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Abstract

Progression of cancer occurs across multiple length and time scales and encompasses biodynamical processes

with intrinsically unique implications for the host patient. The compartmentalized study of these processes

has not only revealed scale-specific biomedical questions but also led to an equally diverse set of quantitative

approaches derived from various fields in the applied spirit of engineering. Due to advances in imaging,

experimental, and patient engagement technologies, a growing subset of cancer progression studies are em-

pirical in nature and yield data which is often spatio-temporal. The focus of this thesis is to explore a general

design approach for developing quantitative analysis tools which leverage data from these studies to provide

quantified answers to biomedical questions across time and length scales, and to apply the methodology to

three case studies representing three different scales.

Biodynamical processes or systems observed via experiments, clinical studies, and longitudinal medical

assessments span the physical spectrum from nanometer scale molecular phenomena, human body locomotion

at the meter scale, to population level disease trends. These processes may be characterized by features

from statistics, mechanics, signal processing, or any domain-specific life science. The direct use of these

features, optionally in combination with dimensionality reduction and distance metrics, forms the first arm

of biodynamical analytical study design called the feature based approach. This is the more direct approach

and leads to an intuitive understanding of a process’ role in cancer progression, for instance, by comparing,

correlating, and ranking samples or features themselves. The second arm of biodynamical analytical study

design, the model based approach, uses stochastic, physics, or statistical modeling techniques to create

models of the biodynamical processes or system features. This is the more complex design arm and requires

a greater amount of data, but is distinct from the feature based approach due the more advanced questions

the models are able to answer. Both approaches’ ultimate goal is to provide a quantified output in the form

of one or a mixture of the following: i) clustering or differentiating samples, ii) classifying samples as a type,

iii) forecasting or predicting a numerical sample characteristic, and iv) characterizing the behavior of a given

sample.

The first case study of morphogenesis of 40 organoids focuses on extracting geometric and signal pro-

cessing based features from time series of images at the micrometer scale. The feature set is used to cluster

organoids into groups of similar phenotypes in order to separate invasive and normal behaving organoids.

Secondly, two model based approaches are used to understand the dynamics of growth: i) a statistical

model of shape is created to corroborate the feature based clustering, and ii) a hidden Markov model of

organoid shape is used to discover unmeasured genomic states and their corresponding shape dynamics. A

standardized code is provided in order to apply the feature based clustering to image data from organoid

ix



experiments.

The second case study is a human performance assessment of 37 cancer patients where a non-invasive

motion capture camera is used to record patients performing clinically supervised exercises. The goal of

the study is to identify patients with higher risk of deteriorating health while undergoing a chemotherapy

regimen. A kinematic feature based approach is used to cluster patients into groups of low and high risk

of unexpected hospitalization and limited physical activity. Secondly, a machine learning model based on

kinematic and demographic features is used to classify individual patient fitness levels based on a single

exercise instance. This work serves as a proof-of-concept of a non-invasive human performance based risk

calculator of clinical utility.

The final case study uses a feature based approach to understand the importance of clinical measures in a

longitudinal bladder cancer dataset of 3500 patients, and machine learning models to stratify patient survival

and disease recurrence post-surgery. The combination of feature and model based approaches developed

here can be applied to most clinical datasets which contain survival data, without additional domain specific

knowledge of the cancer type. The accuracy and temporal resolution of predictions made with the developed

models can dramatically change post-cystectomy patient care.
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1 INTRODUCTION

1 Introduction

1.1 Biomedical system characterization

The analytical toolsets developed in this thesis are motivated by scientific and clinical questions which

arise through biomedical experiments, clinical studies, and medical assessments. Fig.1 shows the relevant

spectrum of biological data sources of various length scales and the subsequent process of designing tools to

produce quantified outputs. The projects presented in this thesis include data from i) organoid laboratory

experiments at the µm scale, ii) clinical human motion capture studies at the m scale, and iii) preoperative

imaging and operative data from surgery at a population scale. Indeed the range of biomedical data is vast

(Fig.1), spanning nanometer scale molecular data to population scale demographics in space, and fractions

of a second to years in time. Consequently the choice of study design is dependent, in part on whether

a dataset is multi-scale or not. For instance, model based approaches including stochastic, physics, and

statistical models are difficult to adapt to multi-scale data, where as feature based approaches easily combine

data from various scales. Furthermore biomedical data collection methods are often fraught with high noise,

which lead to lower resolution and less informative models. Nevertheless, feature based studies fail to describe

or simulate biomedical behavior. Generally, feature based studies are more suitable for clinical applications

where multi-modal data is ubiquitous and ultimate decision making must involve the corresponding complex

higher level interactions which are difficult to model. In contrast, model based studies provide an opportunity

to discover and describe biomechanisms and behavior which remain relevant to future studies. The two

approaches are not entirely independent, and the ultimate goal of biomedical characterization studies is to

provide a quantified summary output from a single or series of empirical observations. The next sections

provide brief introductions to feature extraction (Section 1.2), dimensionality reduction (Section 1.2), model

based approaches (Section 1.3), and clustering and classification (Section 1.3) topics relevant to studying

biomedical datasets as shown in Fig.1.

1.2 Feature based study of biomedical data

1.2.1 Feature types

A complete or sufficient set of descriptive features of a biomedical system or process may be derived from a

combination of different disciplines including biology, mechanics, geometry, information theory, time series

analysis, statistics, and signal processing in addition to domain-specific biomedical parameters. Table 1

lists some of the commonly used features extracted from biomedical time series or spatio-temporal data to

describe a system. Although the source disciplines of a set of features may be diverse, generally speaking the
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 Physics
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Figure 1: Schematic of analytical tool design options for studying biomedical processes of cancer progression.
Steps include empirical observation of processes across various scales, feature or model based study design,
and quantified output options.

features themselves can be characterized as being in either the time or frequency domain, and being scalar

or time series. Furthermore, scalar features may be taken over a moving window to produce time series, e.g.

minimum of every five time points. The number of feature types required to describe a system may be known

a priori, or be discovered as part of the analysis. Nevertheless, due to the complexity of biomedical systems,

often a multitude of perspectives are helpful to form a complete understanding or to discover differences

among a set of samples. Once a set of features is selected, it may be used directly to draw conclusions, or

may be processed with dimensionality reduction, distance metrics, or be used to train a model (Figure 1).

2



1 INTRODUCTION

System feature types
Source discipline Feature

Statistics and
Probability

min/max/median/mean/mode
standard deviation
pearson correlation
moment: skewness/kurtosis/etc
Kullback–Leibler divergence

Mechanics

(linear/angular) velocity
(linear/angular) acceleration
(linear/angular) momentum
kinematic/potential energy
kinetics

Geometry
perimeter/area/volume
circularity
curvature

Information theory
mutual information
entropy

Time series
analysis

ARIMA orders
autoregressive parameters
moving average parameters
autocorrelation function

Signal processing

DFT/FFT frequencies
DFT/FFT amplitude
cross-correlation
energy

Table 1: Examples of descriptive features for biomedical system time series and spatio-temporal data

1.2.2 Distance functions

In mathematics, a metric is a function g : X × X → [0,∞) which defines the distance between two points

x, y ∈ X subject to the following four conditions:

I. g(x, y) ≥ 0 (1)

II. g(x, y) = g(y, x) (2)

III. g(x, y) = 0⇐⇒ x = y (3)

IV. g(x, z) ≤ g(x, y) + g(y, z) (4)

known as the non-negativity, symmetry, identity of indiscernibles, and the triangle inequality conditions

respectively. The first and third conditions together are required for positive definiteness. Although a

metric must satisfy all four conditions, the notion of distance is maintained even if a subset of conditions is

met, in which case the distance measure may be classified as a quasimetric and pseudometric for example.

A quasimetric is a distance function which satisfies the triangle inequality but is not symmetric, and a
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pseudometric relaxes the identity condition by allowing g(x, y) = 0, x 6= y. A list of commonly used distance

functions are cataloged in Table 2.

Time series distance functions

Name formula metric
conditions

`0, discrete
∑
i 1X(i)=Y (i) I − IV

`1, absolute, taxi cab, city
block, Manhattan

∑
i |X(i)− Y (i)| I − IV

MAE: mean absolute error (1/n)
∑
i |X(i)− Y (i)| I − IV

`2, Euclidean
(∑

i(X(i)− Y (i))2
)1/2

I − IV

SSE: sum squared error
∑
i(X(i)− Y (i))2 I − III

MSE: mean square error (1/n)
∑
i(X(i)− Y (i))2 I − III

`p (
∑
i(X(i)− Y (i))p)

1/p
I − IV

Minkowski distance (
∑
i |X(i)− Y (i)|p)1/p I − IV

Cosine similarity X · Y/‖X‖‖Y ‖ I, II, IV

(absolute) Pearson’s distance 1− |ρX,Y | I, II

Mahalanobis distance
(
(X − Y )TΣ−1(X − Y )

)1/2
I − IV

Table 2: Commonly used distance functions for comparison of real-valued time series

In practice, the choice of the optimal distance metric is not always apparent, however, empirical tests [72]

suggest various metrics outperform the often standard choice of Euclidean distance. Furthermore, Keough

et al showed that these metrics may be enhanced by employing correction factors which account for the

discrepancy in complexity of the two time series being compared [14]. By considering time series as stochastic

signals, several statistical divergence measures [13] may also be employed as distance measures [115].These

functions can either provide distances directly by acting on raw time series data, the corresponding derivatives

[101], and any extracted features described in section 1.2, or be used in a nested scheme such as the DTW

algorithm.

1.2.3 Dynamic time warping

Misaligned and temporally deformed time series cannot be compared directly using a distance function

due to mismatch between local features, and classification or clustering pipelines built on such erroneous

comparisons will fail to detect or group similar sources. When two time series are out of phase, a global

alignment may reduce error in the direct application of a distance function, however, subsequence offsets

pose a more complex problem which cannot be solved via a global alignment. Consequently, the non-
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linear mapping learned from the DTW algorithm [18] leads to a substantial reduction in sensitivity to such

misalignments. In the classic DTW algorithm the similarity operators in 1.2.2 act on a pair of points (xi, yj)

from the two time series X and Y being compared, and a warped path of matching points is found by

minimizing the total distance using dynamic programming, Fig.2A.

Figure 2: A) Two time series X and Y of lengths n and m respectively may be aligned using the dynamic time
warping (DTW) algorithm. B) The cost matrix C based on the l1 distance function. C) The accumulated
cost matrix D created using eqs.14-16

The resulting DTW distance,

DTW (X,Y ) =
∑

(i,j)∈p

g(xi, yj) (5)

is the sum of the distance function g over all pairs of matched points (xi, yj) in the optimal warping path p

of length L [18]. The warping path must satisfy the i) boundary conditions,

p(1) =(x1, y1) (6)

p(L) =(xn, ym) (7)

the ii) monotonicity condition,

p(l) = (xi, yj) (8)

i1 ≤ i2 ≤ ... ≤ iL (9)

j1 ≤ j2 ≤ ... ≤ jL (10)

(11)
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and iii) the step-size condition,

∆p = p(l + 1)− p(l) (12)

∆p ∈ {(1, 0), (0, 1), (1, 1)|l ∈ [1, L− 1]} (13)

while assigning an element of X to one from Y . The boundary conditions prevent only a subsequence from

one of the time series being used. The monotonicity conditions ensure that a feature from one time series is

not repeatedly matched to the second time series, and the step-size conditions ensure that some features of

one series are not entirely omitted in the warped path. Two optional, slope and window constraints, prevent

matching between large and small sections and large warpings. Furthermore the search for the warping path

may be altered by using local or global constraints which apply weights to certain path selections in the

accumulated cost matrix.

The dynamic programming algorithm used to find the DTW distance and the warping path involves

creating a cost matrix C of the pairwise distances (Fig.2B) and an accumulated cost matrix D (Fig.2C)

[128], whose elements are calculated as

D(a, 1) =

a∑
i=1

g(xi, y1) a ∈ [1, n] (14)

D(1, b) =

b∑
j=1

g(x1, yj) b ∈ [1,m] (15)

D(a, b) = min{D(a− 1, b− 1),D(a− 1, b),D(a, b− 1)}+ g(xa, yb) a ∈ (1, n], b ∈ (1,m] (16)

where the final entry D(n,m) = DTW (X,Y ) is the DTW distance between the time series and the warping

path p is recovered by tracing back from D(n,m) to D(1, 1), or, equivalently, keeping track of the choice

made in the min function in eq.16. The DTW distance for two perfectly similar time series is zero, however,

there is no upper bound or intrinsic scale to this measure and more dissimilar time series have larger DTW

distances.

DTW satisfies the non-negativity, symmetry, and identity of indiscernibles metric conditions (eqs. 1-3)

but not the triangle inequality condition (eq. 4), therefore it is not a metric. Nevertheless, it is a vastly

popular similarity measure and several modified versions have been adapted to distinct applications [68].

Typically the distance metric used to find the warping path is also used to report the final distance,

however, a secondary metric may be applied to the matched points such as the Malhabonis distance which

in turn may be applied to neighboring subsequences of the matched points [217]. The time complexity of the

dynamic programming algorithm is O(nm) when assessing similarity between two time series of lengths n

6
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and m, however empirical results suggest O(n) complexity can be achieved using lower bounding techniques

[161]. In addition to the broader tasks of clustering and classification, DTW may also be used for i) finding

the average of set of time series [150], ii) sub-sequence alignment [169] which is the search of an alignment

of a short time series to a much longer time series, and iii) query systems [218].

1.2.4 The multivariate case

Although unviariate time series may be compared to one another directly using the classic DTW algorithm,

multivariate, or multidimensional time series require modification of the similarity measures and distance

matrix, due not only to the higher dimensionality but also the correlation between those dimensions. GA ten

Holt et al [89] introduced an intuitive generalization of the univariate DTW algorithm for K-dimensional

multivariate time series involving the sum of the distances between all dimensions of a time series while

constructing the accumulated cost matrix D ∈ Rm×n,

D(a, 1) =

a∑
i=1

K∑
k=1

g(xi,k, y1,k) a ∈ [1, n] (17)

D(1, b) =

b∑
j=1

K∑
k=1

g(x1,k, yj,k) b ∈ [1,m] (18)

D(a, b) = min{D(a− 1, b− 1),D(a− 1, b),D(a, b− 1)}+

K∑
k=1

g(xa,k, yb,k) a ∈ (1, n], b ∈ (1,m] (19)

and then searching for the warped path as usual, where xa,k and yb,k are the kth dimensions of time series

X and Y at time points a and b respectively. Here, X and Y may be of different lengths m and n, however

all K dimensions of a time series must be of the same length. The K dimensions must be normalized to zero

mean and unit variance due to the summation of distances between each dimension of the two time series.

This is not the only generalization of DTW for multidimensional time series. Shokoohi-Yekta et al

[174] simulate and test two paradigms of DTW similarity for multivariate time series: dependent DTW and

independent DTW. Dependent DTW, which is the technique proposed by GA ten Holt et al [89] and described

in eqs.17-19, matches two multivariate signals by finding one warped path from a single accumulated cost

matrix D for all the dimensions thereby generating a single distance, whereas independent DTW matches

each pair of dimensions separately using K accumulated cost matrices,

DTW (X,Y ) =

K∑
k=1

Dk(n,m),Dk ∈ Rm×n (20)

and aggregates the corresponding K pairwise warped path distances Dk(n,m) into a single resultant distance.
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The underlying difference is that dependent DTW algorithms assume that all dimensions of the time series

are warped by the same function, and independent DTW algorithms assume that each dimensions may

be warped in a different way. Clearly, dependent DTW is appropriate to use when learning one nonlinear

mapping between all the dimensions of two time series, and independent DTW ought to be used when a new

mapping is responsible for misalignment between each dimension of two time series.

1.2.5 Dimensionality reduction and feature selection

The number of descriptive features of a biomedical system may be too large in certain cases and prove

to be a hindrance towards achieving the ultimate goal of creating a simple quantified output. This high

dimensionality of a system requires many samples for each combination of features to fully link the feature

space to sample behavior and collecting the sufficient amount of data is nearly always impractical due to

high cost of biomedical observations and experiments. Furthermore, a high dimensional scenario where the

number of features in a dataset far exceeds the number of samples, leads to erroneous overfitting of prediction

and classification models, and lower confidence predictions, thereby reducing clinically applicability of any

analyses. These issues necessitate dimensionality reduction and feature selection techniques which reduce

the total number of features required to describe a system. Although there is no optimal way of reducing

the feature set, most methods either use a transformation of the entire original feature set and embed into

a lower dimensional space, or build a smaller feature set using either exclusion or inclusion decision rules.

The most widely used transformation technique is principal component analysis (PCA) which maximizes the

variance of the data in the resulting dimensions by using a linear mapping. PCA can be performed using

singular value decomposition (SVD) of a data matrix X ∈ Rn×p with n samples and p features,

X = USVT (21)

to get a reduced data matrix Yr,

Yr = XV ∈ Rn×r (22)

= USVTV (23)

= US (24)

where r ≤ n is the number of principal components. Decision rule based feature selection methods use

correlation metrics between features and target outcome variables to either select the most relevant features

or remove the least informative features iteratively. The choice of correlation metrics depends on the nature

8
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of the feature, for instance, categorical features may be selected using a the chi-squared test of independence

and continuous variables may be ranked using Pearson’s correlation.

1.3 Model based study of biomedical data

1.3.1 Modeling techniques

Mathematical modeling using biomedical data can be achieved using many different approaches as shown in

Table 3. Some of these modeling techniques are tailored to very specific applications such as compartmen-

tal models for disease propagation, and rigid body kinematics for understanding biomechanical behavior,

however, other more generic techniques such as time series analysis (Table 3) may be adopted to various

datasets. Furthermore, statistical techniques for regression and classification such as support vector ma-

chines and random forest, require preprocessing of time series data. Whereas graphical models are more

readily applicable to sequential data. Unlike feature based characterization of biomedical systems, where

multiple disciplines are often combined in an analysis, model based approaches typically rely completely

on a single type of a model for a given biomedical dataset. The choice of a modeling technique may be

obvious if a confined system is being observed and an associated physical model exists, however, in general,

model characterizations may assist this decision. Specifically, models may be characterized as i) linear or

non-linear, ii) static or dynamic, iii) discrete or continuous, iv) deterministic or stochastic. Once a modeling

technique is decided, the best set of model parameters can be identified using model selection techniques

which optimize a selection criteria such as likelihood, error between generated and observed instances, and

prediction or classification accuracy. In the following sections, statistical and graphical models which are

employed in subsequent chapters of this thesis are introduced and discussed in more detail.

System model types
Discipline Examples
Statistical regression, support vector ma-

chines, active shape model, ran-
dom forest

Graphical hidden Markov model, neural
network, (switching) linear dy-
namical systems

Mechanics rigid body kinematics, spring-
mass models, hemodynamics

Time series analysis ARIMA, ARCH, GARCH,
EWMA

Ordinary/Parital differential
equations

epidemiology compartmental
models, mass action model

Table 3: Examples of models for biomedical system time series and spatio-temporal data
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1.3.2 Point distribution model

Morphology is a direct indicator of phenotype in biology and can be measured using imaging technologies

resulting in spatio-temporal data. In such situations, a point distribution model (PDM) [36, 37] is especially

applicable as it requires only the discrete point sets which define the morphology and outputs statistical

modes of geometric variation. Additionally, these models may even assist segmentation tasks when used

as subroutines in active appearance models and active shape models. PDM can be used to study two-

dimensional (d = 2) or three-dimensional (d = 3) shapes of length k,

Q =


(~x, ~y)T , d = 2,Q ∈ R2k

(~x, ~y, ~z)T , d = 3,Q ∈ R3k

(25)

to create a simulated model

Qsim = Q̄ + P~b (26)

where Q̄ is the mean shape over a sequence of samples, P ∈ Rdk×p are the p principal modes of variation,

and ~b ∈ Rp are the coefficients of the principal modes. The mean shape is found by averaging M sample

shapes,

Q̄ =
1

M

M∑
k

Qk, (27)

and is used to create a covariance matrix,

S =
1

M − 1

M∑
k

(Qk − Q̄)(Q− Q̄)T . (28)

whose eigendecomposition defines the principal modes of geometric variation. Specifically the eigenvectors

~ui are the principal modes of variation, and eigenvalues λi are the variance explained by the principal modes

(i = [1, dk]). Using all i = dk of the principal to generate new shapes Qsim is not only numerically expensive

but also not necessary as in practice a handful of modes create shapes which are sufficiently representative

of the samples in the observation set Qi, i = [1,M ]. Bounds for the principal mode coefficients can be

determined from the set of observed shapes to generate shapes within an acceptable range. The benefit of

using the eigendcomposition is that the principal modes of variation are orthogonal and Qsim can represent

novel combinations of these morphology dimensions resulting in shapes which may not necessarily be present
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in the observation set.

Figure 3 shows an example of a point distribution model created an observation set of M = 5 concentric

circles (Figure 3A) whose covariance matrix (Figure 3B) has one significant principal mode of variation

(Figure 3C) with an eigenvalue λ1 = 1573 and a second insignificant mode of variation with an eigenvalue

λ2 = 0. Using this single principal mode and a coefficient ~b = (b1, 0) = (7, 0), a new simulated shape Qsim

is created in Figure 3D.

Figure 3: Example point distribution model. (A) A training set of five concentric circles. (B) The covariance
matrix of the shapes. (C) Eigenvectors of the covariance matrix. (D) A simulated shape using the first
eigenvector.

1.3.3 Hidden Markov model

The basic hidden Markov model [157, 156] architecture shown in Fig.4A is described by a discrete hidden

random variable Xt which is an element from a set of Q hidden states, and an output observation vector Yt
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which may be discrete or continuous. Consequently, the hidden Markov model is a doubly stochastic process

where the hidden generating sources evolve via a stochastic process and the observed sequence is generated

via a second stochastic process conditioned on the hidden states[157]. The model parameters consist of a

Figure 4: Hidden Markov model architecture. Hidden states Xt are shown in white circles, and observed
variables Yt are shown in solid gray circles. A) Standard hidden Markov model with parameters: transition
matrix A, emission distribution B, and initial probability π. B) Hidden Markov model with mixture of
Gaussians as emissions. In addition to Hidden Markov model parameters, the emission Gaussian mean
values µ, and covariance matrices Σ are required.

stochastic matrix A ∈ RQ×Q which dictates transition probabilities between Q hidden states,

A(i, j) = P (Xt = j|Xt−1 = i) (29)

an emission or output probability distribution B which decides the output vector given a hidden state,

B = P (Yt|Xt) (30)

and initial probability π ∈ RQ which is a distribution over hidden states,

π = P (X1 = j) (31)

for a sequence of length T . The hidden state at time t depends only on the previous state Xt−1, and the

observation at time t depends only on the hidden state at time t. Multinomial distributions are a common

choice for B when the outputs are discrete, whereas Gaussian and exponential distributions are popular

choices for B in the case of continuous outputs. More complex distributions, and consequently more robust
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outputs can be modeled by using a mixture of Gaussians with different mean and covariance matrices as in

Gaussian mixture models. A hidden Markov model with mixture of Gaussians (GMM-HMM) as emissions

is shown in Fig.4B, where the basic hidden Markov model (Fig.4A) parameters π and A are augmented by

a stochastic emission matrix B ∈ RQ×M

B(i, j) = P (Mt = i|Xt = j) (32)

which contains probabilities of Q hidden states emitting M Gaussians, and the MQ Gaussians’ means µ and

covariance Σ matrices. Therefore in a GMM-HMM, each hidden state has a unique mixture of M Gaussians

from which it emits sequence values.

Regardless of the choice of B, each hidden state has a unique emission distribution corresponding to

a portion of the dynamical space spanned by the observation sequences if the observation sequences are

time series. The transitions between the dynamical subspaces then is directly governed by the hidden layer

Markov process, which can be as varied as the structure of the Markov chain. Fig.5 shows three examples

of Markov chains used in hidden Markov models, where ergodic or non-absorbing models allow each hidden

state to transition to any other state. Less flexible, yet more ordered models like the upper triangle (5),

and more general left-to-right models are more suitable for time ordered sequences, as these models require

higher numbered states to be preceeded by lower numbered states [157].

There are three functions or operations of a hidden Markov models and there exist three algorithms

which are used to perform these functions[94]. The learning, training, or equivalently parameter estimation

function is performed using the Baum-Welch algorithm [15] based on the Forward-Backward algorithm.

Given any number of observation sequences, the hidden Markov model parameters can be learned using

the Baum-Welch algorithm. The second function of a hidden Markov model is the evaluation or likelihood

computation function which computes the likelihood of a given observation sequence, and this is performed

using the Forward algorithm. Therefore, given a model the Forward algorithm can be used to find the

likelihood of an observation sequence. Furthermore, classification can be done by finding the model which

yields the highest likelihood for a test sequence. Finally, the hidden state assignment or decoding function

is the task of assigning a sequence of hidden states to an observation sequence, and this is performed using

the Viterbi algorithm.

Note that the structure of the hidden layer Markov chain and choice of emission parameters such as the

number of Gaussians in GMM-HMM must be predetermined before training, and further model selection

techniques are required to find the optimal parameter set. Pohle et al [154] outline best practices of model

selection for hidden Markov models, and conclude that despite the direct applicability of selection criteria
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Figure 5: Examples of Markov chain structures for Hidden Markov model.

such as Akaike information criterion (AIC) and Bayesian information criterion (BIC) care must be taken

to avoid certain pitfalls. Therefore, to find the best parameters for hidden Markov models with mixture of

Gaussians emissions, we use a combination of heuristics and BIC,

BIC = −2 logL(Y ; θ) + np log no (33)

logL(Y ; θ) : Log-likelihood of observations given model (34)

where the parameter set θ = (π,A,B, µ,Σ), np is the number of model parameters, and no is the number of

observations used to train the model. The total number of parameters in the model depends on the choice

of Markov chain structure,

np = Q+QM +QMd+QMd2 +


2Q− 1 left-to-right

(1/2)Q(Q− 1) upper-triangle

2Q− 1 bifurcated

(35)

where d is the dimensionality of the multivariate observation time series.
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1.3.4 Machine learning models

The feature based approach of extracting as many independent descriptions of a system feeds directly into

machine learning models which use a set of features for i) prediction via regression or classification, and

ii) detection via clustering or anomaly identification (Table 4). Therefore machine learning models can be

trained to predict or detect by example if training samples with labeled outcomes are available, this is called

supervised learning. However, in the absence of labeled target or outcome variables, unsupervised learning

techniques can be used to cluster similar samples. There are other paradigms of machine learning such as re-

inforcement learning, but these do not have as direct applicability to biomedical problems as supervised and

unsupervised techniques. For instance, supervised learning techniques can be used to predict probability of

survival at the patient scale using demographic and human performance data, and classify pathological states

at cellular and tissue scales using image data. In scenarios where a subset of the samples have labeled output

data, e.g. if only a few patients’ survival data is available in a longitudinal dataset, then semi-supervised

techniques (Table 4) may be used to learn from partial knowledge of outcomes. Regardless of paradigm,

machine learning models often employ a pipeline of steps including some or all of the following: i) prepro-

cessing the data to replace missing data and to remove irrelevant features and samples, ii) a dimensionality

reduction step to avoid curse of dimensionality ([132]), iii) calculating distance between features, particularly

time series, iv) training, validation, and testing using one or a combination of algorithms. For instance, a

set of time series features may be compared to one another or to a reference time series via dynamic time

warping first and fed into a K-means or K-medoids based algorithm for clustering.

Machine learning paradigms
Supervised Semi-supervised Unsupervised

Paradigm Ground truth is known Mixed bag Unknown ground truth

Data
(input, output) (input, output) (input)

(input)

Tasks
Regression Regression Clustering
Classification Classification Dimensionality reduction

Clustering

Algorithms

Nearest neighbor Generative models K-means/medoids
Decision tree Self-training Mixture models
Naive Bayes Transductive SVM Hierarchical clustering
Support vector machine (SVM) Graph-based methods Principal component analysis
Random forest Neural network/auto-encoders
Artificial neural network Graph model

Table 4: Three relevant paradigms of machine learning and examples of algorithms.

In biomedical applications of machine learning [16, 107, 216], model selection is performed by maximizing

performance metrics such as area under the curve (AUC) of a receiver operating characteristic (ROC) curve
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for classifiers, and minimizing root mean square error (RMSE) for regression models. Clustering models can

be selected by comparing concordance between a given clustering and some benchmark expert clustering.

Sensitivity and specificity, precision and recall, and F1 scores are also prevalent performance metrics in

biomedical studies where it is most important to detect pathological cases while avoiding false positives. As

such, developments in machine learning have lead to data pipelines which are highly successful at prediction

and detection tasks in the biomedical field.

1.4 Chapter summaries

In Chapter 2 human performance motion capture data of from patients performing supervised exercises

in a clinical setting are studied using a feature based pipeline of tools to classify patients by unexpected

hospitalizations and low physical activity at home using statistical features extracted from the raw motion

time series and subsequent kinematic feature time series. Kinematic feature extraction is explained, and a

derivation of angular velocity of two-joint sections is shown. A short list of kinematic features which classify

low and high risk hospitalization and physical activity patient groups are provided.

In Chapter 3 two model based pipelines are employed using the same human performance data from

Chapter 2. The first model based pipeline uses kinematic features from the captured motion, however,

this pipeline uses the dynamic time warping algorithm to compare time series in order to predict physician

assigned fitness scores. The third pipeline also uses the dynamic time warping distances between kinematic

time series features, but uses dimensionality reduction to learn a patient clustering and compares it with

qualitative physician assigned clusterings of patients.

In Chapter 4 a clinical dataset containing preoperative and operative features is used to create classifiers

of post-cystectomy survival and disease recurrence. Furthermore information theory based correlation tech-

niques are used to understand dependencies among the feature set. Feature extraction is not performed here

as the dataset is relatively high dimensional. The classifiers developed in this chapter make predictions for

individual patients using the population level dataset.

In Chapter 5 a dataset of organoid morphogenesis images is studied using a feature based pipeline as well

as a statistical model based pipeline. Contour time series are extracted from sequences of two-dimensional

images of basal and growth factor treated organoids. Geometrical and signal processing based time series

features are extracted from the contour time series and used to cluster organoids into groups of similar spatio-

temporal behavior. Secondly, a point distribution statistical model of shape is learned from the organoid

contours which is used to understand the behavior of the clusters detected using the feature based pipeline.

In Chapter 6 the same dataset as Chapter 5 is used to create a stochastic model of organoid area and
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perimeter in order to discover various organoid subtypes and their dynamics. To do this, a hidden Markov

model is used which is trained with the area and perimeter time series for basal and growth factor treated

organoids. The goal of this strictly model based approach is to reveal the hidden genomic states responsible

for the observed breadth of area and perimeter phenotypes.

Pre-thesis work is shown in Chapter 8 and Chapter 9, where a game theory model of cancer growth and

tumor cell kinetics based on the prisoner’s dilemma game is developed.
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2 QUANTIFIED KINEMATICS FROM IN CLINIC MOVEMENTS DIFFERENTIATES PATIENT
RISK FOR CHEMOTHERAPY COMPLICATIONS

2 Quantified kinematics from in clinic movements differentiates

patient risk for chemotherapy complications

2.1 Abstract

Cancer patients, particularly those treated with difficult chemotherapy regimens are at high risk for hospital-

ization during and between treatment cycles. Existing metrics based on physician observation of patients in

the office are qualitative, subjective, and lack agreement among observers. Imaging tools have the potential

to provide an objective and verifiable measurement of physician observations of patients in the office. To de-

termine whether an in-office movement tracker, in cancer patients receiving highly emetogenic chemotherapy,

can identify patients at risk for future unexpected hospital visits and low activity levels at home. Multicenter,

single arm, observational clinical trial. A non-invasive motion capture system measured 1) patient movement

from chair-to-table and 2) get-up-and-walk test. Activity levels were recorded using a wearable sensor over a

two-month period with an additional 90-day follow-up. Kinematic signatures from motion capture data and

subsequent statistics are tested for correlation with hospitalization and physical activity groups. A 15-hour

(during study period) threshold was used to group patients into low and high activity groups. Secondly,

patients were grouped if they had one or more unexpected healthcare encounters during the observation and

follow-up period. Kinematic features from chair-to-table form the best classifiers for unexpected visits (AUC

= 0.816) and physical activity (AUC = 0.735). Chair-to-table acceleration of non-pivoting knee (P = 0.001)

and hip (P =0.002) are most correlated with unexpected hospitalizations. Angular velocity of the hip (P =

0.022) and non-pivoting leg (P = 0.024) are most correlated with physical activity. Physician observations of

patient movement in the examination room can be quantified in a routine objective metric . Motion capture

systems and wearable sensors can evaluate kinematic features that are correlated with unexpected hospital

visits and physical activity.

2.2 Introduction

Each patient has specific and individual needs for optimal supportive care during cancer treatment. Pre-

dicting these needs and providing specific solutions has the opportunity to both improve outcomes and the

experience during treatment. Poor patient outcomes, patient satisfaction, quality of life, and economic cost

are associated with unexpected hospitalizations with patients actively receiving chemotherapy [164]. A recent

survey of US oncology nurses found that 61% of nurses cared for patients who had to go to the emergency

room or were hospitalized due to chemotherapy induced nausea and vomiting (CINV) [34]. These CINV

hospitalization costs were estimated to be over $15,000 per occurrence [164, 34]. Readily available tools and
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metrics such as ECOG performance status, Body Mass Index (BMI), Mini Mental State Exam (MMSE), and

Charlson Comorbidity Index (CCI), are part of a comprehensive geriatric assessment, however few physicians

perform the complete assessment, as they are time consuming. There is emerging data that a comprehensive

geriatric assessment can predict complications and side effects from treatment [64, 57, 92, 58, 159, 79, 38].

Currently, the most routine assessment is the ECOG performance status. It is well known that in metastatic

cancer such as lung origin, ECOG strongly predicts survival independent of treatment and usually guides if

treatment should even be given if poor performance status [97, 76, 78, 114, 187, 148]. Clinical assessment

of performance status and risk of toxicity from cancer therapy includes observation of patient movement

as part of the physician examination within a clinic room environment. This has been routine practice for

many years, and while it has been recognized for a long time, oncologists and patients substantially differ

in their assessment of performance status with most oncologists being overly optimistic on the patient’s

performance status [6, 191]. Technological advances in low cost spatial cameras, such as Microsoft Kinect,

have the potential to objectively define and categorize patients with varying levels of mobility at home or

in the clinic [136]. Similarly, low cost activity trackers containing accelerometers, such as Microsoft Band,

can capture daily movement in the clinic and at home, assessing dynamic changes related to exertion or to

physical challenges such as the chemotherapy cycle. These consumer technologies have the capacity to bring

objectivity to the assessment of mobility and performance status of patients on chemotherapy. The utility

of activity trackers has been evaluated in areas outside of cancer medicine and demonstrated correlation

with clinical outcomes in a wide variety of other disease settings [35, 28]. For example, in COPD, increasing

additional steps correlates with reduced COPD hospitalizations [51] and formal exercise capacity evaluation

such as the six-minute walk distance predicted COPD-related hospitalization [53]. After cardiac surgery, it

was observed using an accelerometer that inpatient step count appears to predict repeat hospitalization [188].

In elderly hospitalizations it was found that mobility after hospital discharge could predict 30-day hospital

readmissions [60]. To improve our understanding unexpected hospital visits in cancer patients receiving

chemotherapy we conducted an observational study to evaluate the effect of physical activity as measured

by a motion-capture system and wearable movement sensor and their relationship to unexpected healthcare

encounters.

2.3 Methods

2.3.1 Trial Design

This study was a multicenter, single arm, observational trial conducted in the United States between July

2016 to July 2017. It was designed to compare kinematic signatures obtained from motion-capture systems
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(e.g. Microsoft Kinect) and wearable motion sensors (e.g. Microsoft Band) and see if there was a correlation

with unexpected hospital visits and physical activity at home and is described elsewhere [81, 120]. The

study protocol was approved by the institutional review boards at all participating sites. Written informed

consent was obtained from all participants.

2.3.2 Participants

Briefly, patients were eligible for the study if they were > 18 years of age, had a diagnosis of a solid tumor,

and undergoing 2 planned cycles of highly emetogenic chemotherapy (see Appendix A), could ambulate

without an assistive device, and had 2 separate kinematic evaluations successfully completed.

Patient demographics
Number of patients 36
Age
Median 48
Range 24-72
Gender
Male 18
Female 18
Ethnicity
Hispanic 22
Non-Hispanic 14
Goal of treatment
Curative 30
Palliative 6

Table 5: Baseline characteristics of participants

2.3.3 Clinical exercises and motion capture

Patients underwent two clinically supervised tasks including chair-to-table (CTT) and get-up-and-walk

(GUP) [129, 203]. CTT task begins with patients standing up from a chair while rotating the hip and

left leg and pivoting on the right leg. Therefore, the CTT task design requires larger range of motion from

the left lower extremities . The GUP task requires patients to stand up and walk to a marker 8 feet away,

turn, and walk back to the starting position. We analyze the entire CTT task and the walking portion of

GUP using the motion capture system.

The two tasks are performed by the cohort of cancer patients once pre-treatment (visit-1) and once

post-treatment (visit-2). The Microsoft Kinect, a depth-sensing motion capture camera is used record the

exercises, and three-dimensional positions of 25 anatomical sites (Figure 7) are extracted [136], from which

six types of kinematic features are calculated: 1) velocity, 2) acceleration, 3) specific kinetic energy, 4) specific

potential energy, 5) sagittal angle, 6) angular velocity (Appendix B). We exclude wrist, hand, ankle, and
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Figure 6: Illustration of chair-to-table exam maneuver demonstrating (A) sitting at rest (B) standing,
rotating hip, pivoting on right leg, and using left (non-pivoting) leg to move onto exam table (C) sitting on
exam table

foot joints (Figure 7) from statistical analysis as the motion capture signal for these joints is less reliable.

The combination of selected joints and kinematic features capture the underlying biomechanics of patient

movement and are therefore selected for inter-patient comparison.

Each patient has a pre- and post-treatment pair of samples of each feature, and four statistics (minimum,

maximum, mean, median) from each visit’s time series kinematic feature are averaged (mean) over the two

samples. For the remainder of the paper, we refer to the mean-(minimum, maximum, mean, median) over

the two visits simply as the minimum, maximum, mean, and median.

2.3.4 Physical Activity measure

Patient outcomes were grouped by activity level and unexpected hospital visits. During the study period

that spanned for 60 days while receiving chemotherapy and a 90-day follow-up period, patients wore a wrist

motion sensor to track their overall daily physical activity. We recorded the number of hours spent above

low physical activity (LPA) for each patient over this period. Patients were considered high activity, rather

than low activity, if they met greater than a 15-hour during the study period physical activity threshold.

Patients with more than 15 hours of activity above LPA (HALPA = 0) and patients with 15 hours or less

active time than LPA form the two HALPA groups.

Likewise, patients were grouped if they had one or more unexpected hospital visits compared to those

that did not have any. Four types of unexpected hospital visits were tracked including: 1) Unplanned

triage/infusion center visits, 2) urgent office visits, 3) urgent hospitalizations, and 4) ER visits. Patients

with zero unexpected hospitalizations (UHV = 0) and patients with one or more unexpected hospital visits

21



2 QUANTIFIED KINEMATICS FROM IN CLINIC MOVEMENTS DIFFERENTIATES PATIENT
RISK FOR CHEMOTHERAPY COMPLICATIONS

are (UHV = 1) form the UHV groups.

2.3.5 Statistical Analysis

We differentiate patients by the average of visit-1 and visit-2 statistics for the set of kinematic features and

correlate to two binarized clinical outcome UHV and HALPA. The Welch’s t-test is used to test whether

the mean value of the four averaged statistics is different for the UHV or HALPA groups, thereby revealing

kinematic features which distinguish between UHV = 0 and UHV = 1 patients, and similarly HALPA = 0

and HALPA = 1 patients. The Welch’s t-test also known as the unequal variance t-test allows the central

tendency of two groups of unequal sizes and unequal variance to be tested for equivalence [167]. Secondly,

we calculate the receiver operating characteristic (ROC) curve and use the corresponding area under the

curve (AUC) as a metric of a feature’s ability to classify patients into risk groups.

Figure 7: Schematic of anatomical sites detected in motion capture, along with six two-joint sections (red)
whose angular velocities are extracted from raw kinematic data.
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2.4 Results

2.4.1 Patient cohort

Of the 60 persons screened and agreed to participate in the study, 36 persons completed the study without

drop out and had associated unexpected hospital visits and physical activity results. Overall the mean

age of participates were 47.8 years old, and 50% were men. Breast, testicular, and head and neck cancer,

comprised most of study participants . Chemotherapy was primarily of curative intent for most patients .

Presumed reasons for higher than expected study drop out were likely due to a large proportion of persons

being recruited from the Los Angeles County Hospital uninsured patient population combined with a large

proportion being young males receiving chemotherapy for testicular cancer. These factors may explain why

there was not a higher percentage of patients could complete the five-month study period. There are 16

UHV = 0 patients and 20 UHV = 1 patients for a total of N = 36 patients for whom hospitalization data

is collected. Similarly, there are 17 HALPA = 0 patients and 18 HALPA = 1 patients for a total of N = 35

patients for whom physical activity data is collected.

2.4.2 Unexpected hospitalizations

We report the kinematic features that correlate most with unexpected hospital visits according to i) t-test

and ii) ROC analysis in Table 6. CTT features dominate the list of UHV differentiating kinematic features

and GUP features were less associated with the two outcomes. The full list of 55 features with significant

t-test scores (p-value < 0.05) are listed in Appendix C.

Hip and left side joints are the top UHV features due to the pivot on the right side, and resulting large

left side motion of CTT (see Figure 6). Figure 8A shows the ROC curves for the features with the highest

AUC values for UHV where the maximum left leg angular velocity about the y-axis during CTT forms the

best classifier of UHV (AUC = 0.816). The top three UHV differentiating features according to the t-test

are plotted in Figure 8B, which shows the left knee, left hip, and the spine base mean accelerations during

CTT are all generally higher for patients with no unexpected hospitalizations compared to patients with one

or more unexpected hospitalizations.

2.4.3 Physical activity

Kinematic features that correlate most with physical activity according to i) t-test and ii) ROC analysis in

Table 7. Unlike UHV, both CTT and GUP features appear in the list of HALPA differentiating kinematic

features. The full list of 15 features with significant t-test scores (p-value < 0.05) are listed in Appendix

D. Angular velocities, particularly those of the hip, differentiate HALPA groups the most. Nevertheless,
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Welch’s t-test ROC analysis
Feature t-test p-value Feature AUC

1 Left knee: mean CTT acc 3.735 0.001 1 Left leg: max CTT av-y 0.816
2 Left hip: mean CTT acc 3.398 0.002 2 Left knee: mean CTT acc 0.806
3 Spine base: mean CTT acc 3.258 0.003 3 Left elbow: max CTT pe 0.781
4 Left knee: mean CTT vel 3.177 0.003 4 Left hip: max CTT acc 0.781
5 Left knee: mean CTT ke 3.14 0.004 5 Spine base: mean CTT acc 0.775
6 Left elbow: max CTT pe 2.988 0.005 6 Left hip: mean CTT acc 0.775
7 Right hip: mean CTT acc 2.928 0.006 7 Left knee: mean CTT ke 0.775
8 Left hip: max CTT acc 2.925 0.006 8 Right leg: min CTT av-x 0.759
9 Left hip: mean CTT ke 2.921 0.006 9 Hip: min CTT av-z 0.756

10 Right arm: mean GUP av-y 2.91 0.006 10 Left hip: mean CTT ke 0.753

Table 6: Top ten kinematic features from Welch’s t-test (ranked by absolute value of two-sample t-test scores)
and top ten kinematic features with highest AUC for differentiating between patients with no unexpected
hospitalizations (UHV = 0) and patients with one or more unexpected hospitalizations (UHV = 1). (vel:
velocity; acc: acceleration; pe: potential energy; ke: kinetic energy; sa: sagittal angle; av-x, av-y, av-z:
angular velocity about x,y, or z axes).

kinematic features from the clinical exercises are less correlated with HALPA groups than UHV groups as

both t-test scores and AUC values are generally lower in Table 7 compared to Table 6.

Figure 9A shows the ROC curves for the features with the highest AUC values for HALPA where the

mean hip angular velocity about the vertical axis during CTT forms the best classifier of HALPA (AUC =

0.735). Mean hip and minimum left leg angular velocities during GUP are both larger (absolute value) for

higher activity patients as seen in Figure 9B.

Welch’s t-test ROC analysis
Feature t-test p-value Feature AUC

1 Hip: mean GUP av-x -2.414 0.022 1 Hip: mean CTT av-z 0.735
2 Left leg: min GUP av-x -2.379 0.024 2 Hip: mean CTT av-y 0.729
3 Back: mean CTT sa -2.331 0.026 3 Left arm: mean GUP av-y 0.725
4 Left arm: min GUP av-y -2.328 0.032 4 Left knee: median GUP ke 0.722
5 Right leg: mean GUP av-z 2.224 0.033 5 Left leg: min GUP av-x 0.722
6 Left hip: mean CTT acc 2.221 0.033 6 Spine mid: mean CTT acc 0.719
7 Back: median CTT sa -2.219 0.034 7 Right leg: median CTT av-y 0.719
8 Hip: mean CTT av-x -2.193 0.035 8 Back: mean CTT sa 0.716
9 Left knee: median GUP ke 2.185 0.039 9 Shoulder: median CTT av-x 0.712

10 Right leg: median CTT av-y -2.184 0.037 10 Hip: mean CTT av-x 0.706

Table 7: Top ten kinematic features from Welch’s t-test (ranked by absolute value of two-sample t-test
scores) and top ten kinematic features with highest AUC for differentiating between patients with more
than 15 hours of activity above LPA (HALPA = 0) and patients with 15 hours or less activity above LPA
(HALPA = 1). (vel: velocity; acc: acceleration; pe: potential energy; ke: kinetic energy; sa: sagittal angle;
av-x, av-y, av-z: angular velocity about x,y, or z axes).
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Figure 8: Kinematic features which differentiate patients with zero unexpected hospitalizations from patients
with one or more hospitalizations. (A) ROC curves for features with the highest AUC. (B) Boxplots for
features with the highest t-test scores (UHV = 0: gray, UHV = 1: red). (vel: velocity; acc: acceleration;
pe: potential energy; ke: kinetic energy; sa: sagittal angle; av-x, av-y, av-z: angular velocity about x,y, or z
axes).

2.5 Discussion

This study corroborates other studies by demonstrating that using a motion capture system and wearable

motion sensor is feasible and can give kinematic data that can correlate and possibly be predictive of

important clinical outcomes such as unexpected healthcare encounters [24, 77]. However, it seems to be

clear that not all kinematic features are relevant while performing chair-to-table and get-up-and-go exams.

Clinical assessment is of value, and what this study attempted to accomplish was to put a quantitative metric

on the clinical assessment. As mentioned earlier, the kinematic features were based off of 25 anatomical sites

that include head, arms, spine, hips, knees, and feet. The kinematic features of the get-up-and-go exam did

not correlate with unexpected hospital visits however five kinematic features of the chair-to-table exam did.

Interestingly, the anatomic sites that were statistically significant were left (non-pivoting) knee and hip, as
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Figure 9: Top three kinematic features which differentiate patients with 15 hours or more of activity above
LPA from patients with 15 hours or less of activity above LPA. A) ROC curves for features with the highest
AUC. B) Boxplots for features with the highest t-test scores (HALPA = 0: gray, HALPA = 1: red). (vel:
velocity; acc: acceleration; pe: potential energy; ke: kinetic energy; sa: sagittal angle; av-x, av-y, av-z:
angular velocity about x,y, or z axes).

well as the spine base. The spine base velocity reflects the movement of a majority of the patient’s mass

that is not subject to high variability such as the distal hands or feet. Logically it would be safe to assume

that patients can have a wide range of how they move their hands or feet during an exam maneuver which

would not correlate with their overall physical fitness and hence not correlate with hospitalization risk .

The association between high physical activity level and kinematic features also seem to revolve around

leg, knee, hip, and back movement. Similarly to above, these areas of the body intuitively carry the majority

of a patient’s mass and lower extremities generally are a more predictive measurement of a persons overall

physical activity. This is supported by the calculated kinematic features (Table 6) noted above.

The mean hip and minimum left leg angular velocities about the x-axis during get-up-and-go are the two

best differentiators of HALPA groups (Figure 9), and both these angular velocities are greater for patients
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with higher physical activity compared to patients grouped in the low activity group. Mean sagittal angle

during CTT is generally lower for patients with higher physical activity, which may be due to the increased

ability of more active patients to crouch lower in the seated position before standing up and after reaching

the medical table.

Ultimately the main goal of many recent studies including this one is to identify high-risk patients in a

quantitative manner thus increasing reproducibility and reliability. Other modalities such as an Actigraph,

a triaxial accelerometer, or using patient reported outcomes, have also recently been studied to better

understand this issue [153, 184]. A range of different metrics have been evaluated that usually comprise of age,

ECOG performance status, cognitive function (mini-mental state exam), nutritional status, comedications,

comorbidities, autonomy, creatinine clearance, albumin, or other lab abnormalities [64, 57, 92, 58, 159,

79, 38]. Identifying high-risk patients is postulated as only one component of reducing costly preventable

hospitalizations in cancer patients. Other proven strategies include enhancing access and care coordination,

standardize clinical pathways for symptom management, availability of urgent cancer care, and early use of

palliative care [184, 204, 26, 80]. Interestingly, although performance status likely still has value in predicting

side effects and hospitalization risk that in the era of targeted therapy and immunotherapy performance status

is less important in affecting response to novel therapies [33].

This study has limitations due to the small sample size and observational design compared to a traditional

large randomized controlled trial. Confirmation of the finding would best be accomplished by integrating the

tool into randomized clinical trials. The eventual goal would be to identify high-risk patients that have low

activity levels or high risk for hospitalizations that appropriate interventions could be performed to reduce

poor clinical outcomes. These interventions could include more frequent outpatient visits, IV hydration, or

closer nursing/clinical navigator support.

In conclusion, patient performance and physical activity can be reliably quantified using camera based

kinematic analysis. Modern sensor technology makes such as assessment rapid and low cost. The current

platform requires a separate sensor and computer, and incorporation of these into a single hand-held device

would be necessary to garner adoption of these algorithms for predicting adverse outcomes. Having such a

tool available that quantifies what the physician sees during the in-clinic examination has the potential to

harmonize findings among different physicians, specialists, researchers and families who all rely on a uniform

assessment of patient fitness for receiving difficult cancer treatments.
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2.7 Appendix A

2.7.1 Calculating the Emetogenicity of Multiple Agent Chemotherapy/Biotherapy Regimens

Steps and Guidelines: 1. List each agent contained within the multiple agent regimen. 2. Identify the agent

with the highest emetogenic level 3. Determine the contribution of the remaining agents using the following

guidelines:

a. Level 1 agents do not contributor to emetogenicity in combination regimens.

Examples: level

1 + 1 = 0

2 + 1 = 2

3 + 1 = 3

4 + 1 = 4

b. Adding one or more level 2 agents increases the highest level by 1 in combination regimens.

Examples: level

2 + 2 = 3

3 + 2 = 4

2 + 2 + 2 = 3

3 + 2 + 2 = 4
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c. Adding level 3 or 4 agents increase the highest level by 1 per each agent in combination regimens.

Examples: level

3 + 3 = 4

3 + 3 + 3 = 5

4 + 3 = 5

2.8 Appendix B

Details of kinematic feature extraction from the raw three-dimensional position motion capture data are

described here. Anatomical site position vectors ~ri = 〈~xi, ~yi, ~zi〉 are three-dimensional time series constructed

from position at each time point, ri(t) = (xi(t), yi(t), zi(t)) for i = 25 anatomical sites. The position vectors

are used to calculate velocity magnitude,

~vi = (ṙx
T ṙx + ṙy

T ṙy + ṙz
T ṙz)

1/2 (36)

and acceleration magnitude

~ai = (r̈x
T r̈x + r̈y

T r̈y + r̈z
T r̈z)

1/2 (37)

of each anatomical site using the mean-value theorem. Due to the lack of distribution of mass information,

specific kinetic energy

~Ti = ~vTi ~vi/2 (38)

and specific potential energy

~Ui = g∆~zi = g(~zi − ~zi(t = t1)) (39)

We define sagittal angle as the angle formed between v1,m the vector originating at the spine base and

pointing in the direction of motion, and v1,3 the vector connecting anatomical site 1 (spine base) and 3

(neck) at each time point.
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2.8.1 Sagittal angle calculation

We define sagittal angle as the angle formed between v1,m the vector originating at the spine base and

pointing in the direction of motion, and v1,3 the vector connecting anatomical site 1 (spine base) and 3

(neck) at each time point. The sagittal angle is calculated using the inverse tangent of the ratio of the cross

product and dot product of v1,m) and v1,3,

θs = tan−1
(
‖v1,m × v1,3‖
v1,m · v1,3

)
(40)

2.8.2 Angular velocity calculation

The angular velocity of the sections defined in Figure 7 are calculated using three-dimensional rigid body

kinematic equations for relative motion. A section (Figure 7) is treated as a rigid bar and is defined by two

anatomical points (e.g. left and right hips define the hip section) and we refer generically to these two ends

as point A and point B. We calculate the velocities of these two points from the position vectors using the

mean-value theorem as mentioned previously. Therefore, using these two velocities, the angular velocity of

the section ωAB can be isolated in the relative velocity vector equation

~vB − ~vB = ~ωAB × ~rAB = (∆vx,∆vy,∆vz) (41)

where ~rAB is the vector from point A to point B,

~rAB = ~rB~rA = (rAB,x, rAB,y, rAB,z) (42)

This vector equation has three components corresponding to the three directions and require an additional

equation to solve for the three components of the angular velocity. Consequently, we use a kinematic

restriction equation,

~ωAB · ~rAB = 0 (43)
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because the angular motion of the section along the axis of the section does not affect its action. This allows

for a solution to the three components of the angular velocity vector ωAB = (ωx, ωy, ωz):

ωx =
∆vzrAB,y −∆vyrAB,z
r2AB,x + r2AB,y + r2AB,z

(44)

ωy =
1

rAB,x
(rAB,yωx −∆vz) (45)

ωz =
1

rAB,y
(rAB,zωy −∆vx) (46)

These equations are solved at each time point to get the time series of angular velocities for each section in

Figure 7.

2.9 Appendix C

Two-sample t-tests are done to determine if mean values of kinematic features are different for patients with

zero unexpected hospitalizations (UHV = 0) and patients with one or more hospitalizations (UHV = 1),

and the distribution of the resulting t-test scores and significance values for the entire set of 526 features is

shown in Appendix Figure 11. Full list of 55 significant (p-value < 0.05) t-test scores is shown in Appendix

Table 8, and boxplots of these significantly differentiating kinematic features is shown in Appendix Figures

12, 13, and 14.
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Figure 10: Chemotherapy Emetogenicity Table.
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Figure 11: Distribution of t-test scores and significance values from two-sample t-tests for differences in mean
values of kinematic features between patients with no unexpected hospitalizations (UHV = 0) and patients
with one or more unexpected hospitalizations (UHV = 1).
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Feature t-test p-value Feature t-test p-value

1 Left knee: mean CTT acc 3.735 0.001 29 Spine base: max CTT vel 2.322 0.027
2 Left hip: mean CTT acc 3.398 0.002 30 Neck: max CTT pe 2.315 0.027
3 Spine base: mean CTT acc 3.258 0.003 31 Shoulder: median GUP av-z 2.29 0.028
4 Left knee: mean CTT vel 3.177 0.003 32 Left elbow: mean CTT pe 2.26 0.031
5 Left knee: mean CTT ke 3.14 0.004 33 Left hip: mean CTT pe 2.257 0.031
6 Left elbow: max CTT pe 2.988 0.005 34 Spine base: median CTT acc 2.233 0.033
7 Right hip: mean CTT acc 2.928 0.006 35 Right elbow: median CTT acc 2.232 0.032
8 Left hip: max CTT acc 2.925 0.006 36 Spine base: mean CTT pe 2.229 0.033
9 Left hip: mean CTT ke 2.921 0.006 37 Left shoulder: mean CTT pe 2.228 0.033
10 Right arm: mean GUP av-y 2.91 0.006 38 Left leg: median GUP av-x -2.227 0.033
11 Left knee: median CTT acc 2.844 0.008 39 Left knee: max CTT acc 2.195 0.037
12 Spine base: mean CTT ke 2.764 0.01 40 Left hip: median CTT acc 2.19 0.036
13 Left leg: min CTT av-x -2.759 0.011 41 Right hip: mean CTT pe 2.186 0.036
14 Spine base: max CTT pe 2.745 0.01 42 Right elbow: mean CTT vel 2.186 0.036
15 Right hip: max CTT pe 2.725 0.01 43 Right leg: max CTT av-x 2.181 0.037
16 Left hip: mean CTT vel 2.671 0.012 44 Right knee: mean CTT vel 2.161 0.038
17 Spine base: max CTT acc 2.658 0.012 45 Right shoulder: max CTT pe 2.151 0.04
18 Left shoulder: max CTT pe 2.654 0.013 46 Spine mid: mean CTT acc 2.15 0.039
19 Left hip: max CTT pe 2.65 0.012 47 Left elbow: mean CTT vel 2.149 0.039
20 Spine base: mean CTT vel 2.591 0.014 48 Left shoulder: median CTT pe 2.143 0.04
21 Right leg: min CTT av-x -2.566 0.017 49 Left elbow: median CTT acc 2.137 0.041
22 Right arm: max GUP av-y 2.542 0.02 50 Right hip: max CTT acc 2.13 0.04
23 Right hip: mean CTT ke 2.486 0.019 51 Left hip: max CTT vel 2.103 0.043
24 Spine mid: max CTT pe 2.456 0.02 52 Head: max CTT pe 2.095 0.044
25 Right hip: mean CTT vel 2.442 0.02 53 Left elbow: median CTT vel 2.078 0.046
26 Hip: median CTT av-m 2.396 0.023 54 Spine mid: mean CTT pe 2.071 0.046
27 Shoulder: median CTT av-m 2.363 0.024 55 Right hip: median CTT acc 2.062 0.047
28 Spine shoulder: max CTT pe 2.356 0.025

Table 8: Full list of kinematic features which significantly (p-value < 0.05) differentiate between patients
with no unexpected hospitalizations (UHV = 0) and patients with one or more unexpected hospitalizations
(UHV = 1). Ranked by absolute value of two-sample t-test scores. (vel: velocity; acc: acceleration; pe:
potential energy; ke: kinetic energy; sa: sagittal angle; av-x, av-y, av-z: angular velocity about x,y, or z
axes).

2.10 Appendix D

Two-sample t-tests are done to determine if mean values of kinematic features are different for patients with

15 hours or more of activity above LPA (HALPA = 0) from patients with 15 hours or less of activity above

LPA (HALPA = 1), and the distribution of the resulting t-test scores and significance values for the entire

set of 526 features is shown in Appendix Figure 15. Full list of 28 significant (p-value <0.05) t-test scores

is shown in Appendix Table 9, and boxplots of these significantly differentiating kinematic features is shown

in Appendix Figures 16 and 17.
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Figure 12: Box plots of kinematic features which significantly differentiate between patients with no unex-
pected hospitalizations (UHV = 0, gray) and patients with one or more unexpected hospitalizations (UHV
= 1, red). Kinematic features 1-20.

Feature t-test p-value Feature t-test p-value

1 Hip: mean GUP av-x -2.414 0.022 15 Spine base: mean CTT acc 2.039 0.05
2 Left leg: min GUP av-x -2.379 0.024 16 Right hip: mean CTT acc 1.987 0.055
3 Back: mean CTT sa -2.331 0.026 17 Hip: mean CTT av-y 1.96 0.065
4 Left arm: min GUP av-y -2.328 0.032 18 Right leg: median GUP av-x -1.96 0.06
5 Right leg: mean GUP av-z 2.224 0.033 19 Head: mean CTT acc 1.879 0.071
6 Left hip: mean CTT acc 2.221 0.033 20 Left arm: max GUP av-x 1.838 0.076
7 Back: median CTT sa -2.219 0.034 21 Hip: max CTT av-y 1.837 0.084
8 Hip: mean CTT av-x -2.193 0.035 22 Shoulder: mean CTT av-x -1.805 0.083
9 Left knee: median GUP ke 2.185 0.039 23 Right arm: median CTT av-x -1.775 0.086
10 Right leg: median CTT av-y -2.184 0.037 24 Left leg: median GUP av-m -1.775 0.086
11 Spine mid: mean CTT acc 2.181 0.037 25 Left knee: median GUP vel 1.763 0.091
12 Spine shoulder: mean CTT acc 2.136 0.042 26 Right leg: mean GUP av-x -1.742 0.091
13 Neck: mean CTT acc 2.125 0.043 27 Spine mid: max CTT acc 1.727 0.094
14 Shoulder: median CTT av-x -2.115 0.042 28 Left hip: mean CTT ke 1.702 0.098

Table 9: Full list of kinematic features which (feature 1-15: p-value < 0.05, feature 16-28: 0.05 < p-value
< 0.10) differentiate between patients with no unexpected hospitalizations (UHV = 0) and patients with
one or more unexpected hospitalizations (UHV = 1). Ranked by absolute value of two-sample t-test scores.
(vel: velocity; acc: acceleration; pe: potential energy; ke: kinetic energy; sa: sagittal angle; av-x, av-y, av-z:
angular velocity about x,y, or z axes).
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Figure 13: Box plots of kinematic features which significantly differentiate between patients with no unex-
pected hospitalizations (UHV = 0, gray) and patients with one or more unexpected hospitalizations (UHV
= 1, red). Kinematic features 1-20.

Figure 14: Box plots of kinematic features which significantly differentiate between patients with no unex-
pected hospitalizations (UHV = 0, gray) and patients with one or more unexpected hospitalizations (UHV
= 1, red). Kinematic features 1-20.
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Figure 15: Distribution of t-test scores and significance values from two-sample t-tests for differences in
mean values of kinematic features between patients with 15 hours or more of activity above LPA (HALPA
= 0) from patients with 15 hours or less of activity above LPA (HALPA = 1).

Figure 16: Box plots of kinematic features which significantly differentiate between patients with 15 hours
or more of activity above LPA (HALPA = 0, gray) from patients with 15 hours or less of activity above LPA
(HALPA = 1, red). Kinematic features 1-20.
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Figure 17: Box plots of kinematic features which significantly differentiate between patients with 15 hours
or more of activity above LPA (HALPA = 0, gray) from patients with 15 hours or less of activity above LPA
(HALPA = 1, red). Kinematic features 21-28
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3 Low-dimensional characterization of human performance of can-

cer patients using motion data

3.1 abstract

Biomechanical characterization of human performance with respect to fatigue and fitness is relevant in

many settings, however is usually limited to either fully qualitative assessments or invasive methods which

require a significant experimental setup consisting of numerous sensors, force plates, and motion detectors.

Qualitative assessments are difficult to standardize due to their intrinsic subjective nature, on the other

hand, invasive methods provide reliable metrics but are not feasible for large scale applications. Presented

here is a dynamical toolset for detecting performance groups using a non-invasive system based on the

Microsoft Kinect motion capture sensor, and a case study of 37 cancer patients performing two clinically

monitored tasks before and after therapy regimens. Dynamical features are extracted from the motion

time series data and evaluated based on their ability to i) cluster patients into coherent fitness groups using

unsupervised learning algorithms and to ii) predict Eastern Cooperative Oncology Group performance status

via supervised learning. The unsupervised patient clustering is comparable to clustering based on physician

assigned Eastern Cooperative Oncology Group status in that they both have similar concordance with

change in weight before and after therapy as well as unexpected hospitalizations throughout the study. The

extracted dynamical features can predict physician, coordinator, and patient Eastern Cooperative Oncology

Group status with an accuracy of approximately 80%. The non-invasive Microsoft Kinect sensor and the

proposed dynamical toolset comprised of data preprocessing, feature extraction, dimensionality reduction,

and machine learning offers a low-cost and general method for performance segregation and can complement

existing qualitative clinical assessments.

3.2 Introduction

In oncologic practice, clinical assessments of performance stratify patients into subgroups and inform deci-

sions about the intensity and timing of therapy as well as cohort selection for clinical trials. The Karnofsky

performance status (KPS) [96] and the ECOG/World Health Organization (WHO) performance status [147]

are two equally prevalent measures of the impact of disease on a patient’s physical ability to function. The

Karnofsky score is an 11-tier measure ranging from 0 (dead) to 100 (healthy) whereas the ECOG score is a

simplified 6-tier score summarizing physical ability, activity, and self-care: 0 (fully active), 1 (ambulatory),

2 (no work activities), 3 (partially confined to bed), 4 (totally confined to bed), 5 (deceased) [147] .

Although these metrics have been employed for many decades due the practicality, standardization of
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patient stratification, and speed of assessment, prospective studies have revealed inter- and intra-observer

variability [151], gender discrepancies [20], sources of subjectivity in physician assigned performance assess-

ments [151], and a lack of standard conversion between the two different scales [25]. Nevertheless performance

status provides clinical utility because it is able to differentiate patient survival [158, 98]. Consequently, the

existing protocol of assigning a performance status based on an inherently subjective assessment must be

refined to achieve a more objective classification of a patient’s physical function.

In contrast to the qualitative and relatively practical nature of physician assessments in the clinic, labo-

ratory based invasive methods have been developed to biomechanically quantify elements of human perfor-

mance. Many of these efforts have conducted gait analysis using accelerometer, gyroscope and other types of

wearable sensors and motion capture systems [190] to detect and differentiate conditions in patients with os-

teoarthritis [198], neuromuscular disorders [67], and cerebral palsy [46]. The shortcomings of more extensive

assessments such as gait analysis include high cost, time required to perform tests, and general difficulty in

interpreting results [176]. The need for new technologies has been emphasized, particularly in the oncology

setting [99], to bridge the gap between subjective prognostication using KPS or ECOG performance status

and objective, yet cumbersome assessments of performance.

To this end, we propose a non-invasive motion-capture based performance assessment system which can

(i) characterize performance groups using solely kinematic data and (ii) be trained to predict ECOG scores

by learning from various physicians in order to reduce bias and intra-observer variability. The Microsoft

Kinect is used as the motion-capture device due to its low cost, and ability to extract kinematic information

without the need of invasive sensors. We describe and test a data processing and analysis pipeline using a

cohort of 40 cancer patients who perform two clinically supervised tasks before and after therapy at USC

Norris Comprehensive Cancer Center, Los Angeles County+USC Medical Center, and MD Anderson Cancer

Center.

3.3 Methods

A set of dynamical analysis and machine learning tools is developed to gather kinematic information from

recordings of patients performing tasks (Fig.18) with the goal of validating the experiment design by per-

forming unsupervised classification of performance categories (Fig.18, step 4a), as well as supervised learning

of physician assigned ECOG performance status (Fig.18, step 4b). Although we illustrate the use of the

toolset by exploring its application to an oncology cohort, the following methods are general and may be

used to characterize patient performance in other settings.
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Figure 18: Schematic of dynamical and machine learning analysis pipeline. Raw skeletal displacement data
(Step 1) from two clinically monitored tasks are preprocessed (Step 2) before feature extraction (Step 3)
and two mutually exclusive machine learning analyses are performed. Unsupervised clustering (Step 4a) of
patients in a low dimensional space reveals the degree to which performance groups can by stratified using
solely motion data. Supervised classification (Step 4b) tests the ability of motion data to evaluate patients
similar to physician ECOG performance status.

3.3.1 Experimental setup

The Kinect depth sensor employs an infrared laser projector to detect a representative skeleton composed

of 25 anatomical points (Fig.19A) and recordings are post-processed using Microsoft Kinect SDK (v2.0) to

extract 3-dimensional displacement time series data for the 25 points. The Microsoft Kinect sensor is used

in the clinical setting to record patients performing two tasks: (i) task-1 requires patients, who start from

a sitting a position, to stand up and sit down on an adjacent elevated medical table (Fig.19B), (ii) task-2

requires patients to walk 8 ft towards the Kinect sensor, turn, and return to the original position (Fig.19C).

Both tasks are performed by each patient before and after a therapy cycle, providing two samples for each

task for a total of four time series per patient. In both tasks the Kinect camera is secured to a tripod on

a table, and oriented so as to capture the entire figure. Details about the data collection, skeletal data

extraction, and experimental setup are described by Nguyen and Hasnain in [135].

3.3.2 Data preprocessing

Due to irregularities in the positioning of the Kinect camera across different experiments, time series for

task-2 is distorted such that a level plane (e.g. clinic floor) appears sloped in the recordings. To resolve

this, an automated element rotation about the x-axis is performed. The angle of distortion θ ranges between

5-20◦ in the time series studied. The second preprocessing step involves manually segmenting the series to

trim irrelevant data in the beginning and end of each task while the patient is stationary.
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Figure 19: (A) Kinect recordings are post-processed using Microsoft Kinect SDK (v2.0) to extract displace-
ment time series data for a set of 25 anatomical joints and sites. (B) Task-1 requires a patient to stand up
from a chair and to sit at a medical table, a sample time series is shown. (C) Task-2 sample time series,
patient starts from a standing position (t = 1) and walks to a mark 8 ft away (t = 6) and returns to original
position (not shown).

3.3.3 Feature extraction

The position vector, ~ri(t) = 〈xi(t), yi(t), zi(t)〉 for an anatomical joint i is used to calculate its velocity

magnitude,

vi(t) =
∥∥∥~̇ri(t)∥∥∥ (47)

and acceleration magnitude,

ai(t) =
∥∥∥~̈ri(t)∥∥∥ (48)
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using the mean-value theorem. In the absence of distribution of mass information, specific kinetic energy,

kei(t) =
1

2
v2i (t) (49)

and specific potential energy,

pei(t) = g∆zi = g(zi(t)− zi(t = 1)) (50)

quantities are used to describe the energy signature of each anatomical joint. The sagittal angle, θs(t),

is defined as the angle formed between the vector originating at the spine base and pointing in the direction

of motion, and the vector connecting points 1 and 3 (Fig.19A) at each time point t.

Time series corresponding to the hand (7, 8, 11, 12, 22, 23, 24, 25 in Fig.19A) and feet (15, 16, 19, 20 in

Fig.19A) joints are relatively noisy therefore these time series are precluded from analysis, yielding 13 joints

of interest in Fig.19. In summary, the list of extracted features for each task performed by a patient during

a single visit includes: vi, ai, kei, pei, θs for i = 1, ..., 13 anatomical joints resulting in 53 time series features

per task, and K = 106 time series features per visit.

3.3.4 Time series similarity

For a given patient and task the before- and after-therapy time series of each feature are compared using a

Euclidean metric dynamic time warping (DTW), which assigns a distance of zero for completely identical

series and larger distances for more dissimilar series. Although DTW provides a distance which does not

satisfy the triangle inequality and therefore is not a metric, it has been used extensively for time series

clustering and classification [160]. In the present work, DTW is used to describe changes in the extracted

features where it is necessary to detect similar series despite noise and distortions which are intrinsic to the

Kinect sensor and subsequent skeleton extraction. Consequently, the pair of before and after-therapy time

series are assigned a DTW distance, dDTW (p, k), for each patient p and feature k:

D(p, k) = dDTW (p, k) = DTW
(
Xp

1,k, X
p
2,k

)
(51)

where Xp
1,k and Xp

2,k are the time series of patient p’s feature k for visits 1 and 2 respectively. Calculating

the DTW distance between before- and after-therapy visits for P patients and K features results in a matrix

D ∈ RP×K of DTW distances. This matrix captures the changes in the dynamical feature set before and

after therapy. Feature distance vectors ~dk′ ∈ RP for k′ = 1, ...,K, whose entries are dDTW (p, k′), are columns

of D .
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3.3.5 Dimensionality reduction

In practical applications, and the clinical case study presented here the number of patients who completed

both visits, P = 37 << K, therefore further dimensionality reduction is required before implementing

learning algorithms based on the matrix D in order to avoid overfitting and the curse of dimensionality

[50]. Here, we use principal component analysis (PCA) to recast D into a lower dimension space while still

maintaining most of the variance in the data. The scale of DTW distances are feature dependent, therefore

column-wise standardization of D is performed prior to PCA. This process results in a reduced distance

matrix Dr ∈ RP×N , comprised of N principal components, where N ≤ P .

3.3.6 Unsupervised clustering

Performance groups are detected in reduced principal component space by employing the K-medoids al-

gorithm, where number of clusters, k, corresponds to the number of performance groups detected. The

K-medoids algorithm is chosen as the unsupervised algorithm for its insensitivity to outliers and fast imple-

mentation for the small dataset studied.

The overall quality of the resulting clusters is assessed by varying (i) the number of clusters in the K-

medoids algorithm, and (ii) the number of principal components N in the low dimensional distance matrix

Dr and measuring the silhouette s of the resulting clusterings as well as the concordance between a given

learned clustering and three clinical clusterings based on changes in weight before and after therapy,

∆weight = weightAfter therapy − weightBefore therapy (52)

and change in ECOG performance status before and after therapy,

∆ECOG = ECOGAfter therapy − ECOGBefore therapy (53)

and the number of unexpected hospital visits (UHV) where patients are grouped into 0,1,> 1 UHV over the

course of the entire study. Changes in physician and coordinator assigned ECOG scores are used in this

comparison.

The similarity between the ∆ECOG, ∆weight, UHV and Kinect based unsupervised clusterings is mea-

sured using the Rand index (RI):

RI(C,C ′) =
a+ b(
n
2

) (54)
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where C and C ′ are two clusterings of n objects, a is the number of objects in the same clusters in C and C ′,

and b is the number of objects in separate clusters in C and C ′. RI = 0 when there is complete disagreement

between two clusterings, and RI = 1 for identical clusterings.

3.3.7 Supervised classification

Instead of comparing a given patient’s before- and after-therapy time series samples directly to each other as

described in section section 3.3.4, a reference time series from a prototypical sample can be used to compare to

the before- and after-therapy series separately. This approach allows for the construction of a distance matrix

from a single patient visit, and enables subsequent machine learning models of the corresponding physician,

coordinator, and patient assigned ECOG performance status. Three healthy subjects perform tasks 1 and 2

to generate the prototypical samples which serve as the reference points for patient performance, and DTW

distances between a patient’s time series data and the prototypical samples offers a standardized measure

of performance. The DTW distances to each of the L = 3 prototypical healthy samples are averaged for

patient p’s extracted feature k from visit v, Xp
v,k,

dvDTW (p, k) =
1

L

L∑
l=1

DTW
(
Xp
v,k, X

l
k

)
(55)

where X l
k is the l’th prototypical sample’s feature k, and visit v = 1 is the before-therapy sample and visit

v = 2 is the after-therapy sample. Subsequently a standardized DTW distance matrix, Ds ∈ R2P×K , is

formulated in which each patient contributes a total of two rows for the two visits. Ds represents the task-

1 and task-2 average DTW distance between a patient’s performance and the three prototypical samples.

Along with a R2P vector of a ground-truth target variable, Ds can be used to develop supervised learning

models. Here, we use the physician, coordinator, and patient assigned ECOG performance status as the

target variables in three separate models.

3.4 Results & Discussion

3.4.1 Current clinical parameters

37 patients completed the before and after therapy visits, and the corresponding physician and coordinator

ECOG scores were recorded for a total of 74 visits, while only 31 patients reported ECOG scores (Table 1).

For the subset of 57 cases of patient reported ECOG scores, from either one or both visits, the mutual

information (MI) association between physician ECOG and patient ECOG scores is MI = 0.0653, while

the association between coordinator ECOG and patient ECOG is MI = 0.1661. Consequently, there is a
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ECOG score distribution
0 1 2 3 Total

Physician 35 37 2 74
Coordinator 37 35 2 74

Patient 19 27 9 2 57

Table 10: ECOG scores assigned to patients by physicians, coordinators, and patients themselves for the
before and after therapy visits.

larger agreement between the coordinator and patient scores in the current experiment, however, more data

needs to be collected to verify this trend.

Fig.20A shows the relationship between physician ∆ECOG (Eq.53) and change in weight over therapy,

where change in weight follows a normal distribution (Fig.20B). However, due to the large spread of change

in weight for ∆ECOG = 0 group in Fig.20C, there is no clear relation between ∆ECOG and ∆weight,

suggesting either the patients are unhindered even when undergoing large weight change (e.g. patients 5,

9, 11 Fig.20A) or that physicians consider other physical and expression cues more heavily while assigning

ECOG scores.

Binning patients by the percent change in weight into groups of those who lose weight after therapy

(∆weight < 2%), maintain weight (−2% ≤ ∆weight ≤ 2%), and gain weight (∆weight > 2%) results in a

weight based clustering of the patients, which has a RI = 0.509 (n = 37 patients) with the physician ∆ECOG

clustering. The UHV clusters are comprised of 16, 9, and 11 patients in the 0, 1, and > 1 UHV groups, and

has a RI = 0.498 (n = 36) with the physician ∆ECOG. Although the time points of the physician ECOG

scores correspond to the before and after therapy visits, the UHV events are summed over the entire course

of the study. The level of concordance between physician ECOG and existing clinical parameters serves as

a benchmark for the unsupervised clustering in step 4a (Fig.18).

3.4.2 Validation of preprocessing and choice of DTW

A hierarchical Euclidean distance based clustering of the the task-1 and task-2 feature distances ~dk′ (Fig.22A,

feature names in Fig.22B) reveals that changes detected by DTW in most features are related mainly to

other features of the same task, with the exception of a few features which correlate across tasks. These

cross-task associated features include potential energies of the knee joints, and task 2 sagittal angle and

left elbow potential energy to a lesser extent (purple, Fig.22A). The smaller clusters within the larger task

1 (blue, Fig.22A) and task 2 (red, Fig.22A) clusters validate the preprocessing and DTW calculations of

across-therapy time series feature because anatomically related sites appear in coherent subclusters. For

instance the potential energy of the left and right hips (joints 13 and 17, Fig.19A) and spine base (joint

1, Fig.19A) appear in the same subclusters for both tasks respectively. Furthermore, the velocities for the
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Figure 20: (A) Relation between change in physician assigned ECOG (eq.53) and percent change in weight
before and after therapy. The absolute change in weight in kg is annotated above the circles, and patient ID
is annotated below. (B) Histogram and normal distribution fit to percent change in weight. (C) Boxplot of
change in weight by ∆ECOG groups.

knee joints 14 and 18 are more closely related in the task-2 subcluster than the task-1 subcluster, which

makes sense intuitively because the knees synchronously oscillate while walking in task-2, but perform unique

functions in the task-1 twisting motion of turning towards and climbing the medical table. Therefore, the

choice of using DTW, despite its dependence on the underlying scale of the time series being compared, is

suitable for the subsequent unsupervised and supervised learning analyses.

3.4.3 Low dimension representation

The distance matrix D consisting of 106 feature distance vectors ~dk′ (56 per task) shown in Fig.22A con-

stitutes a high dimensional representation of changes in the biomechanical performance of tasks 1 and 2

before and after therapy because the number patient samples is much less than the number of features:

P = 37 << K = 106.

A low dimension representation is achieved by performing PCA on distance matrices D consisting of task-

1, task-2, and both task features to generate the reduced matrices Dr for comparison (Fig.22C). In each
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Figure 21: Example of extracted dynamical time series features (patient ID = 36). Before therapy (blue)
and after therapy (red) feature time series are compared using DTW and the distances are annotated on the
corresponding plots. (A-E) Task-1 features. (F-J) Task-2 features.

case, a small number of reduced dimensions can explain a significant portion of the variance in the high-

dimensional space. Specifically, reduced matrices for task-1 and task-2 each require 8 principal components

to describe nearly 90% of variance in the corresponding high dimensional distance matrices. 13 principal

components are required to capture a similar amount of variance when distance features from both tasks are

included in D due to the relative lack of cross-task association between distance features shown in Fig.22A.

Nevertheless, the subsequent results are based on D which contains features from both tasks so as to prevent

loss of information, and the additional task features do not adversely affect the learning algorithms.
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Figure 22: (A) Hierarchical clustering dendrogram of task-1 and task-2 feature distance vectors ~dk′ . All
but a few features (highlighted in purple) cluster primarily by task. (B) Feature label nomenclature for
the dendrogram in A. (C) Fraction of variance explained by principal components of (i) distance matrix D
comprised of task-1 and task-2 (K = 106) features (black), (ii) distance matrix D comprised of task-1 (K =
53) features (blue), (iii) distance matrix D comprised of task-2 (K = 53) features (red).

The feature clustering and dimensionality reduction analyses in Fig.22 illustrate the fact that both clinical

tasks provide unique information and to use one test in the absence of the other would incur a loss of

biomechanical information.

3.4.4 Detecting performance clusters

Changes in the before- and after-therapy performance of tasks 1 and 2 are captured in Dr, and the number of

performance clusters detected in Dr is a latent variable derived by selecting the number of clusters, k, in the

K-medoids clustering algorithm which minimizes the distance to a representative cluster patient, or medoid,

in the reduced low-dimensional space spanned by the N principal components. Therefore the choice of the

number of performance clusters, from strictly the machine learning perspective, is dependent on the balance

between N and the corresponding quality of the clustering which is measured by the silhouette s ∈ [−1, 1].

Higher values of s indicate higher intra-cluster cohesion and lower inter-cluster cohesion for a given patient.
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This balance is shown in Fig.23, where greater number of dimensions in Dr generally correspond to lower

average s. For instance, no matter the choice of k, a N = 2 distance matrix Dr cannot be clustered with a

higher silhouette than a N = 1 distance matrix.

Here we seek the number of performance clusters to be much less than the number of patients in order to

validate the unsupervised clustering with the three cluster ∆weight, ∆ECOG, and UHV clusterings, however,

in general, larger values of k result in a higher resolution performance clustering of the patient group which

in turn can be compared to higher resolution clinical categorizations.

From Fig.23A, we select the N = k = 3 clustering and visualize it on the first two principal components in

Fig.23B, and compare all of the k = 3 clusterings to the physician ∆ECOG, ∆Weight, and UHV clusterings

in Fig.23C. The number of principal components used in Dr to segregate patients in to k = 3 clusters

is varied and the corresponding concordance, as measured by RI is shown on the left axis and the average

silhouette on the right axis of Fig.23C. Although the average silhouette of the K-medoid clusterings decreases

with N , RI(K-medoid, ∆ECOG), RI(K-medoid, ∆Weight), and RI(K-medoid, UHV) are maximized by N

= 4, 17, and 19 principal components respectively.

As the number of principal components in the low-dimension space is varied, the concordance between the

K-medoids clusters and the physician ∆ECOG (black), ∆Weight (yellow), and the UHV (green) clusterings

also changes (Fig.23C). The K-medoids clustering has a higher RI with the ∆Weight clustering for most

choices of N compared to the benchmark RI = 0.509 between physician ∆ECOG and ∆Weight (Fig.23C).

As illustrated in Fig.23C, the ∆ECOG, ∆Weight, UHV, and the unsupervised clusterings all have a similar

concordance, therefore, the distance matrix D of before- and after-therapy performance of task-1 and task-2

offers an objective platform to stratify patients, and, as shown by the RI metric, may achieve concordance

with existing clinical measurements.

The RI between the unsupervised K-medoid clusterings and the clinical clusterings including the physi-

cian and coordinator assigned ∆ECOG clusterings is shown in Table 2. The K-medoid clustering has the

highest RI with the UHV clusters, and the second highest association with the ∆Weight. The coordinator

∆ECOG clusters are more associated with the ∆Weight and UHV clusters than the physician ∆ECOG

clusters. Although these trends are particularly interesting,larger datasets are required to validate these RI

values and to fully detect statistically significant disparities. Nevertheless, Table 2 shows that the K-medoid

unsupervised clusterings based on kinematic changes in task-1 and task-2 across therapy offers a unique but

useful patient clustering.

The added utility of the motion analysis based unsupervised clustering method shown here is the ability to

achieve higher resolution clusterings of patients compared to physician or coordinator ∆ECOG by increasing

k in the K-medoids algorithm. Fig.23D shows a comparison between N = 3 K-medoids and ∆Weight
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Figure 23: (A) Quality of K-medoids patient clusterings measured by average silhouette s compared to the
number of clusters k for different numbers of principal components N in the reduced distance matrix Dr.
(B) N = 3 and k = 3 K-medoids unsupervised clustering of patients shown in the plane formed by the first
two principal components of Dr. (C) The RI concordance between the k = 3 K-medoids clusterings and
physician ∆ECOG (black), ∆Weight (yellow), and UHV (green) compared to benchmark RI associations
among the ∆ECOG, ∆Weight, and UHV based clusterings (solid lines). Quality of the K-medoids clusterings
(gray) is shown on the right axis. (D) Concordance between clusterings where the number of clusters in
K-medoids and bins in ∆Weight are increased.
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clusterings where k and the number of bins in the ∆Weight clustering are increased which leads to an

increasing RI between the two clusterings and a maximum RI = 0.737 is reached at k = 9 clusters. This

further demonstrates the potential clinical utility of the pipeline of analytical tools developed.

Rand Index between clusterings
∆Weight 0.541

UHV 0.575 0.537
∆ECOGP 0.571 0.509 0.498
∆ECOGC 0.550 0.571 0.530 0.497
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Table 11: Association between patient clusterings based on: 1) unsupervised K-medoids clustering (k = 3
clusters) of Dr 2) ∆Weight: change in weight before and after therapy 3) UHV: three clusters based on 0,
1, and >1 unexpected hospital visits over the course of the study 4) ∆ECOGP : change in physician ECOG
scores before and after therapy 5) ∆ECOGC : change in coordinator ECOG scores before and after therapy

3.4.5 Learning physician ECOG performance status

A natural application of the Kinect motion capture system is to use the extracted kinematic signature of a

patient’s task-1 and task-2 performance to learn the associated physician, coordinator, and patient assigned

ECOG performance status, particularly if patients are examined by different physicians in order to reduce

bias of the resulting model.

To learn the ECOG scores in the cancer patient cohort, we use the standardized distance matrix Ds

(section 3.3.7) and perform dimensionality reduction via PCA with scaling and centering. As in the unsu-

pervised model, dimensionality reduction is required due to the relatively small number of patients compared

to the number of features.

In the 74 physician and coordinator assessments of the P = 37 patients there are 2 ECOG = 2 cases.

Since the majority of cases were ECOG = 0 or 1 scores, the two ECOG = 2 samples are excluded, and

a binary classifier is trained to predict a 0 or 1 ECOG status using the two visits from P = 37 patients

(excluding two ECOG = 2 cases from two separate patients), which results in a distance matrix for the

physician and coordinator ECOG classifiers. For the patient classifier a Ds ∈ R57×106 matrix is used and

the ECOG = 1,2, and 3 categories are combined due to limited data.

The association of the original features of Ds and its principal components with the ECOG status is

measured by the point biserial correlation coefficient rpb, where positive rpb values indicate larger values of

the feature are associated with ECOG = 1, and vice versa ( Fig.24).

For the physician ECOG, age has a rpb = 0.186, as older patients were more likely to receive higher
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Figure 24: Point biserial correlation between physician assigned ECOG and kinematic features of Ds (black)
and reduced space principal components of Ds (blue). Larger rpb values indicate association with ECOG =
1, and vice versa. The correlations of age and BMI with ECOG (gray dashed lines) serve as a comparison
for the rpb of the kinematic features and principal components.

ECOG scores and in comparison, 10 principal components in the reduced Ds have a higher absolute rpb.

Principal components with the largest ‖rpb‖ are used to create and cross-validate classifiers by leaving one

patient’s two samples out as the test set. 10 principal components are used in a mixture-of-experts model

comprised of a SVM, logistic regression, and a KNN model to predict physician ECOG with an average

cross-validated test set accuracy of 84.7% accuracy. The same accuracy was achieved using the same number

of principal components to predict coordinator ECOG with a SVM model. Top 5 principal components

were used to train a logistic regression model to predict patient ECOG = 0 or > 0 which performed at an

accuracy of 80.7%.

3.5 Conclusions

A non-invasive motion capture system is proposed to measure the kinematic signature of clinically supervised

patient assessments of performance. A toolset to pre-process and extract dynamical features from skeletal

displacement data is combined with complimentary unsupervised and supervised learning schemes. The

unsupervised clusters reveal a new and valuable grouping of patients in a cancer cohort undergoing therapy.

Additionally, the supervised learning model is able to predict physician, coordinator, and patient assigned
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ECOG scores using the kinematic signature with a high level of accuracy. In comparison to the low-resolution

ECOG scale, the present toolset provides a pipeline to develop a high resolution performance grading. In

general, the dynamical characterization toolset may be used for prognostication in various applications where

biomechanical signatures are reasonably correlated with existing clinical measures. The present work is a

proof of concept of a low-cost non-invasive method for objectively assessing human performance in the clinic.
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4 Machine learning models for long-term outcome prediction in

bladder cancer

4.1 Abstract

Currently in patients with bladder cancer, various clinical evaluations (imaging, operative findings at transurethral

resection and radical cystectomy, pathology) are collectively used to determine disease status and prognosis,

and recommend neoadjuvant, definitive and adjuvant treatments.We analyze the predictive power of these

measurements in forecasting two key long-term outcomes following radical cystectomy, i.e., cancer recurrence

and survival. Information theory and machine learning algorithms are employed to create predictive mod-

els using a large prospective, continuously collected, temporally resolved, primary bladder cancer dataset

comprised of 3503 patients (1971-2016). Patient recurrence and survival one, three, and five years after

cystectomy can be predicted with greater than 70% sensitivity and specificity. Such predictions may in-

form patient monitoring schedules and post-cystectomy treatments. The machine learning models provide

a benchmark for predicting oncologic outcomes in patients undergoing radical cystectomy and highlight

opportunities for improving care using optimal preoperative and operative data collection.

4.2 Introduction

Bladder cancer (BCa) is the 6th most common cancer in the U.S, with an estimated 79,030 new cases and

16,870 deaths in 2017 [175] and has a 5-year relative survival rate of 79% [30]. BCa staging is based on

the TNM system (tumor, nodes, metastasis). In BCa, the “T” stage is dictated by how deep the tumor

invades into the various layers of the bladder wall. Ta represents a noninvasive papillary tumor, while T1,

T2, T3 and T4 stages represent more aggressive cancers invading the sub-epithelial tissue, muscle, peri-

vesical fat and adjacent organs, respectively. Radical surgery is the primary treatment method for invasive

cancer and may be augmented with other forms of therapy such as chemotherapy to treat more advanced

and aggressive cancers [47]. Radical cystectomy, the recommended method for treating invasive BCa [183],

is surgical removal of the bladder, regional lymph nodes and adjacent organs (prostate, uterus, etc.) which

may contain cancer. Technical precision of this surgical operation can dictate long-term oncologic outcomes,

for instance, post-cystectomy survival is higher when negative surgical margins are obtained and more than

ten pelvic lymph nodes removed during radical cystectomy [87]. Conversely, cancer recurrence rates are

higher with positive margins and removal of less than ten nodes.5 Furthermore, patients with organ-confined

disease are less likely to relapse beyond 5 years, and unlikely beyond 10 years after cystectomy, even without

adjuvant treatment [11].
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These trends are derived from focused studies with disparate cohorts. The large size of the current dataset

offers a chance to confirm and refine these relations. Beyond knowledge discovery, larger and electronically

managed medical databases lend to predictive tool development. Consequently, machine learning techniques

have been applied extensively on clinical, epidemiological, and molecular data to predict prognosis and

outcome in various cancers. Cruz and Wishart [43], and more recently, Kourou et al. [108] offer a review of

some of these studies which predict of susceptibility, recurrence and survival, where the merit of techniques

and the quality of the data are quantified by prediction accuracies. In BCa, the most relevant existing study

used a multi-institution dataset of 9000 patients, including 980 data points from the present dataset, to

construct a nomogram for predicting 5-year recurrence which achieved a concordance index of 0.75 [21].

The present work focuses on: (i) using preoperative and operative BCa data to uncover patterns of

long term outcomes and (ii) assessing the predictive power of BCa-specific factors in elucidating overall

survival (OS) and recurrence. We employ the information theory concept of mutual information (MI) to

uncover correlated parameters. We then stratify the set of predictors by correlation with recurrence and OS

to quantify their relative importance. The prognostic power of these variables is assessed by developing a

machine-learning classification pipeline to predict recurrence and survival after radical cystectomy, urinary

diversion and extended lymphadenectomy, the standard-of-care for high-risk, muscle-invasive BCa. The

models presented deliver a quantitative method for stratifying patients into higher resolution risk groups

than is possible with current methods.

4.3 Methods

4.3.1 Data summary

The original dataset (details in Table 14) comprised of 3503 patients is pruned to 3499 (mean age 67.8

years) patients by removing 4 cases with missing survival data. All patients underwent radical cystectomy

at the USC Institute of Urology from 1971 to 2016. Statistical results based on this dataset up to 1997 were

published by Stein et al. in 2001 [182] on a subset of 1054 urothelial carcinoma patients. Presently, this is

one of the largest known single-institute datasets of BCa cystectomy patients in terms of sample size and

the 45-year timespan over which the data were prospectively and continuously collected with institutional

review board (IRB) approval. Consequently, the evolution of preoperative and operative assessments is also

explored. In addition to information pertinent to BCa, comorbidity data were also collected to study the effect

of preexisting diseases on progression of BCa. Remainder of the data is comprised of demographics, clinical

diagnostic information prior to cystectomy, tumor markers prior to cystectomy, and pathologic and surgical

data at time of cystectomy including adjuvant therapy treatment information. In the context of machine
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learning, these preoperative and operative measurements are called predictors, and the target variables are

binary indicator variables for recurrence and survival after a given number of years post-cystectomy.

4.3.2 Statistics and information theory

We perform survival analysis using the Kaplan-Meier estimator to differentiate OS by various predictors.

However, to develop an understanding of system-wide patterns between all the predictors, recurrence, and OS,

a network approach is more suitable. Relevance, or correlation networks [29, 127, 90, 189] can be created using

a similarity measure. Therefore, we create a mutual information (MI) network and subsequently a Euclidean

distance based complete-linkage agglomerative hierarchical clustering of the most closely associated variables.

Here, we use normalized MI which ranges from 0 to 1 for entirely unrelated to maximally related pairs of

variables. Larger values of MI correspond to higher dependence between two variables. We normalize MI by

the maximum entropy of the two variables being compared [121], and normalized MI will be abbreviated as

MI. The set of all pairwise MI relations make up the adjacency matrix of the MI network, which is visualized

as a clustered heat-map.

The predictors are ranked by their association with the two long term outcomes, recurrence and OS, using

the chi-squared test of independence which measures the association between two categorical variables. OS,

age, and other continuous variables are discretized to perform the chi-squared test. The composite assessment

identifies higher fidelity variables and encapsulates the clinical relevance of the measurements. A composite

predictor ranking,

ranki =
√

(χ̄2
Rec,i)

2 + (χ̄2
OS,i)

2 (56)

based on the chi-squared values for recurrence (χ2
Rec),

χ̄2
Rec,i =

χ2
Rec,i

σχ2,Rec
(57)

and the OS chi-squared values (χ2
OS),

χ̄2
OS,i =

χ2
OS,i

σχ2,OS
(58)

is used to identify predictor importance. The chi-squared values for both outcomes are normalized by

their respective standard deviations (Eq. 1-3) to weigh the effect of both outcomes equally.
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4.3.3 Machine learning approach

The performance of multivariate predictive models is compared to univariate logistic regression models.

To create the multivariate models, a series of base predictive models are employed, subsequently mixture-

of-experts and stacking based ensemble models are trained using these base models. The base models

consist of: support vector machines (SVM), bagged SVM, K-nearest neighbor (KNN), adaptive boosted

trees (AdaBoost), random forest (RF), and gradient boosted trees (GBT). The mixture-of-experts models are

based on hard-voting among the base models, whereas the stacking ensemble models perform dimensionality

reduction of the base model predictions before employing a second logistic regression or support vector

machine (SVM) model.

For each prediction task, a different triplet of models forms the final meta-classifier, which is constructed

by combining one each of the best base, mixture-of-experts, and stacking classifiers using hard-voting. This

method of combining various models is achieves the highest performance metrics.

Patients who leave the study before the target year of the survival models are removed from the dataset,

resulting in n = 3201, 3066, and 2780 patients for the 1-, 3-, and 5-year survival datasets respectively.

However, only patients who have no recurrences and leave the study before the target year of the recurrence

models are removed from the corresponding models’ datasets; resulting in n = 3071, 2955, and 2695 patients

in the 1-, 3-, and 5-year recurrence datasets respectively. To avoid class imbalance while training, the subset

of patients who recur are randomly oversampled to yield an equal count of recurring and non-recurring

patients in the training sets. Similarly, for the survival classifiers, the fraction of surviving and non-surviving

patients is balanced by random oversampling.

The procedure for feature selection consists of two steps: removal of irrelevant predictors and removal

of redundant predictors. To remove redundant predictors, the hierarchical clustering of the 73 predictors is

used to define 60 predictor clusters, and the predictor with the highest MI with the target variable is selected

from each cluster. Subsequently, to remove irrelevant predictors from the dataset, predictors with low MI

with the target variables are excluded from the dataset (MI<0.006 for predicting recurrence, MI<0.003 for

predicting survival). These two feature selection steps yield a set of 52, 54, and 51 predictors for the 1-, 3-,

and 5- year recurrence models respectively, and 42, 45, and 45 predictors for predicting 1-, 3-, and 5-year

survival respectively.

Final performance scores are found using nested cross-validation with ten outer folds and five inner folds

in which the SVM, RF, GBT, and AdaBoost hyper-parameters are tuned. The Scikit-Learn platform [149]

is used to implement the models.
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4.4 Results

4.4.1 Survival statistics

3503 patients’ OS is outlined in Fig.25 and patients with unknown recurrence status are excluded from

analysis pertaining to recurrence in the rest of the study. There is an exponential decay in survival by age

groups in the five-year period post-cystectomy, which suggests the burden of BCa diminishes significantly

within five years for patients undergoing radical cystectomy (Fig.26). Consequently, our prediction tasks

focus on 1-, 3-, and 5-year survival and recurrence.

Figure 25: Relationship between disease status and survival. (A) Kaplan-Meier survival for patients who
never recurred (green, n = 2112, 60.3%) have the highest mean OS 7.93 years (SD = 7.69), patients who
were initially disease free but then had recurrence (red, n = 969, 27.7%) have mean OS 3.00 years (SD =
4.14), patients who were never free (orange, n = 259, 7.4%) of the disease have the lowest mean OS 0.81
years (SD = 1.03), and patients whose post-cystectomy progression is unknown (teal, n = 163, 4.7%). (B)
Boxplot of OS by disease progression of patients. (C) Histogram of OS in cohort show a dramatic reduction
in survival rates up to five years post-cystectomy.
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Figure 26: Relationship between age and survival. patients are stratified into five age groups, according
to the Surveillance, Epidemiology, and End Results (SEER) program age standards for survival [4]. (A)
Boxplot of OS for patients by age group. Age < 55 (n = 449 patients, 12.8%), 55 ≤ age < 65 (n = 829
patients, 23.7%), 65 ≤ age < 75 (n = 1308 patients, 37.3%), 75 ≤ age < 85 (n = 771 patients, 22.0%), 85
≤ age (n = 146 patients, 4.2%). (B) Kaplan-Meier survival by disease progression shows disease burden
greatly diminishing five years after surgery.

Comparing survival for clinical staging prior to surgery (Fig.27) and pathologic staging (pT staging:

TNM 5th edition staging) at time of cystectomy (Fig.28) reveals the higher fidelity of pathologic staging.

Clinical staging fails to separate staging as clearly as pathologic staging, for example clinical staging does

not separate T2b and T3a patients as clearly as pathologic staging P2b and P3a patients.

During the study (1971-2016) there is a 24% (811/3417) agreement between the two staging measures,

with clinical staging over-estimating pathologic stage by 25% (865/3417 patients). Since 2010, there is a surge

in stage over-estimation, with a corresponding decrease in under-estimation; however, overall concordance

between the two staging measures has remained relatively constant over the decades studied (Fig.31). A

graver consequence of the inferior resolution of clinical staging is that it underestimated pathologic stage in

51% of patients (1741/3417).

Patients with organ-confined (OC), extra-vesical (EV) and node-positive (N+) BCa had 5-year survival

rates of 0.750 (95% CI [0.729, 0.772]), 0.413 (95% CI [0.377, 0.452]), and 0.213 (95% CI [0.186, 0.243]),
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Figure 27: Relationship between survival and clinical T stage assigned prior to cystectomy. Based on a
combination of imaging and transurethral resection. (A) Kaplan-Meier survival shows some degradation
with tumor staging, but many stages overlap significantly. T3a and T2b patients in the (B) boxplot of OS
by T stage are not differentiated. P-values in Table 19.

respectively (p<0.001) (Fig.32). Patients with and without lympho-vascular invasion had 5-year survival

rate of 0.299 (95% CI [0.271, 0.330]) and 0.637 (95% CI [0.617, 0.658]), respectively (p<0.001) (Fig.33).

Patients with a negative soft tissue surgical margin had 5-year survival of 0.572 (95% CI [0.553, 0.591])

compared to 0.358 (95% CI [0.285, 0.448]) for patients with positive ureteral/urethral margins and 0.063

(95% CI [0.034, 0.117]) for patients with soft-tissue margins (p < 0.001) (Fig.34).

Patients with carcinoma in situ had no discernable difference in OS as well as 5-year probability of

survival compared to other patients.
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Figure 28: Relationship between survival and pT stage (TNM 5th edition) assigned at time of cystectomy.
(A) Kaplan-Meier survival shows a steadier degradation with tumor staging than clinical staging. (B)
Boxplot of OS by pT stage at time of cystectomy clearly differentiates P3a and P3b patients from stage two
patients. P-values in Table 20.

4.4.2 Correlations among predictors

Fig.29 shows the MI network adjacency matrix as a heat-map and the hierarchical clustering of variables in

the dataset, where a four-cluster division is highlighted. Mean MI within the four clusters (purple, green, blue,

red) is 0.629, 0.233, 0.0237, and 0.653, respectively, therefore the blue cluster is comprised of significantly

less correlated variables than the other clusters. The purple cluster consists of pathologic staging variables

which form the most correlated set of BCa-specific predictors (1-6 in Fig.29). BCa variables (purple, green

and blue clusters) have an average MI of 0.0337 with each other, and an average MI of 0.00575 with the

set of comorbidity variables (red cluster), marking the first division in the clustering. This suggests that

patients’ preexisting comorbidities are not strongly related to BCa variables.

In contrast to comorbidity factors which are strongly associated with each other, the mean MI between
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Figure 29: MI between the set of predictors as well as recurrence and OS. Predictors are clustered into four
groups using a hierarchical clustering algorithm to discover associated predictor groups. BCa predictors
and long-term outcomes are contained in the purple (anatomic staging), green (histologic staging), and
blue (treatment and OS and recurrence) clusters, whereas the comorbidity factors comprise a solitary (red)
cluster. Correlations within the purple and red clusters are high, but correlations between the comorbidity
cluster and other clusters is low.

predictors and the binary recurrence target variable (56 in Fig.29) is 0.01028, and 0.01229 between predictors

and discretized OS (57 in Fig.29), highlighting the difficulty in predicting long term BCa outcomes by using

only preoperative and operative data. The association between discretized OS and recurrence, MI = 0.0482,

is much higher than the mean MI between the predictors and either long term outcome. Both long-term
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outcomes are in the blue cluster (Fig.29) where there is a lack of strong associations among the variables aside

from three sets of variables related to neoadjuvant chemotherapy (20-22 in Fig.29), adjuvant chemotherapy

(26-28 in Fig.29), and radiation (23-25 in Fig.29) which are highly related because they are clinical re-

classifications or sub-groupings of each other within the original variable’s domain. Aside from TNM 7th

edition staging (7 in Fig.29) which is nearly identical to pT staging (TNM 5th edition, 8 in Fig.29), the

highest associations with pT staging are pathologic stage subgroup (2 in Fig.29, MI = 0.255) and presence

of pathologic carcinoma in situ (12 in Fig.29, MI = 0.1825). In contrast, clinical T stage (44 in Fig.29) does

not have equally high MI with any of the other predictors except for the regrouped clinical staging variable

(41 in Fig.29). The MI based heat-map and clustering in Fig.29 provides a system-wide view of the entire

medical database for BCa patients and correlations between the predictors can be used to assess the quality

of clinical measurement techniques.

4.4.3 Correlations with long-term outcomes

The chi-squared test of independence for recurrence (vertical axis) and OS (horizontal axis) in Fig.30 and

Table 22 shows the relative importance of each predictor. The variance in chi-squared values is computed

by singular value decomposition [5] and is shown by an ellipse whose axes are the standard deviations (SD)

along the first (SD = 195.4) and second (SD = 76.8) principal components (green lines) in Fig.30A. Some

predictors intrinsically contain more information about survival than recurrence, and vice versa, because the

variances along the principal components are of comparable size. For instance, urinary diversion (rank 10)

and age (rank 12) are strongly correlated with OS but not recurrence, nevertheless, they rank high due to

large effect on survival.

Pathologic stage subgroup (rank 3), which indicates whether patients have OC, EV, or N+ disease at

time of cystectomy, has the largest χ2
Rec, and its χ2

OS is the fourth highest. Pathologic stage (rank 1) is even

more strongly associated with OS and comparing it to clinical staging (rank 17) reinforces the superiority of

pathologic staging in differentiating patients by outcome as observed in the Kaplan-Meier curves (Fig.27A

and Fig.28A). The number of positive lymph nodes removed at time of cystectomy (rank 7) is significantly

more correlated with recurrence than the total number of lymph nodes removed (rank 16), however, further

data may be required for clarification due to the high p-value corresponding to χ2
Rec for total number of

removed lymph nodes. The predictors ranked 4-8 in Fig.30 have similar correlations with either outcome,

and these predictors are part of the highly associated (purple) cluster in Fig.29. The Cramer’s V effect size

of pathologic positive lymph nodes (rank 8) and lymphovascular invasion (rank 14) are particularly high for

both outcomes (Fig.36).

2757 patients who did not receive adjuvant chemotherapy had 5-year survival rate of 0.563 (95% CI [0.543,
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Figure 30: Association between predictors and the two long term outcomes, recurrence and OS as measured
by the chi-squared test of independence. The predictors which have a statistical significance of p < 0.05 for
both outcomes (43 predictors) are colored in red. Predictors of significance (p < 0.05) with recurrence (5
predictors) or OS (24 predictors) are shown in blue and yellow, respectively. The solid (green) lines are the
two principal axes computed using singular value decomposition and the singular values are used to define
the semi-major and semi-minor axes of the solid (green) ellipse. The horizontal and vertical dashed (gray)
lines indicate the mean chi-squared for recurrence and OS respectively.

0.583]), and 633 patients who did receive adjuvant chemotherapy had a 5-year survival rate of 0.450 (95%

CI [0.411, 0.493]) (Fig.35). Since the prescription of adjuvant chemotherapy is limited to a homogeneous

set of patients who are node positive at time of cystectomy, the association of adjuvant chemotherapy with

recurrence and OS may be artificially high in this dataset.

Although the predictors with below average chi-squared values are less important than the others, they

may still differentiate patients who are similar in the higher ranked variables. The lowest correlates of OS

and recurrence are gender (χ2
OS = 9.53) and intravesical treatment (χ2

Rec = 0.1046) respectively. Overall the

predictors have a weaker association with recurrence than OS. Since the MI between BCa specific predictors

is small, even the predictors with small chi-squared values add new information about a patient. However,

this new information may not necessarily inform OS and recurrence.
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Recurrence Overall survival
Rank Predictor χ2 p-value χ2 p-value
1 pT stage TNM 7th Edition 344.3 0.000 713.0 0.000
2 pT stage TNM 5th Edition 340.3 0.000 717.0 0.000
3 pathologic stage subgroup (OC, EV, N+) 423.1 0.000 558.0 0.000
4 pM stage TNM 7th Edition 344.2 0.000 450.0 0.000
5 pN stage TNM 7th Edition 350.0 0.000 425.0 0.000
6 pN stage TNM 5th Edition 347.9 0.000 414.0 0.000
7 # of positive lymph nodes 350.6 0.000 392.0 0.000
8 pathologic positive lymph nodes 322.0 0.000 380.0 0.000
9 type of urinary diversion constructed 4.2 0.041 598.0 0.000
10 current urinary diversion performed 3.4 0.064 530.0 0.000
11 pathologic # of tumors 27.8 0.000 490.0 0.000
12 age at time of cystectomy (discretized) 11.7 0.230 467.0 0.000
13 type of surgical procedure 35.2 0.000 432.0 0.000
14 pathologic lymphovascular invasion 211.9 0.000 246.0 0.000
15 urinary diversion subgoups 17.9 0.000 380.0 0.000
16 # lymph nodes removed 7.2 0.407 374.0 0.000
17 clinical T stage (preoperative) 102.2 0.000 301.0 0.000
18 adjuvant chemotherapy subgroups 114.4 0.000 284.0 0.000
19 type of adjuvant chemotherapy 99.6 0.000 270.0 0.000
20 neoadjuvant chemotherapy subgroups 23.7 0.000 290.0 0.000
21 positive soft tissue surgical margin 26.8 0.000 251.0 0.000
22 pM stage TNM 5th Edition 6.8 0.034 234.0 0.000
23 intracorporeal diversion performed 15.6 0.000 225.0 0.000
24 # of adjuvant chemo cycles 70.8 0.000 187.0 0.000
25 # of neoadjuvant chemo cycles 21.7 0.003 213.0 0.000
26 clincial staging subgroup (preoperative) 57.3 0.000 191.0 0.000
27 robotic surgical procedure 14.9 0.000 207.0 0.000
28 pathologic predominant cell type 97.8 0.000 91.2 0.001
29 clinical N Stage (preoperative) 50.7 0.000 154.0 0.000
30 type of neoadjuvant chemotherapy 17.3 0.000 171.0 0.000

Table 12: The ranked list of predictors by importance. Association between predictors and the two long term
outcomes, recurrence and OS as measured by the chi-squared test of independence. Predictors are ranked
by Eq.56.

4.4.4 Predicting post-cystectomy recurrence

We evaluate the performance of machine learning models to predict post-cystectomy disease recurrence using

preoperative and operative data as well as the type and number of adjuvant therapy cycles administered

(Table 13). Both univariate (logistic regression) and more complex multivariate models (meta-classifiers in

Table 13) are used to predict 1-, 3-, and 5-year recurrence. Pathologic stage subgroup (rank 3 in Fig.30)

and pT stage (rank 2 in Fig.30) are used to create the univariate models and these have lower precision and

F1 scores than the meta-classifiers. Furthermore, the single predictor models tend to suffer from imbalance

between sensitivity and specificity. In contrast, all recurrence meta-classifiers have sensitivities and speci-

ficities over 70%. F1 scores improve with year perhaps due to a more even number of positive and negative
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recurrence cases in the corresponding datasets.

Post-cystectomy Model Year Test set performance metrics
outcome Sensitivity Specificity Precision F1

Recurrence

Meta-classifier 1 0.739 0.714 0.388 0.508
pT stage TNM 5th Edition 1 0.761 0.653 0.349 0.478
pathologic stage subgroup 1 0.826 0.593 0.332 0.473
Meta-classifier 3 0.720 0.708 0.535 0.613
pathologic stage subgroup 3 0.774 0.631 0.493 0.602
pT stage TNM 5th Edition 3 0.670 0.694 0.503 0.574
Meta-classifier 5 0.700 0.702 0.588 0.636
pathologic stage subgroup 5 0.744 0.611 0.537 0.623
pT stage TNM 5th Edition 5 0.619 0.698 0.553 0.583

Survival

Meta-classifier 1 0.741 0.770 0.473 0.577
pT stage TNM 5th Edition 1 0.739 0.672 0.387 0.506
pathologic stage subgroup 1 0.805 0.602 0.362 0.499
Meta-classifier 3 0.722 0.788 0.700 0.711
pathologic stage subgroup 3 0.762 0.691 0.628 0.688
pT stage TNM 5th Edition 3 0.696 0.739 0.646 0.670
Meta-classifier 5 0.741 0.768 0.780 0.760
pathologic stage subgroup 5 0.730 0.717 0.742 0.735
pT stage TNM 5th Edition 5 0.664 0.766 0.759 0.708

Table 13: Performance of machine learning models for predicting recurrence and survival. Single predictor
(pT stage and pathologic stage subgroup classifiers) and multiple predictor (Meta-classifier) models for
predicting 1-, 3-, 5-year recurrence and survival after cystectomy. The performance of all models for a given
year is ranked per F1 scores (2*precision*recall/(precision+recall)) as well as mean sensitivity, specificity,
and precision on test sets from a 10-fold cross validation.

4.4.5 Predicting post-cystectomy survival

Like the recurrence predictions, the meta-classifiers outperform the univariate models in predicting survival

(Table 13), however the disparity is greater as the meta-classifiers have considerably higher performance

metrics for all year predictions. Additionally, and unlike the recurrence models, the survival meta-classifiers

have comparable precision and probability of detection, except for the 1-year survival models. The combi-

nation of high precision and sensitivity leads to significantly higher F1 scores for the 3- and 5-year survival

meta-classifiers.

4.5 Discussion

Although recurrence and OS are highly associated, preoperative and operative measurements generally do

not relate equally to recurrence and OS, and the two outcomes should be assessed separately. The pri-

mary predictors of long-term outcomes are pathologic stage and its subgrouping into localized or metastatic

conditions. However, the machine learning pipeline developed here can leverage less powerful predictors to

improve accuracy of long term predictions. The benefit of having low MI between variables means that each
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variable offers unique information however the drawback is that each patient needs to be described by many

variables and thus the prediction task becomes a higher dimensional problem, for which lack of data can

greatly limit predictions of long-term outcomes. Clinical T stage offers a lower resolution signal than the

true pathologic T stage, and this loss of information can be particularly impactful in cases where there is an

underestimation of disease severity prior to surgery [185].

The sensitivity and specificity of all the survival meta-classifiers, and the 1-year recurrence meta-classifiers

are considerably higher than 70%. Recurrence meta-classifiers are less accurate, perhaps, because of unde-

tected metastatic disease at the time of cystectomy. 1-year meta-classifier predictions for both outcomes

offer a better combination of sensitivity and specificity than the 3- and 5-year meta-classifiers. However, the

later year models may also be used in the clinical setting to differentiate lower- and higher-risk patients due

to higher precision scores.

In current clinical practice, post-radical cystectomy prognostication in the individual patient is informed

by the best-evidence found in the literature [182, 155] which reflect probable outcomes in cohorts not the

individual, or the prognostic nomogram which only calculates a 5-year outcome [21]. To improve upon

this, we employ machine-learning algorithms to construct novel, patient prognostication models for survival

and recurrence. Presently the international bladder cancer nomogram has proven to be a validation of

multivariate approaches in predicting long term outcomes in the clinical setting[21, 200], and the models

developed here offer higher resolution predictions which can assist post-cystectomy treatment and screening

decisions.

Despite several machine learning research efforts in predicting outcomes of cancer patients there is a low

penetration of such models in clinical practice [108]. There are two specific hurdles before current models

can be deployed in a clinical setting, first, because the performance reported here reflects the quality of data

collected at one center and to ensure the generalizability of the models, data from other institutions should

also be studied.

Combining additional datasets, such as the international BCa dataset [21], may also improve the per-

formance of the algorithms due to general sparsity and low frequency of certain combinations of predictors

in the present data. Secondly, the recurrence and survival models use a total of 42-54 predictors, therefore

the standardized collection of these parameters must be ensured before the machine learning models can be

deployed successfully in a clinical setting.

The accuracy of predicting cancer recurrence, which may depend on several evolutionary steps beyond

cystectomy, can undoubtedly be improved by combining genomic and molecular data, and this would be

fruitful direction to pursue. The quality of the dataset, coupled with machine learning models in the present

work, offers a benchmark of the value of current preoperative and operative patient assessment standards
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with respect to forecasting long term outcomes during the most vulnerable 5-year timespan in BCa treat-

ment post-cystectomy. Furthermore, due to the absence of widely recognized biomarkers for BCa [32],

clinicopathological-based predictions of clinical outcomes as shown here set the standard for long-term per-

sonalized predictions in BCa. If deployed correctly, machine learning models can transform preoperative and

operative data into accurate predictions and mitigate post-cystectomy burden of BCa.

4.6 Supporting information

All P0 Pa PIS P1 P2a P2b P3a P3b P4a P4b
(3503) (334) (94) (404) (481) (300) (389) (357) (536) (451) (141)

Age (yr)
Median 68 66 67 67 66 67 67 70 69 70 68
Range 23-95 25-92 34-87 27-94 33-95 31-89 30-92 38-91 31-92 38-94 23-95

Gender (n)
Female 757 66 16 62 91 52 99 97 171 70 30
Male 2746 268 78 342 390 248 290 260 365 381 111

Histology (n)
Adeno 40 3 1 0 4 1 6 7 7 7 4
Neuro 42 7 0 0 0 3 5 5 12 10 0
Sarcoma 19 2 0 0 1 5 3 3 1 3 1
Squamous 90 3 0 2 5 5 16 7 27 13 11
Urothelial 3301 315 92 402 470 286 358 335 486 417 125
Other 11 4 1 0 1 0 1 0 3 1 0

pN stage (n)
Nx 151 14 5 11 16 8 8 5 16 30 32
N0 2477 309 88 381 435 248 293 206 284 181 49
N1 220 3 0 5 14 18 29 41 59 37 11
N2 639 7 1 7 16 25 59 101 176 197 46
N3 16 1 0 0 0 1 0 4 1 6 3

Pathologic subgroup (n)
OC 1812 323 93 391 450 254 299 0 0 0 0
EV 760 0 0 0 0 0 0 208 293 201 58
N+ 931 11 1 13 31 46 90 149 243 250 83

Radiation (n)
Neoadjuvant 325 35 7 34 50 26 33 20 35 54 28
Adjuvant 54 0 0 0 2 2 1 5 14 8 20

Chemotherapy (n)
Neoadjuvant 519 93 7 59 32 32 39 52 62 89 52
Adjuvant 633 8 3 12 26 37 80 106 178 142 36

Smoker (n)
Current 674 52 19 61 88 71 86 61 127 74 35
Never 807 84 18 82 117 57 92 94 132 94 34
Previous 1891 188 55 249 255 157 195 189 264 267 63

Metastasis (n)
Total Patients 1061 36 16 67 96 68 100 154 242 231 48
Bone 332 6 1 14 27 18 26 54 91 80 14
Pelvis 308 8 1 15 13 14 33 48 83 70 23
Lung 288 11 4 19 29 24 29 43 70 49 10
Liver 255 12 2 20 24 8 19 35 68 56 10
Retro 208 6 0 21 19 12 14 42 44 43 7
LN (reg) 134 3 2 9 16 7 9 23 27 30 7
LN (dist) 95 4 0 5 5 12 9 19 14 22 5
Peritoneum 93 7 0 6 2 5 8 10 18 28 9
Urethra 88 5 7 15 20 11 5 2 8 14 1
Brain 65 1 0 4 6 2 10 11 14 14 3
UT 61 3 5 11 12 11 2 2 8 7 0
Adrenal 34 0 0 3 2 2 2 6 10 6 3
Other 174 7 2 11 15 14 13 29 37 36 10

Table 14: Dataset description. Patient and tumor characteristics by pathologic T stage.

S1 Appendix. Machine learning process for finding best model. The feature selection process for

generating datasets for machine learning is described here. MI is calculated between p = 73 predictors and

used to cluster variables into K = 60 clusters. MI is also calculated between p = 73 predictors and RecX

(x = 1, 3, 5 years) and SurvX (x = 1, 3, 5 years). Correlated predictors are removed by selecting a single

predictor from K = 60 clusters whose MI with the outcome is the highest. Irrelevant predictors are removed

by pruning all predictors whose MI with the outcome is below a threshold (MI = 0.006 for RecX, MI = 0.003

for SurvX). These thresholds are selected heuristically, with some trial and error. The choice of number of
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clusters is another decision which can be explored with further trial and error computations, however this

task was found to be too demanding. Therefore, it may be possible to achieve similar performance with more

strict removal of correlated predictors by picking a smaller number of correlated clusters, K to prune from.

All p = 73 predictors are categorical except for age, therefore discretized (10 bins with equal frequency) and

continuous versions of age were tried separately.

Class-imbalance was overcome by random oversampling to achieve a ratio of minority to majority class

k = 0.8, 0.9, or 1.0. Number of patients with recurrences (1) and no recurrences (0) in the 1-, 3-, and 5-year

recurrence datasets are: (0: 2469, 1: 602) for 1-year, (0: 2020, 1: 935) for 3-year, (0: 1683, 1: 1012) for

5-year. Number of surviving (0) and not surviving (1) patients in the 1-, 3-, and 5-year survival datasets

are: (0: 2503, 1: 698) for 1-year, (0: 1821, 1: 1245) for 3-year, (0: 1318, 1: 1462) for 5-year.

Thirteen base models include: SVM (polynomial, sigmoid, radial basis function kernels), KNN, AdaBoost,

gradient boosted trees, random forest, pathologic stage based logistic regression, pathologic stage subgroup

based logistic regression, and bagged versions of SVM and KNN. The main challenge in this study was to

overcome the skewed performance of base models towards high sensitivity or high specificity. Consequently,

a series of ensemble learning techniques are employed to take advantage of the base models. Nine different

majority voting based mixture-of-expert (MOE) ensemble models, and 13 different logistic regression and

SVM based stacking ensemble models are created using the results of the base models. Finally, the meta-

classifiers are created by using a triplet of: a base model, a MOE ensemble model, and a stacking ensemble

model. There are 1287 such triplets, and we find the performance of these models using nested k-fold cross

validation, and the best models from this list are reported. These ensemble methods prove successful in

overcoming the skewed base model performance. Due to the medial nature of the dataset, the predictors

are categorical and the addition of numerical predictors directly from imaging and biopsy procedures may

improve performance.

S2 Appendix. Clinical vs Pathologic staging trend since 1970s. Clinical staging (staging based

on a combination of imaging and transurethral resection) and pathological staging (staging done at time

of cystectomy) do not always classify patients in the same stages, and clinical staging may underestimate

(shown in blue), agree (shown in green) or overestimate (shown in red). Clinical T stages are: T0, Ta, TIS,

T1, T2a, T2b, T3a, T3b, T4a, T4b. Pathologic stages are: P0, Pa, PIS, P1, P2a, P2b, P3a, P3b, P4a, P4b.

TX and PX indicate patients whose stage was declared unknown, and these patients are removed for this

analysis resulting in a dataset of N = 3417 patients for plementary Figure 1 and all concordance analyses

between clinical and pathologic staging.
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Figure 31: Discrepancy in staging over time. (A) Histogram of number of patients undergoing cystectomy
for each decade of data collection. (B) The agreement between clinical and pathological staging over the
period of data collection (1971-2016).

Figure 32: Bladder stage survival analysis. (A) Kaplan-Meier survival computed by bladder stage at time of
cystectomy subgrouped into OC (T0, Ta, TIS, T1, T2a, T2b), EV (T3a, T3b, T4a, T4b), N+ irrespective
of stage (metastasized) (p-value < 0.001). (B) Boxplot of OS by bladder stage at time of cystectomy.
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Figure 33: Lymphovascular invasion survival analysis. (A) Kaplan-Meier survival computed by lymphovas-
cular invasion. (B) Boxplot of OS by lymphovascular invasion.

S3 Appendix. Chi-squared test of independence: predictors vs. recurrence and overall sur-

vival. Complete results of the Chi-squared test of independence between predictors and recurrence and

OS are shown here in Table 15 and Table 16. The continuous variables age and OS are discretized into 10

bins of equal frequency. Predictors are ranked by (Eqs.56, 57, 58). The tests for association with OS are

conducted on a dataset of 3499 patients, excluding the 4 patients who are missing survival data. The tests

for recurrence exclude 163 patients whose recurrence status is unknown, resulting in a subset of the original

data consisting of 3340 patients.

Included here is a ranking of the predictors based on Cramer’s V shown in Fig.36 and listed in Table 17

and Table 18. Cramer’s V normalizes the chi-squared values by the number of categories in the predictors

and offers an alternate ranking of the predictor importance with recurrence and overall survival. A composite

predictor ranking,

ranki =
√

(V̄ 2
Rec,i)

2 + (V̄ 2
OS,i)

2 (59)
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Figure 34: Surgical margin survival analysis. (A) Kaplan-Meier survival computed by soft tissue surgical
margin. (B) Boxplot of OS by soft tissue surgical margin.

based on Cramer’s V values for recurrence (VRec),

V̄Rec,i =
VRec,i
σVRec

(60)

and the Cramer’s V values for overall survival (VOS),

V̄OS,i =
VOS,i
σVOS

(61)

is used to identify predictor importance. The Cramer’s V values for both outcomes are normalized by their

respective standard deviations (Eqs.59, 60, 61) to weigh the effect of both outcomes equally.
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Figure 35: Adjuvant chemotherapy survival analysis. (A) Kaplan-Meier survival computed by receipt of
adjuvant chemotherapy. (B) Boxplot of OS by receipt of adjuvant chemotherapy.
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Recurrence Overall survival
Rank Predictor χ2 p-value V χ2 p-value V
1 pT stage TNM 7th Edition 344.3 0.000 0.321 713.0 0.000 0.150
2 pT stage TNM 5th Edition 340.3 0.000 0.319 717.0 0.000 0.151
3 pathologic stage subgroup (OC, EV, N+) 423.1 0.000 0.356 558.0 0.000 0.282
4 pM stage TNM 7th Edition 344.2 0.000 0.321 450.0 0.000 0.160
5 pN stage TNM 7th Edition 350.0 0.000 0.324 425.0 0.000 0.174
6 pN stage TNM 5th Edition 347.9 0.000 0.323 414.0 0.000 0.172
7 # of positive lymph nodes 350.6 0.000 0.324 392.0 0.000 0.137
8 pathologic positive lymph nodes 322.0 0.000 0.310 380.0 0.000 0.330
9 type of urinary diversion constructed 4.2 0.041 0.035 598.0 0.000 0.413
10 current urinary diversion performed 3.4 0.064 0.032 530.0 0.000 0.389
11 pathologic # of tumors 27.8 0.000 0.091 490.0 0.000 0.187
12 age at time of cystectomy (discretized) 11.7 0.230 0.059 467.0 0.000 0.122
13 type of surgical procedure 35.2 0.000 0.103 432.0 0.000 0.117
14 pathologic lymphovascular invasion 211.9 0.000 0.252 246.0 0.000 0.265
15 urinary diversion subgoups 17.9 0.000 0.073 380.0 0.000 0.190
16 # lymph nodes removed 7.2 0.407 0.046 374.0 0.000 0.124
17 clinical T stage (preoperative) 102.2 0.000 0.175 301.0 0.000 0.098
18 adjuvant chemotherapy subgroups 114.4 0.000 0.185 284.0 0.000 0.116
19 type of adjuvant chemotherapy 99.6 0.000 0.173 270.0 0.000 0.196
20 neoadjuvant chemotherapy subgroups 23.7 0.000 0.084 290.0 0.000 0.129
21 positive soft tissue surgical margin 26.8 0.000 0.090 251.0 0.000 0.190
22 pM stage TNM 5th Edition 6.8 0.034 0.045 234.0 0.000 0.183
23 intracorporeal diversion performed 15.6 0.000 0.068 225.0 0.000 0.180
24 # of adjuvant chemo cycles 70.8 0.000 0.146 187.0 0.000 0.094
25 # of neoadjuvant chemo cycles 21.7 0.003 0.081 213.0 0.000 0.093
26 clincial staging subgroup (preoperative) 57.3 0.000 0.131 191.0 0.000 0.165
27 robotic surgical procedure 14.9 0.000 0.067 207.0 0.000 0.243
28 pathologic predominant cell type 97.8 0.000 0.171 91.2 0.001 0.066
29 clinical N Stage (preoperative) 50.7 0.000 0.123 154.0 0.000 0.121
30 type of neoadjuvant chemotherapy 17.3 0.000 0.072 171.0 0.000 0.221
31 pathologic size of bladder tumor, dim-3 (cm) 19.9 0.006 0.077 154.0 0.000 0.079
32 pathologic size of bladder tumor, dim-2 (cm) 26.0 0.000 0.088 147.0 0.000 0.078
33 pathologic carcinoma in situ 88.6 0.000 0.163 46.1 0.000 0.081
34 # of neoadjuvant radiation to bladder 14.1 0.015 0.065 147.0 0.000 0.092
35 pathologic size of bladder tumor, dim-1 (cm) 6.2 0.290 0.043 144.0 0.000 0.091
36 clinical M stage (preoperative) 20.3 0.000 0.078 122.0 0.000 0.132

Table 15: Chi-squared test, ranked by Eq.1-3. Predictors 1-36.
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Recurrence Overall survival
Rank Predictor χ2 p-value V χ2 p-value V
37 pathologic multifocal tumors 69.6 0.000 0.144 41.1 0.001 0.077
38 Charlson: renal disease, moderate or severe 1.9 0.397 0.024 110.0 0.000 0.125
39 pathologic other variant histology 19.4 0.007 0.076 97.9 0.003 0.063
40 Charlson: connective tissue disorder 2.2 0.337 0.026 102.0 0.000 0.121
41 pathologic tumor grade 57.8 0.000 0.132 36.8 0.006 0.072
42 Charlson: chronic obstructive pulmonary disease 12.1 0.002 0.060 96.2 0.000 0.117
43 pathologic squamous differentiation 47.4 0.000 0.119 55.8 0.000 0.073
44 Charlson: diabetes 7.4 0.025 0.047 93.5 0.000 0.116
45 pathologic glandular differentiation 51.0 0.000 0.124 34.4 0.156 0.057
46 predominant clinical cell type (preoperative) 20.5 0.005 0.078 81.6 0.057 0.058
47 indication for surgery 17.0 0.005 0.071 83.6 0.000 0.069
48 Charlson: any other malignancy 2.2 0.333 0.026 86.8 0.000 0.111
49 pathologic neuroendocrine differentiation 41.5 0.000 0.111 27.5 0.070 0.063
50 Charlson: congestive heart failure 6.6 0.037 0.044 70.6 0.000 0.100
51 clinical CIS 1.5 0.216 0.021 69.9 0.000 0.141
52 Charlson: myocardial infarction 4.7 0.095 0.038 64.7 0.000 0.096
53 Charlson: metastatic disease for any other primary 5.2 0.073 0.040 57.4 0.000 0.091
54 Charlson: peripheral vascular disease 2.3 0.314 0.026 57.2 0.000 0.090
55 Charlson: cerebrovascular disease 1.9 0.390 0.024 57.0 0.000 0.090
56 Charlson: diabetes with end-organ damage 1.9 0.393 0.024 54.4 0.000 0.088
57 Charlson: leukemia 1.6 0.453 0.022 53.4 0.000 0.087
58 Charlson: dementia 1.5 0.483 0.021 53.2 0.000 0.087
59 Charlson: hemiplegia 3.0 0.226 0.030 52.5 0.000 0.087
60 Charlson: liver disease, moderate or severe 5.9 0.052 0.042 51.4 0.000 0.086
61 Charlson: liver disease mild 4.0 0.134 0.035 51.5 0.000 0.086
62 Charlson: lymphoma 1.4 0.494 0.021 50.9 0.000 0.085
63 Charlson: ulcer disease 3.1 0.213 0.030 50.3 0.000 0.085
64 any prior pelvic radiation 7.7 0.006 0.048 40.9 0.000 0.108
65 history of smoking 12.3 0.006 0.061 37.4 0.088 0.060
66 intravesicle BCG treatment 0.2 0.655 0.008 39.1 0.000 0.106
67 neoadjuvant bladder radiation 9.3 0.002 0.053 33.2 0.000 0.097
68 clinical hydronephrosis 0.4 0.802 0.011 31.4 0.026 0.067
69 adjuvant radiation post cystectomy 2.5 0.115 0.027 29.0 0.000 0.091
70 pathologic micropapillary 4.0 0.046 0.034 21.9 0.009 0.079
71 any type of intravesicle treatment 0.1 0.746 0.006 20.6 0.015 0.077
72 gender 9.9 0.002 0.054 9.5 0.390 0.052

Table 16: Chi-squared test, ranked by Eq.1-3. Predictors 37-72.
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Figure 36: Predictors ranked by Cramer’s V.
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Recurrence Overall survival
Rank Predictor χ2 p-value V χ2 p-value V
1 type of urinary diversion constructed 4.2 0.041 0.035 598.0 0.000 0.413
2 pathologic positive lymph nodes 322.0 0.000 0.310 380.0 0.000 0.330
3 pathologic stage subgroup (OC, EV, N+) 423.1 0.000 0.356 558.0 0.000 0.282
4 current urinary diversion performed 3.4 0.064 0.032 530.0 0.000 0.389
5 pathologic lymphovascular invasion 211.9 0.000 0.252 246.0 0.000 0.265
6 pN stage TNM 7th Edition 350.0 0.000 0.324 425.0 0.000 0.174
7 pN stage TNM 5th Edition 347.9 0.000 0.323 414.0 0.000 0.172
8 pM stage TNM 7th Edition 344.2 0.000 0.321 450.0 0.000 0.160
9 pT stage TNM 7th Edition 344.3 0.000 0.321 713.0 0.000 0.150
10 pT stage TNM 5th Edition 340.3 0.000 0.319 717.0 0.000 0.151
11 # of positive lymph nodes 350.6 0.000 0.324 392.0 0.000 0.137
12 robotic surgical procedure 14.9 0.000 0.067 207.0 0.000 0.243
13 type of adjuvant chemotherapy 99.6 0.000 0.173 270.0 0.000 0.196
14 type of neoadjuvant chemotherapy 17.3 0.000 0.072 171.0 0.000 0.221
15 positive soft tissue surgical margin 26.8 0.000 0.090 251.0 0.000 0.190
16 pathologic # of tumors 27.8 0.000 0.091 490.0 0.000 0.187
17 urinary diversion subgoups 17.9 0.000 0.073 380.0 0.000 0.190
18 clincial staging subgroup (preoperative) 57.3 0.000 0.131 191.0 0.000 0.165
19 intracorporeal diversion performed 15.6 0.000 0.068 225.0 0.000 0.180
20 pM stage TNM 5th Edition 6.8 0.034 0.045 234.0 0.000 0.183
21 adjuvant chemotherapy subgroups 114.4 0.000 0.185 284.0 0.000 0.116
22 clinical T stage (preoperative) 102.2 0.000 0.175 301.0 0.000 0.098
23 clinical N Stage (preoperative) 50.7 0.000 0.123 154.0 0.000 0.121
24 pathologic carcinoma in situ 88.6 0.000 0.163 46.1 0.000 0.081
25 pathologic predominant cell type 97.8 0.000 0.171 91.2 0.001 0.066
26 # of adjuvant chemo cycles 70.8 0.000 0.146 187.0 0.000 0.094
27 clinical M stage (preoperative) 20.3 0.000 0.078 122.0 0.000 0.132
28 neoadjuvant chemotherapy subgroups 23.7 0.000 0.084 290.0 0.000 0.129
29 clinical CIS 1.5 0.216 0.021 69.9 0.000 0.141
30 type of surgical procedure 35.2 0.000 0.103 432.0 0.000 0.117
31 pathologic multifocal tumors 69.6 0.000 0.144 41.1 0.001 0.077
32 age at time of cystectomy (discretized) 11.7 0.230 0.059 467.0 0.000 0.122
33 # lymph nodes removed 7.2 0.407 0.046 374.0 0.000 0.124
34 Charlson: renal disease, moderate or severe 1.9 0.397 0.024 110.0 0.000 0.125
35 Charlson: chronic obstructive pulmonary disease 12.1 0.002 0.060 96.2 0.000 0.117
36 pathologic tumor grade 57.8 0.000 0.132 36.8 0.006 0.072

Table 17: Chi-squared test, ranked by Eq.4-6. Predictors 1-36.
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Recurrence Overall survival
Rank Predictor χ2 p-value V χ2 p-value V
37 Charlson: connective tissue disorder 2.2 0.337 0.026 102.0 0.000 0.121
38 Charlson: diabetes 7.4 0.025 0.047 93.5 0.000 0.116
39 pathologic squamous differentiation 47.4 0.000 0.119 55.8 0.000 0.073
40 any prior pelvic radiation 7.7 0.006 0.048 40.9 0.000 0.108
41 Charlson: any other malignancy 2.2 0.333 0.026 86.8 0.000 0.111
42 # of neoadjuvant chemo cycles 21.7 0.003 0.081 213.0 0.000 0.093
43 pathologic glandular differentiation 51.0 0.000 0.124 34.4 0.156 0.057
44 pathologic neuroendocrine differentiation 41.5 0.000 0.111 27.5 0.070 0.063
45 Charlson: congestive heart failure 6.6 0.037 0.044 70.6 0.000 0.100
46 intravesicle BCG treatment 0.2 0.655 0.008 39.1 0.000 0.106
47 neoadjuvant bladder radiation 9.3 0.002 0.053 33.2 0.000 0.097
48 # of neoadjuvant radiation to bladder 14.1 0.015 0.065 147.0 0.000 0.092
49 pathologic size of bladder tumor, dim-2 (cm) 26.0 0.000 0.088 147.0 0.000 0.078
50 Charlson: myocardial infarction 4.7 0.095 0.038 64.7 0.000 0.096
51 pathologic size of bladder tumor, dim-3 (cm) 19.9 0.006 0.077 154.0 0.000 0.079
52 pathologic size of bladder tumor, dim-1 (cm) 6.2 0.290 0.043 144.0 0.000 0.091
53 Charlson: metastatic disease for any other primary 5.2 0.073 0.040 57.4 0.000 0.091
54 adjuvant radiation post cystectomy 2.5 0.115 0.027 29.0 0.000 0.091
55 Charlson: peripheral vascular disease 2.3 0.314 0.026 57.2 0.000 0.090
56 Charlson: cerebrovascular disease 1.9 0.390 0.024 57.0 0.000 0.090
57 Charlson: liver disease, moderate or severe 5.9 0.052 0.042 51.4 0.000 0.086
58 Charlson: diabetes with end-organ damage 1.9 0.393 0.024 54.4 0.000 0.088
59 Charlson: liver disease mild 4.0 0.134 0.035 51.5 0.000 0.086
60 Charlson: hemiplegia 3.0 0.226 0.030 52.5 0.000 0.087
61 Charlson: leukemia 1.6 0.453 0.022 53.4 0.000 0.087
62 Charlson: dementia 1.5 0.483 0.021 53.2 0.000 0.087
63 indication for surgery 17.0 0.005 0.071 83.6 0.000 0.069
64 Charlson: ulcer disease 3.1 0.213 0.030 50.3 0.000 0.085
65 Charlson: lymphoma 1.4 0.494 0.021 50.9 0.000 0.085
66 pathologic other variant histology 19.4 0.007 0.076 97.9 0.003 0.063
67 predominant clinical cell type (preoperative) 20.5 0.005 0.078 81.6 0.057 0.058
68 pathologic micropapillary 4.0 0.046 0.034 21.9 0.009 0.079
69 any type of intravesicle treatment 0.1 0.746 0.006 20.6 0.015 0.077
70 history of smoking 12.3 0.006 0.061 37.4 0.088 0.060
71 clinical hydronephrosis 0.4 0.802 0.011 31.4 0.026 0.067
72 gender 9.9 0.002 0.054 9.5 0.390 0.052

Table 18: Chi-squared test, ranked by Eq.4-6. Predictors 37-72.

Ta TIS T1 T2a T2b T3a T3b T4a T4b
T0 0.656 0.896 0.442 0.049 4.00E-05 0.086 3.48E-05 3.85E-05 1.06E-06
Ta ——— 0.505 0.732 0.030 1.12E-07 0.104 1.03E-07 3.10E-07 9.80E-08
TIS ——— ——— 0.152 6.29E-04 4.27E-12 0.029 2.48E-13 1.58E-11 6.78E-10
T1 ——— ——— ——— 2.03E-04 1.44E-15 0.078 0 9.44E-15 4.98E-10
T2a ——— ——— ——— ——— 8.71E-09 0.536 3.97E-09 5.56E-08 3.98E-06
T2b ——— ——— ——— ——— ——— 0.232 0.519 0.699 0.024
T3a ——— ——— ——— ——— ——— ——— 0.199 0.207 0.018
T3b ——— ——— ——— ——— ——— ——— ——— 0.928 0.055
T4a ——— ——— ——— ——— ——— ——— ——— ——— 0.061

Table 19: p-value of paired log rank tests for clinical T stage subgroups.
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Pa PIS P1 P2a P2b P3a P3b P4a P4b
P0 0·638 0·666 0·047 0·027 2·47E-07 0 0 0 0
Pa ——— 0·791 0·357 0·243 0·005 3·45E-09 3·29E-10 0 0
PIS ——— ——— 0·083 0·062 1·07E-07 0 0 0 0
P1 ——— ——— ——— 0·724 1·48E-04 0 0 0 0
P2a ——— ——— ——— ——— 0·004 1·13E-14 0 0 0
P2b ——— ——— ——— ——— ——— 6·59E-09 5·18E-12 0 0
P3a ——— ——— ——— ——— ——— ——— 0·239 3·13E-07 0
P3b ——— ——— ——— ——— ——— ——— ——— 8·12E-06 0
P4a ——— ——— ——— ——— ——— ——— ——— ——— 2·89E-13

Table 20: p-value of paired log rank tests for pathologic T stage subgroups.
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5 Feature and model based characterization of spatial and tem-

poral organoid dynamics

5.1 Abstract

Organoid model systems recapitulate key features of mammalian tissues and enable high throughout experi-

ments. However, the impact of these experiments is limited by manual, qualitative phenotypic analysis. We

developed an automated image analysis pipeline to quantify shape dynamics in mammary organoids. Our

pipeline consists of i) segmentation of image series ii) preprocessing, iii) geometrical and signal processing fea-

ture extraction, iv) dimensionality reduction to differentiate dynamical paths, v) time series clustering, and

vi) dynamical modeling using point distribution models to explain shape variation. The pipeline is applied

to time series from 10 untreated and 30 FGF2-treated organoids, revealing three FGF2-treated subgroups

characterized by i) high-area high-circularity, ii) low-area high-circularity, and iii) high-area low-circularity.

Our pipeline can characterize, cluster, and model differences among unique dynamical paths that define

diverse final shapes, thus enabling quantitative analysis of the molecular basis of tissue development and

disease.

5.2 Introduction

Our modern understanding of cell, developmental, and cancer biology relies heavily upon the analysis of

isolated cells cultured at low density on flat, rigid substrates. These experiments are typically termed two-

dimensional (2D) or conventional cell culture. These model systems have defined our understanding of

subcellular compartments, single cell behavior, and the molecular regulation of cell structure and dynamics.

However, 2D cell culture is inherently limited in its ability to model complex 3D tissue architecture. This

problem is aggravated in mammalian systems due to the large size of the organs, the diversity of their cell

types, their relatively slow development, and their relative inaccessibility deep inside the body. To overcome

these challenges, a broad range of 3D culture environments and organoid techniques have been developed to

provide more physiologically accurate models of tissues and organs ([172, 52]).

The term organoid, defined variously by different groups, here connotes the use of primary tissue collected

directly from a mammalian organ and cultured acutely in a manner that preserves important features of the

in vivo cell and tissue state. The large size of mammalian organs becomes an advantage in these assays,

as a single normal organ or tumor can generate thousands to hundreds of thousands of organoids, each

representing a sample of the heterogeneity of cell states present in vivo. However, conventional approaches to

quantify the phenotypes of these diverse cell samples have often been limited to qualitative scoring systems,
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such as binned percentages or categorical scales. This has limited the utility of organoid assays relying

on manual inspection, subjective judgment, and qualitative criteria. Conversely, microscopic automation

enables sequential imaging of dozens to hundreds or thousands of organoids across multiwell or microfluidic

plates containing diverse experimental conditions. With abundant tissue and automated imaging, analysis

quickly becomes the rate limiting step for determining the molecular regulation of these biological systems.

We sought to overcome these limitations by developing an automated imaging pipeline that can extract

quantitative shape descriptor features from time series image data of organoids, analyze the dynamics of

organoid shape descriptors over time, compare average differences in features between experimental condi-

tions, and classify the phenotypic heterogeneity across experimental conditions. At the core of the pipeline

are geometric and signal processing based descriptive features of organoid shape, as these are often the focus

of shape assessment studies ([168, 110, 19, 152, 125, 219, 124]). We also introduce local curvature shape

descriptors, and leverage all these features concurrently in order to increase robustness of downstream pheno-

typic analyses. As a proof of principle example, we focused on a 3D culture model of normal mouse mammary

development ([56, 137]). Briefly, mouse mammary glands are mechanically and enzymatically processed to

generate thousands of primary tissue organoids, each consisting of 100-300 epithelial cells ([137]). In basal

culture medium, the organoids undergo growth arrest with minimal cell division. Addition of nanomolar

concentrations of a growth factor, such as fibroblast growth factor 2 (FGF2), induces branching morphogen-

esis in a majority of organoids. We selected this model as we had qualitatively observed large differences in

growth and shape between the basal and FGF2-treated organoid groups, but we were previously limited in

our ability to robustly quantify and describe the diversity of the phenotypes we observed. In this study, we

apply our novel imaging pipeline to characterize the developmental trajectory of organoids in both basal and

FGF2-treated groups. We quantified the anticipated growth induction by FGF2 and quantitatively charac-

terized the heterogeneity in growth and branching responses to FGF2. We anticipate that our pipeline will

enable quantitative analysis of the molecular and mechanical regulators of tissue growth and invasion in a

broad range of 3D culture and organoid assays.

5.3 Methods

Mammary organoids were prepared and embedded in a 3D matrix composed of equal parts Collagen-I and

Matrigel according to published protocols ([56, 137]). Organoids were cultured either in basal media (DMEM-

F12 with 1% insulin-transferrin-selenium and 1% penicillin-streptomycin) or in media supplemented with

2.5nM FGF2. The organoids were maintained at 37oC and 5% CO2 for 130 hours and imaged every 30

minutes using Differential Interference Contrast (DIC) microcopy for a total of 261 time points, creating a
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time series of contours of each organoid’s boundary. The following sections describe each step of the analysis

pipeline shown in Fig.37.

Figure 37: Schematic highlighting the main steps in the analytical tool pipeline. The three major
steps in the pipeline are: (i) data preprocessing, (ii) feature extraction, and (iii) time series analyses.

5.3.1 Preprocessing

Each organoid image is converted to a two dimensional contour using the Automated Contour Macro (ACM)

to get contours (~x, ~y) ∈ RN×2 consisting of N points. The automated contour detection method produces

contours composed of horizontal and vertical line segments. In the third preprocessing step, these contours are

smoothed by replacing the original set of vertices by midpoints of each original line segment (S1 Appendix).

In addition to smoothing the boundary, this step also avoids inflating the area and perimeter calculations.

Finally, each smoothed contour of perimeter P is redrawn using a constant point density ρ = N/P = 6px/µm

by increasing the number of points in the contour N while maintaining an arc length of 1/ρ between points.

Fig. 38 shows examples of preprocessed untreated and FGF2-treated organoid contours.

5.3.2 Feature extraction

Ten features are extracted from each contour (Table 21), where area A and perimeter P are the two basic

descriptors of organoid size (S2 Appendix).

Form factor af and solidity ah are two commonly used and useful area ratios. The form factor af

is defined as the ratio of the organoid area and the area of a circle whose perimeter is equivalent to the
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organoid’s perimeter,

af =
A

P 2/4π
=

4πA

P 2
. (62)

The solidity ah is defined as the ratio of the area of the organoid and the area of the convex hull for the

contour,

ah =
A

AHull
(63)

Note that af reaches a maximum of 1 for circles, and both af and ah measure the area-packing efficiency,

or complexity, of a curve (for which af < 1 and ah < 1).

Another measure of contour irregularity is the polar moment of area Jzz (S2 Appendix). While area

and perimeter directly describe the size of an organoid, the area ratios capture the increasing complexity

of contours due to localized protrusions and can identify organoids that do not maintain shape over time.

The polar moment of area Jzz furthers this concept by calculating explicitly the squared distances of each

infinitesimal unit of area from the normal axis at the contour’s centroid and describes the distribution of an

organoid’s area.

A greater granularity in contour description is achieved by studying the local curvature along the contour,

with the fraction of convex fvex and collinear fcol points in a contour serving as summary statistic features

(S2 Appendix). The fraction of concave points fcav is omitted to maintain linear independence in the feature

set.

A final set of features is derived from the discrete Fourier transform (DFT) of a contour (S2 Appendix).

We find the set of modes with the highest amplitude that comprise 90% of the total energy (sum of all mode

amplitudes) of a signal, ET , to calculate i) the number of modes N90, ii) the mean mode amplitude Ā90, and

iii) the standard deviation σ90 of mode amplitudes in the 90% ET signal. The 90% ET signal attenuation

serves to omit higher frequency modes that are more likely due to contour segmentation artifacts in the first

preprocessing step.

The p features (Tab.21) are extracted from an organoid’s time series of contours, and together they

represent a multivariate time series Xo ∈ RT×p of length T = 261 and dimensionality p for an organoid

o. These multivariate time series are compared directly for the clustering task (Fig.373b). The time series

are concatenated for the low dimensional representation (Fig.373a), where the entire set of p features for

nO = 40 organoids are stacked in a data matrix X ∈ RnOT×p. Each column represents a single feature for

all nOT organoid contours in the dataset, and each row is a single time point or contour of an organoid.
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Extracted features
1 A area
2 P perimeter
3 af form factor
4 ah solidity
5 Jzz polar moment of area
6 fvex fraction of convex points
7 fcol fraction of collinear points
8 N90 number of modes in 90%ET
9 Ā90 mean mode amplitude in 90%ET
10 σ90 standard deviation of mode amplitude in 90%ET

Table 21: List of quantitative features extracted from organoid contours.

5.3.3 Low dimensional representation

Even though the feature space of the data matrix X is small compared to the number of sample points, prin-

cipal component analysis (PCA) is performed in order to chart the composite evolution of all the geometrical

and DFT properties of the entire set of organoids. A reduced data matrix

Yr = XV ∈ RnOT×pr (64)

= USVTV (65)

= US (66)

of dimension pr is calculated using singular value decomposition of the original matrix X = USVT , where

V is the matrix of principal components ([103]). To obtain a reduced data matrix with pr < p, the number

of columns of V are reduced to pr. The features A, P , Jzz, and Ā90 are log-transformed before the PCA in

order to linearize relationships involving these features.

5.3.4 Time series clustering

The total distance between two organoids i and j,

D(Y i, Y j) =
1

pr

pr∑
k=1

g
(
Y ik , Y

j
k

)
(67)

is the mean distance over all pr principal components as measured by the distance metric g. The distance

matrix is symmetric, D ∈ RnO×nO , where nO = 40 is the total number of organoids in the dataset. The

principal components are not standardized prior to applying the distance function g in order to maintain the

variance they describe for the clustering algorithm. This distance matrix is used to cluster organoids, and

the choice of pr is based on the variance explained in the original data matrix as well as the quality of the
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resulting clusters. Here, organoids are grouped using a hierarchical agglomerative average-linkage clustering

algorithm based on the cosine similarity measure (S3 Appendix). Although the cosine similarity measure is

not a true metric as it does not satisfy the triangle inequality, it is among the commonly used notions of

distance and similarity like the Lp Minkowski and entropy based measures ([31]).

Point distribution model

Statistical models of variation of an individual organoid’s spatio-temporal changes are created using the

point distribution model (PDM) [36, 37] whose outputs are principal modes of variation about the mean

organoid shape from a sequence of contours. Contour points are stacked in a column vector for M contours

of length N ,

(xi, yi), i ∈ [1, N ] (68)

~qk =



x1
...

xN

y1
...

yN


∈ R2N , k ∈ [1,M ]. (69)

The mean shape organoid contour over all M samples,

~q =
1

M

M∑
k

~qk, (70)

is then used to calculate the covariance matrix,

S =
1

M − 1

M∑
k

(~qk −~q)(~qk −~q)T . (71)

The eigendecomposition of S,

(λi, ~ui), i ∈ [1, 2N ] (72)
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reveals the principal modes of variation and the fraction of temporal variance described by a single mode,

Fraction of variance ~ui =
λi∑
i λi

. (73)

More complex evolution dynamics require a larger number of modes to capture the temporal shape variance

therefore we use the fraction of variance explained by first eigenmode, and the area under the variance versus

number of eigenmodes curve as metrics of dynamical complexity. A statistically viable shape,

~qsim = ~q +

K∑
i=1

bi~ui, K << 2N (74)

is simulated using the K eigenmodes which modulate the mean shape ~qsim by scalar factors b. The K

principal modes of variation ui are ranked in decreasing order of eigenvalues λi. Simulated shapes generated

by combinations of K eigenmodes ~ui and scalar factors bi describe the dynamical evolution of an organoid’s

shape. The choice of bi is guided by the range observed in the dataset. It is typically bounded within a

range of three standard deviations [36],

−3
√
λi ≤ bi ≤ 3

√
λi (75)

because the eigenvalues λi describe the variance of bi in the dataset. Alternatively, the range of mode

coefficients can be calculated directly from the dataset,

~b = UT (~qk −~q) (76)

for k = 1, ..,M contours, where the matrix U has K columns, each being one of the K eigenmodes.

5.4 Results

5.4.1 Feature-based description

The time series of extracted features (Table 21) for the untreated (green) and FGF2-treated (purple)

organoids are depicted in Fig. 39. Fitted exponential curves Auntreated = 1843e−0.00305t and AFGF2 =

1507e0.0106t in Fig. 39A, and Puntreated = 181e−0.00109t and PFGF2 = 153e0.00636t in Fig. 39B show a

substantially greater increase in area and perimeter for FGF2 organoids compared to basal types. The area

ratio time series are noisy and do not show a significant separation between the two phenotypes. The fitted
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curves have similar parameters in Fig. 39C,

af,untreated = 0.709e−0.000869t (77)

af,FGF2 = 0.803e−0.00212t, (78)

and in Fig. 39D

ah,untreated = 0.903e−0.000460t (79)

ah,FGF2 = 0.936e−0.000569t. (80)

Nevertheless, the decreases in af and ah reflect the transformation from generally elliptical contours to

irregular shapes at later times in the organoid evolution.

In contrast to the area ratios, second moment of area in Fig. 39E shows the greatest temporal separation

between untreated and treated organoids, with corresponding curve fits Jzz,untreated = 584500e−0.00598t and

Jzz,FGF2 = 373000e0.0223t. The observed separation occurs because the area of the FGF2-treated organoids

is distributed further away from the perpendicular centroid axis over time, while the untreated organoids’

areas do not change with time as they maintain their original elliptical contours.

The local curvature features in Figs. 39F and 39G also reveal an interesting divergence in the shape

changes of the two treatment groups. The curve fits for convexity in Fig. 39F, fvex,untreated = 0.257e−0.000742t

and fvex,FGF2 = 0.265e0.000500t show a slight increase in convexity from FGF2 treatment and a greater de-

crease in untreated organoids over time. The opposite trend is seen in the collinearity curve fits fcol,untreated =

0.430e0.000431t and fcol,FGF2 = 0.427e−0.000528t in Fig. 39G. The fits for concavity are fcav,untreated =

0.311e−0.0000518t and fcav,FGF2 = 0.305e0.000308t. Therefore, for untreated organoids, increase in local

collinearity over time is matched by a slight decrease in concavity and a larger decrease in convexity. In

contrast, FGF2-treated organoids become less collinear and more convex and concave over time as they grow

complex features.

The DFT features are shown in Fig. 39H-J. The mean N90 is 41.1 and 46.2 for untreated and treated

organoids respectively, and the trend for N90 remains linear in time. Mean amplitude (Fig. 39I) shows

an exponential increase for FGF2 types, where curve fits are Ā90,untreated = 463e−0.00310t and Ā90,FGF2 =

217e0.01486t. The standard deviation of the mode amplitudes (Fig.39J) has a similar trend, σ90,untreated =

699e−0.00347t and σ90,FGF2 = 369e0.01464t. The exponential increase in Ā90 for FGF2-treated organoids is

consistent with their size increases seen in Figs. 39A and 39B.

The changing relationship between area and perimeter over time (Fig. 40) reveals the departure from
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circularity that some organoids undergo. The untreated organoids remain in a low-area and low-perimeter

region in Fig. 40, except for one organoid that behaves like the FGF2-treated organoids and is seen as

an outlier in Fig. 39 as well. In contrast, the FGF2 organoids deviate further from the circular limit of

A = P 2/4π (solid black line, Fig. 40).

Similarly, the temporal changes of the organoid shape projected into the composite principal component

space (Fig. 41) of the whole feature set shows a clear distinction in the shape changes of untreated and

treated organoids. As seen in Fig. 41A, the first three principal components capture 92.4% of the variance

of the entire feature set; the inset plot shows the feature weights of the first two principal components. The

feature σ90 was removed from the dataset for the PCA due to strong linear correlation with Ā90. While

other dependencies are present in the feature set, this choice of features results in a desirable clustering

which separates FGF2 and untreated organoids and identifies FGF2 subtypes in the next section.

Plots of the first two principal components and convex hulls of the entire data sets, Fig. 41B, show

that the FGF2 types differ from the range of basal contours. The untreated and FGF2-treated organoids

projected onto principal components are shown in Figs. 41C and D, colored to specify early (t1), mid (t2),

and late (t3) time periods. The 30 treated organoids occupy a larger region than the 9 basal types in

the projected space because the mid and late period FGF2-treated organoids move away from the initial

region, while the untreated organoids remain close to their initial region. Although the first two principal

components explain 80.9% of the variance in the organoid shapes, Figs. 41B-D illustrate that the untreated

organoids do not change projected location substantially over time. In contrast, the FGF2 treatment may

lead to distinct patterns of shape changes because the t3 data points do not coalesce to a single region of the

principal component space. We turn to clustering to explore general shape characteristics that distinguish

the separate groups.

5.4.2 Clustering

Hierarchical clustering of the organoids based on pr = 5 principal components is shown in Fig. 42. The

first bifurcation in the clustering (Fig. 42A) is between untreated and FGF2-treated organoids: cluster #1

(green) includes all but one of the untreated organoids, and clusters #2-4 (yellow, blue, and red respectively)

are entirely FGF2-treated, with the exception of organoid #8 which is an outlier in the set of untreated. The

overlapped first and last contour drawings in Fig. 42A show that untreated organoids’ areas decreases with

time, except for #7 whose area remains nearly constant. Although the FGF2-treated organoids start in the

same region of the principal component space as the untreated organoids (Fig. 41B-D), they evolve into three

clusters which occupy distinct regions of the principal component space (Fig. 42B) and are characterized

by unique feature combinations shown by the distributions of features during t3 in Fig. 42C-F. All three
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FGF2 clusters have higher perimeter and area than the untreated cluster. However, there is a gradation in

this effect of treatment: clusters #3 and #4 have the highest area perimeter (Fig. 42C,D). The primary

distinction between the large organoid clusters #3 and #4 is that cluster #4 organoids are relatively more

circular as seen by the low af numbers in Fig. 42F. Cluster #2 includes the smallest and most circular of the

FGF2-treated organoids. Cluster #3 organoids are large and most irregularly shaped organoids. Cluster #4

organoids are large yet remain circular. Differences in local curvature also stratify organoid clusters. The

untreated organoids tend to have the lowest fvex, Fig. 42E. Consequently, the differences in clusters #2-4

reveal the distinct phenotypic outcome of the FGF2 treatment.

5.4.3 Dynamical model

A first-mode simulation of a single organoid from each of the four clusters in Fig. 42 is shown over four time

intervals of the evolution in Fig. 43. The first mode’s coefficient b1 is taken as the median of the value from

the organoid’s contours during the corresponding time period.

In Fig. 43A, organoid 7 from cluster #1 undergoes small fluctuations but a negligible change in overall

size. On the other hand, organoid 34 in Fig. 43B maintains its general shape and expands in time. A larger

increase in size is observed for both organoids 29 and 40 in Fig. 43C and D respectively. However, organoid

29 elongates primarily along one axis, whereas organoid 40 expands at each point of convexity leading to a

slightly greater circularity than organoid 29.

Next, we generated and compared PDMs from each organoid’s time series of contours, then examined the

temporal variance described by the PDM modes. Generally, contours that undergo a more complex evolution

require a greater number of modes K to fully describe the correspondingly large temporal variance. The

fraction of variance explained by the first mode in each organoid’s PDM is compared in Fig. 42G for the

four detected organoid clusters. The first modes of cluster #3 organoids, which have the least regular

boundaries, describe the least variance in their respective organoids’ evolution. Aside from a few outliers,

Fig. 42G provides evidence that cluster #2 organoids have simpler dynamics because this cluster has the

highest fraction of the total variance explained by the first mode. This observation is consistent with the

previous visual inspection of cluster boundaries.

The cumulative fraction of variance explained by PDM modes ~ui reaches saturation near five modes for

all organoids. The area under the cumulative variance curve (AUC) also describes the complexity of the

contour dynamics because a higher variance in a series of contours will have a smaller AUC as more modes

are needed to capture all sources of temporal variance. The AUC for K = 5 modes is shown in Fig. 42H

for the four detected clusters. Clusters #2 and #4 have higher AUCs as these clusters’ organoids remain

consistently circular throughout the evolution. Cluster #1 has a smaller AUC due to smaller fluctuations in
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shape; however, cluster #3 has the lowest AUC as these organoids transform significantly over time.

5.5 Discussion

We developed a computational pipeline that provides an automated platform for studying the spatial and

temporal dynamics of shape in complex 3D organoids. For simplicity in this first implementation, we re-

stricted our analyses to 2D projections of 3D volumes and found that this was sufficient to detect average

differences in organoid shape between conditions and to characterize the heterogeneity in response of in-

dividual organoids within the same experimental condition. Since our organoid assays generate 1000s of

genotypically equivalent replicates, this analytical framework was also useful for identifying precisely when

and how the experimental organoids diverged in their shape trajectories from control organoids.

Furthermore, the set of geometric and discrete Fourier transform features together provide phenotypic

signatures of organoid morphological changes. The low-dimension representation of the extracted feature

set summarizes the divergent paths taken by FGF2-treated organoids in comparison to untreated organoids.

Particularly, the treated organoids span a larger region of principal component space due to their complex

shaped contours at later times. Point distribution based on sequences of contours succinctly describe the

shape dynamics with three or fewer modes for most organoids and are useful for ranking clusters of organoids

by their dynamical complexity. Hierarchical clustering of organoids in the reduced feature set not only

separates untreated and FGF2-treated organoids but reveals three phenotypic subgroups in the FGF2-treated

set: i) low-area high-circularity, ii) high-area high-circularity, and iii) high-area low-circularity.

Biologically, these sub-clusters suggest that some organoids do not respond morphologically to FGF2,

others grow in response to FGF2 but do not branch, and others both grow and branch. Since a cell must

express an appropriate FGF receptor in order to recognize and respond to FGF2, an possible explanation

is that FGF receptor expression is low or absent in the non-responding organoids. Similarly, although the

genetic state is identical across organoids, differences in cell state defined by transcription or by epigenetics

may be responsible for differences in FGF2-response.

Thus, the ability to characterize the growth and branching response of organoids to FGF2 enables future

experiments to characterize the molecular basis of their differential response. The underlying basic biology

is relevant to branching morphogenesis in normal development and potentially to aberrant cell behavior in

cancer. Though a simple proof-of-principle example, the discovery of patterns of organoid behavior highlights

the power of automated image analysis to identify biologically cohesive phenotypes in large populations in

an unbiased fashion, or at least in a fashion in which the phenotypic boundaries are clearly defined. The

distinct phenotypic groups can then be recovered for molecular analysis. We anticipate that this approach
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will find broad utility in determining the molecular regulators of cell structure and function within epithelial

tissues and tumors.
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Figure 38: Examples of organoid images, segmentation, and observed spatio-temporal changes.
A-G Original organoid image (top) and segmented boundary (bottom, green). A-C are untreated basal
organoids, and D-G are FGF2 treated organoids at initial time points. A-D untreated and E-H FGF2-
treated organoids’ series of observed contours color coded by time point and overlapped to show the spatio-
temporal changes from t = 0 to tf = 130 hours.
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Figure 39: Extracted feature time series for all organoids. Basal: green; FGF2: purple. A, area; B,
perimeter; C, form factor; D, solidity; E, log of second moment of area; F, fraction of convex points; G,
fraction of collinear points; H, number of modes in the 90% ET ; I, log of mean mode amplitude in the 90%
ET ; J, log of mode amplitude standard deviation in the 90% ET .
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Figure 40: Relationship between area and perimeter over time. Temporal data is shown by a
three tier encoding: 0 ≤ t1 < 43.5 hr ≤ t2 < 87.5 hr ≤ t3 ≤ 130.5 hr. The area-perimeter relationship
for a circle, Acircle = P 2/4π is shown by the black curve. Quadratic curve fits for untreated organoids,
Auntreated ≈ 0.0360P 2, and FGF2-treated organoids, AFGF2 ≈ 0.0410P 2 are shown in green and purple
respectively.
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Figure 41: Organoid shape dynamics in reduced principal component space. A, fraction of variance
explained by principal components in the original dataset and the feature weights for the first two principal
components. B, all FGF2-treated and untreated organoid data points plotted in subspace of first two
principal components, the solid purple and green lines are convex hulls of all the FGF2-treated and untreated
organoids respectively. B, C, D, organoid data points plotted in subspace of first two principal components
for both FGF2-treated and untreated, only untreated, and only treated respectively. Temporal data in C
and D is shown by a three tier encoding: 0 ≤ t1 < 43.5 hr ≤ t2 < 87.5 hr ≤ t3 ≤ 130.5 hr.
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Figure 42: Hierarchical clustering of organoids. A Organoids grouped into four clusters (1: green, 2:
yellow, 3: blue, 4: red) with each organoid’s first (light shade) and last (dark shade) contour. Untreated
organoids are shown in green and FGF2-treated organoids are shown in purple. B All data points are colored
by clusters in the space of the first two principal components. C,D,E,F Boxplots of perimeter, area, fraction
of convex points, and form factor for the four clusters during the late regime t3 > 87.5 hr. G Fraction of
temporal variance in time series of contours explained by first mode in the point distribution models. H
AUC of the fraction of temporal variance curve for the first five modes.
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Figure 43: Point distribution models of shape variation. Far left subplots show first mode coefficient
b1 over time (blue), and median values (black) over four time quarters (0 ≤ t1 < 32.6 hr ≤ t2 < 65.3 hr
≤ t3 < 97.9 hr ≤ t4 ≤ 130.5 hr). A,B,C, and D show contour simulations ~qsim for each time quarter using
only the first mode in the PDM for organoids 7, 34, 29, 40 respectively. Mean contours are shown by a black
dashed line.
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5.6 Appendix

5.6.1 S1 Appendix

Preprocessing algorithms.

Algorithm 1: Contour scaling and mid-point smoothing

Data: Contour (~x, ~y) ∈ RN×2

Result: Smoothed and rescaled contour (~xsmooth, ~ysmooth)
scaling factor c;
~x = c~x;
~y = c~y;
for i = 1 : N − 1 do

~xsmooth(i) = (~x(i) + ~x(i+ 1)) /2;
~ysmooth(i) = (~y(i) + ~y(i+ 1)) /2;

end
~xsmooth(N) = (~x(N) + ~x(1)) /2;
~ysmooth(N) = (~y(N) + ~y(1)) /2;

5.6.2 S2 Appendix

Derivation and description of extracted organoid contour features are given here. Area is calculated by

applying Green’s theorem

A =

∫∫
dxdy =

∮
C

xdy = −
∮
C

ydx (81)

⇒
∮
C

xdy =
∑
i

∫
Ci

xdy =
∑
i

ACi (82)

ACi
=



∫ xi+1

xi

mxdx =
m

2

(
x2i+1 − x2i

)
if xi 6= xi+1, yi 6= yi+1∫ yi+1

yi

xcdy = xc (yi+1 − yi) if xi = xi+1 = xc∫ yi+1

yi

xdy = 0 if yi = yi+1 = yc

(83)
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Algorithm 2: Resample contour with constant density

Data: Contour (~x, ~y) ∈ RN×2

Result: Contour (~x′, ~y′) ∈ RN ′×2 with point density ρ
Residual length lr = 0;
New contour length n∗ = 1;
for i = 1 : N − 1 do

Direction from point i to i+ 1;
ux = ~x(i+ 1)− ~x(i);
uy = ~x(i+ 1)− ~x(i);

ux = ux/
√
u2x + u2y;

uy = uy/
√
u2x + u2y;

Effective length;

le =
√
U2
x + u2y + lr;

Number of points to add;
nadd = bleρc;
Add first point (may be closer than 1/ρ;
~x′(n∗ + 1) = ~x(i) + ((1/ρ)− lr)ux;
~y′(n∗ + 1) = ~y(i) + ((1/ρ)− lr)uy;
nadd = nadd − 1;
n∗ = n∗ + 1;
Add remaining points;
for k = 1 : nadd do

~x′(n∗ + 1) = ~x′(n∗) + (1/ρ)ux;
~y′(n∗ + 1) = ~y′(n∗) + (1/ρ)uy;
n∗ = n∗ + 1;

end
Left over distance on current segment;
lr = le modulo 1/ρ;

end
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where each summand ACi of the line integral is calculated for a single line segment component y = mx+ b.

The centroid of the contour is calculated similarly,

x̄ =

∫∫
xdxdy∫∫
dxdy

=
1

2A

∮
C

x2dy (84)

⇒ 1

A

∮
C

x2

2
dy =

1

A

∑
i

∫
Ci

x2

2
dy =

1

A

∑
i

x̄i (85)

x̄i =



∫ xi+1

xi

1

2
mx2dx =

m

6

(
x3i+1 − x3i

)
if xi 6= xi+1, yi 6= yi+1∫ yi+1

yi

1

2
x2cdy =

x2c
2

(yi+1 − yi) if xi = xi+1 = xc∫ yi+1

yi

1

2
x2dy = 0 if yi = yi+1 = yc

(86)

ȳ =

∫∫
ydxdy∫∫
dxdy

= − 1

2A

∮
C

y2dx (87)

⇒ 1

A

∮
C

−y
2

2
dx =

1

A

∑
i

∫
Ci

−y
2

2
dx =

1

A

∑
i

ȳi (88)

ȳi =



∫ yi+1

yi

− y2

2m
dy = − 1

6m

(
y3i+1 − y3i

)
if xi 6= xi+1, yi 6= yi+1∫ xi+1

xi

−y
2

2
dx = 0 if xi = xi+1 = xc∫ xi+1

xi

−y
2
c

2
dx = −y

2
c

2
(xi+1 − xi) if yi = yi+1 = yc

(89)

Perimeter is calculated by summing along the line segments:

P =

N∑
i

=
(
(xi+1 − xi)2 + (yi+1 − yi)2

)1/2
. (90)

Second moment of area is calculated about both the axes,

Ixx =

∫∫
y2dA, (91)

Iyy =

∫∫
x2dA, (92)

and only the polar moment of area,

Jzz = Ixx + Iyy (93)

is maintained in the extracted feature set.
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Locally convex, collinear, and concave points are defined using the orientation matrix,

O =


1 xi−1 yi−1

1 xi yi

1 xi+1 yi+1

 (94)

and its determinant

det(O) = (xi − xi−1)(yi+1 − yi−1)− (xi+1 − xi−1)(yi − yi−1) (95)

for pairs of line segments connected by point i. For a clockwise oriented contour, a point i is convex if

det(O) < 0, collinear if det(O) = 0, or concave if det(O) > 0. The conditions for convexity and concavity

are reversed for a counter-clockwise oriented contour. The set of N points of a contour satisfy the relationship

fvex + fcol + fcav = 1 (96)

from which the fraction of convex fvex and collinear fcol points in a contour are used as summary statistic

features, and fraction of concave points fcav is ignored to maintain linear independence in the feature set.

The discrete Fourier transform (DFT) of a contour (~x, ~y) is calculated by first casting it into the complex

plane,

zn = xn + iyn (97)

n = 1, ..., N (98)

and then applying the transform,

Zk =

N−1∑
n=0

zne
−i2πkn/N (99)

k = 0, 1, .., N − 1, (100)

which has a sampling period Tp = 1/ρ, frequency fs = ρ, and DFT frequency domain resolution fs/N . The

102



5 FEATURE AND MODEL BASED CHARACTERIZATION OF SPATIAL AND TEMPORAL
ORGANOID DYNAMICS

total energy of a signal, ET , is the sum of each mode’s amplitude,

ET =

N−1∑
k=1

‖Zk‖, (101)

‖Zk‖ =
√

Re(Zk)2 + Im(Zk)2. (102)

We sort the modes in order of descending amplitude and find the set of modes with the highest amplitude

that comprise 90%ET to calculate i) the number of modes N90, ii) the mean mode amplitude Ā90, and iii)

the standard deviation σ90 of mode amplitudes in the 90%ET signal. The 90%ET signal attenuation serves

to omit higher frequency modes, which are more likely due to contour segmentation in the first preprocessing

step.

5.6.3 S3 Appendix

The cosine similarity measure,

cos(θ) =
A ·B
‖A‖‖B‖

=

n∑
i=1

AiBi√
n∑
i=1

A2
i

√
n∑
i=1

B2
i

(103)

gcosine(A,B) = 1− cos(θ) (104)

acts on two time series A and B of length n and used in the time series clustering analysis as the distance

metric.
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6 Temporal differentiation of phenotypes using a Hidden Markov

model of organoid shape dynamics

6.1 Abstract

Phenotype differentiation is a central focus of analytical tools designed to study outcomes in organoid ex-

periments where the goal is to understand and reveal biomechanisms by associating observable features with

various organoid treatments. Feature based clustering techniques offer static differentiation and may be

adapted to study temporal differences, however such tools are not suitable for describing phenotype dynam-

ics. Presented here, is a hidden Markov model of organoid shape geometry, which not only differentiates

phenotypes but also links them to distinct dynamics by considering hidden states as unique states of genetic

expression which produce similar phenotypes. Furthermore, the task of model selection for Hidden Markov

model parameters provides a natural process of determining the number of distinct genetic states in a dataset.

Models are trained using perimeter and area time series from two dimensional contours segmented from a

sequence of microscopy images of basal and fibroblast growth factor (FGF2) treated organoids. Particularly,

dynamical models of area and perimeter are created which find i) the number of distinct phenotypes ii) the

evolution of hidden states responsible for observed contour dynamics, and iii) the characteristic dynamics

associated with each hidden state. The hidden Markov model of shape geometry is an informative dynamical

model capable of detecting phenotype groups and corresponding dynamical behavior regimes.

6.2 Introduction

Organoids are clusters of organ-specific cells, derived from either animal or human tissue [23], which mimic

functionality of the target organ [113] and are grown in controlled environments to study the effects of

various treatments and disruptions in bioprocesses [119]. The resulting behavior of the organoid is captured

via imaging techniques which allow micro-scale assessment of organoid anatomy [162]. This combination

of highly tailored experiments and fine resolution spatio-temporal observations provide an opportunity for

quantitative analyses and dynamical modeling of organoid morphology. Such models can help bridge the gap

towards understanding and controlling multiscale morphogensis of organoids, which is a current limitation in

the field of tissue engineering where biomimicry is of high precedence [119]. Particularly, questions regarding

phenotype count, differentiation, and behavior are appropriate given time series data from differentially

treated organoid experiments. We propose hidden Markov models to leverage spatio-temporal data from

organoid experiments in order to shed light on organoid behavior and dynamics.

Hidden Markov models are diversely applicable and have been used successfully in the fields of speech
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recognition,[199], genomics [181], motion recognition [214], and finance [82]. Although the application areas

are varied, hidden Markov models are generally used in one or a combination of three ways: i) classification

ii) forecasting iii) general inference [154]. Classification is made possible when separate models can be

trained for each target category in a supervised learning fashion and subsequently be used to calculate the

likelihood of an observed sequence. However, when labeled data is not available, or it is not possible to know

the generating source of a sequence, hidden Markov models can be used to understand how the sequence

is formed, analogous to the unsupervised learning paradigm. Forecasting applications emphasize accuracy

and are less concerned with understanding the underlying generating process. Here, we use hidden Markov

models for general inference to discover and understand temporal differences in geometery of basal and FGF2

treated organoids. We hypothesize that distinct genomic expressions are responsible for the observed features

of an organoid, and these unique states can be modeled as the hidden states in a hidden Markov model,

thereby yielding a quantitative model which explains spatio-temporal heterogeneity of organoid phenotypes.

Basal and FGF2 hidden Markov models are created using two steps, preprocessing and model selection

(Fig.44), using a dataset of 39 organoids. Subsequently, the models are used to i) associate observed time

series to sequences of hidden states and ii) generate synthetic time series samples which further elucidate

the role and behavior of the hidden states learned during model selection.

6.3 Methods

6.3.1 Dataset

The dataset is comprised of 9 basal organoids and 30 FGF2 treated organoids which are photographed at 30

min intervals for a timespan of 130 hours for a total of 261 time points. During preprocessing (Fig.44), the

organoid contours are segmented at each time point into a set of two dimensional coordinates, which are then

used to extract the area and perimeter of the organoid contour. Consequently, each of the O = 39 organoids

is described by two time series, area and perimeter, of length L = 261. We express this as a multivariate

time series Xo ∈ RL×2 for o = [1, O].

6.3.2 Model of organoid shape

To create dynamical models of organoid shape, we train basal and FGF2 hidden Markov models following

the schematic in Fig.44 using the multivariate time series Xo ∈ RL×2. Individual hidden states represent a

single genomic expression state and observations generated from the same hidden state represent phenotypes

of the same kind. Therefore, transitions between hidden states represent dynamical evolution from one

genomic expression to another, and the hidden state Markov chain is the corresponding governing mechanism.
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Figure 44: Analysis pipeline. Modeling procedure consists of preprocesing (step 1) of organoid images and
model selection (step 2), which yield two distinct models for Basal and FGF2 types. Viterbi and forward
algorithms are used to perform the analyses in steps 3 and 4.

Organoids whose geometery varies less throughout the examined time period remain in the same hidden

states of genomic expression, whereas organoids which differentiate substantially from the original state are

hypothesized to transition through a series of hidden states in the hidden Markov model. The Markov

chain order selection process yields an optimal number of hidden states, and in our application to organoid

shape modeling, this provides the optimal number of genomic states responsible for the observed range

of phenotypes. However, we seek the fewest number of hidden states which can capture the full range of

geometric variation in a set of organoid shape time series, as well as a Markov chain whose absorption states

model the observed dynamical endpoints in the data. We characterize organoid shape by perimeter and

area, as these two descriptors together can be used to define organoid circularity,

af =
4πA

P 2
(105)

which differentiates more regular shaped organoids from more complex shaped organoids that are more

invasive. Therefore, circularity, and in turn the combination of perimeter and area forms a computationally
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simple and intuitive first order of approximation of contour complexity. Nevertheless, the adaptation of

hidden Markov models to model organoid dynamics described here is generalizable to any combination of

organoid descriptors.

For the purpose of model selection, the basal model no = 9L and the FGF2 no = 30L in the BIC

expression (Eq.34), and d = 2 is the dimensionality of the multivariate observation time series in the number

of parameters np (Eq.35)

6.4 Results

6.4.1 Perimeter-area space

Basal and FGF2 organoids’ perimeter and area time series are shown in Fig.45. Median perimeter decreases

for basal organoids Fig.45A and doubles for FGF2 organoids Fig.45C. Median area decreases by 30% for

basal organoids Fig.45B, and increases 380% for FGF2 organoids Fig.45D. While the the basal types stagnate

or decrease in size, the FGF2 treated organoids grow exponentially.

A more expressive view of the discrepancy in morphogenesis is shown in Fig.46 in the perimeter-area

space, where the circular limit of area per perimeter forms an upper bound for all observations. Although

basal organoids’ area and perimeter decreases, they remain confined to a smaller area of the perimeter-area

subspace, and the best fit quadratic has a coefficient of 0.0529. In contrast, FGF2 organoids span a much

larger portion of the perimeter-area space and the best fit quadratic has a lower coefficient of 0.0410 because

more FGF2 organoids diverge from circularity. Furthermore, unlike the basal organoids which have less

varied dynamics, the FGF2 organoids evolve towards a few distinct regions of the perimeter-area space. This

heterogeneity in behaviour is captured by the optimal hidden Markov model in the following sections.

6.4.2 Model selection

Selection of parameters for GMM-HMM via BIC, shown in Fig.47, is performed to find the best combination

of Markov chain structure A, number of hidden states Q, and number of Gaussians in the mixture of

Gaussians M , for both the basal (Fig.47A-C) and FGF2 models (Fig.47D-F). In addition to left-to-right

and upper-triangle, bifurcated Markov chain structures which are two-branch tree graphs, are also trained in

Fig.47. Each combination of A, Q, and M is simulated 10 times and mean BIC values along with standard

deviation bars are shown in Fig.47. BIC decreases with higher values of Q except for basal bifurcated models

with M = 3, 4, 5 Gaussians. Despite this decrease in BIC, the left-to-right, Q = 2, and M = 2 model is

selected for the basal organoids because of its simplicity and the small basal dataset size of 9 organoids.

Given a fixed value of Q, all the FGF2 model BIC values are approximately within one standard deviation of

107



6 TEMPORAL DIFFERENTIATION OF PHENOTYPES USING A HIDDEN MARKOV MODEL OF
ORGANOID SHAPE DYNAMICS

0 50 100
100

150

200

250

0 50 100
500

1000

1500

2000

2500

3000

0 50 100
0

200

400

600

800

0 50 100
0

5000

10000

15000

A B

C D

Figure 45: Time series of organoid geometry. Basal organoid (A) perimeter, and (B) area. FGF2 treated
organoids’ (C) perimeter , and (D) area . Initial perimeter range for basal and FGF2 organoids are 140-
220 µm (median = 170 µm) and 102-236 µm (median = 181 µm) respectively. Initial area range for basal
and FGF2 organoids are 1170-2680 µm2 (median = 1590 µm2) and 718-3150 µm2 (median = 1840 µm2)
respectively. Final perimeter range for basal and FGF2 organoids are 121-183 µm (median = 148 µm) and
189-757 µm (median = 379 µm) respectively. Final area range for basal and FGF2 organoids are 868-1480
µm (median = 1110 µm) and 2210-14300 µm (median = 6920 µm) respectively.

each other. Although their BIC values are comparable to models with other Markov structures, the left-to-

right FGF2 models are not suitable because FGF2 organoids do not converge towards a single region of the

perimeter-area space as seen in Fig.46. The bifurcated model holds an advantage over the left-to-right model

in that it has two absorption states thus it has the potential to model two distinct dynamical endpoints.

Furthermore, compared to upper-triangle structures, bifurcated Markov chain transition matrices A have

fewer non-zero terms which results in a simpler model. Therefore, the bifurcated, Q = 5, and M = 2 model

is selected for the FGF2 organoids as the other Q = 5 models’ BIC values are similar, and the bifurcated
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Figure 46: Perimeter and area over three time periods. Three time periods of organoid dynamics shown by
individually plotting each contour in a time series: 0 ≥ t1 < 43.5 hr ≥ t2 < 87.5 hr ≥ t3 ≤ 130.5 hr. The
area-perimeter relationship for a circle, Acircle = 1

4πP
2 = 0.08P 2 is shown by the black curve. Quadratic

curve fit for 9 basal organoids ABasal ≈ 0.0529P 2, and 30 FGF2 organoids, AFGF2 ≈ 0.0410P 2 are shown in
green and purple respectively.

Q = 7 BIC is not considerably lower.

6.4.3 Basal and FGF2 hidden Markov models

Fig.48 and Fig.49 summarize the results of i) training, ii) finding the most likely sequence of hidden states

associated with each observed organoid time series, and iii) time series sampling of the basal and FGF2

hidden Markov models respectively.

Basal model prior distribution of hidden states,

π =

(
1 0

)T
(106)

transition matrix,

A =

0.995 0.005

0 1

 (107)
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Figure 47: Model selection for basal and FGF2 Hidden Markov models. (A), (B), (C) show BIC values for
varying number of hidden states Q, and number of Gaussians M in the emission mixture for left-to-right,
upper-triangle and bifurcated hidden state Markov chain structures. (D), (E), (F) show the corresponding
BIC values for FGF2 Hidden Markov models.

and emission matrix,

B =

0.598 0.402

0 1

 (108)

are learned from the 9 basal organoid observed time series. Similarly the FGF2 model is trained using the
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30 organoid observed time series, resulting in the following prior,

π =

(
1 0 0 0 0

)T
(109)

transition matrix,

A =



0.988 0.005 0 0.007 0

0 0.99 0.01 0 0

0 0 1 0 0

0 0 0 0.992 0.008

0 0 0 0 1


(110)

and emission matrix

B =



0.378 0.622

0.363 0.637

0.434 0.566

0.556 0.444

0.795 0.205


(111)

500 points are sampled from the trained models to illustrate the region of the perimeter-area space

occupied by each hidden state in Fig.48B and Fig.49B. Basal state X1 generates larger area and perimeter

organoids compared to state X2 (Fig.48B), however, neither states’ samples diverge away from the circular

upper limit more than the other. The FGF2 initial state X1 represents the smallest organoids in terms of

perimeter and area, and the subsequent states’ organoids are progressively larger (Fig.49B). Unlike the basal

states, the FGF2 branch formed by states X2 and X3 diverges further away from the circular limit line than

the X4 and X5 branch (Fig.49B). Furthermore, the variance of the mixture of Gaussians in the FGF2 model

increases for the later states, unlike the basal model.

The Viterbi algorithm uses the learned models to label the observed perimeter and area time series with

most likely hidden states in Fig.48C-D and Fig.49C-D for basal and FGF2 models respectively. All but two

basal organoids transition to X2, as these organoids’ final area and perimeter is relatively smaller (Fig.48C-

D). All FGF2 organoids transition out of X1: seven of the smaller organoids end up in intermediate states

X2 and X4 and 23 larger organoids eventually reach states X3 and X5 (Fig.49C-D). Although both FGF2

absorbing states’ (X3 and X4) organoids are larger than the preceding states’ organoids, the organoids which

have lower area and high perimeter transition to state X3 and the organoids which are closer to the circular
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limit transition to X5. In this manner, organoids can be grouped into subcategories of similar phenotypes

by labeling their times series with sequences of most likely hidden states using the Viterbi algorithm and

the trained models.

To further understand the behavior of the learned basal and FGF2 models, 1000 time series are sampled

and averaged from the respective models using the forward algorithm. The generated time series are grouped

and colored according to the final hidden state achieved in Fig.48E-I and Fig.49E-I for basal and FGF2 models

respectively. The resulting time-averaged trajectories in the perimeter-area space are plotted in Fig.48E and

Fig.49E, where the basal state X1 remains confined to the initial point while X2 moves along the circularity

limit towards lower area and lower perimeter. On average, the basal X1 states’ shapes stagnate (Fig.48F-G)

while organoids in state X2 decrease in size. In contrast, the FGF2 branch states move towards larger

perimeter and larger area, and X5 differs from X3 in that it produces time series with larger areas than

X3 and stays closer to the circular limit (Fig.49E). Therefore FGF2 state X3 represents more complex and

irregular shapes than the equally large X5 organoids. This behavior is made clear in Fig.49F-G where state

X1 stagnates, intermediate states X2 and X4 grow to a fraction of the size achieved by organoids which

transition to states X3 and X5 which themselves have the similar mean perimeter but state X5 does so with

more regular larger area organoids.

The average timing of transitions between the states is calculated by computing the mode of hidden states

for each hidden state group of generated time series (Fig.48H and Fig.49H). The basal state samples which

transition to X2 do so mostly at the 40 hour mark (Fig.48H). Similarly, in the FGF2 model, on average, the

organoids which reach absorption states X3 and X5 transition earliest, before the 40 hour mark (Fig.48H) to

the intermediate states, and then transition again at approximately 60 hours to reach X3 and X5. Therefore,

organoids must transition early to achieve large area and large perimeter.

Mean circularity of the groups of generated time series summarizes the corresponding hidden state char-

acteristics in Fig.48I and Fig.49I for basal and FGF2 models respectively. Although the two basal states

differ in size, their generated time series have the same mean circularity and never become irregular (Fig.48I).

Mean circularity of FGF2 generated time series groups vary considerably (Fig.49I): X1 and X4 time series

groups maintain high circularity (af ≈ 0.8), X2 and X5 time series groups’ circularity converges to af ≈ 0.6

and af ≈ 0.7 respectively, with X2 organoids becoming irregularly earlier than X5 organoids. Finally, the

most irregular shaped X3 state time series’ mean circularity decreases most rapidly towards af < 0.5.
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Figure 48: Basal Hidden Markov Model results. (A) left-to-right hidden layer Markov chain with Q = 2
hidden states (hidden state color key for the entire figure). (B) 500 individual perimeter and area paired
samples from Q = 2 hidden states in perimeter-area space. 9 observed organoid (C) perimeter and (D) area
time series color coded by most likely hidden state as per Viterbi algorithm. 1000 time series are generated
from the learned model and grouped by last hidden state: (E) mean trajectory in perimeter-area space, (F)
mean perimeter time series, (G) mean area time series, (H) mode hidden state of all generated series, and
(I) mean circularity time series. In (E-I) time series are grouped and colored by the final hidden state at
t = 130 hours.

6.5 Conclusion

The basal and FGF2 hidden Markov models discover the number of unique genomic expression states re-

sponsible for the set of observed contour geometry time series. The basal hidden Markov model is a relatively
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Figure 49: FGF2 Hidden Markov Model results. (A) bifurcated hidden layer Markov chain with Q = 5
hidden states (hidden state color key for the entire figure). (B) 500 individual perimeter and area paired
samples from Q = 5 hidden states in perimeter-area space. 30 observed organoid (C) perimeter and (D) area
time series color coded by most likely hidden state as per Viterbi algorithm. 1000 time series are generated
from the learned model and grouped by last hidden state: (E) mean trajectory in perimeter-area space, (F)
mean perimeter time series, (G) mean area time series, (H) mode hidden state of all generated series, and
(I) mean circularity time series. In (E-I) time series are grouped and colored by the final hidden state at
t = 130 hours.

simple two state model where one state produces organoids whose perimeter and area stay constant and the

organoids in the second state shrink to a smaller size than the initial perimeter and area. Both basal hidden

states produce organoids of the same circularity, therefore the geometric variation among basal organoids is
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low.

The FGF2 hidden Markov model is a more complex bifurcated model with one initial state which connects

to two branches for a total of five hidden states. The bifurcated Markov chain model is suitable for FGF2

treated organoids as there are at least two distinct dynamical end points in the perimeter-area space which

a majority of the organoids progress towards. Sampling time series from this model reveals the major

differences between the two FGF2 phenotype branches. Particularly, large FGF2 organoids can be more

circular with matching perimeter and area or irregularly shaped with high perimeter per area which is

indicative of more invasive behavior. Furthermore the bifurcated model structure also captures behavior of

the FGF2 organoids which do not complete morphogenesis towards the two dynamical extremes. Therefore,

the dataset of FGF2 treated organoids contains organoids with five distinct genetic expression states, and

the Viterbi algorithm is used to find that all 30 of the FGF2 organoids are in one of four genetic states at

the end of the experiment.

We have demonstrated here a novel modeling approach for understanding morphogenesis of organoids.

Hidden Markov models for organoid shape time series can learn the number of distinct underlying genetic

states in a set of organoids, and then temporally differentiate the organoids into this set of states. Further-

more, the models can be used to generate time series of organoid geometry based on the learned stochastic

dynamical progression between the hidden genetic states. These three features provide an advantage over

other methods which i) are not directly suited for spatio-temporal differentiation, ii) do not have rigor-

ous methods for detecting number of generating states, and iii) cannot be used to generate samples. The

proof-of-concept model shown here with a dataset of 39 organoids can easily be adapted to larger, more het-

erogeneous datasets which may require additional geometric features to detect more hidden genetic states.

The modeling technique developed here can readily be used to study datasets generated from organoid growth

experiments, and provide a common quantitative language to compare complex behavior across studies and

organoid types.
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7 Future work

Future work of each project presented in the previous chapters is discussed below with emphasis on extracting

more relevant and insightful results from each data source and experiment type.

The feature and model based techniques developed here to analyze organoid growth need to be employed

on larger more heterogeneous datasets to further understand the utility of the feature set, and to identify need

for additional features. The binary treatment dataset comprised of growth factor and untreated organoids

studied here only shows the potential of these tools, and experiments where organoids are treated with a

combination of agents can especially take advantage of the present work. Specifically, the strength of the

geometric and signal processing feature based clustering is to identify similar organoids, and the hidden

Markov models of organoid shape reveal groups of organoids in similar genomic states and their respective

dynamics. Standardizing the application of this analytically pipeline across organoid studies can provide a

common quantitative basis with which organoid morpghogenesis can be studied.

The ability to reliably record the motion of patients in the clinic is a crucial step in achieving predictive

feature and model based tools which are clinically relevant. At present, there is no clear successor technology

to the discontinued Microsoft Kinect camera used in this thesis, and this limits the opportunities for deriving

motion data non-invasively. Nevertheless, motion capture data from patient exercises performed in the clinic

can be used for various ailments besides cancer. Secondly, such data can be correlated with and consequently

used to learn other risk factors besides subjective physician assigned fitness scores. Therefore applying the

toolset developed here to study patients suffering non-cancer conditions, and learning the corresponding risk

factors is a fruitful direction. However, to better understand the utility of a non-invasive motion capture

based fitness predictor, longer longitudinal studies with greater patient enrollment is required. Deploying

in-home or mobile versions of this combination of motion imaging technology and performance predicting

tools is perhaps the most forward-looking application, and needs to be a focus of future study.

Long-term outcome predictors of bladder cancer cystectomy patients developed here need to be tested

on patients at the facilities which provided the data used to train the models as well as external centers in

order to truly test the accuracy of predicting survival and recurrence of disease. In order to do this, the

models created here need to be deployed as clinician-friendly applications. Concurrently, similar datasets

from external centers ought to be used to create similar models to verify the accuracy achieved with the USC

dataset, and to fully verify the models’ transformational potential of changing identifying at-risk patients.
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8 Appendix I: The prisoner’s dilemma as a cancer model

8.1 Abstract

Tumor development is an evolutionary process in which a heterogeneous population of cells with different

growth capabilities compete for resources in order to gain a proliferative advantage. What are the minimal

ingredients needed to recreate some of the emergent features of such a developing complex ecosystem?

What is a tumor doing before we can detect it? We outline a mathematical model, driven by a stochastic

Moran process, in which cancer cells and healthy cells compete for dominance in the population. Each

are assigned payoffs according to a prisoner’s dilemma evolutionary game where the healthy cells are the

cooperators and the cancer cells are the defectors. With point mutational dynamics, heredity, and a fitness

landscape controlling birth and death rates, natural selection acts on the cell population and simulated

‘cancer-like’ features emerge, such as Gompertzian tumor growth driven by heterogeneity, the log-kill law

which (linearly) relates therapeutic dose density to the (log) probability of cancer cell survival, and the

Norton–Simon hypothesis which (linearly) relates tumor regression rates to tumor growth rates. We highlight

the utility, clarity, and power that such models provide, despite (and because of ) their simplicity and built-in

assumptions.

8.2 Introduction

Cancer is an evolutionary process taking place within a genetically and functionally heterogeneous population

of cells that traffic from one anatomical site to another via hematogenous and lymphatic routes [8, 41, 61, 186,

207]. The population of cells associated with the primary and metastatic tumors evolve, adapt, proliferate,

and disseminate in an environment in which a fitness landscape controls survival and replication [126].

Tumorigenesis occurs as the result of inherited and acquired genetic, epigenetic and other abnormalities

accumulated over a long period of time in otherwise normal cells [122, 215]. Before we can typically detect

the presence of a tumor, the cells are already competing for resources in a Darwinian struggle for existence

in tissues that progressively age and evolve. It is well established that the regenerative capacity of individual

cells within a tumor, and their ability to traffic multi-directionally from the primary tumor to metastatic

tumors all represent significant challenges associated with the efficacy of different cancer treatments and our

resulting ability to control systemic spread of many soft-tissue cancers [59, 208]. Details of the metastatic and

evolutionary process are poorly understood, particularly in the subclinical stages when tumors are actively

developing but not yet clinically visible [180]. It could be argued that in order to truly understand cancer

progression at the level in which quantitative predictions become feasible, it is necessary to understand

117



8 APPENDIX I: THE PRISONER’S DILEMMA AS A CANCER MODEL

how genetically and epigenetically heterogeneous populations of cells compete and evolve within the tumor

environment well before the tumor is clinically detectable. Additionally, a better understanding of how these

populations develop resistance to specific therapies [73, 93] might help in developing optimal strategies to

attack the tumor, slow disease progression, or maintain it at a stable level.

Evolutionary game theory is perhaps the best quantitative framework for modeling evolution and natural

selection. It is a dynamic version of classical game theory in which a game between two (or more) competitors

is played repeatedly, giving each participant the ability to adjust their strategy based on the outcome of

the previous string of games. While this may seem like a minor variant of classical (static) game theory, as

developed by the mathematicians von Neumann and Morgenstern in the 1940’s [202], it is not. Developed

mostly by the mathematical biologists John Maynard Smith and George Price in the 1970s [178, 179] and

Martin Nowak and Karl Sigmund [141, 145] more recently, this dynamic generalization of classical game

theory has proven to be one of the main quantitative tools available to evolutionary biologists (if coupled

with a fitness landscape) whose goal is to understand natural selection in evolving populations. In this

biological context, a strategy is not necessarily a deliberate course of action, but an inheritable trait [171].

Instead of identifying Nash equilibria, as in the static setting [131, 130], one looks for evolutionary stable

strategies (ESS) and fixation probabilities [88, 141] of a subpopulation. This subpopulation might be traced

to a specific cell with enhanced replicative capacity (high fitness), for example, that has undergone a sequence

of mutations and is in the process of clonally expanding [146]. A relevant question in that case is what is the

probability of fixation of that subpopulation? More explicitly, how does one subpopulation invade another

in a developing colony of cells?

One game in particular, the Prisoner’s Dilemma game, has played a central role in cancer modeling (as

well as other contexts such as political science and economics) [9, 10, 12, 48, 49, 69, 70, 83, 84, 88, 91, 22, 95,

142, 144, 145, 193, 197, 201, 206]. It was originally developed by Flood, Dresher and Tucker in the 1950s as an

example of a game which shows how rational players might not cooperate, even if it seems to be in their best

interest to do so. The evolutionary version of the Prisoner’s Dilemma game has thus become a paradigm for

the evolution of cooperation among a group of selfish individuals and thus plays a key role in understanding

and modeling the evolution of altruistic behavior [9, 10]. Perhaps the best introductory discussion of these

ideas is found in Dawkins’ celebrated book, The Selfish Gene [44]. The framework of evolutionary game

theory allows the modeler to track the relative frequencies of competing subpopulations with different traits

within a bigger population by defining mutual payoffs among pairs within the group. From this, one can

then define a fitness landscape over which the subpopulations evolve. The fitness of different phenotypes

is frequency dependent and is associated with reproductive prowess, while the ‘players’ in the evolutionary

game compete selfishly for the largest share of descendants [88, 206]. Our goal in this article is provide a
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brief introduction to how the Prisoner’s Dilemma game can be used to model the interaction of competing

subpopulations of cells, say healthy, and cancerous, in a developing tumor and beyond.

8.3 The prisoner’s dilemma evolutionary game

An evolutionary game between two players is defined by a 2 x 2 payoff matrix which assigns a reward to each

player (monetary reward, vacation time, reduced time in jail, etc.) on a given interaction. Let us call the two

players A and B. In the case of a prisoner’s dilemma game between cell types in an evolving population of

cells, let there be two subpopulations of cell types which we will call ‘healthy’, and ‘cancerous’. We can think

of the healthy cells as the subpopulation that is cooperating, and the cancer cells as formerly cooperating

cells that have defected via a sequence of somatic driver mutations. Imagine a sequence of ‘games’ played

between two cells (A and B) selected at random from the population, but chosen in proportion to their

prevalence in the population pool. Think of a cancer-free organ or tissue as one in which a population

of healthy cells are all cooperating, and the normal organ functions are able to proceed, with birth and

death rates that statistically balance, so an equilibrium healthy population is maintained (on average). Now

imagine a mutated cell introduced into the population with enhanced proliferative capability as encoded by

its genome as represented as a binary sequence of 0’s and 1’s carrying forward its genetic information (which

is passed on to daughter cells). A schematic diagram associated with this process is shown in Figure 1. We

can think of this cancer cell as a formerly cooperating cell that has defected and begins to compete against

the surrounding population of healthy cells for resources and reproductive prowess. From that point forward,

one can imagine tumor development to be a competition between two distinct competing subpopulations of

cells, healthy (cooperators) and cancerous (defectors). We are interested in the growth rates of a ‘tumor’

made up of a collection of cancer cells within the entire population, or equivalently, we are interested in

tracking the proportion of cancer cells, i(t), vs. the proportion of healthy cells, N − i(t), in a population of

N cells comprising the simulated tissue region.

To quantify how the interactions proceed, and how birth/death rates are ultimately assigned, we introduce

the 2 x 2 prisoner’s dilemma payoff matrix:

A =

 a b

c d

 =

 3 0

5 1

 . (112)

What defines a prisoner’s dilemma matrix are the inequalities c > a > d > b. The chosen values in (112)

are relatively standard, but not unique1. The essence of the prisoner’s dilemma game is the two players

1A general investigation of how the values in the PD payoff matrix affects evolutionary dynamics of the subpopulations is
addressed in [205].
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compete against each other, and each has to decide what best strategy to adopt in order to maximize their

payoff. This 2 x 2 matrix assigns the payoff (e.g. reward) to each player on each interaction. My options, as

a strategy or, equivalently, as a cell type, are listed along the rows, with row 1 associated with my possible

choice to cooperate, or equivalently my cell type being healthy, and row 2 associated with my possible choice

to defect, or equivalently my cell type being cancerous. Your options are listed down the columns, with

column 1 associated with your choice to cooperate (or you being a healthy cell), and column 2 associated

with your choice to defect (or you being a cancer cell). The analysis of a rational player in a prisoner’s

dilemma game runs as follows. I do not know what strategy you will choose, but suppose you choose to

cooperate (column 1). In that case, I am better off defecting (row 2) since I receive a payoff of 5 instead

of 3 (if I also cooperate). Suppose instead you choose to defect (column 2). In that case, I am also better

off defecting (row 2) since I receive a payoff of 1 instead of 0 (if I were to have cooperated). Therefore,

no matter what you choose, I am better off (from a pure payoff point of view) if I defect. What makes this

game such a useful paradigm for strategic interactions ranging from economics, political science, biology, and

even psychology [9, 178, 206] is the following additional observation. You will analyze the game in exactly

the same way I did (just switch the roles of me and you in the previous rational analysis), so you will also

decide to defect no matter what I do. The upshot if we both defect is that we will each receive a payoff of

1, instead of each receiving a payoff of 3 if we had both chosen to cooperate. The defect-defect combination

is a Nash equilibrium [131, 130], and yet it is sub-optimal for both players and for the system as a whole.

Rational thought rules out the cooperate-cooperate combination which would be better for each player (3

points each) and for both players combined (6 points). In fact, the Nash equilibrium strategy of defect-defect

is the worst possible system wide choice, yielding a total payoff of 2 points, compared to the cooperate-defect

or defect-cooperate combination, which yields a total payoff of 5 points, or the best system-wide strategy of

cooperate-cooperate yielding a total payoff of 6 points.

The game becomes even more interesting if it is played repeatedly [206], stochastically [197], and with

spatial structure [116] with each player allowed to decide what strategy to use on each interaction so as to

accumulate a higher payoff than the competition over a sequence of N games. In order to analyze this kind

of an evolving set-up, a fitness function must be introduced based on the payoff matrix A. Let us now switch

our terminology so that the relevance to tumor cell kinetics becomes clear. When modeling cell competition,

one has to be careful about the meaning of the term ‘choosing a strategy’. Cells do not choose a strategy,

but they do behave in different ways depending on whether they are normal healthy cells cooperating as

a cohesive group, with birth and death rates that statistically balance, or whether they are cancer cells

with an overactive cell division mechanism (as triggered by the presence of oncogenes) and an underactive

‘break’ mechanism (as triggered by the absence of tumor suppressor genes) [207]. In our context, it is not
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the strategies that evolve, as cells cannot change type based on strategy (only based on mutations), but the

prevalence of each cell type in the population is evolving, with the winner identified as the sub-type that

first saturates in the population.

8.4 A tumor growth model

Consider a population of N cells driven by a stochastic birth-death process as depicted in Figure 50, with

red cells depicting cancer cells (higher fitness) and blue cells depicting healthy cells (lower fitness, but

cooperative). We model the cell population as a stochastic Moran process [210] of N cells, ‘i’ of which are

cancerous, ‘N− i’ of which are healthy. If each cell had equal fitness, the birth-death rates would all be equal

and a statistical balance would ensue. At each step, a cell is chosen (randomly but based on the prevalence

in the population pool) and eliminated (death), while another is chosen to divide (birth). If all cells had

equal fitness, the birth/death rates of the cancer cells would be i/N , while those of the healthy cells would

be (N − i)/N . With no mechanism for introducing a cancer cells in the population, the birth/death rates of

the healthy cells would be equal, and no tumor would form.

Now, introduce one cancer cell into the population of healthy cells, as shown in Figure 50A. At each step,

there would be a certain probability of this cell dividing (Pi,i+1), being eliminated (Pi,i−1), or simply not

being chosen for either division or death (Pi,i). Based on this random process, it might be possible for the

cancer cells to saturate the population, as shown by one simulation in Figure 51 depicting N = 1000 cells,

with initially i = 1 cancer cell, and N − i = 999 healthy cells. However, the growth curve would not show

any distinct shape (Figure 51 (black)), and might well become extinct after any number of cell divisions,

as opposed to reaching saturation. But we emphasize that without mutational dynamics, heritability, and

natural selection operating on the cell population, the shape of the growth curve would look random, and

we know this is not how tumors tend to grow [111, 112]. By contrast, Figure 51 (red) shows a Gompertzian

growth curve starting with exponential growth of the cancer cell subpopulation, followed by linear growth,

ending with saturation. The growth rate is not constant throughout the full history of tumor development,

but after an initial period of exponential growth, the rate decelerates until the region saturates with cancer

cells. The basic ingredients necessary to sustain Gompertzian growth seem to be: an underlying stochastic

engine of developing cells, mutational dynamics, heritability, and a fitness landscape that governs birth and

death rates giving rise to some sort of natural selection.
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Figure 50: Schematic of the Moran Process — (a) The number of cancer cells, i, is defined on the state
space i = 0, 1, . . . , N where N is the total number of cells. The cancer population can change at most by one
each time step, so a transition exists only between state i and i−1, i, and i+1. (b) During each time step, a
single cell is chosen for reproduction, where an exact replica is produced. With probability m (0 ≤ m ≤ 1),
a mutation may occur.

8.4.1 Mutations and heritability

Each of the N cells in our simulated population carries with it a discrete packet of information that represents

some form of molecular differences among the cells. In our model, we code this information in the form of

a 4-digit binary string from 0000 up to 1111, giving rise to a population made up of 16 distinct cell types.

At each discrete step in the birth-death process, one of the digits in the binary string is able to undergo a

point mutation [62, 122], where a digit spontaneously flips from 0 to 1, or 1 to 0, with probability pm. The

mutation process is shown in Figure 50, while a mutation diagram is shown in Figure 52 in the form of a

directed graph. This figure shows the possible mutational transitions that can occur in each cell, from step

to step in a simulation. A typical simulation begins with a population of N healthy cells, all with identical

binary strings 0000. The edges on the directed graph represent possible mutations that could occur on a

given step. The first 11 binary string values (0-10) represent healthy cells in our model that are at different

stages in their evolutionary progression towards becoming a cancer cell (the exact details of this genotype
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Figure 51: Emergence of Gompertzian growth via selection — Random drift (black) plotted for
a single simulation of 103 cells for 4 · 104 generations shows no particular shape. A single simulation of
the Moran process (red) with selection (w = 0.5) and mutations (m = 0.1) gives rise to the characteristic
S-shaped curve associated with Gompertzian growth.

to phenotype map do not matter much). Mutations strictly within this subpopulation are called passenger

mutations as the cells all have the same fitness characteristics. The first driver mutation occurs when a

binary string reaches value 11-15. The first cell that transitions from the healthy state to the cancerous

state is the renegade cell in the population that then has the potential to clonally expand and take over the

population. How does this process occur?

8.4.2 The fitness landscape

At the heart of how the Prisoner’s Dilemma evolutionary game dictates birth and death rates which in turn

control tumor growth, is the definition of cell fitness. Let us start by laying out the various probabilities

of pairs of cells interacting and clearly defining payoffs when there are i cancer cells, and N − i healthy

cells in the population. The probability that a healthy cell interacts with another healthy cell is given by

(N − i − 1)/(N − 1), whereas the probability that a healthy cell interacts with a cancer cell is i/(N − 1).

The probability that a cancer cell interacts with a healthy cell is (N − i)/(N − 1), whereas the probability

that a cancer cell interacts with another cancer cell is (i− 1)/(N − 1).

In a fixed population of N cells, with i cancer cells, the number of healthy cells is given by N − i. The

average payoff of a single cell (πH , πC), is dependent on the payoff matrix value weighted by the relative

frequency of types in the current population:
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Figure 52: Markov Point Mutation Diagram — Diagram shows 16 genetic cell types based on 4-digit
binary string and the effect of a point mutation on each cell type. Blue indicates healthy cell type (0000 —
1010), red indicates cancerous cell type (1011 — 1111). Black arrows indicate passenger mutations (healthy
to healthy or cancer to cancer), red arrows indicate driver mutations (healthy to cancer).

πHi =
a(N − i− 1) + bi

N − 1
(113)

πCi =
c(N − i) + d(i− 1)

N − 1
(114)

Here, a = 3, b = 0, c = 5, d = 1 are the entries in the Prisoner’s Dilemma payoff matrix (112). For the

Prisoner’s dilemma game, the average payoff of a single cancer cell is always greater than the average payoff

for a healthy cell (Figure 53C). With the invasion of the first cancer cell, the higher payoff gives a higher

probability of survival when in competition with a single healthy cell.

Selection acts on the entire population of cells as it depends not on the payoff, but on the effective

fitness of the subtype population. The effective fitness of each cell type (fH , fC) is given by the relative

contribution of the payoff of that cell type, weighted by the selection pressure:

fHi = 1− w + wπHi (115)

and the fitness of the cancer cells as:
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fCi = 1− w + wπCi (116)

The probability of birthing a new cancer cell depends on the relative frequency (random drift) weighted by

the effective fitness, and the death rate is proportional to the relative frequency. The transition probabilities

can be written:

Pi,i+1 =
ifCi

ifCi + (N − i)fHi
N − i
N

(117)

Pi,i−1 =
(N − i)fHi

ifCi + (N − i)fHi
i

N
(118)

Pi,i = 1− Pi,i+1 − Pi,i−1; P0,0 = 1; PN,N = 1. (119)

In the event of the first driver mutation, the first cancer cell is birthed. At the beginning of the simulation,

the effective fitness of the healthy population is much greater than the fitness of the cancer population

(Figure 53B). This is because although the single cancer has a higher payoff than any of the healthy cells,

the number of healthy cells far outnumber the single cancer cells. That single cancer cell initiates a regime of

explosive high growth and the fitness of the cancer population steadily increases. Cancer cells are continually

competing with healthy cells and receiving a higher payoff in this regime (compare the payoff entries of a

cancer cell receiving c = 5 vs a healthy cell receiving b = 0). At later times, growth slows because cancer

cells are competing in a population consisting mostly of other cancer cells. The payoff for a cancer cell is

dramatically lower when interacting with a cancer cell (observe the payoff entry of both cancer cells receiving

d = 1 when interacting). As the cancer population grows, the payoff attainable decreases and growth slows.

In addition, the average fitness of the total population steadily declines because each interaction derives less

total payoff, from c+b = 5 to d+d = 1. It is precisely the payoff structure of the Prisoner’s Dilemma matrix

that produces this declining average population fitness as the cancer cells saturate the population. Although

they receive higher payoffs than healthy cells on pairwise interactions, these cancer-healthy interactions

mostly take place early on in the evolution of the tumor. As the cancer cells take over the population, most

of the interactions take place between pairs of cancer cells (i.e. they eventually start competing with each

other) causing the population fitness to decline.

This complex process of competition among cell types and survival of subpopulations, where defection is

selected over cooperation, produces a Gompertzian growth curve shown in Figure 54, and compared with a

compilation based on a wide range of data first shown in [111, 112]. It is now well established that tumor cell
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Figure 53: Tumor fitness drives tumor growth — (A) The average of 25 stochastic simulations (N =
1000 cells, w = 0.5, m = 0.1) is plotted for 20,000 cell divisions to show the cancer cell population (defectors)
saturating. The pink lines delineate the regions of tumor growth (defined by the maximum and minimum
points of the second-derivative of i(t)). (B) Fitness of the healthy population, cancer population, and total
population plotted for the range cancer cell proportion. (C) Average payoff of a single healthy cell, cancer
cell, and all cells plotted for the range cancer cell proportion.

populations (and other competing populations, such as bacteria and viral populations) generally follow this

growth pattern, although the literature is complicated by the fact that different parts of the growth curve

have vastly different growth rates [111, 112], and it is nearly impossible to follow the growth of a population

of cancer cells in vivo from the first cancer cell through to an entire tumor made up of O(109 − 1012) cells.

Growth rates are typically measured for a short clinical time period [111, 112], and then extrapolated back

to the first renegade cell, and forward to the fully developed tumor population.
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Figure 54: Moran Process fit to Gompertzian Growth Data — The mean and deviation of 25 stochastic
simulations (N = 103 cells, w = 0.7, m = 0.3) is overlaid on data from a “normalized” Gompertzian [111,
112]. Values for m and w were chosen by implementing a least-squares fit to the data over a range of m
(0 ≤ m ≤ 1), and w (0 ≤ w ≤ 1). Pink lines delineate regions of growth (defined by the maximum and
minimum points of the second-derivative of i(t)).

8.4.3 Heterogeneity drives growth

Insights into the process by which growth rates vary and conspire to produce a Gompertzian shape can

be achieved by positing that growth is related to molecular and cellular heterogeneity of the developing

population [27, 100, 186]. Indeed, an outcome of the model is that molecular heterogeneity (i.e. the

dynamical distribution of the 4-digit binary string 0000—1111 making up the population of cells) drives

growth. Consider entropy [40, 134] of the cell population as a measure of heterogeneity:

E(t) = −
N∑
i=1

pi log2 pi (120)

(here, log is defined as base 2). The probability pi measures the proportion of cells of type i, with i = 1, . . . , 16

representing the distribution of binary strings ranging from 0000 to 1111. We typically course-grain this

distribution further so that cells having strings ranging from 0000 up to 1010 are called ‘healthy’, while those

ranging from 1011 to 1111 are ‘cancerous’. Then growth is determined by:
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dnE
dt

= αE(t) (121)

It follows from (133) that the cancer cell proportion nE(t) can be written in terms of entropy as:

nE(t) = α

∫ t

0

E(t)dt (122)

This relationship between growth of the cancer cell population and entropy is pinned down and detailed in

[210]. We consider it to be one of the key emergent features of our simple model.

A typical example of the emergence of genetic heterogeneity in our model system is shown in the form of a

phylogenetic tree in Figure 55. This particular tree is obtained via a simulation of only 30 healthy phenotypic

cells (0000), which during the course of a simulation expand out (radially in time) to form a much more

heterogeneous population of cells at the end of the simulation. In our model, the genetic time-history of

each cell is tracked and the population can be statistically analyzed after the simulation finishes.

8.5 Simulated drug dosing strategies and therapeutic response

Figure 56 shows the clear advantage of early stage therapy in our model system. We compare the effect of

therapy given at an early stage, mid-stage, and late stages of the Gompertzian growth of the tumor. The

dashed black Gompertzian curve is the freely growing cancer cell population. In each of the figures, we

depict the effect of a range of drug dose densities, D, where

D = c · t. (123)

The dose density is the product of the drug concentration, c, and the time over which the therapy is

administered, t, (123). Here, the drug concentration value is a weighting (0 ≤ c ≤ 1) which determines the

intensity of the drug treatment. A higher value of c will alter the selection pressure in favor of healthy cells

(and to the disadvantage of cancer cells) more dramatically.

Figure 56 varies the drug dose density by varying the drug concentrations (c = 0.2, 0.4, 0.6, 0.8, 1.0)

administered for a constant time (t = 5000 cell divisions, black arrow). The colored curves show the

subsequent decline of the cancer cell population under therapeutic pressure. Clearly, to obtain the desired

effect of driving the cancer cell population down to manageable levels, one needs to (i) use a sufficient dose

density, and (ii) initiate therapy early enough in the growth history. These figures are meant to paint a

broad brush with respect to the simulated advantages of early therapy and to show the capability of the

model with respect to addressing questions of this type in a quantitative way. A detailed investigation is left
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Figure 55: Sample Dendritic Phylogenetic Tree — Sample dendritic phylogenetic tree tracking point
mutations as time extends radially, depicting the emergence of molecular heterogeneity. The tree shows a
simulation of 30 cells (all with genetic string 0000 at the beginning of the simulation) with strong selection
(w = 1, m = 0.2). Pathways are color coded to indicate genetic cell type.

for a separate publication.

An established empirical law which relates drug dose density to its effectiveness in killing off cancer cells

is known as the ‘log-kill’ law [177]. The log kill law states that a given dose of chemotherapy kills the same

fraction of tumor cells (as opposed to the same number of tumor cells), regardless of the size of the tumor

at the time the therapy is administered [177], a consequence of exponential growth with a constant growth

rate. This effect is best illustrated on a dose-response curve, plotting the dose density, D, with respect to

the probability of tumor cell survival, PS . Thus, the log-kill law states the following:

log(PS) = −βD. (124)

As an example, if there are 1000 cancer cells in a tumor population, and the first therapy dose kills off

90% of them (i.e. β = 0.9), then after the first round of therapy there will be 100 cancer cells remaining. If
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a second round of therapy is administered, exactly as the first round, starting soon enough so that no new

cancer cells have formed, then this next round will also kill off 90% of the cells, leaving 10 cells, and so on

for each future round of therapy. In a sense, since the first round killed 900 cells, while the second identical

round killed only 90 cells, the population gets increasingly more difficult to kill off using the same treatment

on each cycle. The log-kill law, a fundamentally static law (it does not say anything about the relationship

of the fraction of cells killed vs. the growth rate of the tumor), is verified in our model system, as shown

in the dose response curve in Figure 57D. On the x-axis, we increase the dose density D, and we plot the

number of surviving cancer cells. The slope of this straight line (verifying the log-kill law) is the rate of

regression of the tumor, β. Alternatively, β can be estimated using an exponential fit of i(t) during therapy

(i.e. i(t) = i0exp(−β(t− t0)), where i0 is the initial tumor size and t0 is the time therapy is initiated).

So how is the rate of regression, β, related to the growth rate of the tumor, γ? This is relevant, since we

know from the shape of the Gompertzian curve, the growth rate is highest (exponential) at the beginning

stage of tumor development and lowest at the late saturation stage. Figure 57A shows therapy is more

effective (i.e. a higher rate of regression, β) for earlier stage therapy. These early stage therapies correspond

to a higher growth rate, shown in Figure57B. The Norton-Simon hypothesis [139, 140, 140] states that the

rate of regression is proportional to the instantaneous growth rate for an untreated tumor of that size at

the time therapy is first administered. A faster growing tumor (early stage) should show a higher rate of

regression than a more slowly growing tumor (late stage). This hypothesis is also verified in our model

system, and shown clearly in Figure 57C. The reality of this growth-dependent tumor regression rate effect

(where early stage faster growing tumors are more vulnerable to therapy than later stage, slowly growing

tumors) dramatically reinforces the need to administer drug treatment early in tumor progression when

growth rates are high and there are fewer cancer cells to kill off.

8.6 Mathematical modeling and tumor analytics

It is important to keep in mind that no mathematical model captures all aspects of reality, so choices must

be made which involve prioritizing the features that are most essential in capturing the essence of a complex

process and which are not. Most experts now agree that the evolutionary processes in a tumor played

out among subpopulations of competing cells are key to understanding aspects of growth and resistance

to chemotherapy, which will ultimately lead the way toward a quantitative understanding of tumor growth

and cancer progression [126, 208, 207]. The paradigm of the cancer cell subpopulation and the healthy cell

subpopulation competing as the defectors and cooperators in a Prisoner’s Dilemma evolutionary game has

been useful in obtaining a quantitative handle on many of these processes and frames the problem in an
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intuitive yet predictive way.

Nonetheless, the mathematical ‘taste’ of the modeler plays a role in what techniques are selected and

ultimately where the spotlight shines. This fact makes clinicians uncomfortable and can lead to deep suspicion

of the mathematical modeling enterprise as a whole. Aren’t the outcomes and predictions of mathematical

models a straightforward consequence of the model assumptions? Once those choices are made, isn’t the

cake already baked? So why should we be surprised if you tell us it tastes good? Why not simply use tried

and true statistical tools like regression methods to curve-fit the data directly, with no built in assumptions,

and be satisfied with uncovering correlations and trends? Clinicians (and experimentalists, in general) feel

that they are dealing directly with reality, so why mess around with ‘toy’ systems based on possibly ‘ad hoc’

or incorrect assumptions that create artificial realities that may or may not be relevant? To a theoretician,

calling their assumptions ad hoc, as opposed to natural, is as insulting as calling a clinician sloppy and

uncaring (try this for yourself at the next conference you go to! But please use the term ‘somewhat ad hoc’

to lessen the blow.) And if you want to deliver an even harsher insult, you could comment that the model

seems like an exercise in curve fitting.

But the usefulness of mathematical models built on simplified assumptions is well established in the

history of the physical sciences, as detailed beautifully in Peter Dear’s book, The Intelligibility of Nature:

How Science Makes Sense of the World [45]. Bohr’s simple model of the structure of the atom was crucial

in moving the community forward towards a deeper understanding of cause and effect, and ultimately

pushing others to develop more realistic atomic models. The same could be said for many other important,

but ultimately discarded models of reality (e.g. the notion of aether used as a vehicle to understand the

mysterious notion of action-at-a-distance [45]) now relegated to footnotes in the history of the physical

sciences.

Lessons from this history highlight the importance of using the principle of Occam’s razor (law of parsi-

mony) as a heuristic guide in developing models: (1) keep things simple, but not too simple; (2) see what

can be explained by using a given set of assumptions, and try to identify what is either wrong or cannot be

explained; (3) add complexity to the model, but do this carefully. Since ultimately, the model will always

be wrong (with respect to some well chosen and specific new question being posed about a system), it is

important that it be useful as a vehicle of intelligibility [45] associated with the set of questions surrounding

the phenomena it was built to explain. Answers to some new questions will be found using the model as

a temporary crutch, and new questions will emerge in the process that had not yet been asked, as their

relevance had never previously been realized. A new quantitative language will emerge in which aspects

of the model will be associated with the underlying reality it is attempting to describe, predictions will be

easier to frame and test, and shortcomings will be exposed. In his famous article [212], Eugene Wigner writes
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compellingly that ‘the miracle of the appropriateness of the language of mathematics for the formulation of

the laws of physics is a wonderful gift which we neither understand nor deserve. We should be grateful for it

and hope that it will remain valid in future research and that it will extend, for better or for worse, to our

pleasure, even though perhaps also to our bafflement, to wide branches of learning.’

In general, the more complex the model (as measured, for example, by the number of independent

parameters associated with it), the less useful it will be, and the less likely it is to be adopted by the

community at large. After all, if the model is as complex as the phenomena it was built to understand,

why not stick with reality? Effective models can be thought of as low-dimensional approximations of reality,

surrogates that help us bootstrap our way forward. They arise as the outcome of a complex balancing act

between simplicity of the ingredients, and complexity of the reality the model is meant to describe. They

generally do not arise in a vacuum, but are built in the context of informed and sustained discussions among

people with different expertise. In the context of medical oncology, this means physical scientists developing

ongoing interactions with clinical oncologists, radiologists, pathologists, molecular and cell biologists and

other relevant medical specialists.

Appropriate data is a necessary ingredient in developing and testing any successful model, and treasure

troves of medical data sit unexamined in patient files and government databases across the country waiting

to be put to good use. There is no doubt that they are telling an interesting and important story that we

have yet to fully understand. It is not currently possible for the computer to simulate all of the complex,

relevant, and systemic ingredients at play to faithfully recreate all aspects of cancer progression and treatment

response in patients. It is hard to imagine that a deep and actionable understanding can ever be obtained

without the combined use of data, models, and computer simulations to help guide us and highlight some of

the underlying causal mechanisms of this complex and deadly disease.
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Figure 56: Effects of varied dose density for early-stage, mid-stage, and late-stage therapies —
An average of 25 stochastic simulations of unperturbed tumor growth (N = 103 cells, w = 0.5, m = 0.1,
no therapy) is plotted (black dashed line). The effect of varied drug dose density (eqn. 123), is shown by
administering a range of drug concentration values (c = 0.2, 0.4, 0.6, 0.8, 1.0) for constant length of time
(t = 5000 cell divisions, black solid arrows). This process is repeated for (A) high growth, early-stage,
(B) linear growth, mid-stage, and (C) slowed growth, late-stage. The kill effect is highest for high drug
concentration values (i.e. high dose density) and early therapy.
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Figure 57: Growth-dependent tumor regression — (A) An average of 25 stochastic simulations of
unperturbed tumor growth (N = 103 cells, w = 0.5, m = 0.1, no therapy) is plotted (black dashed line)
with (B) corresponding instantaneous growth rate, γ(t), of the unperturbed tumor (red). Tumor regression,
β, (estimated using an exponential fit of i(t) during therapy, shown in legend) during therapy (constant
dose density: c = 1.0, t = 2000) is calculated for a high growth, early-stage therapy (purple), linear-growth,
mid-stage therapy (green), and late-stage, slowed growth (light blue); (C) This process is repeated for a full
range of growth rates (between vertical blue dashed lines). Average values of β are plotted with standard
deviations. Regression is proportional to growth rate (linear fit in red), with higher regression rates associated
with high growth rates of early stage tumors. (D) Tumor regression, β, can also be calculated as the slope
of a dose response curve (red), where therapy is administered for a range of dose densities (0.7 ≤ c ≤ 1.0)
for a single timepoint, 8000 cell divisions (i.e. single growth rate).
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9 Appendix II: An evolutionary model of tumor cell kinetics and

the emergence of molecular heterogeneity driving Gompertzian

growth

9.1 Abstract

We describe a cell-molecular based evolutionary mathematical model of tumor development

driven by a stochastic Moran birth-death process. The cells in the tumor carry molecular

information in the form of a numerical genome which we represent as a four-digit binary

string used to differentiate cells into 16 molecular types. The binary string is able to undergo

stochastic point mutations that are passed to a daughter cell after each birth event. The

value of the binary string determines the cell fitness, with lower fit cells (e.g. 0000) defined as

healthy phenotypes, and higher fit cells (e.g. 1111) defined as malignant phenotypes. At each

step of the birth-death process, the two phenotypic sub-populations compete in a prisoner’s

dilemma evolutionary game with the healthy cells playing the role of cooperators, and the

cancer cells playing the role of defectors. Fitness, birth-death rates of the cell populations,

and overall tumor fitness are defined via the prisoner’s dilemma payoff matrix. Mutation

parameters include passenger mutations (mutations conferring no fitness advantage) and driver

mutations (mutations which increase cell fitness). The model is used to explore key emergent

features associated with tumor development, including tumor growth rates as it relates to

intratumor molecular heterogeneity. The tumor growth equation states that the growth rate

is proportional to the logarithm of cellular diversity/heterogeneity. The Shannon entropy from

information theory is used as a quantitative measure of heterogeneity and tumor complexity

based on the distribution of the 4-digit binary sequences produced by the cell population.

To track the development of heterogeneity from an initial population of healthy cells (0000),

we use dynamic phylogenetic trees which show clonal and sub-clonal expansions of cancer

cell sub-populations from an initial malignant cell. We show tumor growth rates are not

constant throughout tumor development, and are generally much higher in the subclinical

range than in later stages of development, which leads to a Gompertzian growth curve. We

explain the early exponential growth of the tumor and the later saturation associated with the

Gompertzian curve which results from our evolutionary simulations using simple statistical

mechanics principles related to the degree of functional coupling of the cell states. We then

compare dosing strategies at early stage development, mid-stage (clinical stage), and late
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stage development of the tumor. If used early during tumor development in the subclinical

stage, well before the cancer cell population is selected for growth, therapy is most effective

at disrupting key emergent features of tumor development.

9.2 Introduction

At the molecular and cellular levels, cancer is an evolutionary process [126, 138, 138, 138] driven by random

mutational events [138, 104, 192, 166] responsible for genetic diversification which typically arises via waves of

clonal and sub-clonal expansions [75, 146], operating over an adaptive fitness landscape in which Darwinian

selection favors highly proliferative cell phenotypes which in turn drive rapid tumor growth [111, 65, 17]. The

tumor environment should be viewed as a complex Darwinian adaptive eco-system consisting of cell types

which have evolved over many years [126]. As a result, all but the most well designed and tailored therapeutic

strategies often deliver disappointing outcomes and potentially introduce a potent new source of selective

pressure for the proliferation of variant cells which develop an enhanced ability to resist future therapeutic

assaults [93, 54, 106, 105, 74]. The prospects for influencing and controlling such a system are likeliest at the

emerging early stages of tumor development when the cell population has not yet been selected for growth

and survival, and the tumor size is small. But by the time a typical tumor becomes clinically detectable

(often after several years of growth), it already contains O(108) or more malignant cells (and potentially

occupies a volume of 1− 2 mm3), some of which may have entered the blood circulation [65]. Since there is

very little human data available in this early subclinical stage of tumor development, computational models

can serve as a useful surrogate in this critical developmental stage which clearly influences and determines

many important emergent features of the tumor at later stages.

Our goals in this paper are to describe a mathematical model for stochastic cell kinetics in the beginning

stages of tumor development (from a single malignant cell) that includes cell reproduction and death, muta-

tions, evolution, and the subsequent emergence of genetic heterogeneity well documented in many soft-tissue

tumors [133, 123, 55, 2, 85, 173, 71, 186, 86]. The model is a computational one, driven by a stochastic

Moran (birth-death) process with a finite cell population, in which birth-death rates are functions of cell

fitness. The fitness is determined by the cell’s numerical genome in the form of a four-digit binary string

capable of undergoing point mutational dynamics with one digit in the string flipping values stochastically.

The corresponding numerical value of the binary string determines whether the cell is healthy (low-fitness)

or cancerous (high fitness). These two classes of cells compete against each other at each birth-death event,

with fitness calculated according to the payoff matrix associated with the prisoner’s dilemma evolutionary

zero-sum game [179, 143, 201, 10]. The healthy cells play the role of cooperators, while the cancer cells play
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the role of defectors [143, 10]. Our goal is to understand how the model parameters: passenger (mp) and

driver mutation rates (md), selection strength (w), birth and death rates, affect tumor growth characteristics,

such as tumor growth rates, fixation probabilities of malignant and healthy cell types, saturation rates of

cancer cells, and the emergence of genetic heterogeneity in a tumor at later stages of development when the

tumor is clinically detectable.

An important outcome of the model is that growth of the cancer cell population is directly influenced by

the intratumor heterogeneity (represented as the distribution of the 4-digit binary strings throughout the cell

population), with high heterogeneity driving more rapid growth. The connection between heterogeneity and

growth has been discussed in the literature [100, 112, 3, 209, 7, 86]. We quantify heterogeneity in a tumor

using tools from information theory [39, 134], as well as quantitative analysis of phylogenetic trees associated

with clonal and sub-clonal expansions [170, 186] in the developing tumor. Because our numerical simulations

are carried out from initial conditions corresponding to a homogeneous population of healthy cells (0000) all

the way to a saturated population of cancer cells, we can use the model to test basic dose and scheduling

strategies [195, 1] at the very early stages of tumor development in the subclinical range, well before a tumor

would be clinically detectable by current technology. Our point of view is that this emerging subclinical

tumor should be more amenable (and potentially vulnerable) to a well planned therapeutic assault than

a more mature tumor comprised (on average) of larger numbers of cells with more aggressive proliferative

capabilities (having undergone generations of selection), that are potentially in the early stages of migration

to other organs. More complex features that might influence early stage dynamics, like human-immune

response [3] and the tumor microenvironment [117] are not included in this model in order to keep things as

simple and clear as possible.

9.3 Description of the model

The ingredients in our model includes a stochastic birth-death process that is the engine which drives tumor

growth, with heritable mutations operating over a fitness landscape so that natural selection can play out

over many cell division timescales. Genetic mutations (point mutations) are modeled using a four-digit

binary string of information that each cell carries with it.2 This simple sequence divides the cells into 16

different “genotypes”, ranging from 0000 up to 1111, and this information is passed on to the daughter cell

during a birth event. The birth-death replacement process is based on a fitness function defined in terms of

interactions quantified by the prisoner’s dilemma payoff matrix which operates on two general classes of cells:

healthy (the cooperators), and cancerous (the defectors). Natural selection acts on each generation of the

2To be clear, the four digit sequence is not meant as a bare-bones representation of the full human genome, but as a simple
representation of the relevant differences in genetic information contained in different cells, allowing us to course-grain the cells
into 16 different categories based on their genetic/epigenetic profiles.

137



9 APPENDIX II: AN EVOLUTIONARY MODEL OF TUMOR CELL KINETICS AND THE
EMERGENCE OF MOLECULAR HETEROGENEITY DRIVING GOMPERTZIAN GROWTH

cell population as the computational simulation proceeds on a cell division timescale. In this version of the

model we typically simulate up to O(1011) cell divisions, so our mutation rates are chosen to be relatively

high to accommodate these somewhat modest timescales. See [192] for discussions on mutation rates in

cancer.

9.3.1 The Moran birth-death process

The stochastic engine [165] that drives tumor growth in our model is a finite cell-based Moran process

consisting of a population of N cells, divided into two sub-populations consisting of i cancer cells, and

N − i healthy cells. In all of our simulations, N is large enough so that there is not a significant difference

between the results from our finite-cell model and the (deterministic) replicator equation approach for infinite

populations, a connection that is discussed in detail in [196]. At each time-step in the simulation, one cell is

chosen for reproduction and one cell is chosen for elimination. The cells are chosen randomly, based on their

prevalence in the population pool which, in turn, is weighted by the fitness function based on a chosen payoff

matrix. The probability of choosing a cancer cell at any given step is i/N , while the probability of choosing

a healthy cell is (N − i)/N . As it unfolds, the process is a stochastic birth-death process where the total

population size, N , stays constant and the number of cancer cells in the population, i, is the stochastic state

variable. At any given step, the probability of transitioning from i cancer cells to j cancer cells is denoted

Pij , with j = i + 1 or j = i − 1. These probabilities are determined by the birth/death rates associated

with the cancer cell population, which in turn are determined by a cell population fitness function. Each cell

carries with it a binary string in the form of a four digit binary sequence from 0000 up to 1111. This defines

16 different cell types, which are course-grained into two groups: healthy cells (0000 - 1010), and cancer

cells (1011-1111). These two sub-populations interact at each birth-death time-step with fitness defined in

terms of the prisoner’s dilemma payoff matrix. The algorithmic details are shown in the appendix Figure

67. To set the stage for more complex simulations, Figure 58 shows the result of a stochastic simulation

(depicting i) driven by the Moran process alone, with no mutations, and no selection. Figure 58 shows

three different simulations, one leading to the elimination of all cancer cells via random drift (red), another

fluctuates between a mixed cell population after 10,000 cell divisions (yellow), and a third leading to fixation

of the cancer cell population (blue) after around 5000 cell divisions. The average of 25 stochastic simulations

is also plotted (note that the average will converge to half cancer cells and half healthy cells by the law of

large numbers). The mean time to fixation of the cancer cell population which starts with ‘i’ cells in this

simple setting (no mutations, no selection) is given by
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k = N

 i∑
j=1

N − i
N − j

+

N−1∑
j=i+1

i

j

 . (125)

With no mechanism for natural selection, there is no shape to the growth curves.

Figure 58: Stochastic Moran birth-death process — Cancer cell population, i(t), during three stochastic
simulations of the Moran birth-death process in a population of 100 cells and an initial condition of i = 50
cells. The blue curve leads to fixation of the cancer cell population, the red curve leads to elimination of the
cancer cell population, and the yellow curve remains fluctuating in a mixed population of cells after 10,000
cell divisions. An average of 25 stochastic simulations (black dashed line) is also plotted.

9.3.2 The prisoner’s dilemma payoff matrix

To introduce the effect of selection which will regulate cell birth and death rates, we use the prisoner’s

dilemma evolutionary game in which two players compete against each other for the best payoff. Each has

to decide whether to cooperate (healthy cell) or defect (cancer cell) and each receives a payoff determined

from the prisoner’s dilemma payoff matrix3, A:

A =

 a b

c d

 =

 3 0

5 1

 . (126)

3What defines a prisoner’s dilemma matrix are the inequalities c > a > d > b. The chosen values in (126) are relatively
standard, but not unique. More discussion of why the prisoner’s dilemma matrix, which models the evolution of defection, is a
useful paradigm for cancer can be found in [211] and some of the references therein.
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The essence of the prisoner’s dilemma game is the two players compete against each other, and each has

to decide what best strategy to adopt in order to maximize their payoff. This 2 x 2 matrix assigns the payoff

(e.g. reward) to each player on each interaction. My options, as a strategy or, equivalently, as a cell type,

are listed along the rows, with row 1 associated with my possible choice to cooperate, or equivalently my

cell type being healthy, and row 2 associated with my possible choice to defect, or equivalently my cell type

being cancerous. Your options are listed down the columns, with column 1 associated with your choice to

cooperate (or you being a healthy cell), and column 2 associated with your choice to defect (or you being a

cancer cell). The analysis of a rational player in a prisoner’s dilemma game runs as follows. I do not know

what strategy you will choose, but suppose you choose to cooperate (column 1). In that case, I am better off

defecting (row 2) since I receive a payoff of 5 instead of 3 (if I also cooperate). Suppose instead you choose

to defect (column 2). In that case, I am also better off defecting (row 2) since I receive a payoff of 1 instead

of 0 (if I were to have cooperated). Therefore, no matter what you choose, I am better off (from a pure

payoff point of view) if I defect. What makes this game such a useful paradigm for strategic interactions

ranging from economics, political science, biology [211], and even psychology [143] is the following additional

observation. You will analyze the game in exactly the same way I did (just switch the roles of me and you

in the previous rational analysis), so you will also decide to defect no matter what I do. The upshot if we

both defect is that we will each receive a payoff of 1, instead of each receiving a payoff of 3 if we had both

chosen to cooperate. The defect-defect combination is a Nash equilibrium [179], and yet it is sub-optimal for

both players and for the system as a whole. Rational thought rules out the cooperate-cooperate combination

which would be better for each player (3 points each) and for both players combined (6 points). In fact, the

Nash equilibrium strategy of defect-defect is the worst possible system wide choice, yielding a total payoff

of 2 points, compared to the cooperate-defect or defect-cooperate combination, which yields a total payoff

of 5 points, or the best system-wide strategy of cooperate-cooperate yielding a total payoff of 6 points.

The game becomes even more interesting if it is played repeatedly [179, 143, 201, 10], with each player

allowed to decide what strategy to use on each interaction so as to accumulate a higher payoff than the

competition over a sequence of N games. In order to analyze this kind of an evolving set-up, a fitness

function must be introduced based on the payoff matrix A. Let us now switch our terminology so that the

relevance to tumor cell kinetics becomes clear. In this case, we randomly select pairs of cells out of the

total population at each step, and subject them to a birth-death process, basing our birth rates and death

rates on the prisoner’s dilemma payoff matrix. Thus, in our context, it is not the strategies that evolve, as

cells cannot change type based on strategy (only based on mutations), but the prevalence of each cell type

in the population is evolving, with the winner identified as the sub-type that first reaches fixation in the

population. As the populations evolve, the fitness of the two competing sub-populations can be tracked, as
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well as the overall fitness of the combined total population of cells.

9.3.3 The fitness landscape

Let us start by laying out the various probabilities of pairs of cells interacting and clearly defining payoffs

when there are i cancer cells, and N − i healthy cells in the population. The probability that a healthy

cell interacts with another healthy cell is given by (N − i − 1)/(N − 1), whereas the probability that a

healthy cell interacts with a cancer cell is i/(N − 1). The probability that a cancer cell interacts with a

healthy cell is (N − i)/(N − 1), whereas the probability that a cancer cell interacts with another cancer cell

is (i− 1)/(N − 1). The payoffs associated with the healthy cells and cancer cells, obtained by weighting the

payoff matrix values with appropriate probabilities, are given by (following notation in [196]):

πH =
3(N − i− 1) + 0i

N − 1
, (127)

πC =
5(N − i) + 1(i− 1)

N − 1
. (128)

This gives rise to the average payoff associated with the population of cells:

〈π〉 =
πH(N − i) + πC(i)

N
. (129)

Based on these formulas, we define the fitness of the healthy cells as:

fH = 1− wH + wHπ
H , (130)

and the fitness of the cancer cells as:

fC = 1− wC + wCπ
C . (131)

Here, (wH , wC) are ‘selection strength’ parameters, 0 ≤ wH ≤ 1, 0 ≤ wC ≤ 1, that measure the strength

of selection pressure on each of the population of cells. If wH = 0, there is no natural selection acting on

the healthy cell population and the dynamics is driven purely by the Moran process. When wH = 1, the

selection pressure on the healthy cell population is strongest and the prisoner’s dilemma payoff matrix has

maximum effect. Likewise for the parameter wC and how it controls selection pressure in the cancer cell

population. Since therapy imposes selection pressure on different sub-populations of cells, wH and wC are

the two parameters we alter to administer simulated therapeutic responses. We discuss this in section §3.5.
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The expected fitness of each of the sub-populations are:

φH =
N − i
N

fH , (132)

φC =
i

N
fC , (133)

with total expected fitness:

φ = φHi + φC . (134)

From these formulas, we can define the transition probability of going from i to i+ 1 cancer cells on a given

step:

Pi,i+1 =
ifC

ifC + (N − i)fH
N − i
N

. (135)

The first term represents that probability that a cancer cell is selected for reproduction (weighted by fitness),

and a healthy cell is selected for death. Likewise, the transition probability of going from i to i − 1 cancer

cells on a given step is:

Pi,i−1 =
(N − i)fH

ifC + (N − i)fH
i

N
. (136)

Here, the first term is the probability healthy cell is selected for reproduction (weighted by fitness), and a

cancer cell is selected for death. The remaining transition probabilities are as follows:

Pi,i = 1− Pi,i+1 − Pi,i−1; P0,0 = 1; PN,N = 1. (137)

It is these simple formulas that drive the subsequent dynamics of the competing populations of cells and

determine the emergent features of the forming tumor (cancer cell population). A typical set of simulations

of the evolving fitness of the healthy cell population, φH , the cancer cell population φC , and the total fitness,

φ, is shown in Figure 59 as the selection parameter varies from 0 to 1 (wH = wC ≡ w). As the population

evolves, the fitness of the healthy cell population decreases, the fitness of the cancer cell population increases

(sometimes reaching a maximum point), while the total population fitness decreases.
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Figure 59: Fitness as a function of the selection parameter w ≡ wH ≡ wC — (A) Monotonically
decreasing fitness of healthy cell sub-population φH ; (B) Fitness of cancer cell sub-population φC . Note that

φC has a maximum at i = N
2 + (N−1)

8w , which is between 0 and N for w > 1
4 (1 − 1/N); (C) Monotonically

decreasing fitness of the total population, φ.

9.3.4 Passenger and driver mutations

Two remaining parameters in our model are the passenger mutation rate, mp and the driver mutation rate,

md [192]. Passenger mutations confer no fitness advantage, hence mp controls point mutations that act on

the digit strings that define the 11 levels of healthy cells 0000-1010, and the 5 levels of cancer cells 1011-1111.

A mutation diagram is shown in Figure 60 depicting all of the possible point mutation transitions at each

step. Mutations that stay within either of those two ranges do not alter the cell fitness. On the other hand,

the driver mutation parameter controls mutations that take a binary string from a healthy cell and, via a

point mutation, alter it so that the string becomes a cancer cell4. A simple example would be a mutation

that alters 1010 (healthy) to 1011 (cancer) by stochastically flipping the first digit from 0 to 1. The interested

reader can consult the flow diagram in Figure 67 of the Appendix for more details of the algorithm. The full

code is available from the authors upon request.

9.4 Results

Gompertzian growth arising from multicellular systems occurs in many settings with different physical and

biological constraints acting in concert. Hence it appears as if this universal growth curve does not depend

on specific physical mechanisms (e.g. oxygen diffusion, blood supply, tumor microenvironment, etc.) but

more on multi-cellularity and the ability for populations of cells to assume a heterogeneous distribution of

functional states, as was described most clearly in Kendal’s 1985 paper [100] and documented clinically in

4In our simulations, we assume that driver mutations cannot revert to passenger mutations, i.e. once a cancer cell is born,
it stays in that category. We do not know of any evidence in the literature that shows the reversion of a cancer cell to a healthy
cell, nor is this particularly a focus of this manuscript.
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Figure 60: Markov Point Mutation Diagram — Left: diagram shows 16 genetic cell types based on
4-digit binary string and the effect of a point mutation on each cell type. Blue indicates healthy cell type
(0000 — 1010), red indicates cancerous cell type (1011 — 1111). Black arrows indicate passenger mutations
(healthy to healthy or cancer to cancer), red arrows indicate driver mutations (healthy to cancer). Top
right: 3 scenarios may occur during the reproduction process: no mutation, passenger mutation, or driver
mutation.

breast [1] and other tumor types. Alternative bio-mechanistic models of tumor growth at the cellular level

have been developed (see [163, 42, 213, 117, 66, 102]) although do not generally include molecular information

or evolutionary effects. Features of the Gompertzian growth curve defined by eqns (138), (139) allow us to

clearly describe three distinct growth regimes, the earliest being subclinical and the most critical regime in

which to influence future tumor kinetics, the second being the clinical regime where growth measurements

are typically obtained [65], and the third being the lethal burden phase where growth saturates. The growth

equation, (146), relates tumor heterogeneity to growth rates, and we quantify heterogeneity via the Shannon

entropy [39, 134] of the cellular population. One of the main features of our evolutionary simulations is to

show how it (i) leads to Gompertzian growth, (ii) how growth is driven by heterogeneity quantitated via

Shannon entropy, (iii) how the initiation of heterogeneity and fitness can be tracked via dynamic phylogenetic

trees, and (iv) how tumor kinetics can be influenced via therapeutic strategies that target heterogeneity best

in earlier growth regimes. In keeping consistent with the notation of the Gompeterzian growth curve, we

now represent the tumor growth as the proportion of cancer cells in the population, nG(t).
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9.4.1 Gompertzian tumor growth and three growth regimes

The basic (top-down) equations giving rise to pure Gompertzian growth [63, 109, 194, 118] are the coupled

equations:

dnG
dt

= γnG, (138)

dγ

dt
= −αγ. (139)

Here, is the proportion of growing cancer cells in the mixed population, which grows exponentially

according to (138), but with a time-dependent growth rate which is exponentially decaying according to

(139). It is straightforward to integrate (138) to obtain:

nG(t) = N0 exp

[(
1

t

∫ t

0

γdt

)
· t
]
. (140)

Then, (139) is solved with:

γ(t) = γ0 exp(−αt). (141)

Plugging (141) into (140) and integrating yields the Gompertzian curve:

nG(t) = N0 exp
[γ0
α

(1− exp(−αt))
]
, (142)

where in the long-time limit , the population saturates to the value

n∞ = N0 exp(γ0/α), (143)

which we normalize to one (without loss of generality). The key features of Gompertzian growth are shown

in Figure 61. As the cancer cell proportion nG(t) increases (Figure 61A), there are three distinct growth

regimes defined by the inflection point on the nG growth curve (maximum of ṅG and d2nG/dt
2 = 0), and

the two inflection points on the growth-velocity curve ṅG (maximum/minimum of n̈G and d3nG/dt
3 = 0).

As shown in Figure 3.1(a), there are three points that divide the growth curve into four distinct regions. For

convenience, and symmetry, we lump the second and third regions together and define three basic growth

regimes:

• Regime 1 (Subclinical): Increasing velocity ṅG, increasing acceleration d2nG/dt
2. Cell population
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and tumor volume grows at an exponential rate;

• Regime 2 (Clinical): In this regime, ṅG reaches its maximum value. In the early part of the regime, ṅG

is increasing while d2nG/dt
2 decreases. In the later part of the regime, ṅG is decreasing and d2nG/dt

2

becomes negative (deceleration). Growth rates are clinically typically measured as linear;

• Regime 3 (Saturation/Lethal): Decreasing tumor velocity ṅG with decreasing deceleration. Growth

rate rapidly slows towards full saturation of the cancer cell population.

Figure 61: Gompertzian equation — Numerical simulation of the Gompertzian equation (138), (139) with
parameters N0 = 0.001, γ0 = 10, and α = 0.2895. The three regimes of tumor growth are demarcated by the
blue dots in each subfigure, representing the maximum and minimum of the second-derivative. (A) Cancer
cell proportion, n(t), over time; (B) First- and second-derivatives of the tumor growth curve; (C) Growth
rate, γ(t), over time, with the average growth rate in regimes 1, 2, 3 plotted in red; (D) First derivative of
growth rate.

Regime 1, generally speaking, is the subclinical growth regime where the developing tumor has substan-

tially fewer than 108 malignant cells with a tumor size smaller than 1 or 2 mm3. Typically, the clinically

measurable regime is Regime 2, while the lethal stage when the tumor saturates is associated with Regime 3.

In reality, the boundaries of these regimes are, of course, not sharp and depend on tumor type and location

which influence detectability. But the clarity of the pure Gompertzian curve gives a useful framework which

delineates the three distinct growth regimes based on clear principles associated with growth, velocity, and
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acceleration. The growth rate curve is shown in Figure 61C, with its derivatives shown in Figure 61D. It is

most instructive to show the average growth rates defined in each of the three regimes, also shown in the

Figure 61C. The average growth rate in the time interval from t1 to t2 is defined as:

γave =
1

t2 − t1

∫ t2

t1

γ(t)dt (144)

The subclinical regime 1 has the highest average growth, whereas regime 2, where tumor growth is

typically measured, average growth rates are lower, followed by the lowest average growth in the clinically

lethal regime 3. This implies that clinically measured growth rates typically underestimate growth rates that

preceded it in the subclinical stage. It also implies that linear extrapolation back from clinically measured

growth rates to estimate tumor initiation times (see [111, 65, 17]) will systematically overestimate the amount

of time the tumor has been developing before being measured. While this might generally be seen as good

news (since the cancer initiation event was more recent than estimated via linear extrapolation), it also gives

the clinician a shorter window of time in which to act.

9.4.2 Heterogeneity and growth via statistical mechanics

Kendal [100] lays out a clear argument of how this growth curve arises from a purely statistical mechanics

point of view. In a nutshell, his argument can be explained by considering a population of n cells, let the jth

cell (j = 1, 2, 3, . . . , n) have the potential to assume one of qj possible states. The number of combinations

of states possible within the population, P , can be thought of as a measure of intra-neoplastic diversity:

P = q1q2q3...qn, (145)

and is related to the growth rate of a tumor via the equation:

dn

dt
= α logP, (146)

where n(t) is the number of cells capable of proliferation at a given time t and α is a parameter that sets

the timescale of growth 5. There are two basic cases to consider. First, suppose the cells have no interaction

at all, say in the earliest stages of tumor development, and let each of the n cells have the ability to assume

5Kendal’s formulation [100] assumes a cell population made up of three sub-groups: (1) proliferative cells; (2) nonproliferative
and nonclonogentic cells; (3) nonproliferative but clonogenic cells, with an assumption that the neoplasm’s growth rate is
influenced by the proportion of proliferating to nonproliferating cells and an expression of each clone’s growth potential. The
log is chosen based on the fact that heterogeneity is measured as the multiplicative combination of achievable states in the
tumor, and the requirement that G(P1 ·P2) = G(P1) + G(P2) for any two sub-populations P1, P2 and growth function G. The
discussion of the relationship between tumor heterogeneity and growth is an ongoing topic in the current literature [133, 123,
85, 71, 186].

147



9 APPENDIX II: AN EVOLUTIONARY MODEL OF TUMOR CELL KINETICS AND THE
EMERGENCE OF MOLECULAR HETEROGENEITY DRIVING GOMPERTZIAN GROWTH

md mp tEmax tSAT nd np γave,1 γave,2 γave,3
0.4 0.1 5.50e+5 1.830e+6 1.289e+4 4.68e+4 3.14e-5 3.68e-6 1.448e-7
0.3 0.2 4.88e+5 1.753e+6 1.682e+4 8.26e+4 4.04e-5 4.31e-6 1.677e-7
0.2 0.3 4.85e+5 1.761e+6 1.715e+4 1.230e+4 3.86e-5 4.41e-6 1.729e-7
0.1 0.4 5.40e+5 1.426e+6 1.362e+4 1.836e+4 3.04e-5 3.81e-6 1.658e-7

Table 22: md: driver mutation rate; mp : passenger mutation rate; tEmax: time to maximum entropy; tSAT :
time to saturation; nd: number of driver mutations; np: number of passenger mutations; γave,1: average
growth rate in regime 1; γave,2: average growth rate in regime 2; γave,3: average growth rate in regime 3.

one of m possible states. Then, P = mn, and the growth equation becomes

dn

dt
= αn logm = (α logm)n. (147)

The solution to this equation is the exponentially growing population:

n(t) = N0 exp((α logm)t). (148)

Thus, early stage development is characterized by exponential growth (regime 1), with a growth rate

proportional to the log of the number of assumable states of the cells comprising the tumor population. This

stage is characterized by the Gompertzian curve shown in Figure 61A to the left of the first blue dot, in

regime 1. Contrast this with later stages of tumor growth, when the sub-populations of cells communicate

and influence each other’s growth characteristics, either via competition, or cooperation (regime 3) within

the tumor microenvironment. In effect, this will constrain (reduce) the number of assumable states of each

cell, since the population is effectively coupled. In the extreme, suppose P = mn/nn. In other words,

suppose P is now inversely related to the total number of possible intercellular interactions. Inserting this

into (146) yields

dn

dt
= α log

(
(
m

n
)n
)

= αn [logm− log n] . (149)

The solution to this equation is exactly the Gompertzian growth curve (142) and accounts for regimes

2 and 3 previously discussed in which tumor growth slows down. The growth equation (146) which relates

cancer cell population growth to tumor heterogeneity is capable of producing a family of growth curves,

depending on details of intercellular coupling, which of course is influenced by details of the biological and

physical constraints influencing the tumor microenvironment. Thus, the growth equation (146) has the

ability to produce different detailed shapes based on assumptions associated with intercellular coupling.

Table 22 shows the average growth rates in the three regimes as a function of the key parameters in the

model.
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9.4.3 Quantitative measures of tumor heterogeneity and growth

For our purposes, we measure heterogeneity using the Shannon entropy from information theory [39]:

E(t) = −
N∑
i=1

pi log2 pi, (150)

(here, log is defined as base 2). The probability pi measures the proportion of cells of type i, with i =

1, ..., 16 representing the distribution of binary strings ranging from 0000 to 1111. We then course-grain this

distribution further so that cells having strings ranging from 0000 up to 1010 are called “healthy”, while

those ranging from 1011 to 1111 are “cancerous”6. The growth equation (146) then becomes

dnE
dt

= αE(t). (151)

It follows from (151) that the cancer cell proportion nE(t) can be written in terms of entropy as:

nE(t) = α

∫ t

0

E(t)dt. (152)

The panel in Figure 62 shows the results from our cell-based simulations. Figure 62A shows the Gompertzian

curve associated with the proportion of cancer cells in the population, while Figure 62B shows the velocity

and accelerations associated with growth, and can be compared with Figure 61B. In Figure 62C we show the

entropy during a typical simulation, marking the maximum entropy point which peaks relatively early in the

simulation before the entropy returns back down to zero, reflecting the fact that cancer cells have reached

fixation and have saturated the population. Figure 62D shows the fitness of the cancer cell sub-population,

healthy cell sub-population, and the overall tumor fitness (wH = wC ≡ w = 0.5). As a typical simulation

proceeds, the cancer cell sub-population fitness increases, the healthy cell sub-population fitness decreases,

while the overall tumor fitness decreases. Figure 62E, 62F shows the Gompertzian growth curves as the

selection pressure increases (Figure 62E) and as the mutation rate increases (Figure 62F). High values for

either of these parameters leads to a very steep growth curve, as is expected.

Figure 63 shows the growth curves linearly extrapolated back to give a prediction of when the first driver

mutation occurred that initiated tumor growth. The growth rates from regime 2 (linear regime) are used to

extrapolate back to the initiation event. Since the actual growth rate in regime 1 is much faster than linear,

the linear extrapolation extends the event too far back in time as compared to when the event actually

occurred. The inset of Figure 63 shows histograms of the average growth rates in each of the three regimes

as a function of the mutation rate m (here, we take mp = md = m).

6Our results are relatively insensitive to where we draw the dividing line between healthy and cancerous.
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Figure 62: Moran birth-death process with selection — (A) Cancer cell population, i(t) (w = 0.5,
m = 0.2, N = 1010) plotted with a spline curve connecting 200 data points from a single stochastic simulation;
(B) First- and second-derivatives of the tumor growth curve in (A) are plotted with maximum and minimum
of second-derivative indicated (blue); (C) Entropy of the cell population from eqn. (150) as it relates to the
growth equation (151); (D) Fitness of healthy cell population and cancer cell population and total fitness as
defined by eqns. (132), (133), (134); (E) Simulations of cancer cell population, i(t), for a range of selection
parameter values; (F) Simulations of cancer cell population, i(t), for a range of mutation rate values.

A typical stochastic simulation showing the evolution of all 16 possible cell types is shown in Figure

64. We also show E(t), where entropy is computed using the most extreme course-grained two-state system

comprised of the two sub-populations of healthy cells and cancer cells. We compare in Figure 64 the

Gompertzian growth curve (eqn. (142)) and the corresponding curve obtained from eqn. (152) to the

stochastic simulation and the agreement is excellent. Likewise, we also show a comparison of dn/dt with

eqn. (151) and eqn. (138) with E(t) normalized so that limiting values match the stochastic simulation,

150



9 APPENDIX II: AN EVOLUTIONARY MODEL OF TUMOR CELL KINETICS AND THE
EMERGENCE OF MOLECULAR HETEROGENEITY DRIVING GOMPERTZIAN GROWTH

Figure 63: Tumor initiation prediction — Five sample stochastic simulations of tumor growth (N = 1010

cells, w = 0.5, m = 0.1, 0.2, 0.3, 0.4, 0.5) plotted on a log-linear graph where the model output (i(t), solid lines)
is fit in the clinical regime (greater than 108 cells) using an exponential growth equation and extrapolated
backwards in simulation time (dashed lines). The inset bar graph shows the average growth rate in each
regime.

and the agreement is also excellent. In the beginning, entropy is zero, since the population consists purely

of healthy cells, and in the end of the simulation, entropy is again zero as the population consists purely

of cancer cells. Entropy peaks somewhere early in the simulation when the mixture of cell types is equally

distributed over cancer and healthy types. It is this intermediate but important heterogeneously distributed

state that is the key driver of growth, as is clear from eqn. (151).

9.4.4 Dynamic phylogenetic trees and evolution of fitness

To track the initiation of cellular heterogeneity from an initially homogeneous state, we follow all of the

mutations that take place during the course of a simulation, and organize this in the form of a phylogenetic

tree in Figure 65 showing the typical size of the genotypic space and the evolution of the genotypic landscape.

As the simulation proceeds, the phylogenetic tree dynamically branches out into an increasingly complex

structure, with fitness characteristics color coded in Figure 65A. We also show the bins associated with each

of the 16 cell types, the number of cancer cells i(t), and the entropy associated with the sub-population of

cell types as a simulation proceeds, in Figure 65B. Knowing exactly the types of cells comprising the tumor

at any given time allows us to target cell distributions for simulated therapies to test different strategies,

which we describe next.
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Figure 64: Comparison of stochastic Moran birth-death process, Gompertzian, and Shannon
entropy growth curves — (a) A single stochastic simulation (N = 1010 cells, m = 0.5, w = 0.5, mp =
md = 0.25) growth curve, n(t), compared with the Gompertzian growth curve, nG(t), eqn. (142), and
Shannon entropy growth curve, nE(t), eqn. (152). Growth curves nG(t) and nE(t) are normalized to equal
one in the limit; (b) Comparison of first-derivatives of n(t), nE(t), nG(t); (c) Comparison of growth rates
associated with n(t), nE(t), nG(t), with average growth rates of n(t) plotted for each regime, eqn. (144).

9.4.5 A comparison of early vs. late therapy

In Figure 66 we show the results from asking the simple question of how early therapy (administered in

regime 1) compares with therapy in the middle stages of tumor development (regime 2), or in the later
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Figure 65: Emergence of genetic heterogeneity — (A) Left: sample dendritic phylogenetic tree tracking
point mutations as time extends radially. Right: three snapshots in time of a dendritic tree in a simulation
of 30 cells with strong selection (w = 1, mp = 0.1, md = 0.2). Pathways are color coded to indicate genetic
cell type; (B) Linear phylogenetic tree of the same stochastic simulation shown in (a) along with histogram
plots of the distribution of genetic cell types and a plot of the cancer cell population i(t) and entropy.

stages of development (regime 3). Eqns (135), (136) are the governing equations controlling birth/death

rates of the cancer cell, healthy cell sub-populations as natural selection plays out. Since the proliferation

of cancer cells can be thought of as an imbalance of selection pressures on the competing sub-populations in

favor of the cancer sub-population, the goal of any therapeutic intervention is to alter this complex imbalance
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in favor of the healthy cell sub-population. We implement this by adjusting the selection pressure parameters

(wH , wC) in the formulas (130), (131). In particular, when therapy is ‘on’, we choose wC = 0, and wH = 1,

tilting the selection pressure in favor of the healthy cell sub-population. When therapy is ‘off’, the two

parameters return to their original baseline values, which here we take as wH = 0.1, wC = 0.1. Figure 66

depicts the proportion of cancer cells in the population both in the absence of therapy, and when therapy is

administered. As a comparative tool, in each case, we administer the therapy until a fixed number of cancer

cells remains (in each case, we take this threshold number to be 25 cancer cells), and we compare the amount

of time, ∆t, it takes to achieve this low level. The figure clearly shows ∆t1 < ∆t2 < ∆t3 < ∆t4, while if

therapy is administered too late, as in ∆t5, the low threshold is never achieved. The simulations show that

a shorter therapeutic time-period is needed if administered earlier to gain the same level of success. The

topic of how best to optimize computational therapies is complex, and these simulations are only meant as

a confirmation and quantification of how early stage therapy is more effective than late stage therapy.

Figure 66: Simulated therapy — An average of 25 stochastic simulations (N = 103 cells, w = 0.5, m = 0.1)
where therapy (wH = 1, wC = 0) is administered at different time points (t = 6000, 8000, 10000, 12000, 14000
cell divisions) until all cancer cells are eliminated below a small threshold value (25 cells). Time required
(∆t) for tumor elimination increases as the tumor volume increases (i.e. ∆t1 < ∆t2 < ∆t3 < ∆t4, blue, red,
yellow, purple arrows respectively), until, at later simulation time points, therapy is unable to regress tumor
size (∆t5, green arrow).

9.5 Discussion

To summarize the main points forming the framework of our model:
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(i) A tumor is a complex Darwinian ecosystem of competing cells operating on an adaptive fitness landscape

driven by mutational dynamics and shaped by evolutionary pressures;

(ii) The basic competitors in an evolutionary game theory model of tumor development are cell populations

with a broad distribution of fitness characteristics course grained into two types: healthy cells (cooperators)

and cancer cells (defectors). Each of these cell sub-populations attempts to maximize its own fitness;

(iii) Cell fitness is associated with reproductive prowess and in this respect, healthy cells are less fit than

cancer cells;

(iv) Primary tumors initiate from a single malignant cell that has undergone the appropriate mutational

steps and subsequently undergoes clonal and sub-clonal expansion. Polyclonality and heterogeneity are thus

seen as emergent features of tumor development;

(v) Parameters and distributions measured in the detectable range of tumor growth, such as tumor growth

rates and fixation probabilities, are emergent features that have developed from a monoclonal state via cell

kinetics and evolutionary development taking place in the subclinical regime;

(vi) Tumor growth is driven by molecular heterogeneity of the cell population comprising the tumor and

reflected in the growth equation (146);

(vii) Tumor cell populations are more amenable to therapeutic strategies in the early stages of development,

before selection for growth and survival have shaped the environment.

We believe the simple evolutionary model described in this paper, driven by a Moran process and shaped

by heritable mutations with a fitness landscape based on the prisoner’s dilemma evolutionary game is useful in

helping to understand early stage tumor growth and how it is influenced by the interplay of a few select small

number of key parameters. When a malignant tumor cell population has already exceeded O(108−1010) cells,

some of which may have entered the circulation or lymphatics and migrated to other sites, the opportunity

to control or even shape future events may be limited. Attacking tumor heterogeneity as soon as it develops

seems to be a useful strategy, particularly if heterogeneity is the driver of growth, as in eqn. (146). Whether

these concepts can be developed in the more general context when cell dissemination to other sites is included

in the model, and then translated into actionable clinical strategies is a challenge for the future.
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9.6 Appendix

Figure 67: A flow chart of the Moran process with selection and mutation algorithm — Box 1:
mutation rate m (where m = mp+md), selection pressure w and the initial state vector x containing N total
cells are the inputs for a simulation. Box 2: the prisoner’s dilemma game (a = 3; b = 0; c = 5; d = 1) is used
to calculate the fitness of each healthy and cancer cell type, which is a function of the payoff values and the
state vector, x. Box 3, 4: a single cell is chosen for death according to the relative proportion of the cell type
in the cell population. Simultaneously, a single cell is selected for birth according to the relative proportion,
weighted by cell fitness. Box 5: During the replication process, the daughter cell inherits a replica of the
parent cell’s genetic string, with errors occurring at a rate of m. A single bit of the daughter cell’s genetic
string may flip during each cell division. The possible mutations can be thought of as a single step random
walk on the Markov diagram shown in Figure 60.
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10 Publications

In-progress

Submitted

Completed

10.1 First author publications

Journal article: Low-dimensional characterization of human performance of cancer patients using motion

data [81]

Conference paper: Mining Human Mobility to Quantify Performance Status [136]

Journal article: Machine learning models for long-term outcome prediction in bladder cancer

Journal article: Feature and model based characterization of spatial and temporal organoid dynamics

Journal article: Kinematics from clinical exercises differentiate patients by unexpected hospitalizations

and physical activity

Journal article: Temporal differentiation of phenotypes using a Hidden Markov model of organoid shape

dynamics

10.2 Second author publications

Journal article: The prisoner’s dilemma as a cancer model [211]

Journal article: An evolutionary model of tumor cell kinetics and the emergence of molecular heterogeneity

driving Gompertzian growth [210]

Journal article: Pathways of metastatic bladder cancer from a longitudinal patient data set
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[13] Michéle Basseville. “Divergence measures for statistical data processing—An annotated bibliography”.

In: Signal Processing 93.4 (2013), pp. 621–633.

[14] Gustavo EAPA Batista, Xiaoyue Wang, and Eamonn J Keogh. “A complexity-invariant distance

measure for time series”. In: Proceedings of the 2011 SIAM International Conference on Data Mining.

SIAM. 2011, pp. 699–710.

158



11 REFERENCES

[15] Leonard Baum. “An inequality and associated maximization technique in statistical estimation of

probabilistic functions of a Markov process”. In: Inequalities 3 (1972), pp. 1–8.

[16] Riccardo Bellazzi and Blaz Zupan. “Predictive data mining in clinical medicine: current issues and

guidelines”. In: International journal of medical informatics 77.2 (2008), pp. 81–97.
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