistant cells, a state, (H,S,R) = (xH , 1− xH − xR, xR) ∈ Λ∞ of the deterministic system is assigned

to the point in S2 that is distant away from SR by xH and from SH by xR.

(a) (b) (c) (d)

Figure 3.2: The space set, ΛN , of the Moran process with H , S and R gets denser in the phase space, S2,
with the increase of the population size,N . For eachN , |ΛN | is order ofO(N2), being equal to (N+1)(N+2)

2 .
(a) N = 10, |ΛN | = 66; (b) N = 20, |ΛN | = 231; (c) N = 30, |ΛN | = 496; (d) N = 40, |ΛN | = 861

Since the Moran process is a discrete-time and �nite-space Markov chain that each type of subpopu-

lations changes its size by at most 1 in one time step, a state, (i, j), only moves to one of its neighboring 6

lattice points in a phase space or stays remained, each with a certain probability. This microscopic proba-

bilistic movement de�nes the Moran process with three strategies to be a random walk in ΛN , not in R2.
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De�ne TXYi,j to be the transition probability at (i, j) that the number of X subpopulations increases by 1

whereas the number of Y subpopulations decreases by 1, whereX,Y ∈ {H,S,R}. For example, recalling

that a state is determined by the number of H and R subpopulations, THSi,j is the transition probability

that the state, (i, j), moves to (i+ 1, j) in one time step. Let T cons
i,j be the probability that the system at the

state, (i, j), stays remained in one time step. Then all, not necessarily zero, 7 transition probabilities are

given by:

THRi,j =
ifHi,j
Nw
i,j

· j
N
,

THSi,j =
ifHi,j
Nw
i,j

· N − i− j
N

,

TRHi,j =
jfRi,j
Nw
i,j

· i
N
,

TRSi,j =
jfRi,j
Nw
i,j

· (N − i− j)
N

,

TSHi,j =
(N − i− j)fSi,j

Nw
i,j

· i
N
,

TSRi,j =
(N − i− j)fSi,j

Nw
i,j

· j
N
,

T cons
i,j = 1− (THRi,j + · · ·+ TSRi,j ),

(3.2)

where the weighted population size, Nw
i,j , is de�ned by Nw

i,j = ifHi,j + (N − i − j)fSi,j + jfRi,j and the

expected �tness functions, fXi,j , are de�ned by the equation in (1.27) with the time-dependent selection

functions in (1.33). Then the Moran process with H , S and R eventually evolves according to an initial

state and these transition probabilities in (3.2).

Together with the stochastic Moran process, we also consider the deterministic adjusted replicator

equations for an in�nite population playing the same game in (3.1) since this is the asymptotic system of

the Moran process in the large population size limit and hence we may have an intuition for the dynamics
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driven by the Moran process for a �nite populations with a large population size. The adjusted replicator

dynamic is governed by the following equations:

˙xH =
fH− < f >

< f >
xH ,

ẋS =
fS− < f >

< f >
xS ,

ẋR =
fR− < f >

< f >
xR,

(3.3)

where the expected �tness functions at ~x := (xH , xS , xR)ᵀ are given, with the time-dependent selections

functions in (1.33), by:

fH = 1− wH + wH(A~x)1,

fS = 1− wS + wS(A~x)2,

fR = 1− wR + wR(A~x)3.

(3.4)

It is analytically proven that when a constant chemo dose is administered over time, the system has

asymptotically stable states: (xH , xS , xR) = (0, 1, 0) whenever C(t) < 1
3 and (xH , xS , xR) = (0, 0, 1)

whenever C(t) > 1
2 . The sensitive populations dominate the total population for constant low dose

chemotherapy whereas the system is led to the all resistant populations for constant high dose chemother-

apy regardless of an initial distribution. A low chemo dose acts as a main tool to remove the competing

agents, resistant cells, helping sensitive cells proliferate in a population by making the environment ben-

e�cial for them. Similarly, a high chemo dose allows resistant cells to win in a competition with sensitive

cells and eventually take over the whole population. That is, the chemo dose plays the role of controller

of the deterministic system, causing the competitive release between sensitive cells and resistant cells.

For an intermediate value of C(t), the system has bistability to cancerous states, and the initial state

determines its fate to either S or R. In other words, the proportion of area of states in a phase space
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eventually converging to the all S state is equal to 1 for C < 1
3 , and it starts gradually decreasing in the

increase of C(t) and �nally reaches 0 for C > 1
2 . The proportion of area of states in a phase space being

attracted to the all R state is exactly the reverse increasing on [0, 1]. Moreover, the adjusted replicator

system has an internal �xed point

(
3(48C + 47)

2(32C + 13)
− 7

2
,

48C + 47

4(32 + 13)
,
9

2
− 7(48C + 47)

4(32C + 13)

)
(3.5)

for 19
48 < C < 0.625, and the system spirals out from this internal �xed point.

3.1 Fixation probability for the Moran process with three strategies

In this section, we want to examine how the stochasticity driven by the �niteness of population size distorts

the adjusted replicator dynamics in terms of �xation probability. In other words, the question is to study

at what probability the Moran process with three strategies leads the �nite population to be �xated at the

all sensitive populations when it stats at (i, j), and similarly to the all resistant populations. To this end,

we denote by πXi,j the �xation probability to X ∈ {H,S,R} at the state (i, j). We will drop X in πXi,j

when the speci�cation of type is not needed. At a boundary state, a population has at most two di�erent

types of cells and the revival of the eliminated type never happens since no mutation is assumed in our

model. Thus, the further evolution since the arrival at a boundary state is then described by the Moran

process with two strategies, for which the �xation probability is ready to be used in (2.6). Thus the question

reduces to �nding the �xation probability only at interior states, for instance, at all colored dots in Figure

3.2.
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At an interior point, (i, j) ∈ int(ΛN ) := {(i, j)|1 ≤ i ≤ N − 2, 1 ≤ j ≤ N − 2, i+ j ≤ N − 1}, we

have a following recursion in terms of the �xation probability, πi,j , and transition probabilities in (3.2):

(1− T consi,j )πi,j =THRi,j πi+1,j−1 + TRHi,j πi−1,j−1 + THSi,j πi+1,j

+ TSHi,j πi−1,j + TSRi,j πi,j−1 + TRSi,j πi,j+1.

(3.6)

Using the lexicographic order, r(i, j),

(1, 1), (1, 2), · · · , (1, N − 2),

(2, 1), (2, 2), · · · , (2, N − 3),

· · · ,

(N − 3,1), (N − 3, 2),

(N − 2, 1),

(3.7)

we assign to each state, (i, j) ∈ int(ΛN ), the order:

r(i, j) =
(i− 1)(2N − 2− i)

2
+ j. (3.8)

Equating πi,j to π(r(i, j)), the recursion in (3.6) is re-written in a matrix form:

EX = F, (3.9)

where E is a (N−1)(N−2)
2 × (N−1)(N−2)

2 square matrix and

X = [π(r(1, 1)), π(r(1, 2)), · · · , π(r(N − 2, 1)]T (3.10)
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is a (N−1)(N−2)
2 × 1 column vector. Note that all elements of X are the �xation probabilities, πi,j ’s, at

(i, j) ∈ int(ΛN ), listed using the order r(i, j) in (3.8), and the elements in the r(i, j)th row of E are

precisely determined by the transition probabilities to either its surrounding six states such as (i ± 1, j),

(i, j±1), (i±1, j∓1) or the same state, (i, j). The entries of F are completely determined by the �xation

probabilities at the boundary states. By solving the linear system EX = F in (3.9), we may compute the

�xation probability on int(ΛN ). The proof and the detailed explanation for the idea of getting the �xation

probability for the Moran process with three strategies can be found in [15]. We do not go over it but

we will numerically study the stochastic e�ect of a �nite population on asymptotic dynamics using this

�ndings.

In order to see a local e�ect, we �x a state with the proportion, (H,S,R) = (0.8, 0.1, 0.1), where

healthy cells are abundant in a total population. At this state, we numerically compute the �xation prob-

abilities to H , S or R when chemotherapy is administered at a constant dose in [0, 1] (Fig.3.3). Unlike

what is analytically shown that the adjusted replicator dynamics has two attracting state, S or R, depend-

ing on the constant drug concentration, the Moran process evolves and may eventually reach any one of

homogeneous states,H , S,R, with a nonzero probability for any value of C(t), particularly for a smallN .

(a) (b) (c)

Figure 3.3: Local �xation probability for the Moran process at the state, (H,S,R) = (0.8, 0.1, 0.1), ap-
proaches the proportion of area for the basin of attraction by the adjusted replicator dynamics as the
population size, N , increases although unexpected features such as �xation to H are observed for a small
N . (a) N = 100; (b) N = 500; (c) N = 1000
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The stochasticity introduced to a �nite population by its size allows the stochastic system to have

nonzero �xation probability to H as well as to either S or R. For example, in Figure 3.3a, the �xation

probability to H (green line) at the state, (0.8, 0.1, 0.1), for N = 100 is overall 10% beating the �xation

probability to S (blue line) for some 1/3 < C < 1/2, with which the adjusted replicator dynamic is

asymptotically driven to either all sensitive state or all resistant state depending on the drug intensity.

However, for a �xed such C , this �xation probability to H at this state tends to decrease as N increase

and the �xation to H seems almost impossible when N reaches 500. That is, this new scenario, that is not

expected by the adjusted replicator dynamic, such as the absorption of the system to H is captured with

a small N , but it disappears shortly with the increase of N . Also, on [1, 1/3], the �xation probability to R

(red line) is nonzero and increases, eventually reaching nearly 0.5 around C = 1
3 for N = 100. However,

the adjusted replicator system converges to the all sensitive states for C < 1
3 regardless of the initial

distribution, and the area of the basin of attraction to R is in fact equal to zero (orange). Similarly, with

the increase of N , the �xation probability to R decreases to zero for each C on [0, 13 ], and it numerically

supports the convergence of the Moran process to the adjusted replicator system again. For comparison,

the proportion of areas on which attraction to either S or R is reached by the adjusted replicator system

is presented along with the �xation probabilities in each panel of Figure 3.3.

All of these is literally the universal property throughout all states in a population though the �xation

probability was examined at one state with the proportion, (0.8, 0.1, 0.1). We will now focus on the global

�xation probability by �xing some values of C’s instead: C(t) ≡ 0.29, 0.37, 0.45, 0.53. For a while, we

point out numerical constraint on the size of a population for the computation of global �xation proba-

bilities. In order to numerically compute the �xation probability at all states requires to solve the linear

system in (3.9), where the coe�cient matrix, E, has the size, (N−1)(N−2)
2 × (N−1)(N−2)

2 .

However, the matrix, E, is sparse of which each row has at most 7 nonzero elements since the Moran

process with three strategies is able to change its current state, (i, j), to one of 6 nearby states, (±i, j),
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(i,±j), (±i,∓j), or to stay unchanged at (i, j) in one time step. In fact, the r(i, j)th row of E, where

(i, j) corresponds to a red dot in Figure 3.2, has exactly 7 nonzero elements, the row corresponding to

a black dot has 5 nonzero elements, and the row corresponding to a green dot has 3 nonzero elements.

This sparsity helps to reduce the question to solving the linear equation in terms of the sparse matrix ofE,

where the number of elements of the sparse matrix,E, is order ofO(N2) while it is order ofO(N4) for the

full matrix, E. For a numerical solution, we use an iterative method, the least squared method (lsqr), with

the error tolerance, 10−6. This setting allows us to obtain the global �xation probability forN up to 2, 000

in a reasonable computation time. The computation time dramatically increases in N and it successfully

computed the numerical global �xation probability for N = 2, 000 within a day, but it fails during a week

for N = 2, 500.

(a) (b) (c) (d)

Figure 3.4: The basins of attraction by the adjusted replicator dynamics with constant chemo concentration,
C := C(t), shows the smooth transition from the global attraction by S to the global absorption toRwith
the increase of C , describing the competitive release of resistant subpopulations with high chemotherapy
concentration. The system experiences bistability to S or R for an intermediate value of C . (a) C ≡ 0.29;
(b) C ≡ 0.37; (c) C ≡ 0.45; (d) C ≡ 0.53

For the purpose of comparison with the Moran process, we investigate the basin of attraction by the

adjusted replicator dynamics with C = 0.29, 0.37, 0.45, 0.53 with which the di�erent key dynamics are

shown (Fig.3.4). The basin of attraction to S and R are respectively depicted in blue and red regions. The

asymptotically dominant subpopulation of type S withC ≡ 0.29 starts reducing its attraction region with

the increase of C . The basin of attraction to R with C ≡ 0.37 gradually expands its region from states

with fewer sensitive cells in a population towards the all sensitive state with C ≡ 0.53. We indicate the

separatrix in a black solid line for each C . Meanwhile, the deterministic system has an internal �xed point
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with the proportion, (0.2555, 0.6259, 0.1186), with C ≡ 0.45 from which the system spirals out. In fact,

this internal �xed points exists for all C such that 19
28 < C < 0.625.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 3.5: Fixation probability to R for the Moran process with constant chemotherapy concentrations,
C := C(t), shows the stochastic version of the competitive release of the resistant cells with high con-
centration for each population size, N . For a �xed C , each region in a phase space with either a high or a
low probability respectively approaches the basin of attraction to either R or S by the adjusted replicator
system as N increases. (a) C ≡ 0.29, N = 100; (b) C ≡ 0.37, N = 100; (c) C ≡ 0.45, N = 100; (d)
C ≡ 0.53, N = 100; (e) C ≡ 0.29, N = 500; (f) C ≡ 0.37, N = 500; (g) C ≡ 0.45, N = 500; (h)
C ≡ 0.53, N = 500; (i) C ≡ 0.29, N = 1000; (j) C ≡ 0.37, N = 1000; (k) C ≡ 0.45, N = 1000; (l)
C ≡ 0.53, N = 1000; (m) C ≡ 0.29, N = 2000; (n) C ≡ 0.37, N = 2000; (o) C ≡ 0.45, N = 2000; (p)
C ≡ 0.53, N = 2000

In Figure 3.5, the �xation probability to R at every state is described in a way that blue indicates the

�xation to R never happens whereas red indicates that the �xation surely occurs. With C ≡ 0.29, the
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Moran process has no chance to reach the �xation to R at the majority of states, but the system at states

where sensitive cells are rare in a population evolves and the resistant cells �nally dominate the entire

population with a high probability for a small population size N = 100 (Fig.3.5a). As expected, the region

of positive �xation probability to R gradually shrinks as N increases to N = 2, 000 (Fig.3.5a,3.5e, 3.5i,

3.5m). When C ≡ 0.37, the area of states in which the �xation probability to R is reached with a high

probability is near the side,HR, where there are relatively a small number of sensitive cells in a population.

This region is included in the basin of attraction toR of the adjusted replicator dynamics, colored in red in

Figure 3.4b, for each N . It expands towards the separatrix, and the area with non zero �xation probability

to R gets sharper and sharper around the separatrix in the increase of N (Fig.3.5b, 3.5f, 3.5j, 3.5n). When

C ≡ 0.45, as the adjusted replicator system has an internal �xed point from which the system spirals out,

the Moran process also shows that the high and low probability of the �xation toR is obtained in each side

of the basin boundary, and the region of the neutral �xation probability gets narrower around the basin

boundary as N increase (Fig.3.5c, 3.5g, 3.5k, 3.5o). With C ≡ 0.53, the almost sure �xation to R in the

total phase space is hardly met even when a population size is as big as N = 2000, however, the region

where the �xation is certainly attained gets enlarged towards the state, S, in the increase of N (Fig.3.5d,

3.5h, 3.5l, 3.5p).

The �xation probability to R for the Moran process overall shows the asymptotically similar pat-

terns to the basins of attraction to R by the adjusted replicator dynamics for a large N for each C(t) ≡

0.29, 0.37, 0.45, 0.53. Thus it is rarely reached at a state outside the basin boundary though it is still pos-

sible at a low probability depending on the mixture of the subpopulations. However, when the population

size is small so that the stochasticity is strong, somewhat di�erent dynamic from the deterministic system

is seen mainly around the basin boundary with C ≡ 0.37, 0.45.
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3.2 Single drug adaptive control

Setting the chemotherapy concentration, C := C(t), constant in time, it was found that the adjusted

replicator system has two attractor states depending on the constant value of the chemo concentration C .

With the choice of C(t) ≡ 0, the trajectories of the adjusted replicator dynamics starting at states near

the all healthy state show their eventual convergence to the all sensitive state in a phase space. In fact,

the basin of attraction to S is the whole region of a phase space except for two states: the all healthy state

and the all resistant state. When C(t) ≡ 0.7, the trajectories of the deterministic system starting at the

states near the equilibrium,
(

0, 9C−34C+2 ,
5−5C
4C+2) = (0, 0.6875, 0.3125

)
, show that the system is driven to the

all resistant state, and this absorption is made at all state but both S and R (Fig.3.6). More interestingly,

overlapping these two families of dynamics with two di�erent constant chemo concentrations produce

several closed loops (Fig.3.6c). By scheduling a chemotherapy as a step function between C(t) ≡ 0 and

C(t) ≡ 0.7, it is possible to permanently trap the deterministic system in a closed loop and prevent it from

the absorption to a cancerous state as under a constant chemo dose. We pick, for numerical experiment,

one closed loop and denote the intersection near the S corner by P and the intersection near the line,HR,

by Q, where P = (0.04, 0.9, 0.06) and Q = (0.53, 0.11, 0.36) (Fig.3.7a).

(a) (b) (c)

Figure 3.6: Deterministic trajectories describe the evolutionary stable states (ESS) of the adjusted replica-
tor system for di�erent constant chemotherapy values. (a) Under C(t) ≡ 0, the competitive release of the
sensitive subpopulations, S, to drug drives all trajectories to the S corner. (b) UnderC ≡ 0.7, the competi-
tive release of the resistant subpopulationsR to drug drives all trajectories to theR corner. (c) Trajectories
with two di�erent constant chemotherapy combinations overlap at di�erent times and generate a closed
loop.
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In order to design a chemotherapy schedule precisely, let TPQ be the time it takes that the point, P ,

evolves by the adjusted replicator equations and reaches the point, Q, and let TQP be the time that the

system takes to get from Q to P . Administering a high chemo C(t) ≡ 0.7 during TPQ unit time, the

adjusted replicator system starting at point P moves along the red line arriving at Q. Then, turning the

chemo o� for TQP unit time, the point Q is driven by the system back to the point P along the blue

line (Fig. 3.7a). We call the time, TPQ + TQP , that it takes to return to the initial state one evolutionary

cycle. The evolutionary cycle varies with the choice of two states and thus the chemo schedule needs to be

carefully designed with the deep investigation of the patient’s medical status in the clinical purpose. Also

for the later use, we call the time, TPQ or TQP , a half evolutionary cycle. In our deterministic model, each

half cycle is TPQ = 19.36 and TQP = 12.56 and hence one evolutionary cycle is equal to 31.92 unit time.

(a) (b)

Figure 3.7: Switching chemotherapy on and o� at adequate times traps a trajectory associated with the
adjusted replicator system within a closed loop. (a) The system, that starts at P , moves along a red line and
arrives at Q when the high chemo dose, C(t) ≡ 0.7, is continuously administered during TPQ = 19.36
unit time. When chemo is turned o� during further TQP = 12.56 unit time, it returns to the initial point,
P , eventually generating a closed loop, PQP ; (b) The tumor volume is controlled with the use of the
adaptive schedule for an evolutionary cycle, experiencing tumor regression and recurrence.

Continuing this chemotherapy schedule, what is called an adaptive schedule, for in�nitely many evo-

lutionary cycles, the adjusted replicator system starting at P returns back to P every TPQ + TQP unit

time. In addition, the initially high volume of tumor decreases for TPQ since the high chemo helps to re-

move the sensitive cells in a population at the beginning, however, the drug administration during longer

than necessary period results in the regrowth of tumor slightly before it reaches TPQ. After turning the
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chemo o�, the tumor volume keeps increasing and �nally recovering the initial tumor volume when one

evolutionary cycle is over (Fig.3.7b). Using the adaptive schedule for multiple cycles causes the tumor size

to oscillate and be controlled by preventing the system from the absorption to either S or R corners.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.8: Realizations of multiple trajectories associated with the Moran process under administration of
a constant chemotherapy show the ability of the stochastic system to behave similarly to what the adjusted
replicator dynamics drive, getting closer as the population size increases. The Moran process, starting at a
state near the cornerH with C(t) ≡ 0 (blue wiggled lines), possibly evolves and attains the homogeneous
population of all S for each N , having smoother trajectories as N increases and �nally being similar to
the deterministic trajectory (light blue line). Similarly, the Moran process starting at a state near the �xed
point (0, 0.6875, 0.3125) (red wiggled lines) is able to be driven to the state R with C(t) ≡ 0.7 for each
N . (a) C(t) ≡ 0, N = 1K ; (b) C(t) ≡ 0, N = 5K ; (a) C(t) ≡ 0, N = 10K ; (a) C(t) ≡ 0, N = 50K ; (e)
C(t) ≡ 0.7, N = 1K ; (f) C(t) ≡ 0.7, N = 5K ; (g) C(t) ≡ 0.7, N = 10K ; (h) C(t) ≡ 0.7, N = 50K

We will apply this adaptive schedule to the Moran process withH , S,R and see if how badly our model

behaves for one evolutionary cycle. To this end, we �rst investigate the stochastic trajectory against the

deterministic trajectory in a phase space with the use of a constant chemo schedule for N = 1K , 5K ,

10K , 50K , where the stochastic movement is determined by the transition probabilities in (3.2). We are

able to �nd one realization of the Moran process starting at a state near the H corner and achieving the

�xation to S with no chemo administered for each N . One realization of the Moran process starting at

a state near the �xed point, (0, 0.6875, 0.3125), and eventually converging to R with the constant use

of a drug C(t) ≡ 0.7 is also obtained. For both constant drug schedules, the stochastic trajectories get
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wiggled around the deterministic trajectories and become smoother and smoother in the increase of N

�nally being similar to the deterministic ones for a large N (Fig.3.8).

However, it is just one realization of the Moran process as an example and a stochastic system can

only be understood in terms of its distribution in general. Recalling the relation in (1.17) between the

evolution step, τ , for the Moran process and the evolution time, t, for the deterministic adjusted replicator

system through which the convergence of the Moran process to the deterministic system is driven, we

simulate 1, 000 individual Moran processes all starting at P during the half evolution steps, TPQ ·N , with

C(t) ≡ 0.7 and indicate the terminal points of all realizations as red dots for each N = 1K , 5K , 10K and

50K (Fig.3.9).

(a) (b) (c) (d)

Figure 3.9: The spread of the distribution of points aroundQ (or P ) for 1, 000 realizations of the stochastic
Moran process gets denser and demonstrates the shrunken randomness as the population size increases
when each realization is under the administration of a constant chemo schedule C(t) ≡ 0.7 (or C(t) ≡ 0)
during half an evolutionary cycle, TPQ (or TQP ), since its exact start atP (orQ). (a)N = 1K ; (b)N = 5K ;
(c) N = 10K ; (d) N = 50K

It is obvious that they form a distribution near the point,Q, at which the deterministic ends its half cycle

starting from P , and the deviation becomes smaller in the increase of N getting denser around Q. When

they are plotted in the SR coordinate system, the mean frequency, µS , of the sensitive subpopulations

at the terminal points around Q for 1, 000 realizations approaches the proportion of S at Q, which is

precisely equal to 0.11 (Fig.3.10a-3.10d). It means that as N increase, the mean frequency µS , which is the

sample mean, becomes a less biased estimator for the proportion of S at Q. The mean frequency, µR, of

the resistant subpopulations around Q also becomes a more accurate estimator for the frequency of R at

the state, Q, being equal to 0.36. One thing notable from the distribution in SR coordinate system is that
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the deviation in the direction of R is in general smaller than in the direction of S for each N though both

are getting smaller in the increase of N , and it is because the expected deterministic system diverges near

P moving towards H and then eventually towards R with C ≡ 0.7 while it converges to S with C ≡ 0

as shown in Figure 3.6. When the terminal points around Q are plotted in the principal axis coordinate

system, we see that not only both the semi-major and the semi-minor axis decrease in N but also it forms

a multi Gaussian distribution for a large N (Fig.3.10e-3.10h).

We separately simulate 1, 000 individual Moran process all starting at Q during the evolution steps,

TQP ·N , withC(t) ≡ 0 and indicate the terminal points of each realization in blue dots. It shows the similar

pattern that the �rst half cycle with C(t) ≡ 0.7 results in terms of the shrinking distribution. The mean

frequency, µS , of the sensitive subpopulations at the terminal points of the1, 000 realizations of the Moran

process around P converges to the frequency of S at P being equal to 0.9 while the mean frequency, µR,

of the resistant subpopulations around P approaches the proportion of R at P being equal to 0.06 as N

increases. However, unlike that the terminal points from the �rst half evolutionary cycle are more widely

distributed along the S axis in the SR coordinate system, the end pints from the second half cycle are

equally likely distributed along both axes, and it is because the expected deterministic system converges

to S under C(t) ≡ 0 (Fig.3.10i-3.10p). In addition, when they are plotted in the principal axis coordinate

system, we see that the multi Gaussian-like distribution is achieved with the smaller N compared to the

�rst half evolution cycle, and both the semi-major and the semi-minor axis are apparently smaller for each

N .

Now, we extend the evolution steps from a half evolutionary cycle up to the full one cycle, (TPQ +

TQP ) ·N . It means that we apply the adaptive chemotherapy schedule associated with the deterministic

system to the Moran process in the following way: each realization of the Moran process starts atP under a

high constant chemo dose,C(t) ≡ 0.7, during TPQ ·N evolution steps, and once it reaches a neighborhood

of Q in the last step, we turn the high chemo o� and the Moran process evolves from that neighborhood
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 3.10: The spread of the distribution of points in the principal axis coordinate system for 1, 000
realizations of the Moran process is, for a large population size, characterized as a multi Gaussian distri-
bution around Q (or P ) when each realization is under the administration of a constant chemo schedule
C(t) ≡ 0.7 (or C(t) ≡ 0) during half an evolutionary cycle, TPQ (or TQP ), since its exact start at P (or
Q). The mean frequency, µS (or µR), of the sensitive (or resistant) subpopulations around the point, P (or
Q), converges to the proportion of S (or R) as N increases, with the decreasing semi-major axis, σ1, and
semi-minor axis, σ2. (a) N = 1K , µS = 0.1920, µR = 0.2930; (b) N = 5K , µS = 0.1223, µR = 0.3452;
(c) N = 10K , µS = 0.1154, µR = 0.3479; (d) N = 50K , µS = 0.1099, µR = 0.3590; (e) N = 1K ,
σ1 = 0.2800, σ2 = 0.1356; (f) N = 5K , σ1 = 0.1401, σ2 = 0.0386; (g) N = 10K , σ1 = 0.1028,
σ2 = 0.0238; (h) N = 50K , σ1 = 0.0460, σ2 = 0.0093; (i) N = 1K , µS = 0.8907, µR = 0.0684;
(j) N = 5K , µS = 0.8987, µR = 0.0606; (k) N = 10K , µS = 0.8990, µR = 0.0601; (l) N = 50K ,
µS = 0.8992, µR = 0.05989; (m) N = 1K , σ1 = 0.0551, σ2 = 0.0119; (n) N = 5K , σ1 = 0.0224,
σ2 = 0.0050; (o) N = 10K , σ1 = 0.0150, σ2 = 0.0035; (p) N = 50K , σ1 = 0.0067, σ2 = 0.0016

during TQP · N evolution steps, which expectedly arrive near P . According to the convergence of the

system, it is expected that for a large N , this return is achievable with a high probability, however, it is
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hard to occur in a small population due to the strong stochasticity though not impossible. We show one

example of the stochastic trajectory with a small population of size, N = 50, along the lattice together

with the deterministic trajectory in a phase space when a drug is administered according to the adaptive

chemotherapy schedule.

Figure 3.11: The stochastic trajectory of one realization of the Moran process under the administration
of the adaptive chemotherapy, associated with the adjusted replicator dynamics, develops a random walk
along a lattice in a phase space, S2. The adaptive schedule is able to prevent the stochastic system from the
saturation of cancer cells, even in a small population withN = 50. Starting at P = (0.04, 0.9, 0.06) (black
dot), it moves along the lattice (red line) and reaches a neighborhood (green dot) ofQ = (0.53, 0.11, 0.36),
during TPQ evolution time. Turning o� the chemo at that green dot, the stochastic system evolves (blue
line) and eventually reaches a neighborhood (yellow dot) of the initial point, P , during TQP .

The strong stochasticity allows the trajectory of the Moran process starting at P under C(t) ≡ 0.6 to

jump back and forth around the deterministic trajectory along the lattice in a phase space and terminates

its movement at a point far away fromQ. However, it is also the strong stochasticity that leads the terminal

point withC(t) ≡ 0.7 to a point nearP afterTQP ·N evolution steps underC(t) ≡ 0 preventing the system

from the absorption to a cancerous state. Again, it is one realization and we simulate 1, 000 realizations of

the Moran process under the adaptive chemo schedule to understand it in distribution withN = 10K and

50K , and see how large N enables the stochastic system to resume its initial state after one evolutionary

cycle with a high probability.

The distribution of the points near Q shows the similar pattern that 1, 000 realization of the Moran

process during the �rst half cycle results since it is just one another sample of the same size. However, the

distribution of the points near P after the full one cycle is more broad compared to the case during the
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(a) (b) (c)

(d) (e) (f)

Figure 3.12: The averaged trajectory of 1, 000 realizations of the Moran process under the adaptive sched-
ule, associated with the adjusted replicator system, during one evolutionary cycle (TPQ + TQP = 31.92
unit time) �ts the corresponding deterministic trajectory for a large population size. The Moran process
is likely to return nearly to the initial state with a high probability for a large N even though the spread
of the distribution of the points near Q is still wide. (a) the distribution of the points associated with the
adaptive chemo schedule for N = 10K ; (b) the trajectory of one single realization of the Moran process
with N = 10K ; (c) the averaged trajectory of 1, 000 realizations of the Moran process with N = 10K ; (d)
the distribution of the points for N = 50K ; (e) the trajectory of one single realization with N = 50K ; (f)
the averaged trajectory with N = 50K

second half evolutionary cycle shown in Figure 3.9 for each N (Fig. 3.12a, 3.12d). It is obviously because

each realization starts at one of red dots nearQ for the second half cycle under the adaptive chemo schedule

unlike it starts at the exact point, Q, for Figure 3.9, and this drives the system to settle down at a point

further away from P resulting in a broad distribution around. Clearly, the distribution around the initial

state P is of the greater interest due to the fact that the randomness works in a cooperative way so that

the system fallen far away from Q after the �rst half evolution cycle might be able to end its evolution

near the state P in the end of the full one round.

Thus, we will investigate the distribution only around the initial point when it comes to the full evolu-

tion cycle or longer. The distribution of points around P in the SR coordinate system particularly when
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N = 50K shows the deviation in either direction is equally likely forming a multivariate Gaussian distri-

bution with the mean frequency, µS = 0.8973, of the sensitive subpopulations and the mean frequency,

µR = 0.06125, of the resistant subpopulations (Fig.3.13). These play the role of the estimators for the

proportion, 0.9, of S and the proportion, 0.06, of R at the state, P , being less accurate compared to the

case with the half evolutionary cycle discussed in Figure 3.9.

(a) (b) (c) (d)

Figure 3.13: The spread of the distribution of points for 1, 000 realizations of the stochastic Moran process
withN = 50K is characterized as a multivariate Gaussian distribution, centered nearly at the initial point,
P , when each realization is under the administration of the adaptive schedule during one evolutionary
cycle (TPQ + TQP = 31.92 unit time). As shown in the SR and the principal axis coordinate system,
the deviation is equally likely to each other in either directions. (a) the distribution of the points around
P in the SR coordinate system; (b) the kernel density distribution in the SR coordinate system; (c) the
distribution of the points in the principal axis coordinate system; (d) the kernel density distribution in the
principal axis coordinate system

We also show the whole trajectory of the Moran process under the adaptive schedule for one evolution-

ary cycle in Figure 3.12. One realization of the process moves closely to the closed loop around the points,

P andQ, for eachN while the trajectory passes the point,Q, during the �rst half cycle withN = 10K but

it does not reach close enough Q with M = 50K (Fig.3.12b, 3.12e). However, the averaged trajectory of

the Moran process with N = 50K de�nitely shows the closer �t to the deterministic trajectory (Fig.3.12c,

3.12f). This implies that the adaptive chemo schedule helps the stochastic system recover the initial state

after one evolutionary cycle at a high probability for a large N .
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3.3 Single drug adaptive control for multiple evolutionary cycles

Now, we want to continue applying this adaptive chemotherapy schedule to the Moran process but during

multiple evolutionary cycles, and see how early the recovery of the approximate initial state is broken

for a large population. To be precise, the Moran process initially starting at P evolves under the adaptive

chemo schedule for one evolutionary cycle and arrives at a point in the neighborhood of P . Then at that

terminal state of the �rst cycle, we turn the chemo on again to start the second round of the adaptive chemo

schedule for the next evolutionary cycle, and continue doing these steps for a few more rounds. That is,

the process in the current round starts at the terminal state in the previous round for one evolutionary

cycle. This is a natural extension of the application of the adaptive schedule to the Moran process, but it

is not straightforward or easy to answer the question due to the facts obtained from its expected system.

The adjusted replicator system is sensitive in the initial state as well as in the chemotherapy concen-

tration: initially close two points can have completely di�erent fate at the end under the same constant

chemo schedule, particularly either if they are located across the basin boundary for a �xed C such that

1
3 < C < 1

2 or if they are in the neighborhood of an unstable �xed point of the system. Also the basin

boundary of the deterministic system experiences the smooth transition in a phase space as the constant

drug concentration, C , which acts as a parameter, increases from 1/3 to 1/2. Hence the system starting

at a �xed initial state can be lead to a di�erent homogeneous state with a slight change in C if the change

causes the initial point to be located on the other side of the basin boundary. For these reasons and with

the randomness of the stochastic system added, the fate of the Moran process in the following round is

indeterminate even though the Moran process under the adaptive schedule returns close enough to the

initial state in the current round.

Here, we consider the adaptive schedule during 4 cycles for the numerical experiment with N = 10K

and 50K . The stochastic trajectory during the �rst, second, third and fourth round is plotted in a red,

green, blue and pink line, respectively while the deterministic trajectory is shown in light blue in Figure
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(a) (b) (c) (d)

Figure 3.14: For each N , the averaged trajectory of 1, 000 realizations of the stochastic Moran process
shows that the saturation of cancer cells can be delayed until the 4th evolutionary cycle when each real-
ization evolves under the administration of the adaptive schedule, associated with the adjusted replicator
system, during 4 evolutionary cycles since its exact start at P , although the tightness of the the averaged
stochastic trajectory to the deterministic one lasts shorter with a smaller population size. (a) the trajectory
of one single realization for the Moran process with N = 10K ; (b) the averaged trajectory of 1, 000 real-
izations for the Moran process with N = 10K ; (c) the trajectory of one single realization with N = 50K ;
(d) the averaged trajectory with N = 50K

3.14. Also, we mark the terminal point in each round in the starred shape, colored accordingly. One

realization of the Moran process starting at P under the adaptive schedule with N = 10K shows that it

moves along the red line in the �rst round as expected by the deterministic system (light blue line) and

arrives at the red point near P before it terminates its life at the all sensitive state (Fig.3.14a). The second

round starts at that red point near P , and it moves along the green line being o� the expected trajectory

and returns to the green point near P in the end of the second round. The third round starts at the red

point near P , and it arrives at the blue point near P after moving along the blue line. Unfortunately, the

blue point at which the third round ends represents the state where one subpopulation is rare in the total

population, and it possesses a high potential that the system is driven to the SH line where the population

is composed of only two subpopulations of the type, S andH . Once it enters a state of two subpopulations,

the continuation of the adaptive chemo schedule eventually causes the system to converge to a cancerous

state.

A similar scenario is shown in the single realization of the Moran process with N = 50K (Fig.3.14c).

It moves closely around the closed loop associated with the deterministic system up to the second round,

however, it starts being far o� the expected orbit and �nally ends at the pink point near P at the end of the
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fourth round. Then it is from now on laid in the similar situation to the end of the third round in Figure

3.14a with N = 10K .

Nevertheless, it is not that disappointing to apply the adaptive chemo schedule when the averaged

trajectory for 1, 000 realizations of the Moran process is taken into account. On average, the adaptive

schedule keeps cancerous cells from �xating the total population for 4 evolutionary cycles. The Moran

process starting at P with N = 10K under the adaptive schedule approximately re-attains the initial

state P in the end of each round though it becomes further and further from P as the number of rounds

increases and it does not behave similarly to the deterministic system from the third round (Fig.3.14b).

However, the distance from P to the averaged point in the end of each round gets smaller as N increases,

and it results that the Moran process behaves similarly to the deterministic system in its trajectory much

longer (Fig.3.14d).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.15: The spread of the distribution of terminal points (blue dots) around P in each round for
1, 000 realizations of the stochastic Moran process becomes wider as the number of rounds increases when
each realization evolves under the administration of the adaptive schedule, associated with the adjusted
replicator system, during 4 evolutionary cycles since its exact start at P . (a) N = 10K , round 1; (b)
N = 10K , round 2; (c) N = 10K , round 1; (d) N = 10K , round 4; (e) N = 50K , round 1; (f) N = 50K ,
round 2; (g) N = 50K , round 1; (h) N = 50K , round 4

In fact, the points near P for 1, 000 realizations of the Moran process in the end of each round are

distributed wider and wider as the number of rounds increases for each N = 10K and 50K (Fig.3.15).

71



Obviously, the relatively thick cluster around P is maintained in each round with N = 50K compared

to N = 10K . Finally, the cluster around P starts blurry from the third round with N = 10K and in

the fourth round with N = 50K (Fig.3.15). As they lose clustering around P , many of them end their 4

rounds of evolution near the all sensitive state meaning that the �xation of S eventually reached with a

high probability.

This becomes more apparent to see when the points are plotted in the SR coordinate system. For

N = 50K , the range of the distribution of S and R are equally likely up to the last round (Fig.3.16).

However, they get more clustered towards the point (1, 0) in the SR coordinate system as the number of

rounds increases, where (1, 0) represents the all sensitive state. Finally they are no longer clustered around

P in the last round and it means that the sensitive mutants �nally �xates the total population with a high

probability after 4 evolutionary cycle. Also, the multivariate Gaussian distribution is already broken in the

third round, and both the semi-major and the semi-minor axis keeps increasing in the number of rounds.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.16: As the number of rounds increases, the spread of the distribution of points around P for 1, 000
realizations of the stochastic Moran process for N = 50K becomes centered towards the homogeneous
sensitive state and immediately looses the multivariate Gaussian-like distribution, where each realization
evolves under the administration of the adaptive schedule, associated with the adjusted replicator system,
during 4 evolutionary cycles since its exact start at P . (a) round 1; (b) round 2; (c) round 3; (d) round 4; (e)
round 1; (f) round 2; (g) round 3; (h) round 4
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Extending the number of the evolutionary cycles up to 8 rounds, we clearly see the overall increase

of these values in the number of rounds for each N = 10K and 50K while they are overall smaller with

N = 50K due to the thicker cluster around P (Fig.3.17). Fitting the discrete data in the log-log plot shows

the power-law dependence of the semi-major (minor) axis on the number of rounds. Precisely, the �tted

curve for the semi-major (minor) axis of the distribution of the points around P for 1, 000 Moran processes

starting at P as a function of the number of rounds in the log-log scale is following: for N = 10K

σ1 ∼ 0.0505 · n1.3269,

σ2 ∼ 0.0071 · n1.8753,
(3.11)

and for N = 50K

σ1 ∼ 0.0149 · n1.8519,

σ2 ∼ 0.0025 · n2.0424,
(3.12)

where σ1 is the semi-major axis, σ2 is the semi-minor axis, and n is the number of rounds.

(a) (b) (c) (d)

Figure 3.17: The semi-major (and -minor) axis of the distribution of the points around P at the end of
each evolutionary cycle for 1, 000 realizations of the Moran process overall increases in the number of
rounds, showing the power-law dependency, where each realization evolves under the administration of
the adaptive schedule associated with the adjusted replicator system during 8 evolutionary cycles since its
exact start at P . (a) N = 10K ; (b) N = 10K , the log-log �t; (c) N = 50K ; (d) N = 50K , the log-log �t
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3.4 Comparison of adaptive single drug chemotherapy schedule with

standard clinical approaches

Among several clinical chemotherapy schedules, we consider two frequently used standard schedules: the

maximum tolerated dose schedule (MTD) and the low-dose metronomic schedule (LDM). The former is

the highest dose of a drug by which any signi�cantly unacceptable side e�ects are not produced while the

later is the low dose of a drug that is continuously given for a �nite time. We compare the e�ectiveness

of the adaptive chemotherapy schedule to those standard clinical chemo schedules in terms of either the

prevention ability of the system from converging to a cancerous state or the control ability of its induced

tumor size.

Figure 3.18: Two standard clinical approaches, the maximum tolerated schedule (MTD) and the low-dose
metronomic schedule (LDM), are designed in order to have the same total dose as the adaptive chemother-
apy schedule associated with the deterministic replicator system has during 4 rounds. In each cycle of the
length, 31.92, MTD delivers a drug at the highest concentration during the �rst 13.552 unit time, followed
by no chemo until the end of each cycle. On the other hand, a drug is continuously delivered during the
whole cycles at as low concentration as 0.42456 for LDM.

For our comparison, each chemo schedule is subject to having the same total dose over a �nite time.

For a drug concentration function,C(t), de�ned on [0, T ] for T > 0, the total dose,D(T ), delivered during

T unit time is de�ned by

D(T ) :=

∫ T

0
C(t)dt. (3.13)
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Let CAdaptive(t), CMTD(t) and CLDM (t) be the drug concentration functions of the adaptive, MTD

and LDM schedules, respectively, at time, t. We assume that

∫ T

0
CAdaptive(t)dt =

∫ T

0
CMTD(t)dt =

∫ T

0
CLDM(t)dt, (3.14)

where T = TPQ + TQP = 31.92 for the numerical purpose. Then it is straight forward that the highest

dose is delivered until 13.552 unit time followed by no drug administration until a cycle ends for MTD,

and the constant dose as low asCLDM (t) ≡ 0.42456 is continuously administered during 31.92 unit time,

the whole cycle, for LDM to have same total dose each other in one evolutionary cycle. These schedules

are to be repeated as many times as the number of the evolutionary cycles increases (Fig.3.18).

As shown in Figure 3.14, the adaptive schedule works e�ectively for 4 rounds by turning chemo on

and o� at adequate times, delaying the competitive release and inhibiting the �xation of cancerous cells

in a population. For a denser population, the trajectory was better controlled on average, tightly moving

around the closed loop associated with the deterministic system during longer evolutionary cycles. De�ne

a tumor size as the sum of frequencies of cancerous cells, that is, the sum of sensitive cells and resistant

cells. Note that a tumor size is a function in time ranging on [0, 1] where 0 indicates healthy state with no

tumor cells in a population while 1 indicates that no hope expected since a population is merely composed

of sensitive and resistant cells.

Then, the tumor size under the adaptive schedule is well controlled on average during 4 cycles never

reaching 1, the full tumor state. In our model, since the Moran process starts at P where the dominant

cells are of the sensitive type, the tumor size at the state, P , is as big as 0.96. As drug is administered

at a high dose for TPQ · N evolution steps on the Moran process with N = 50K , starting at P , in the

beginning of each cycles, tumor size reduces nearly about 0.5 with the slight increase at the end. This

slight increase in tumor size origins from the resistance to drug as a result of a long drug administration
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.19: The adaptive chemotherapy schedule associated with the replicator system is compared to the
standard clinical approaches, MTD and LDM, in order to demonstrate its e�ciency in terms of delaying the
time of saturation of tumor cells, which is attained before the �rst round ends under either MTD or LDM
schedules. The adaptive schedule beats the other two standard clinical chemo schedules since not only it
prevents the system from converging to a cancerous state and but also the tumor size is thus controlled for
4 rounds on average. (Each of 1, 000 realizations of the Moran process evolves under the administration of
the adaptive schedule, MTD or LDM independently during 4 evolutionary cycles since its exact start at P .)
(a)N = 10K , one single realization; (b)N = 10K , the tumor size associated with the single trajectory; (c)
N = 10K , the averaged trajectory; (d) N = 10K , the tumor size associated with the averaged trajectory;
(e)N = 50K , one single realization; (f)N = 50K , the tumor size associated with the single trajectory; (g)
N = 50K , the averaged trajectory; (h) N = 50K , the tumor size associated with the averaged trajectory

causing the re-growth of tumor. When chemo is shortly turned o�, tumor size keeps increasing and almost

recovers the full tumor state in TQP ·N evolution steps. It is true that the tumor size consequently increases

on average compared to when the chemo just starts being turned o�. However, the composition of the

population totally changes to the mostly sensitive cells so that it is ready to sensitively react to a drug.

As the second cycle begins, the tumor size undergoes down and up in the similar pattern on average, and

continues until the last round (Fig.3.19h).

On the other hand, the two standard clinical approaches show hopeless results for a large N . The

maximum tolerated dose schedule shortly drives the system to states where the resistant cells are abundant

by immediately causing the resistance to a drug and bringing the re-growth of tumor. After the chemo

is turned o�, the tumor size �nally reaches its full volume and the system permanently enters the state
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where a healthy cell no longer exists even in the end of the �rst evolutionary cycle. Later, the control of

the chemo dose just changes its state between the more sensitive and the more resistant, but the tumor size

never reduces eternally on average. The low-dose metronomic schedule does not seem to be a promising

method to attempt to cure a caner once a patient’s state is already full of cancer cells, that the initial point

P represents in our model. According to the adjusted replicator dynamics, the population starting at P

is likely to end up being the all sensitive with the constant concentration, C(t) ≡ 0.42456, because P is

located in the basin of attraction to S. Thus, the Moran process starting at P is more likely to converge

to S with a higher probability as N increases. It implies that not only the adaptive schedule but also the

clinical approach must be applied after carefully investigating the patient’s state.

We summarizing this section by presenting the e�ectiveness of the adaptive schedule for the Moran

process starring at P during 4 evolutionary cycles. In order to quantify the e�cacy, we de�ne that one

realization of the Moran process starting at P successfully ends its evolution during 4 evolutionary cycles

if it neither gains the full tumor volume on the way nor has over 99% sensitive cells in the end.

Figure 3.20: Among 1, 000 realizations of the Moran process, the rate that it is well controlled and returns
back nearly to the initial state, neither gaining the full tumor volume nor having over 99% sensitive cells
after 4 evolutionary cycles, is computed under the adaptive, MTD or LDM chemo schedules independently.
The adaptive chemo schedule obviously is superior than other two schedules, having the nearly full rate
when N = 50K , while MTD has an extraordinarily small but positive success rate up to the 3 rounds.
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Then we see that the adaptive schedule works better for eachN since it has the highest rate compared

to the clinical standard schedules (Fig.3.20). Also, as N increases, its success approximately increases in

the form of an exponential function in N :

− 0.9823 · e0.0001·N + 1, (3.15)

where N is the population size. However, LDM unfortunately brings no positive fate to the population

even when the population is small, suggesting the di�erent approach if the patient is at the state, P . The

maximum tolerated dose is also not promising at this state with nearly zero chance. When the population

size is bigger than 20K , it shows no chance with 1, 000 realizations, however, that results in a small being

smaller than 10% but positive probability that the system is successfully not driven to a cancerous state

for a small N .
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Chapter 4

Stochastic two drug chemotherapy model

In the previous chapter, we studied the single drug chemotherapeutic response to a �nite population of

competitively interacting healthy, sensitive and resistant cell when modeled by the Moran process. In gen-

eral, many clinical approaches use more than one toxin simultaneously. Drugs may interact in a way that

they result in a greater cumulative e�ect than the combined individual e�ects from the multiple indepen-

dent drug use. On the other hand, drug mixture may cause a consequently smaller e�ect than the summed

individual e�ects. The former is termed as synergism whereas the later as antagonism, where additivity

refers to the individual summation of the e�ects from the independent drug uses. Both synergism and

antagonism have been studied and quanti�ed for about a century since the ignition by C. I. Bliss in [5] in

1939, and more recently in [9].

In this thesis, we adopt the drug interaction parameter, e ∈ [−1, 1], quanti�ed by Y. Ma and P. K.

Newton in [30] in a way that e < 0 indicates antagonistic drug interactions, e = 0 refers to the additive

interactions, and e > 0 stands for synergistic interactions. We model two drug chemotherapeutic response

by the Moran process in a similar spirit to the single drug model, however, what makes these two models

distinguishable is the drug interaction parameter, e. In this framework, synergism is considered the most

promising drug interactions to cure cancer in the sense that it kills as many cancer cells using a smaller

amount of toxins as drugs in isolation would do as a sum with a higher amount of dose. However, drug
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administration continuously changes �tness of cells in all type in a coevolving population, and scheduling

chemotherapy based on a track of distribution of all cell types seems to be more realistic in controlling

tumor volume.

4.1 S,R1, R2 multi drug model

The model that we employ is the Moran process with all cancerous cells of three di�erent types: (i) sensitive

cancer cells (S) that are sensitive to both drug 1 and drug 2, (ii) resistant cancer cells (R1) that are sensitive

to drug 1 but resistant to drug 2, and (iii) resistant cancer cells (R2) that are sensitive to drug 2 but resistant

to drug 1. We let Ci(t) be the concentration of drug i, i = 1, 2, in time, t, ranging from 0 and 1 with an

additional condition, C1(t) + C2(t) ≤ 1, for all t. These concentration functions together with the drug

interaction parameter, e, enters though selection functions, wX , X ∈ {S,R1, R2}, and distorts the �tness

functions as follows:

wS(t) = w0(1− C1(t)− C2(t)− eC1(t)C2(t)),

wR1(t) = w0(1− C1(t)),

wR2(t) = w0(1− C2(t)),

(4.1)

where w0 is constant that scales out and is set to be equal to 1 for the computational purpose. Similarly to

the equation in (1.33), the selection function of sensitive cells is de�ned to be inversely proportional to the

concentration, Ci(t), of whatever drugs to which they act sensitively, in the additive drug interaction case.

The value of e in (4.1) accounts for a greater or smaller cumulative e�ects for synergism and antagonism,

compared to the sum of single e�ects from independent drug use. Thus, for a �xed e, the concentration

functions, Ci(t), act as controllers of the stochastic system and allow us to schedule chemotherapy on the

purpose of controlling tumor growth with the allowance of acceptable tumor increase.
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Then these selection functions shapes the �tness landscape, de�ned similarly as in (1.27) but withX ∈

{S,R1, R2}, with the payo� matrix where i counts the number of S subpopulations whereas j counts the

number of R2 subpopulations. We assume a pairwise Prisoner’s dilemma game for three subpopulations

with a 3× 3 payo� matrix, A:

A =



S R1 R2

S a11 a12 a13

R1 a21 a22 a23

R2 a31 a32 a33

. (4.2)

Considering the cost of resistance and the competitive release, S cells are set to be defectors whileRi’s

are cooperators, just as in the single drug model with H , S and R. Also, it is obviously more interesting

to let each pair of R1 and R2 individuals play an asymmetric game, and we design the payo�s between

R1 and R2 in a way that R1 cells are dominant subpopulations in a long term according to the adjusted

replicator dynamics. Thus the payo� matrix, A, for S, R1 and R2 are assumed to satisfy the Prisoner’s

dilemma inequalities:

a21 < a11 < a22 < a12,

a31 < a11 < a33 < a13,

a32 < a22 < a33 < a23

(4.3)

with the extra conditions that enables sensitive cells to have a higher expected �tness than that of each

resistant cells:

a13 > a23,

a13 > a33.

(4.4)
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In addition, noting that the selection-dependent expected �tness function, fXi,j , is equal to 1 when

wX = 0, we force all entries of A, which correspond to payo�s that resistant cells receives, to be bigger

than the background �tness, 1, so that it allows the competitive release of resistant cells when the sum of

two drugs is intense and the �tness of sensitive cells are as little as 1:

a21, a22, a23 ≥ 1,

a31, a32, a33 ≥ 1.

(4.5)

For the numerical purpose, we specify the payo� matrix, A, that is assumed to satisfy the inequalities

in (4.3) - (4.5) as follows:

A =



S R1 R2

S 2 2.8 2.8

R1 1.5 2.1 2.3

R2 1.5 1.8 2.2

. (4.6)

For each (i, j), the Moran process can change its state into 6 neighborhood in ΓN , de�ned in (1.24), in

one time step, besides the inactivity at the current state. Each transition probabilities are as follows:

TSR2
i,j =

ifSi,j
Nw
i,j

· j
N
,

TSR1
i,j =

ifSi,j
Nw
i,j

· N − i− j
N

,

TR2S
i,j =

jfR2
i,j

Nw
i,j

· i
N
,

TR2R1
i,j =

jfR2
i,j

Nw
i,j

· (N − i− j)
N

,

TR1S
i,j =

(N − i− j)fR1
i,j

Nw
i,j

· i
N
,

TR1R2
i,j =

(N − i− j)fR1
i,j

Nw
i,j

· j
N
,

(4.7)
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and T cons
i,j = 1− (TSR2

i,j + · · ·+ TR1R2
i,j ), where the weighted population, Nw, is de�ned by Nw = ifSi,j +

(N − i− j)fR1
i,j + jfR2

i,j . These microscopic probabilistic movement eventually determine the evolution of

cancer cells.

In measuring tumor size, xtumor, following the notation in [30], an independent important tool aside

from the stochastic Moran process is the tumor-growth equation:

˙xtumor = (< f > −g)xtumor, (4.8)

where g is the constant background �tness, and < f > is the averaged �tness in an in�nite population.

Precisely, letting ~x := (xS , xR1 , xR2)ᵀ be the frequency vector of S,R1, R2 subpopulations, the averaged

�tness fX of X , X ∈ {S,R1, R2} is given by:

fS = 1− wS + wS(A~x)1,

fR1 = 1− wR1 + wR1(A~x)2,

fR2 = 1− wR2 + wR2(A~x)3

(4.9)

with xS + xR1 + xR2 = 1. The nonlinear averaged �tness function, < f >, in the entire population is

de�ned to be

< f >= fSxS + fR1xR1 + fR2xR2 . (4.10)

First, we consider situation in which both drugs are constantly administered, and those two drugs are

additive, that is, e = 0. We assume an in�nite size of a population for a while in order to understand the

expected dynamic, the adjusted replicator dynamic:
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ẋS =
fS− < f >

< f >
xS ,

˙xR1 =
fR1− < f >

< f >
xR1 ,

˙xR2 =
fR2− < f >

< f >
xR2 .

(4.11)

The system has a di�erent set of the evolutionary stable states depending on the concentration com-

bination of two drugs. It is numerically depicted in Figure 4.1 for three di�erent constant chemotherapy

combinations of drug 1 and drug 2. When no drug is delivered, that is, C1 = 0 and C2 = 0, the tumor

saturates to the S corner regardless of the initial distribution of three subpopulations (Fig.4.1a). When

C1 = 0.8 and C2 = 0, the high chemo dose of drug 1 causes the competitive release of the resistant

subpopulations R2 to drug 1 and all trajectories are driven to the R2 corner (Fig.4.1b). Under C1 = 0 and

C2 = 0.8, the competitive release and of the resistant subpopulations R1 to drug 2 is caused as a result of

administering high chemo dose of drug 2 and all trajectories are instead driven to the R1 corner (Fig.4.1c).

(a) (b) (c) (d)

Figure 4.1: Deterministic trajectories describe the evolutionary stable states (ESS) of the adjusted repli-
cator system for di�erent constant chemotherapy values with e = 0. (a) Under C1 = 0 and C2 = 0,
the tumor saturates to the S corner regardless of the initial distribution of the three subpopulations. (b)
Under C1 = 0.8 and C2 = 0, the competitive release of the resistant subpopulations R2 to drug 1 drives
all trajectories to the R2 corner. (c) Under C1 = 0 and C2 = 0.8, the competitive release of the resistant
subpopulations R1 to drug 2 drives all trajectories to the R1 corner. (d) Trajectories with three di�erent
constant chemotherapy combinations of drug 1 and drug 2 overlap at di�erent times and generate a closed
loop.

Knowing that the adjusted replicator dynamic is the limiting system of the Moran process, it is expected

that the stochastic Moran process whose fate is determined by the transition probabilities in (4.7) shows
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4.2: Realizations of multiple trajectories associated with the Moran process under administration
of di�erent constant chemotherapy combinations of drug 1 and drug 2 (e = 0) show the ability of the
stochastic system to behave similarly to what the adjusted replicator dynamics drive, getting closer as the
population size increases. For example, the Moran process, starting at a state near the corner R2 with
C1(t) ≡ 0, C2(t) ≡ 0 (blue wiggled lines), possibly evolves and attains the homogeneous population of all
S for each N , having smoother trajectories as N increases and �nally being similar to the deterministic
trajectory (light blue line). (a) C(t) ≡ 0, N = 1K ; (b) C(t) ≡ 0, N = 5K ; (a) C(t) ≡ 0, N = 10K ; (a)
C(t) ≡ 0, N = 50K ; (e) C(t) ≡ 0.7, N = 1K ; (f) C(t) ≡ 0.7, N = 5K ; (g) C(t) ≡ 0.7, N = 10K ; (h)
C(t) ≡ 0.7, N = 50K

more similar trajectory to the deterministic one as the population size increases for the same constant

chemotherapy schedule of two drugs. According to the relation between the evolutionary step, τ , for the

Moran process of size,N , and the evolution time, t, for the deterministic system as in (1.17), the number of

steps that is under a chemotherapy schedule is determined. For example, a constant combination of drug 1

and drug 2 are administered during t ·N steps for the stochastic Moran process if the same concentration

of drugs are delivered for t unit time for the deterministic replicator system. One realization of the Moran

process is presented in Figure 4.2 under three drug combinations of two drugs: (i) C1 = 0, C2 = 0, (ii)
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C1 = 0.8, C2 = 0, or (iii) C1 = 0, C2 = 0.8 for each N = 1K , 5K , 10K and 50K . For a large N = 50K ,

it is relatively easy to �nd a stochastic trajectory that moves tightly to the deterministic trajectory for

all three drug combinations. Each realization under C1 = 0, C2 = 0 often ends its journey at the S

corner which is the evolutionary stable strategy of the deterministic system. It is true for the other two

combinations. For a small N , it is not impossible to obtain a trajectory that moves as the deterministic

trajectory does though it is wiggled and o� the solid deterministic line and that arrives at the ESS of the

deterministic system. However, it hardly takes place in general for as small N as 1K that the �xation to

that ESS occurs with a positive probability for all drug combinations.

Moreover, overlapping �gures, 4.1a, 4.1b and 4.1c, we see that trajectories with three di�erent constant

chemotherapy combinations of drug 1 and drug 2 intersect at di�erent times and eventually generate a

closed loop in a phase space (Fig.4.1d). On the numerical purpose, we �x O(0.617, 0.321, 0.062), P (0.44,

0.13, 0.43) and Q(0.807, 0.051, 0.142), and consider a deterministic trajectory starting at O, governed by

the replicator dynamic under an adaptive schedule. This chemotherapy schedule delivers drug 1 at the

constant concentration, C1 = 0.8, with no drug 2 for TOP := 6.933 unit time, turns both drugs o� for

TPQ := 6.248 unit time, and administers drug 2 at the constant concentration, C2 = 0.8, with drug 1

missing for TQO := 6.324 unit time successively (Fig.4.3a). We call the sum-up time, TOP +TPQ+TQO =

19.2653, one evolutionary cycle, and use the term 1/3 cycle to refer to each piece of time in a cycle for

convenience.

As can be seen in the �gure 4.3b, under this adaptive chemotherapy schedule the adjusted replicator

system starting at O moves along a red line under C1 = 0.8 and C2 = 0 and arrives at P after TOP

unit time. Turning chemotherapy o� at P , the system begins to have more sensitive cells in a population

and reaches O, moving along a blue line, after TPQ unit time since TOP . Again turning chemotherapy

on being under C1 = 0 and C2 = 0.8 at O, it �nally evolves along a green line and reaches back O in

TQO unit time after TOP + TPQ, generating a closed loop, OPQO, for one evolutionary cycle. When no

86



(a) (b) (c)

Figure 4.3: Switching constant chemotherapy combinations of two drugs (e = 0) on and o� at adequate
times traps a trajectory, associated with the adjusted replicator system, within a closed loop, controlling
a tumor size. (a) OP : C1 = 0.8, C2 = 0 during TOP = 6.933 unit time, PQ: C1 = 0, C2 = 0 during
TPQ = 6.248 unit time, QO: C1 = 0, C2 = 0.8 during TQO = 6.324 unit time; (b) the trajectory treated
according to the multi drug additive adaptive schedule and the untreated trajectory (pink) being driven
to the S corner; (c) tumor size under untreated (pink) and the adaptive chemotherapy schedule. (For this
numerical experiment, we take g = 1.5519.)

drug is administered, the system in the stateO starts rapidly having more sensitive cells and sensitive cells

nearly saturates in a population taking 99.56% within one evolutionary cycle (Fig.4.3b). It is then clear

that if both drugs are administered according to the adaptive chemotherapy schedule for longer than 1

cycle, even when 2 cycles, the saturation of cancerous cells is preventable while it would if no drugs were

delivered for the same time period.

The e�cacy of the application of the adaptive chemotherapy schedule can be seen in terms of tu-

mor volume that is given by the equation in (4.8). It is straightforward that the following equation of an

exponential form solves that tumor-growth equation:

xtumor(t) = xtumor(0) exp(

∫ t

0
(< f > −g) dt). (4.12)

Also, it is clear that the solution in (4.12) is T -periodic if g is set to be as follows:

g =

∫ T

0
(< f > −g) dt. (4.13)
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For the simulation of our speci�c model with the payo� matrix, A, in (4.6), we set T = TOP + TPQ +

TQO to be one cycle and g =
∫ T
0 (< f > −g) dt as in (4.13) so that the tumor volume returns back to

the initial size after one evolutionary cycle when the adaptive chemotherapy schedule is applied. Using

the Euler method to quantify g followed by some manual adjustment, such g turns out to be equal to

1.5519 for the additive drug interaction case. Setting the initial tumor size to be 1 for simplicity, we see

that the �rst 1/3 cycle with a high dose of drug 1 reduces the tumor size, the second 1/3 cycle with no

drug used allows the regrowth of tumor, and the last 1/3 cycle with a high dose of drug 2 mitigates the

cancerous condition and resumes the initial tumor size. Continuing the drug use repeatedly along with

this adaptive chemotherapy schedule theoretically controls both the state of patients’ condition by letting

their corresponding deterministic trajectories trapped in a S, R1, R2 phase space and the tumor volume

going through a series of decreases and an increase. This is a great advantage of designing a chemotherapy

schedule compared to when it is untreated. In fact, the tumor size explosively increases if untreated, and

the initial tumor size begin 1 reaches over 10 even in the �rst 1/3 evolutionary cycle while it decreases

reaching nearly 0 when the adaptive chemotherapy schedule is applied (Fig.4.3c).

4.2 Adaptive control of evolutionary cycles with additive multi drug

schedule

Now we apply the adaptive chemotherapy schedule (Fig.4.3a) associated with the deterministic adjusted

replicator dynamics to the Moran process for a few cycles, and observe for a largeN how fast the stochas-

ticity does not justify its application in an additive (e = 0) multi drug case by increasing the number of

rounds. As seen in Figure 4.2 for constant drug use, the stochastic trajectory evolve around the deter-

ministic trajectory and it is �xated to the corresponding ESS of the deterministic system with nonzero

probability. However, it is just one realization and does not represent the overall behavior of the stochastic
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process. Like we did in the previous chapter, we simulate 1, 000 realizations of the Moran process in order

to understand its behavior through their distribution and their sample mean.

(a) (b) (c) (d)

Figure 4.4: The spread of the distribution of points aroundP (Q orO) for 1, 000 realizations of the stochastic
Moran process gets denser and demonstrates the shrunken randomness as the population size increases
when each realization is under the administration of a constant chemo combinationC1(t) ≡ 0.8, C2(t) ≡ 0
(C1(t) ≡ 0, C2(t) ≡ 0 or C1(t) ≡ 0, C2(t) ≡ 0.8) with e = 0 during 1/3 evolutionary cycle, TOP (TPQ or
TQO), since its exact start at O (P or Q). (a) N = 1K ; (b) N = 5K ; (c) N = 10K ; (d) N = 50K

First, for each N = 1K , 5K , 10K and 50K , we apply the adaptive chemotherapy schedule to 1, 000

realizations of the Moran process of size N during 1/3 evolutionary cycle when each starts at a given

point, O, P or Q. The Moran process starting at O under a high constant drug 1 schedule, C1 = 0.8

and C2 = 0 during TOP · N evolutionary steps ends its journey around the point P where the adjusted

replicator system settles down after the �rst 1/3 evolutionary cycle. Each of terminal points of 1, 000

realizations is indicated as a red dot and they form a cluster near P in Figure 4.4. Likewise, for the second

1/3 evolutionary cycle, each starts at a �xed point P and evolves as untreated during TPQ ·N evolutionary

steps. All of them arrives at a point near Q, forming a blue cluster around Q. For the third 1/3 cycle, all

the realizations start at Q and their destiny under a high constant drug 2 schedule, C1 = 0 and C2 = 0.8,

is shaped around O as a green cloud. It infers that the tumor size at the last evolutionary step of each

1/3 cycle driven by the Moran process would be more or less than one associated with the deterministic

system (Fig.4.3c).

Obviously, all distributions around O, P and Q are more spread for a small N and they get more

centered at the corresponding point as N increases. We zoom in all these clouds and plot them in the

principal axis coordinate system (Fig.4.5). We observe that for each �xed constant chemotherapy schedule,
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4.5: The spread of the distribution of points in the principal axis coordinate system for 1, 000 real-
izations of the Moran process is, for a large population size, characterized as a multivariate Gaussian distri-
bution around P (Q or O) when each realization is under the administration of a constant chemotherapy
combination C1(t) ≡ 0.8, C2(t) ≡ 0 (C1(t) ≡ 0, C2(t) ≡ 0 or C1(t) ≡ 0, C2(t) ≡ 0.8) with e = 0 during
1/3 evolutionary cycle, TOP (TPQ or TQO), since its exact start at O (P or Q). As the population size
increases, both the semi-major axis, σ1 and the semi-minor axis, σ2, decrease. (a) N = 1K , σ1 = 0.0977,
σ2 = 0.0296; (b) N = 5K , σ1 = 0.0460, σ2 = 0.0127; (c) N = 10K , σ1 = 0.0320, σ2 = 0.0091; (d)
N = 50K , σ1 = 0.0138, σ2 = 0.0040; (e)N = 1K , σ1 = 0.0318, σ2 = 0.0120; (f)N = 5K , σ1 = 0.0140,
σ2 = 0.0085; (g) N = 10K , σ1 = 0.0097, σ2 = 0.0060; (h) N = 50K , σ1 = 0.0044, σ2 = 0.0027; (i)
N = 1K , σ1 = 0.0860, σ2 = 0.0207; (j)N = 5K , σ1 = 0.0402, σ2 = 0.0093; (k)N = 10K , σ1 = 0.0273,
σ2 = 0.0065; (l) N = 50K , σ1 = 0.0125, σ2 = 0.0030

they are distributed following a multi Gaussian with the decreasing semi-major and semi-minor axes in

the increase of N . More interestingly, the semi-major and semi-minor axis near Q are signi�cantly small

compared to those around either P or O, being approximately three times less. It is true that the expected

deterministic system converges, for all three constant drug combinations, to S under C1 = 0, C2 = 0, R2

under C1 = 0.8, C2 = 0, and R1 under C1 = 0, C2 = 0.8. However, the expected terminal point around
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Q after the second 1/3 cycle is much closer to itsESS, the S corner, and it leads to the smaller semi-major

(-minor) axis.

(a) (b) (c)

Figure 4.6: The stochastic trajectory of one realization of the Moran process under the administration of
the additive adaptive chemotherapy, associated with the adjusted replicator dynamics, as in Figure 4.3a
develops a random walk along a lattice in a phase space, S2. The adaptive schedule is able to prevent the
stochastic system from the saturation of cancer cells, even in a small population withN = 30. (a)N = 30;
(b) N = 40; (c) N = 50

We now extend the 1/3 cycle to one full cycle during which the adaptive chemotherapy schedule is

applied to the Moran process who starts atO. All �gures in the �gure 4.6 visualize the random walk of the

stochastic process along grids in a phase space for a small N as N = 30, 40 and 50. Iterating states of the

process that starts at O under C1 = 0.8 and C2 = 0, it travels along red segments while either arriving

one of the nearest 6 grid points or staying at the same point in one step, and it �nally reaches a pink point

after TOP · N evolutionary steps. Turning both drugs o� at that pink points drives the process to move

along blue segments and arrive at a light blue point in TPQ · N steps. When a high chemo schedule of

drug 2 as C1 = 0 and C2 = 0.8 is constantly delivered, the light blue point initiate its move along a green

line, terminating its journey at a light green point in TQO ·N steps. For these small N , the Moran process

rarely return to the neighborhood of the initial point, O, with a high probability. However, with several

trials, at least one realization that shows the approximate return to the original point under the adaptive

chemotherapy schedule was made.

Increasing the population size, it is more likely that the trajectory of the stochastic process under

the adaptive schedule is shaped tightly to the closed loop, OPQO, which the associated deterministic
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(a) (b) (c)

(d) (e) (f)

Figure 4.7: The averaged trajectory of 1, 000 realizations of the Moran process under the additive adaptive
schedule, associated with the adjusted replicator system, during one round (TOP +TPQ+TQO = 19.2653
unit time) �ts the corresponding deterministic trajectory for a large population size with e = 0. The Moran
process is likely to return nearly to the initial state with a high probability for a large N even though the
spread of the distribution of the points nearQ is still wide. (a) the distribution of the points associated with
the adaptive chemo schedule forN = 10K ; (b) the trajectory of one single realization of the Moran process
with N = 10K ; (c) the averaged trajectory of 1, 000 realizations of the Moran process with N = 10K ; (d)
the distribution of the points for N = 50K ; (e) the trajectory of one single realization with N = 50K ; (f)
the averaged trajectory with N = 50K

system generates for one full evolutionary cycle, still being o� from it. We examine how well or badly

the adaptive schedule allows the stochastic system to resume its initial frequency after one evolutionary

cycle for 1, 000 realizations of the Moran process. Each realizations starts at O and both the second and

the third 1/3 evolutionary cycles start at the point where their previous 1/3 cycle ends. Our simulation

of 1, 000 realizations of the Moran process is given with the population size N = 10K and 50K in Figure

4.7. For each N , each simulation starts at O and it proceeds under C1 = 0.8 and C2 = 0 for the �rst 1/3

evolutionary cycle, arriving at one of red points near P (Fig.4.7a,4.7d).

At the red point, both drugs starts being taken o� and it is led to one of blue points near O by no drug

strategy at the end of the second 1/3 cycle. The blue point is �nally transferred to one of green point
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near O under C1 = 0 and C2 = 0.8 after the last 1/3 cycle. Indicating trajectories along grids under the

di�erent constant drug combinations in red, blue and green in order, the trajectory of one such realization

is given in Figure 4.7b and the �gure 4.7e for N = 10K and N = 50K , respectively. Both stochastic

trajectories are drawn around the deterministic trajectory, OPQO, though it �ts better the closed loop,

OPQO, with the bigger population size.

In order to understand the general behavior of the stochastic process with the �xed size, simulation of

1, 000 such independent Moran process is carried out and it produces the distribution of points around O,

P and Q. It is obviously expected that the spread of the distribution of points is denser with the bigger

population as can be seen in Figure 4.7a and Figure 4.7d. However, even with this bigger deviation in

distribution when N = 10K , the averaged trajectories in Figure 4.7c of those 1, 000 realizations of the

Moran process already well represents its limiting system.

One other thing to point out in Figure 4.7a and Figure 4.7d is when each of these is compared to Figure

4.4c and Figure 4.4d with the same population size. Points in Figure 4.7a and Figure 4.7d are more widely

spread aroundQ andO. It is because, for example, the distribution of points nearQ in Figure 4.4 is obtained

when the adaptive chemotherapy schedule is applied to the Moran process that starts at the �xed point,

P , in order to observe the short term in�uence during TPQ · N evolutionary steps. However, Figure 4.7

is given with the more extended perspective that it is for understanding the longer term in�uence of the

chemotherapy schedule, thus, the stochastic process that ends at one of red dots near P starts at that point

for the next 1/3 cycle instead of beginning at the exact point, P . This perturbation in the initial state for

the second or the third 1/3 cycle results in the greater deviation of the distribution of points around Q or

O.

This is numerically better supported in terms of the semi-major (-minor) axis of the distribution of

points aroundOwhen they are plotted in the principal axis coordinate system as shown in Figure 4.8. With

N = 10K , the semi-major axis is equal to σ1 = 0.0273 and the semi-minor axis is equal to σ2 = 0.0065
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(a) (b) (c) (d)

Figure 4.8: The spread of the distribution of points for 1, 000 realizations of the stochastic Moran process
is characterized as a multivariate Gaussian distribution, centered nearly at the initial point, O, when each
realization is under the administration of the multi drug adaptive chemo schedule associated with the
adjusted replicator dynamics during one round (TOP +TPQ +TQO = 19.2653 unit time) with e = 0. The
mean frequency, µR1 (or µR2 ), of the subpopulation, R1 (or R2), around the point, O, converges to the
proportion of R1 (or R2) as N increases, with the decreasing semi-major axis, σ1, and semi-minor axis,
σ2. (a) N = 10K , µR1 = 0.3175 , µR2 = 0.0617; (b) N = 10K , σ1 = 0.0453, σ2 = 0.0099; (c) N = 50K ,
µR1 = 0.3177, µR2 = 0.0617; (d) N = 50K , σ1 = 0.0211, σ2 = 0.0045

for the distribution of points nearOwhen the third piece of the adaptive chemotherapy schedule is applied

to the Moran process starting at Q as shown in Figure 4.5k while σ1 = 0.0453 and σ2 = 0.0099 at the end

of the full one cycle of the adaptive schedule as in Figure 4.8b. It is true for N = 50K that the deviation

of the distribution of points at the end of one full cycle of the adaptive chemotherapy schedule is bigger

than one in the last 1/3 cycle due to the accumulated randomness in the initial points in the last two 1/3

cycles.

Moreover, the distribution of points around O driven by the application of the adaptive chemother-

apy schedule during one full evolutionary cycle closely follows the multi Gaussian centered closely to O

(Fig.4.8b, 4.8d). In fact, the mean frequency, µR1 , of the R1 subpopulations is equal to µR1 = 0.31749

and the mean frequency, µR2 , of the R2 subpopulations is equal to µR2 = 0.061724 for N = 10K while

µR1 = 0.31766 and µR2 = 0.061714 for N = 50K (Fig.4.8a,4.8c). Knowing the proportion of subpopu-

lations, (S,R1, R2) = (0.617, 0.321, 0.062), at O, it is shown that the center of the distribution is closely

located to O with the reduced norm for the bigger population size. Furthermore, plotting the points in the

R1R2 coordinate system shows that theR1 axis almost coincides with the major principal axis and theR2

axis with the minor principal axis, explaining that the continuous delivery of drug 2 in high concentration
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in the last 1/3 evolutionary cycle mostly forces the trade-o� between the sensitive cells S and the resistant

cells R1 to drug 2.

(a) (b) (c) (d)

Figure 4.9: Two realizations of the stochastic Moran process of size N = 10K , starting at O and evolving
under the adaptive chemo schedule during 8 rounds with e = 0, show a great di�erence in their tumor size
as well as in their trajectories. (a) one realization; (b) corresponding tumor size to Figure 4.9a; (c) another
realization; (d) corresponding tumor size to Figure 4.9c

We have just seen that the stochastic Moran process with as a big population size, N , as N = 10K or

50K returns closely to the initial state on average in one evolutionary cycle of the adaptive chemother-

apy schedule. It implies that the deduced tumor size using the tumor-growth equation in (4.8) is overall

controlled undertaking a series of increases and decreases as the tumor size associated with the adjusted

replicator system drops during the �rst 1/3 cycle, rises up when untreated for the second 1/3 cycle, and

reduces during the third 1/3 cycle, �nally recovering the initial tumor size at the end of the one full evolu-

tionary cycle. In order to answer the justi�cation of the use of drugs according to the adaptive chemother-

apy schedule, we continued this adaptation for 8 evolutionary cycles to the Moran process of the size

N = 50K . It starts at O for the �rst round, and each round starts at the state where the previous round

ends. For example, one realization of the Moran process starting at O terminates at one of green points at

the end of one evolutionary cycle, which we call a round interchangeably. Then, the second round starts

at that point instead of the exact point, O, and the following round begins in the same manner.

Two realizations of such application to the Moran process of size N = 10K whose trajectories do not

converge to any of cancerous states within 8 cycles are presented in Figure 4.9. Figure 4.9a and Figure

4.9c show that their trajectories maintain a triangle-like shape in each cycle without being �xated to a
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(a) (b) (c) (d)

Figure 4.10: 1, 000 realizations of the stochastic Moran process with size N = 50K show that the satu-
ration of cancer cells can be delayed until the end of 8th round when each realization evolves under the
administration of the multi drug adaptive chemo schedule, associated with the adjusted replicator system,
with e = 0 during 8 rounds since its exact start at O. (a) one realization; (b) tumor size corresponding to
Figure 4.10a; (c) the averaged trajectory of 1, 000 realizations; (d) the averaged tumor size corresponding
to Figure 4.10c

cancerous state though they closely evolve around the deterministic trajectory, OPQO, only up to �rst

a few rounds. Nonetheless, the tumor size associated with Figure 4.9a does not have a monotonically

increasing maximum value of each cycle and gets doubled in the 7th round while one associated with

Figure 4.9d incredibly soaks being over 500 in the same round. Likewise, each realization of the stochastic

process results in apparently di�erent dynamic and understanding stochastic process in distribution is

needed.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.11: The spread of the distribution of terminal points (green dots) around O in each round for
1, 000 realizations of the stochastic Moran process with size N = 50K becomes wider as the number of
rounds increases when each realization evolves under the administration of the multi drug adaptive chemo
schedule, associated with the adjusted replicator system, with e = 0 during 8 rounds since its exact start
at O. (a) round 1; (b) round 2; (c) round 3; (d) round 4; (e) round 5; (f) round 6; (g) round 7; (h) round 8
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One another realization of the Moran process with a bigger population sizeN = 50K whose trajectory

moves more closely around the deterministic trajectory, OPQO, for the entire cycles is given in Figure

4.10a along with the associated tumor size in Figure 4.10b. For this bigger population size, the maximum

of the tumor size in each cycle gradually increases as the number of rounds increases for this single simu-

lation, and this pattern turns out to be true for the averaged trajectory of 1, 000 realizations of the Moran

process and its related tumor size when N = 50K (Fig.4.10c,4.10d). The trajectory under the adaptive

chemotherapy schedule gradually shifts towards the S corner on average and it leads to the rise in the

maximum of the tumor size attained at the end of the second 1/3 cycle as the number of cycle increases.

Finally, the tumor size that is initially equal to 1 reaches over 15 within 8 cycles though it is reduced to

under 5 at the end of the 8th cycle.

Focusing on the spread of the distribution of points around O for 1, 000 realizations of the stochastic

Moran process of size N = 50K , we indicate them as green points at the end of each cycle (Fig.4.11).

They form a cloud each cycle, and it gets less thick as the number of rounds increases and some of them

mostly consisted of sensitive cells. It is clear that the spread is relatively small in R2 subpopulations but

the randomness is more re�ected in the proportion of S or R1 subpopulations.

This spread is measured through the semi-major and the semi-minor axis by plotting the points in

each cycle in the principal axis coordinate system (Fig.4.12). The spread overall follows the multi Gaussian

distribution at the end of the �rst round, but it gradually starts being distorted from the following round,

having the center of the cloud o� the most dense part. The semi-major axis which is equal to σ1 = 0.0211

in the �rst round increases roughly by 6 times in 8 cycles while the semi-minor axis being equal to σ2 =

0.0045 in the �rst round increases by 3 times. The more rapid rate of increase of the semi-major axis in the

number of rounds is also described in Figure 4.13a and Figure 4.13c for the population sizesN = 10K and

N = 50K , respectively, where darker dots represent the semi-major axis and lighter green dots stand for

the semi-minor axis. As seen in these raw data, both metrics increase nonlinearly in the number of rounds,
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.12: The spread of the distribution of points aroundO for 1, 000 realizations of the stochastic Moran
process of size N = 50K , all starting at O and evolving under the multi drug adaptive chemo schedule
with e = 0 during 8 rounds, shows the increase of both the semi-major axis, σ1, and the semi-minor axis,
σ2, in the principal axis coordinate system as the number of rounds increases. (a) round 1, σ1 = 0.0211,
σ2 = 0.0045; (b) round 2, σ1 = 0.0319, σ2 = 0.0068; (c) round 3, σ1 = 0.0425, σ2 = 0.0084; (d) round 4,
σ1 = 0.0561, σ2 = 0.0096; (e) round 5, σ1 = 0.0710, σ2 = 0.0108; (f) round 6, σ1 = 0.0871, σ2 = 0.0116;
(g) round 7, σ1 = 0.1051, σ2 = 0.0128; (h) round 8, σ1 = 0.1243, σ2 = 0.0136

de�nitely with the fact that both of them are bigger with a smaller population size. For each population

size, we could see that the semi-major (-minor) axis has the power-law dependency on the number of

rounds, and the �tted curves to the semi-major axis, σ1, and the semi-minor axis, σ2, with N = 10K are

given below in the log-log scale:

σ1 ∼ 0.0412 · n0.7782,

σ2 ∼ 0.0105 · n0.4967,
(4.14)

where n is the number of rounds. Similarly, with N = 50K ,

σ1 ∼ 0.0186 · n0.8602,

σ2 ∼ 0.0046 · n0.5235.
(4.15)
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(a) (b) (c) (d)

Figure 4.13: The semi-major (and -minor) axis of the distribution of the points aroundO at the end of each
round for 1, 000 realizations of the Moran process overall increases in the number of rounds, showing
the power-law dependency, where each realization evolves under the administration of the multi drug
adaptive chemo schedule associated with the adjusted replicator system with e = 0 during 8 rounds since
its exact start at O. (a) N = 10K ; (b) N = 10K , the log-log �t; (c) N = 50K ; (d) N = 50K , the log-log
�t

From these equations in (4.14) and (4.15), we check that the semi-major axis has a bigger increase rate

than the semi-minor axis does for each N , meaning that the spread of the distribution of points near O at

the end of each cycle is made more rapidly in the direction of the major principal axis than towards the

both direction of the minor principal axis. It is also observed that for each i the increase rate of σi with

N = 50K is bigger in the log-log scale, however, σi is a dominating function with N = 10K during 8

evolutionary cycles in the raw scale. In other words, despite of the fact that the distribution becomes more

rapidly disseminated with a bigger population size N = 50K , the absolute spread with N = 50K is not

as larger as one with N = 10K due to the stronger randomness from a smaller population size.

4.3 Adaptive control of evolutionary cycleswith synergistic and antagonistic

multi drug schedules

The multi drug adaptive chemotherapy schedule helps delay the saturation of cancerous cells on average

for the 1, 000 realizations of the Moran process and it keeps tumor size well controlled compared to the

case under no treatment when two drugs are additive for a few evolutionary cycles. In fact, the averaged

trajectory circles around the closed loop, OPQO, that the adjusted replicator system associated with the

adaptive schedule produces during one evolutionary cycle when the adaptive schedule is designed as if
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each drug concentration function, Ci(t), is a step function between two di�erent levels, 0.8 and 0, across

over time (Fig.4.3a). In this section, we have a similar question: how long and how well/badly the adaptive

schedule overall helps postpone the direct increase of tumor volume, which would be attained if untreated,

when a �nite population is modeled through the Moran process with a large enough size and, more im-

portantly, when two drugs act either synergistically or antagonistically. The drug interaction parameter,

e, ranging from −1 to 1 is what it determines if the action of two drugs are antagonistic, additive or syn-

ergistic. Recall that two drugs are additive when e = 0, two drugs interact synergistically when e > 0

and they interact antagonistically when e < 0. For simulation, we �x the value of e as such e = 0.3 for

synergistic and e = −0.3 for antagonistic drug interactions.

(a) (b) (c)

Figure 4.14: Deterministic trajectories describe the evolutionary stable states (ESS) of the adjusted repli-
cator system for di�erent constant chemotherapy values for each drug interaction. Under C1 = 0 and
C2 = 0, the tumor saturates to the S corner regardless of the initial distribution of the three subpopula-
tions. Under C1 = 0.5 and C2 = 0.2, the competitive release of the resistant subpopulations, R2, to drug
1 drives all trajectories to the R2 corner. Under C1 = 0.2 and C2 = 0.5, the competitive release of the
resistant subpopulations, R1, to drug 2 drives all trajectories to the R1 corner. (a) e = 0; (b) e = 0.3; (c)
e = −0.3

We also consider a new combination of two drugs of constant concentration such as Ci(t) ≡ 0.2 or

Ci(t) ≡ 0.5 instead of the combination of Ci(t) ≡ 0 and Ci(t) ≡ 0.8 since this combination leads to

trajectories of the adjusted replicator dynamics traversing more widely in a phase space over time when

they start at the same set of initial points for each value of e that we set, and hence it allows us to more easily

come up with an shared initial distribution at which the adaptive chemotherapy schedule starts its play.
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We present the numerical result for additive drug interaction case as well as synergistic and antagonistic

cases for comparison under this new combination of drug concentration.

The numerical simulation describes evolutionary stable states of the adjusted replicator system for

di�erent constant chemotherapy combinations of drug 1 and drug 2 in Figure 4.14. For all the values of drug

interaction parameter, e, such as e = 0,±0.3, the deterministic system is driven to the S corner regardless

of the initial distribution of the three subpopulations when no treatment is carried out. The tumor saturates

to the R2 corner when a higher concentration of drug 1 is constantly administered, precisely when C1 =

0.5 and C2 = 0.2, and this results from the competitive release of the resistant subpopulations R2 to drug

1. In the same manner, the competitive release of the resistant subpopulations R1 to drug 2 drives all

trajectories to the R1 corner when a higher concentration of drug 2 is continuously delivered. With the

�xed drug use, trajectories are distinguished by having a di�erent unstable �xed point for each e though

the deterministic system have the unique evolutionary stable state regardless of the value of e considered.

For example, the unstable �xed point composed of only S and R1 subpopulations, which is indicated as

a red open dot in Figure 4.14, under C1 = 0.5 and C2 = 0.2 represents a state that consists of more S

subpopulations when e = 0.3. This keeps consisting of more R1 subpopulations as e decreases, and it

eventually merges into the homogenous state,R1, before it reaches e = −0.3. Similarly, the unstable �xed

point with no R1 population, which is marked as a green open dot, under C1 = 0.5 and C2 = 0.2 refers

to a state having a higher proportion of S subpopulations when e = 0.3 while a smaller frequency of S

when e = −0.3. Basically, the drug interaction parameter, e, plays the role of relocation of an unstable

�xed point, not changing the nature of the system in terms of the evolutionary stability with this new drug

combination.

It is also seen in Figure 4.14 that for each e, trajectories with three di�erent constant chemotherapy

combinations of drug 1 and drug 2 overlap at di�erent times and generate a clear-cut closed loop. Fix-

ing a point O(0.812, 0.123, 0.065), we consider two drug adaptive chemotherapy schedules by which the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.15: Deterministic evolution of subpopulations, S, R1 and R2, by the adjusted replicator system
generates a closed loop,OPQO, when it starts atO and evolves under the multi drug adaptive chemother-
apy schedule during one round, resulting in the tumor size controlled. (a) With e = 0, the total dose de-
livered to generate one evolutionary cycle is 17.7604 during 29.4440 unit time. OP : C1 = 0.5, C2 = 0.2
during TOP = 14.226 unit time, PQ: C1 = 0, C2 = 0 during TPQ = 4.072 unit time, QO: C1 = 0.2,
C2 = 0.5 during TQO = 11.146 unit time; (b) the corresponding deterministic trajectory; (c) the corre-
sponding tumor size with the averaged background �tness, g = 1.4527; (d) With e = 0.3, the total dose
delivered to generate one evolutionary cycle is 17.7723 during 32.29 unit time. OP : C1 = 0.5, C2 = 0.2
during TOP = 14.260 unit time, PQ: C1 = 0, C2 = 0 during TPQ = 6.901 unit time, QO: C1 = 0.2,
C2 = 0.5 during TQO = 11.129 unit time; (e) the corresponding deterministic trajectory; (f) the cor-
responding tumor size with g = 1.4857; (g) With e = −0.3, the total dose delivered to generate one
evolutionary cycle is 17.8150 during 26.8740 unit time. OP : C1 = 0.5, C2 = 0.2 during TOP = 14.300
unit time, PQ: C1 = 0, C2 = 0 during TPQ = 1.424 unit time, QO: C1 = 0.2, C2 = 0.5 during
TQO = 11.150 unit time; (h) the corresponding deterministic trajectory; (i) the corresponding tumor size
with g = 1.4182
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adjusted replicator dynamic that starts at the exact O generates a closed loop, OPQO, in its own evolu-

tionary cycle for each e as shown in Figures 4.15b, 4.15e, 4.15h. For all these values of e, drug delivery

under C1 = 0.5 and C2 = 0.2 causes the deterministic system to traverse a red line and reaches P in TOP

unit times. When it is switched to C1 = 0 and C2 = 0 at P , the system reaches Q moving along a blue

line in TPQ unit times. Then drug starts being delivered in the concentration C1 = 0.2 and C2 = 0.5, and

it results in the arrival of the system at O in TQO unit times. Note that the initial state O is directed to the

S corner for all drug interaction cases if it is chemotherapeutically untreated as seen along with a closed

loop, OPQO.

However, the two drug adaptive chemotherapy schedule creates a closed orbit in the trajectory of

the deterministic system during one evolutionary cycle avoiding the saturation of tumor though the time

periods, TOP , TPQ or TQO , under a piece of �xed constant drug combination all di�er from each other for

all e. These schedules with the exact time periods for each legs ofOP , PQ andQO are precisely given for

each case in Figures 4.15a, 4.15d, 4.15g. We agree that each e shares the same starting point O but neither

P nor Q as well as neither TOP , TPQ nor TQO . However, since no confusion arises, we use the same

notations for those points at which the chemotherapy schedule changes drug concentration, and specify

if needed.

e −0.3 0 0.3

D 17.8150 17.7604 17.7723

T 26.8740 29.4440 32.2900

D/T 0.6629 0.6032 0.5504

Table 4.1: total dose (D), total time (T), and average dose (D/T) associated with adaptive chemotherapy
schedules with antagonistic, additive and synergistic drug interactions during one evolutionary cycle.

Our attempt to come up with closed loops OPQO that are created using, ideally, the same total dose

during one evolutionary cycle for all e’s numerically ended up being with closed orbits created using not

a �xed but similar amount of total dose in di�erent total times instead. All these quantities such as total
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time, T (one evolutionary cycle), total dose, D, and the averaged dose, D/T , used for our simulation for

one evolutionary cycle is given in Table 4.1 following the same notation in [30]. When two drugs are

additive, the adaptive schedule (Fig.4.15a) uses 17.7604 dose in total from both drugs causing the system

to be trapped in the closed loopOPQO during one evolutionary cycle, 29.4440. When two drugs interact

synergistically, the schedule (Fig.4.15d) uses 17.7723 in total and the associated trajectory creates a bigger

closed loop during the longer time period, 32.2900 unit times. In contrast, using 17.8150 in total when

two drugs interact antagonistically, the schedule (Fig.4.15g) generates the smallest loop during the shortest

time period, 26.8740. What is understood in Table 4.1 is that using similar total dose being equal to about

17.78, the closed loop is generated distinguishably faster when two drugs interact antagonistically and

this leads to the highest averaged total dose during one evolutionary cycle.

e −0.3 0 0.3

g 1.4182 1.4527 1.4857

Table 4.2: the constant background �tness (g) associated with adaptive chemotherapy schedules for an-
tagonistic, additive and synergistic drug interactions.

Another observation is made in terms of tumor size for all drug interactions. Tumor size that is assumed

to be equal to 1 initially grows or decays according to the tumor-growth equation in (4.8), where the

constant background �tness, g, is de�ned by the equation in (4.13). These background �tness g’s associated

with the adaptive chemotherapy schedules in Figure 4.15a, 4.15d, 4.15g are computed in Table 4.2 for each

drug interaction, and each of these values enable tumor size to recover the initial volume at the end of one

evolutionary cycle going through a series of rises and declines. What is observed in all cases in common

is that tumor size initially reduces when a higher chemo dose of drug 1 is administered, rises when no

chemotherapeutic treatment is done, and decreases again when a higher chemo dose of drug 2 is delivered,

reaching back the initial volume in one evolutionary cycle. That is, tumor size is controlled when the two

drug adaptive chemotherapy schedule is applied during one evolutionary cycle and hence as many times as
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desired. This is a great advantage of the use of the adaptive schedule since tumor size dramatically soaks

if no drugs are administered. In fact, tumor size under no drug surpasses its maximum in the adaptive

therapy scenario even earlier than the �rst 1/3 cycle ends for all drug interaction cases. Though tumor

is controlled in size as a result of the adoption of the adaptive chemo schedule, it is signi�cantly di�erent

in deviation. Compared to the additive drug interaction case, the variation in tumor size is greater when

two drugs interact synergistically while it is smaller when two drugs interact antagonistically, and this is

compatible with the size of the closed loop, OPQO. The bigger the closed loop is, the greater tumor size

deviates during one cycle.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.16: The spread of the distribution of terminal points (green dots) around O in each round for
1, 000 realizations of the stochastic Moran process with size N = 50K becomes wider as the number
of rounds increases when each realization evolves under the administration of the multi drug additive
(e = 0) adaptive chemo schedule, associated with the adjusted replicator system, as in Figure 4.15a during
8 rounds since its exact start at O. (a) round 1; (b) round 2; (c) round 3; (d) round 4; (e) round 5; (f) round
6; (g) round 7; (h) round 8

Now, we apply the adaptive chemotherapy schedule associated with the deterministic adjusted repli-

cator system to the Moran process of a large but �nite population size N , N = 50K , starting at O,

and �gure out up to how many of 8 cycles this adoption is valid by comparing averaged trajectories and

tumor sizes of 1, 000 realizations of the Moran process for antagonistic, additive and synergistic drug
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interactions represented with parameters, e = −0.3, 0, 0.3, respectively. For the purpose of compar-

ison, we will �rst look into the additive drug interaction case. Note that the one evolutionary cycle,

T := TOP + TPQ + TQO = 29.4440 unit times, associated with the adaptive chemo schedule in Fig-

ure 4.15a when e = 0 corresponds to the evolutionary steps, τ := T · N = 1, 472, 200, for the Moran

process with N = 50K . In 1, 472, 200 evolutionary steps, 1, 000 realizations of the Moran process that

start at O form a distribution of points near O, at which each of them starts its following run during the

same number of evolutionary steps.

Applying the adaptive chemo schedule during 8 cycles in this manner, we get 8 individual spreads of

distribution of points around O from each round, and those points are depicted as green dots in Figure

4.16. Since the adaptive schedule that we are applying is associated with the deterministic schedule that

both starts and ends atO, the gradual larger deviation in distribution in the increase of the number of runs

from the continued adoption of this schedule is de�nitely expected not only by the stochastic structure

itself but also by the fact that the initial point of each round is not the exact O but a neighborhood from

the second round.

Plotting the points near O in the principal axis coordinate system and computing the semi-major axis,

σ1, and semi-minor axis, σ2, for each run gives more comprehensive understanding (Fig.4.17). Applying

the adaptive schedule one round guarantees its use for the later round since the spread of the distribution

of the terminal points around O is closely centered at the initial point, O, and, in addition it follows the

multi Gaussian distribution. Until the 3rd round, the application of this chemo schedule seems to suitably

control the stochastic dynamic allowing the system to return back to the starting point on average although

both the semi-major axis and the semi-minor axis increase as the number of rounds goes. However, the

distribution starts being o� the initial point,O, from the 4th round and the spreads are not anymore densely

disseminated around its mean with the increasing distance from O, losing the Gaussian distribution form.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.17: The spread of the distribution of points aroundO for 1, 000 realizations of the stochastic Moran
process of size N = 50K shows the increase of both the semi-major axis, σ1, and the semi-minor axis, σ2,
as the number of rounds increases from 1 to 8 in the principal axis coordinate system when each realization
starts at O and evolves under the multi drug additive (e = 0) adaptive chemo schedule as in Figure 4.15a
during 8 evolutionary cycles. Though forming a multivariate Gaussian distribution nearly around O at
the beginning few rounds, the spread gets further away from the initial point, O, as the adaptive schedule
is repeated. (a) round 1, σ1 = 0.0156, σ2 = 0.0076; (b) round 2, σ1 = 0.0268, σ2 = 0.0123; (c) round 3,
σ1 = 0.0432, σ2 = 0.0172; (d) round 4, σ1 = 0.0675, σ2 = 0.0223; (e) round 5, σ1 = 0.1069, σ2 = 0.0288;
(f) round 6, σ1 = 0.1623, σ2 = 0.0371; (g) round 7, σ1 = 0.2233, σ2 = 0.0443; (h) round 8, σ1 = 0.2797,
σ2 = 0.0474

One of those 1, 000 realizations of the Moran process to which the adaptive chemo schedule is applied

during 8 cycles is randomly selected and its full trajectory is shown in Figure 4.18a. This realization chosen

shows a similar trajectory to the associated deterministic trajectory with the adjusted replicator dynamic,

depicted as a light blue line, up to the second round, but it keeps moving towards the R1 corner as rounds

go while maintaining a triangle-shaped trajectory in each cycle. We adopted the tumor-growth equation

in (4.8) to describe the growth and the decay of tumor volume, and the associated tumor size with that

single trajectory is given in Figure 4.18b along with the tumor size associated with the adjusted replicator

dynamic in light blue. With this large population size N = 50K , the tumor size driven by the stochastic

process almost coincides with the deterministic one during the �rst evolutionary cycle. However, the

maximum tumor size achieved at the end of the second piece, that is no drug part, keeps increasing and it

�nally reaches over 30 in the 5th cycle though the tumor size reduces below 15 in the following cycle.
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(a) (b) (c) (d)

Figure 4.18: 1, 000 realizations of the stochastic Moran process with size N = 50K show that the satu-
ration of cancer cells can be delayed when each realization evolves under the administration of the multi
drug additive (e = 0) adaptive chemo schedule, associated with the adjusted replicator system, as in Figure
4.15a during 8 rounds since its exact start at O. (a) one realization; (b) tumor size corresponding to Figure
4.18a; (c) the averaged trajectory of 1, 000 realizations; (d) the averaged tumor size corresponding to Figure
4.18c

This pattern that the single realization has is similarly re�ected in the averaged ones of 1, 000 real-

izations while both scale and size is reduced. Precisely, the averaged trajectory also traverse tightly near

the closed loop, OPQO, for the �rst few rounds but each leg of the trajectory in each round starts being

apart from the deterministic one, moving towards to the R1 corner (Fig.4.18c). This is similar to what

the single realization shows in Figure 4.18a, however, deviation is much smaller on average. The smaller

deviation is also captured in the averaged tumor size that it maximally reaches only up to 10 until the 6th

evolutionary cycle while it increases to over 25 in the last round. On average, tumor size increases but the

rate of increase is a lot more mild compared to Figure 4.18b.

4.3.1 Synergistic multi drug schedule

Under the same constant combination of two drugs, i.e. C1 = 0.5, C2 = 0.2 during TOP , C1 = 0, C2 = 0

during TPQ and C1 = 0.2, C2 = 0.5 during TQO unit times, we evaluate the adaptive chemotherapy

applied to the Moran process of size N = 50K when two drug interact synergistically. Recall from Figure

4.15d that for synergistic drug interactions (e = 0.3), TOP = 14.260, TPQ = 6.901, TQO = 11.129, and

thus the associated one evolutionary cycle, T , in this case is equal to T = 32.29 and the corresponding
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evolutionary steps, τ , for the Moran process with N = 50K is then equal to τ = 1, 614, 500. Compared

to the additive drug interaction case, this schedule has a longer cycle and hence more evolutionary steps.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.19: The spread of the distribution of terminal points (green dots) around O in each round for
1, 000 realizations of the stochastic Moran process with size N = 50K becomes wider as the number
of rounds increases when each realization evolves under the administration of the multi drug synergistic
(e = 0.3) adaptive chemo schedule, associated with the adjusted replicator system, as in Figure 4.15d
during 8 rounds since its exact start at O. (a) round 1; (b) round 2; (c) round 3; (d) round 4; (e) round 5; (f)
round 6; (g) round 7; (h) round 8

Again we consider 1, 000 realizations of the Moran process that start at O. Applying the two drug

adaptive chemo schedule for 8 evolutionary cycles to these individual stochastic systems provides the

spread of the distribution of points around O at the end of each cycle and those points are depicted as

green dots in Figure 4.19. Similar patterns that the additive drug interaction cases possess are shown for

synergistic drug interactions. Expected by both the stochasticity driving the terminal point of the system

to settle down on a neighborhood and the continued application of the adaptive chemotherapy associated

with the closed loop,OPQO, at that inexact point each cycle, the points aroundO get more widely spread

as the number of rounds increases. Moreover, for a �xed cycle, the distribution of the points vary less

in the frequency of the R2 subpopulations but more in either S or R1 subpopulations. This is where the

stochastic competitive release of R1 as a result of the continuous delivery of a higher dose of drug 1 is

re�ected.
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(e) (f) (g) (h)

Figure 4.20: The spread of the distribution of points around O for 1, 000 realizations of the stochastic
Moran process of size N = 50K shows the increase of both the semi-major axis, σ1, and the semi-minor
axis, σ2, as the number of rounds increases from 1 to 8 in the principal axis coordinate system when each
realization starts at O and evolves under the multi drug synergistic (e = 0.3) adaptive chemo schedule
as in Figure 4.15d during 8 evolutionary cycles. Though forming a multivariate Gaussian distribution
nearly around O at the beginning few rounds, the spread gets further away from the initial point, O, as
the adaptive schedule is repeated. (a) round 1, σ1 = 0.0166, σ2 = 0.0082; (b) round 2, σ1 = 0.0279,
σ2 = 0.0140; (c) round 3, σ1 = 0.0445, σ2 = 0.0200; (d) round 4, σ1 = 0.0743, σ2 = 0.0262; (e) round 5,
σ1 = 0.1231, σ2 = 0.0344; (f) round 6, σ1 = 0.1857, σ2 = 0.0420; (g) round 7, σ1 = 0.2496, σ2 = 0.0467;
(h) round 8, σ1 = 0.3057, σ2 = 0.0529

Unlike the additive drug interactions, it is observed for a �xed round that the synergistic drug interac-

tions bring in the wider distribution than the additive drug interactions entail. This deviation is quanti�ed

in terms of the semi-major and semi-minor axis by plotting the points around O in the principal axis co-

ordinate system. As it can be seen by comparing Figure 4.17 and Figure 4.20, both the semi-major axis, σ1,

and the semi-minor axis, σ2, are dominating in all cycles when two drugs interact synergistically. How-

ever, any signi�cantly new feature in the form of distribution is not shown. It starts loosing the multi

Gaussian structure from the 4th round and the area where points are heavily distributed gets further away

from the point, O, as the additive drug interactions result.

Trajectories of one randomly chosen realization and the averaged of 1, 000 samples during 8 cycles

are given in Figure 4.21. One sample in Figure 4.21a gets o� much the expected trajectory quite early from

the second round, and the associated tumor size explosively increases, reaching over 300 even in the 4th
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(a) (b) (c) (d)

Figure 4.21: 1, 000 realizations of the stochastic Moran process with size N = 50K show that the satu-
ration of cancer cells can be delayed when each realization evolves under the administration of the multi
drug synergistic (e = 0.3) adaptive chemo schedule, associated with the adjusted replicator system, as in
Figure 4.15d during 8 rounds since its exact start at O. (a) one realization; (b) tumor size corresponding to
Figure 4.21a; (c) the averaged trajectory of 1, 000 realizations; (d) the averaged tumor size corresponding
to Figure 4.21c

round (Fig.4.21b). When the observation is made on the sample average, then the mean trajectory becomes

mild in the scope of movement from the closed loop,OPQO, maintaining its move around the loop closely

until the 4th round and expanding its journey towards the R1 corner from the next round, which is the

observed feature for the additive drug interactions.

Although the additive and synergistic drug interactions do not di�er much in their trajectories and the

distribution of the terminal points of each round except for the deviation, things change when it comes to

tumor size. Recall that tumor size is modeled by the tumor-growth equation in (4.8) where the constant

background �tness, g, enters. For the numerical purpose, we set di�erent values of g for each drug inter-

action as in Table 4.2 and this allows the tumor size associated with the adjusted replicator equation to be

periodic with the period, T , where the one evolutionary cycle, T , also varies depending on the type of drug

interactions. For both the additive and synergistic drug interactions, tumor size is well controlled with a

slight increase in the maximum size for the �rst 3 to 4 rounds and the maximal tumor size keep increasing

as the number of rounds rises. Compared to its own maximal tumor size associated with the deterministic

system, the additive drug interaction causes approximately 8.2 times increase while the maximal tumor

size is increased by approximately 37.23 times for the synergistic drug interaction. What it infers is that
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synergistic drug interactions allow the use of two drug chemotherapy schedule for a shorter time than

additive drug interactions permit.

4.3.2 Antagonistic multi drug schedule

Evaluation of the two drug adaptive chemotherapy schedule composed of the same constant combination

of two drugs, i.e. C1 = 0.5, C2 = 0.2 during TOP , C1 = 0, C2 = 0 during TPQ and C1 = 0.2, C2 = 0.5

during TQO unit times, is to be made with 1, 000 realizations of the Moran process of size N = 50K for

antagonistic drug interactions. With the choice of the drug interaction parameter, e = −0.3, and those

constant combination of drugs, the time period for each leg is given in Figure 4.15g as TOP = 14.300,

TPQ = 1.424 and TQO = 11.150, which in turn results in the total time period, T , being equal to T =

26.8740. With the selected size N = 50K of the Moran process, it gives rise to the evolutionary steps,

τ , being equal to τ = 1, 343, 700, and it is the shortest number of steps among all drug interactions

considered.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.22: The spread of the distribution of terminal points (green dots) around O in each round for
1, 000 realizations of the stochastic Moran process with size N = 50K becomes wider as the number of
rounds increases when each realization evolves under the administration of the multi drug antagonistic
(e = −0.3) adaptive chemo schedule, associated with the adjusted replicator system, as in Figure 4.15g
during 8 rounds since its exact start at O. (a) round 1; (b) round 2; (c) round 3; (d) round 4; (e) round 5; (f)
round 6; (g) round 7; (h) round 8
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Indicating the last points of each run for 1, 000 individual simulations of the Moran process as green

dots visualizes the spread of the distribution of points around O in Figure 4.22. The distribution obviously

gets more widely disseminated in the rise of the number of rounds as similarly shown for other drug

interaction cases. It is also apparently seen that the antagonistic drug interaction preserves thick mass

around O for a longer cycle in comparison with the additive drug interaction.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.23: The spread of the distribution of points around O for 1, 000 realizations of the stochastic
Moran process of size N = 50K shows the increase of both the semi-major axis, σ1, and the semi-minor
axis, σ2, as the number of rounds increases from 1 to 8 in the principal axis coordinate system when each
realization starts at O and evolves under the multi drug antagonistic (e = −0.3) adaptive chemo schedule
as in Figure 4.15g during 8 evolutionary cycles. Though forming a multivariate Gaussian distribution
nearly around O at the beginning few rounds, the spread gets further away from the initial point, O, as
the adaptive schedule is repeated. (a) round 1, σ1 = 0.0146, σ2 = 0.0073; (b) round 2, σ1 = 0.0250,
σ2 = 0.0118; (c) round 3, σ1 = 0.0374, σ2 = 0.0158; (d) round 4, σ1 = 0.0584, σ2 = 0.0206; (e) round 5,
σ1 = 0.0906, σ2 = 0.0267; (f) round 6, σ1 = 0.1369, σ2 = 0.0329; (g) round 7, σ1 = 0.1942, σ2 = 0.0369;
(h) round 8, σ1 = 0.2516, σ2 = 0.0409

When the points are plotted in the principal axis coordinate system in Figure 4.23, we observe that the

distribution in the form of multi Gaussian structure is maintained up to the third cycle similarly to two

other drug interaction cases, but the distance between the area where points are heavily crowded and the

exact point, O, slowly increases in this case. In fact, the point, O, in the principal axis coordinate system

is located at the border line in the last round for both the additive and synergistic cases when the plots

are smoothened using the kernel density estimation method while Figure 4.23h shows the heavy mass is
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still close to the point, O, even in the 8th evolutionary cycle. In addition, the deviation of the distribution

around O for the antagonistic drug interaction turns out to be smallest in all cycles. It must be due to

that administering a similar amount of the total dose, the adaptive chemotherapy schedule results in the

smallest closed loop for the expected system, the adjusted replicator dynamic, in its one evolutionary cycle

when drugs interact antagonistically as shown in Figure 4.15. Thus the stochastic Moran process has less

chance to re�ect its randomness on its path as it evolves. The exact values of the semi-major axis, σ1, and

the semi-minor axis, σ2, are given on top of each plot in Figure 4.23.

(a) (b) (c) (d)

Figure 4.24: 1, 000 realizations of the stochastic Moran process with size N = 50K show that the satu-
ration of cancer cells can be delayed when each realization evolves under the administration of the multi
drug antagonistic (e = −0.3) adaptive chemo schedule, associated with the adjusted replicator system, as
in Figure 4.15g during 8 rounds since its exact start at O. (a) one realization; (b) tumor size corresponding
to Figure 4.24a; (c) the averaged trajectory of 1, 000 realizations; (d) the averaged tumor size corresponding
to Figure 4.24c

The trajectories of one realization chosen at random and the mean for the 1, 000 realizations of the

Moran process are provided in Figure 4.24. One realization of the stochastic system in Figure 4.24a evolves

as much as there are more R1 subpopulations at the end of 8 cycles, showing the early development of

the group of the R1 subpopulations as a result of the competitive release caused by the higher dose of

drug 2. However, the stochastic Moran process can only be understood in terms of a realistic estimate, and

we take it to be the sample mean since it is of a �nite but large population size. The trajectory in Figure

4.24c corresponding to the sample mean moves tightly to the deterministic path until the 5th round and

gradually starts being o� towards to the R1 corner, but not as much as the one realization shows. Except

that the averaged trajectory under the antagonistic drug interaction generates a smaller open-triangle-like
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shape in each cycle than under two other drug interaction cases, it shares the same pattern with other two

cases.

However, the considerable advantage of the antagonistic drug interactions is proven when we focus

on tumor size. With the choice of the constant background �tness, g, as in Table 4.2, tumor size is not only

controlled relatively longer with little increase in its maximum until the 4th round but also the increase that

starts from the 5th round is much slower compared to either the additive or synergistic drug interactions.

Precisely, the maximal tumor size obtained at the end of the second 1/3 cycle in each round is increased

by approximately 3.56 times in 8 evolutionary cycles, and this is a considerably smaller rate if we note

that the rates were 8.2 and 37.23 for the additive and synergistic drug interactions, respectively. The fact

that the maximum tumor size even in the last round is less than only 6 is also notable. Set the threshold

of tumor size to be equal to, say, 10, then the two drug adaptive chemotherapy schedule can be applied

during 5 cycles for the additive drug interaction as seen in Figure 4.18d but it can be only applied during

one cycle for the synergistic drug interaction as veri�ed in Figure 4.21d. Figure 4.24d �nally justi�es that

the most powerful drug interaction in controlling tumor size when applying the adaptive chemo schedule

is the antagonistic one since tumor size most slowly grows and it grows much less than it is allowed.

As mentioned before, one of reasons that the antagonistic drug interaction when applying the adaptive

chemotherapy schedule is that the spread of the distribution of points around O keeps centered near O

with the smallest deviation as the number of rounds increases, making the adoption of the adaptive chemo

schedule for the next round more feasible. The measures, the semi-major and semi-minor axis, to explain

the deviation in the distribution in each round are depicted in Figure 4.25 to summarize that the largest

deviation is obtained with the synergistic interaction while the smallest one with the antagonistic drug

interaction. We also present the �tted curves of both σ1 and σ2 in log-log scale in Figure 4.25d, 4.25e, 4.25f
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(a) (b) (c)

(d) (e) (f)

Figure 4.25: The semi-major (and -minor) axis of the distribution of the points around P at the end of
each evolutionary cycle for 1, 000 realizations of the Moran process with N = 10K or N = 50K overall
increases in the number of rounds, showing the power-law dependency, where each realization evolves
under the administration of the adaptive schedule associated with the adjusted replicator system during 8
evolutionary cycles since its exact start at O. (a) e = 0; (b) e = 0.3; (c) e = −0.3; (d) e = 0, the log-log �t;
(e) e = 0.3, the log-log �t; (f) e = −0.3, the log-log �t

for the additive, synergistic and antagonistic interaction, respectively, and all of them show the power-law

dependency in the number, n, of rounds as follows with N = 10K :

σe=0
1 ∼ 0.0295 · n1.2504,

σe=0
2 ∼ 0.0165 · n0.9114,

σe=0.3
1 ∼ 0.0337 · n1.2108,

σe=0.3
2 ∼ 0.0175 · n0.9904,

σe=−0.31 ∼ 0.0261 · n1.2214,

σe=−0.32 ∼ 0.0139 · n0.9734.

(4.16)
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Similarly, with N = 50K :

σe=0
1 ∼ 0.0115 · n1.4387,

σe=0
2 ∼ 0.0069 · n0.9152,

σe=0.3
1 ∼ 0.0120 · n1.4752,

σe=0.3
2 ∼ 0.0077 · n0.9216,

σe=−0.31 ∼ 0.0107 · n1.3981,

σe=−0.32 ∼ 0.0068 · n0.8525.

(4.17)

4.4 Comparison of adaptive multi drug chemotherapy schedule with

standard clinical approaches

The evaluation of the adaptive two drug chemotherapy schedule for a few cycles with the �xed amount

of the total dose was made in the previous section across the di�erent types of drug interactions when it

is applied to the Moran process that starts at a �xed point. It was concluded that the therapy associated

with the closed loop, OPQO, turns out to be the most e�cient when two drugs interact antagonistically

in the sense that it gives rise to the smallest trajectory and the lowest increase in tumor size during the

whole cycles. On the other hand, when two drug interact synergistically, it involves the largest trajectory

with the greatest deviation in the spread of the distribution of point around the initial point, O. On top of

that, it provides the signi�cantly rapid increase in tumor size compared to two other drug interactions.

In this section, �xing a drug interaction, we evaluate the adaptive two drug chemotherapy schedule

by comparing it to the most frequently used standard clinical schedules: the maximum tolerated dose

schedule (MTD) and the low-dose metronomic schedule (LDM). We already considered these two clinical

schedules in Section 3.4 with a single drug chemotherapy model, where we had only one controller of the

system which is the concentration function of the single drug with a constraint 0 ≤ C(t) ≤ 1 for all t. In
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two drug chemotherapy model, we have two controllers,C1(t) andC2(t), that are concentration functions

of drug 1 and drug 2, and these functions have come with one more constraint

C1(t) + C2(t) ≤ 1 (4.18)

for all t as well as 0 ≤ Ci(t) ≤ 1.

The comparison of two drug chemotherapy schedules is made by �xing both a type of drug interaction,

more precisely a value of the drug interaction parameter, e, and the same total dose delivered over a �nite

time, where the total dose, D(T ), of two drugs delivered during T unit time is similarly de�ned to the

equation in (3.13) by:

D(T ) :=

∫ T

0
C1(t) + C2(t)dt. (4.19)

(a) (b) (c) (d)

Figure 4.26: The multiple additive (e = 0) standard clinical approaches are designed to have the same
total dose, being equal to 17.7604, as the amount that is delivered during one round (29.4440 unit time)
according to the adaptive chemo schedule in Figure 4.15a. (a) adaptive; (b)MTD1: the drug 1 is maximally
administered during the beginning TMTD:C1 = 9.3422 unit time while the drug 2 is delivered during the
last TMTD:C2 = 8.4182 unit time. (c) MTD2: the drug 2 is maximally administered during the beginning
TMTD:C2 = 8.4182 unit time while the drug 1 is delivered at largest during the last TMTD:C1 = 9.3422
unit time. (d) LDM : both the drug 1 and drug 2 are constantly administered during the whole rounds at
the level of C1 = 0.347287 and C2 = 0.255905, respectively.

Our two drug adaptive chemotherapy schedule in Figure 4.15a associated with the closed loop,OPQO,

in Figure 4.5b for the additive drug interaction (e = 0) has the total doseD = 17.7604 for one evolutionary

cycle which we set T to be. Having in mind that MTD delivers the highest dose of a drug by which any

signi�cantly unacceptable side e�ects are not caused, we may naturally come up with two MTD schedules
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with the same total dose, D, during T = 29.4440 unit time forcing them to satisfy the equation (4.18).

One MTD, which we denote by MTD1, is to deliver the highest dose of drug 1 �rst until the total dose of

drug 1 under MTD1 meets half the total dose of drug 1 under the adaptive schedule, that is D/2. For the

rest D/2, the highest dose of drug 2 is delivered at the end of one cycle during the time over which the

total dose of drug 2 under MTD1 is equal to D/2. Let TMTD:C1 and TMTD:C2 be the time period over

which drug 1 and drug 2, respectively, is maximally delivered so that the total dose of both drugs during

one evolutionary cycle is equal to D. Then TMTD:C1 = 9.3422, TMTD:C2 = 8.4182 for the additive drug

interaction, and MTD1 is well described in Figure 4.26b.

Another MTD schedule is exactly the same as MTD1, except that the delivery order of drugs is

switched so that drug 2 is delivered �rst during TMTD:C2 unit times and drug 1 is administered at the

end of the cycle during TMTD:C1 unit times, having a pause between. We denote this schedule by MTD2

and it is depicted in Figure 4.26c. For both MTD schedules, we simply put the delivery times of two drugs

apart, at the beginning and at the end, so that the area of the maximal concentration is not overlapped dur-

ing one cycle in order to make sure the constraint in (4.18). However, it is true that we may design in�nitely

many MTD schedules by adjusting time window as long as two maximal windows are not overlapped.

LDM is one other typical clinical approach where the low dose is continuously delivered during a �nite

time period. It is straight forward to design LDM by simply averaging the total dose of each drug under the

adaptive schedule for the entire time period. From the adaptive schedule in Figure 4.15a for the additive

drug interaction, the constant low dose of drug 1 turns out to be 0.347287 and the one of drug 2 is lower

and equal to 0.255905. This LDM schedule for the additive interaction is given in Figure 4.26d. Thus we

so far have 4 two drug chemotherapy schedules that have the same total dose for a �xed one evolutionary
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cycle in hand to compare when two drugs are additive. Denoting the type of schedule as superscript for

the concentration functions, Ci(t), of drug i, all the schedules in Figure 4.26 satis�es

D =

∫ T

0
C

Adaptive
1 (t) + C

Adaptive
2 (t)dt

=

∫ T

0
CMTD1
1 (t) + CMTD1

2 (t)dt

=

∫ T

0
CMTD2
1 (t) + CMTD2

2 (t)dt

=

∫ T

0
CLDM1 (t) + CLDM2 (t)dt

(4.20)

, where T = TOP +TPQ +TQO = 29.4440 and D = 17.7604. Note that we omit indicating here the type

of drug interaction since the comparison to be made is within a �xed type and the construction of MTD’s

and LDM is designed in the same manner to satisfy the equation in (4.20) with simply di�erent values of

D and T for each drug interaction as determined in Table 4.2.

Recall from Figure 4.18c,4.18d that applying the adaptive chemotherapy schedule to the 1, 000 realiza-

tions of the Moran process of the population size, N = 50K , successfully controls both trajectory and

tumor size for the �rst few rounds on average when two drugs are additive as the well designed schedule

eventually plays the role of delaying the competitive release ofR1 orR2. Although the stochasticity drives

the system gradually to be o� the expected route in the direction towards the R1 corner resulting in the

growth of tumor in size, its increase is below 30 during 8 evolutionary cycles. These trajectory and tumor

size for the adaptive schedule are depicted in pink in Figure 4.27.

On the other hand, when MTD schedules are applied, the �rst maximal dose of a drug helps the system

shortly build up the resistant subpopulations even though the duration of the maximal dose is relatively

shorter than the �rst 1/3 piece of the adaptive schedule. ForMTD1 which administer the drug 1 �rst, the

resistant R2 subpopulations to drug 1 starts quickly proliferating in a population and it nearly overtakes

the entire population at the end of the delivery of the maximal dose even in the �rst round. However, a
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(a) (b) (c)

(d) (e) (f)

Figure 4.27: 1, 000 realizations of the stochastic Moran process with size N = 50K show that the satu-
ration of cancer cells can be delayed longer on average compared to being under either LDM and MTD’s
when each realization evolves under the administration of the multi drug additive (e = 0) adaptive chemo
schedule, associated with the adjusted replicator system, during 8 rounds since its exact start at O. (a) one
single realization; (b) tumor size corresponding to Figure 4.27a; (c) the averaged �tness of S, R1 and R2

cells corresponding to Figure 4.27a; (d) the averaged trajectory of all realizations; (e) the averaged tumor
size corresponding to Figure 4.27d; (f) the averaged �tness of S, R1 and R2 cells corresponding to Figure
4.27d

pause, that is no drug, between two maximal dose administration of di�erent drugs allows the system to

step back towards the S corner for a while. When the administration of the maximal dose of drug 2 begins,

the resistantR1 subpopulations to drug 2 starts growing and the population �nally has a higher frequency

of R1 than others at the end of the �rst round. This pattern continues as the number of rounds increases,

but the absent mutation kills the whole sensitive subpopulations early and the population becomes full

of resistant populations. In fact, the maximal dose administration of a drug let the selection functions

of sensitive cells to the drug used vanish while it lets resistant cells to the drug used have the strongest

selection regardless of the value of e according to the equation (4.1) and the payo� matrix, A, in (4.6).

Then the expected �tness of those sensitive cells become less �tter, being equal to 1. This is re�ected to
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our stochastic simulation under MTD.MTD1 administers drug 2 in the last and it leads to the proliferation

of the resistant subpopulations R1 to that drug 2 as can be seen from the terminal point of the last cycle

marked as a blue dot in Figure 4.27a, 4.27d. The whole trajectory corresponding to MTD1 is described in

a blue line in Figure 4.27.

MTD2 acts exactly in an opposite way since it interchanges the order of administration of two drugs.

The maximal dose of drug 2 at the beginning leads the dynamic of the stochastic system to nearly the R1

corner since the highest dose of drug 2 rapidly help the resistant subpopulationsR1 to drug 2 develop. We

noticed that this nearly �xation to R2 is reached even in a shorter time TMTD:C2 = 8.4182 than MTD1

results in the almost full growth of R2 subpopulations for TMTD:C1 = 9.3422 unit times. It is hard to tell

that one drug is stronger or less e�ective than another, but it is related to the distance from the starting

point, O, in fact the initial distribution, O, is closer to the R1 corner in a phase space. Then MTD2 takes

a pause for a while and it causes the sensitive subpopulations to recover some, and when the highest dose

of drug 1 begin its delivery, the development of the resistant subpopulations of R2 to drug 1 is achieved

though it is smaller in extent as there are more sensitive subpopulations. Again, this pattern continues for

the following rounds, leading the stochastic system to eventually have more and more R1 subpopulations

on its way. The trajectories or tumor size, of both one single simulation and the averaged one, corre-

sponding to MTD2 are shown in green in Figure 4.27. The dynamics determined by both MTD schedules

are di�erent in directions especially in the growth and decay of resistant subpopulations, however, they

are almost the same in their induced tumor size as can be seen in Figure 4.27e. The rapid development

of the resistant subpopulations and the dramatic decrease in the number of sensitive cells brings out the

explosive increase in tumor size even before the �rst pause ends though tumor size is initially decreased

sensitively reacting to the drug that is �rst delivered due to the high dose.

The low-dose metronomic schedule (LDM) shows somewhat di�erent dynamic from both the adaptive

and the maximum tolerated dose schedules. This constant schedule guides the stochastic system to the
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(a) (b) (c)

(d) (e) (f)

Figure 4.28: 1, 000 realizations of the stochastic Moran process with size N = 50K show that the satu-
ration of cancer cells can be delayed longer on average compared to being under either LDM and MTD’s
when each realization evolves under the administration of the multi drug synergistic (e = 0.3) adaptive
chemo schedule, associated with the adjusted replicator system, during 8 rounds since its exact start at O.
(a) one single realization; (b) tumor size corresponding to Figure 4.28a; (c) the averaged �tness of S, R1

and R2 cells corresponding to Figure 4.28a; (d) the averaged trajectory of all realizations; (e) the averaged
tumor size corresponding to Figure 4.28d; (f) the averaged �tness of S, R1 and R2 cells corresponding to
Figure 4.28d

�xation to S on average and the associated trajectory is given in Figure4.27d as a red line. For one real-

ization chosen at random also shows the direct approach to the S corner. In fact, S is an asymptotically

stable �xed point and trajectories converge to the S corner regardless of initial distributions as long as

both drugs are delivered at a low dose. The exact description of the ESS is explained in [30] for additive

drug interactions. In detail, C1 = 7/18 is a bifurcation value where the �xed point R2 changes its stabil-

ity from unstable to stable, and S changes its stability from stable to unstable at C1 = 1/2. For drug 2,

C2 = 1/3 is a bifurcation value and R1 changes from an unstable to a stable �xed point. At C2 = 1/2, S

changes its stability from stable to unstable. In LDM schedule, C1 = 0.347261 and C2 = 0.255905 , and

the initial point, O, is laid in the basin of attraction for S for this combination. As a result, the averaged
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trajectory of 1, 000 realizations of the Moran process of a large population size shows the convergence to

the evolutionarily stable strategy S under LDM.

Though the populations is �xated to one of cancerous state, S, the associated tumor size surprisingly

reduces during 8 cycles as shown in red in Figure 4.27e. It seems to con�ict with the exponentially in-

creasing tumor size associated with the adjusted replicator system when no drug is used shown in Figure

4.15c. However, recall that tumor size is modeled using the tumor-growth equation in (4.8) by which it

grows whenever the averaged �tness, < f >, of S, R1 and R2 in the entire population is greater than

the constant background �tness, g, that is set to be equal to g = 1.4527, and that < f > is a function of

selectionswS ,wR1 andwR2 as in (4.1) whereCi’s enters a population through. Thus, a di�erent set ofCi’s

gives rise to a di�erent value of < f > even at a �xed state and this possibly brings out a totally opposite

destiny in tumor size. We computed the averaged �tness, < f >, for the averaged Moran process during

8 evolutionary cycles and it shows that< f > is less �tter than the constant background �tness, g, during

the entire time period as seen in Figure 4.27f and this allows the tumor size under LDM to decrease.

We have investigated how successfully 4 di�erent two drug chemotherapy schedules work when they

are applied to the Moran process that starts a �xed point,O, for the additive drug interaction. We conclude

that both MTD’s work the worst showing the immediate nearly full development of resistant subpopula-

tions and the extraordinarily rapid growth rate of tumor size too early in the whole 8 cycles. The adaptive

schedule associated with the deterministic adjusted replicator system is successful in controlling both the

trajectory and tumor size by preventing the competitive release of a resistant subpopulation for the �rst

few cycles. Depending on how much big threshold of tumor size we set, this schedule can be applied

longer or shorter. However, it does not work as e�ectively as LDM does which completely kills out tumor.

What LDM does is that the continuous low dose administration helps lower the averaged �tness of can-

cerous cells, S, R1 and R2, making the �tness other factors such as healthy cells or any environment that

contribute to tumor development �tter.
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(a) (b) (c)

(d) (e) (f)

Figure 4.29: 1, 000 realizations of the stochastic Moran process with size N = 50K show that the satu-
ration of cancer cells can be delayed longer on average compared to being under either LDM and MTD’s
when each realization evolves under the administration of the multi drug antagonistic (e = −0.3) adaptive
chemo schedule, associated with the adjusted replicator system, during 8 rounds since its exact start at O.
(a) one single realization; (b) tumor size corresponding to Figure 4.29a; (c) the averaged �tness of S, R1

and R2 cells corresponding to Figure 4.29a; (d) the averaged trajectory of all realizations; (e) the averaged
tumor size corresponding to Figure 4.29d; (f) the averaged �tness of S, R1 and R2 cells corresponding to
Figure 4.29d

Two MTD’s and LDM schedules can be easily constructed for synergistic and antagonistic drug inter-

actions referring to its own adaptive schedule associated with each OPQO and total dose, D, during one

evolutionary cycle, T . Then applying those 4 schedules to the same number of realizations of the Moran

process with size, N = 50K is processed in the same manner for each e = 0.3,−0.3. We present a set of

trajectory, tumor size, and the averaged �tness, < f >, for both one randomly chosen realization and the

averaged of 1, 000 individuals in Figure 4.28 for the synergistic interaction and in Figure 4.29 for the an-

tagonistic drug interaction. Regardless of the drug interaction parameter, e, the maximum tolerated dose

schedules turn out to be the worst in e�cacy of controlling tumor size and the adaptive chemo schedule is

successful for a few cycles while it may be applied longer if two drug interact antagonistically but shorter
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if synergistically. LDM wins all other three chemo schedules delivering the same total dose for 8 cycles

since the low dose of both drugs at that starting point, O, helps either noncancerous cells or environment

�tter and hence it gradually reduces tumor size.

However, remember that one point in a phase space corresponds to a unique status of a patient. Thus

the change in the initial status of a patient leads to a di�erent starting point instead ofO, then to a di�erent

closed loop, a new associated adaptive chemo schedule, and a di�erent MTD or LDM. The result in this

thesis proves LDM as the most powerful chemotherapeutic method at one point, and the conclusion may

vary depending on the given initial stage.
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Chapter 5

Future directions

Originating from this thesis, generalization of our model can be made in many di�erent ways. First, for

both single and two drug chemotherapy models, we assumed for simplicity that no further mutation is

allowed as the system evolves since the population initially attains the minimally required ingredients

(e.g. resistant cells) by preexisting mutation. However, mutation is one of key factors in the Darwinian

evolutionary theory along with heredity and natural selection, and there are a lot of literatures that describe

an evolving population allowing mutation during the whole evolution process. Allowing mutation during

evolution process also gives rise to qualitatively di�erent but desired results in asymptotic behavior such

as the emergence of cooperation as it was shown for both a �nite and in�nite population by in [7, 24, 26].

Thus, it can be our one possible generalization of our model to introduce a mutation rate to each

group of cells and let them evolve according to either the replicator-mutator equations for an in�nite

populations or the Moran process with mutation for a �nite population, and examine if the introduction of

mutation helps us have more promising results in terms of the maximum number of cycles during which

the application of the adaptive schedule to the Moran process is successful in regulating tumor volume.

Second, for two drug chemotherapy model, tumor volume is designed using the tumor-growth equa-

tion in (4.8) where the background �tness, that captures the information of healthy cells or surrounding

environment, is set to be constant. However, when drug concentration enters the total population that
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contributes tumor development, not only it changes the �tness of cancer cells but also whatever ingredi-

ents that in�uence on forming the background �tness also adapt, making the background �tness �uctuate

rather than stay constant. Representing the background �tness as a function ofC1(t) andC2(t) is more re-

alistic and generalizes our model. This should be designed along with clinical and laboratory observations

about reproduction rate of healthy cells and surrounding environment.

The last but not the least important interest for the next study stems from the evaluation of the adap-

tive two drug chemotherapy model where the low-dose metronomic schedules turns out to be the best

chemotherapeutic strategy for the Moran process that starts at one exact point, O, regardless of drug in-

teractions in the sense that it was the most e�cient in reducing the tumor volume. However, in reality, the

di�erent patients’ initial status are assigned to all di�erent points from O and from each other in a phase

space, and the conclusion of the evaluation of 4 discussed chemotherapy schedules might vary depending

on initial states. For that reason, we would like to visualize the area of initial points in a phase space, at

which each of those schedules work the best.
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