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Abstract

In this thesis, we use a three by three replicator dynamical system with a payoff matrix of
Prisoner’s Dilemma type to develop evolutionary game theory models of adaptive chemother-
apy that avoid chemotherapeutic resistance in cancer. With the primary goal of controlling
resistance and delaying tumor recurrence, we introduce and develop a trajectory design
method from the orbital mechanics literature in order to construct families of closed loops,
called ‘evolutionary cycles’, using adaptive time-dependent dose schedules. With time-
dependent adaptive chemotherapy control, we attempt to alter the fitness landscape of the
heterogeneous cell populations in order to delay tumor recurrence. We show that for a
three-component population made up of healthy cells, sensitive cells, and resistant cells, this
method outcompetes both maximum tolerated dose (MTD) schedules and low-dose metro-
nomic (LDM) schedules, which are standard currently used protocols. We then consider a
more complex system made up of two types of resistant cells and two drugs applied sequen-
tially and in combination. In this case, the drugs can interact synergistically, additively,
or antagonistically. We show how to develop multi-drug schedules in this context using a
similar method of adaptive trajectory design. Generally speaking, we show that antagonistic
drug interactions are more effective at delaying tumor recurrence than synergistic ones which
effectively cause the two drugs to act as one, limiting the flexibility in schedule design. We
then apply the Pontryagin Maximum Principle to two by two evolutionary games. We show
examples of payoff matrices where bang-bang control is optimal, and others where singular
control techniques need to be applied. As a final chapter, we use a Hamiltonian model along
with the trajectory design method to show how to levitate a mass with specially designed

time-dependent blowing schedules.
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Chapter 1

Introduction

My Ph.D. thesis develops techniques of adaptive control applied to evolutionary game
theory[108, 85, 52] models of tumor growth and chemotherapeutic resistance[58]. We use the
Prisoner’s Dilemma (PD) game[66, 85] and the replicator dynamical system as a paradigm
for the competition (cooperation or defection) among heterogeneous cell subpopulations in a
tumor as the system undergoes evolution via natural selection. We use adaptive control[40]
methods to shape the fitness landscape of the tumor and steer its evolutionary outcome. An
overriding goal of our adaptive (time-dependent) chemotherapy schedules is to manage the
development of chemo-resistance in a tumor. Although the models used in this thesis focus
on the prevention of chemotherapeutic resistance in tumors, the techniques developed may
also be useful in steering the evolution of microbial populations with the goal of mitigating
and reversing antibiotic resistance, which has a large and specialized separate literature[58,
1, 17, 105, 39, 44, 27].

Because cancer is a rising threat to human health, it is important to understand the
underlying biological and physical mechanisms of tumor growth and the complex pharma-
cological interactions between cancer cells and the toxins used to kill them. From the view
of evolution, the proliferation of cancer cells in the patient is widely recognized as a process
of natural selection [28]. As cancer cells proliferate and die, they can mutate, changing their
rate of reproduction and ability to survive chemotherapy. Macroscopically, a tumor consists
of multiple subpopulations of cells with varying growth rates as they compete for resources.

The most aggressive subgroups have enhanced ability to gain more resources, grow faster and



take over the majority of the population. The weaker subpopulations, on the other hand,
are unable to reproduce as fast so their population size will remain low, reduced, or even be
completely eliminated. The result, after months or years of growth, is a process of evolution
by natural selection in a tumor.

To quantitatively model this evolutionary process, researchers used evolutionary game
theory. An important first step for a mathematical model is to quantify the ability to repro-
duce, which is defined as fitness of a subpopulation of cells. Evolutionary game theory
constructs the fitness landscape as the system evolves to an evolutionary stable state (ESS)
[108, 52] based on the interaction of the subpopulation of cells. More specifically, the fitness
function will have linear dependence [85] on the population size of surrounding cells, thus a
frequency dependent selection. Compared with constant selection with fixed fitnesses, evolu-
tionary game theory models the adaptation to the changing sizes of competing populations.
There are many successful models that are based on either stochastic simulations with evo-
lutionary games, such as the Moran process[69, 85], or deterministic simulations using the
replicator equations[52] or Lotka—Volterra equations|[72]. In this thesis, I will develop mod-
els of adaptive chemotherapeutic response of a tumor based on the replicator equations for
Chapter 2-5. We will use techniques based on adaptive, time-dependent control of nonlinear
dynamical systems.

An important mechanism we need to quantify is how tumors respond to chemother-
apy. Tumor recurrence for a patient undergoing treatment is one of the main clini-
cal challenges, and the primary reason of tumor regrowth is the development of chemo-
therapeutic resistance[58, 1, 17]. As an evolutionary process, the drugs will alter the fitness
landscapes[120] by reducing the fitness of drug-sensitive cells. Initially, due to the reduction
of sensitive cells, the regression of the tumor is observed quickly. After the sensitive cells are
eliminated, the drug-resistant cells (or resistant cells) are favored by the selection process
and the tumor will start to regrow.This process from treatment to regrowth of the tumor is
called competitive release phenomenon in the ecological literature [44, 104, 74], because the

absence of drug-sensitive cells contributes to the growth of drug-resistance cells as they are



released from competition. In order to prevent the recurrence of the tumor, one approach is
to find some adaptive chemotherapeutic schedule [40] for determining when to give the drug
to the patients and how much drug should be administered. We use our evolutionary game
theory model with the altered fitness from chemotherapy, to investigate the phase space of
the system governing the interacting cells with different chemo-dose levels. In the phase
space, we are able to construct the desired trajectory (steering and altering the balance of
cells) from one point to another, and even design closed loops which keeps the cells in per-
petual competition without any of the subpopulations saturating the tumor. The adaptive
chemotherapy schedule corresponding to these closed loops can keep the tumor burden low
and prevent or delay resistance from emerging. Compared with the classical Maximum-
tolerated-Dose method (On-off piecewise constant function) or Low-Dose-Metronomic (con-
stant value) method, which will saturate with large tumor size within finite time, the adaptive
therapy outperforms both of them by trapping the tumor size below a certain level. Discus-
sions and details for this model are provided in Chapter 2. This method is then compared
with patient data of tumor relapse in Chapter 3.

In Chapter 4, we extend our evolutionary game theory model to study multi-drug combi-
nation therapies with two types of resistant populations. The goal is to achieve an adaptive
schedule of two drugs to avoid competitive release of both subpopulations of resistant cells.
The existence of more than one drug, however, can result in drug-drug interactions. These
interactions can be additive, synergistic, or antagonistic. In addition, with a two-drug sched-
ule, there are many new possible combinations that emerge. The discussion of multidrug
interactions goes back to the 1930s[14]. These works help to determine the cocktails of multi-
ple drugs and reach the desired outcome for treatments[50, 57, 11, 100, 3, 25, 71]. Synergistic
effects are commonly assumed to be the best if the goal is to kill the maximum amount of
cancer cells since synergistic interactions are analogous to adding extra drug dose. However
for an evolving tumor, maximum killing of sensitive cells enhances selection for resistant cells
and can actually encourage tumor resistance. Although tumor regression often occurs early

in the treatment cycle, tumor recurrence inevitably occurs and our goal is to delay this event



to the maximum extent possible. After we design the adaptive control method based on the
finding of closed loops in phase space, we show that antagonistic effects can provide better
tumor regression for an evolving system as compared with the synergistic effects, mostly
because the process of selection for the resistance population is slowed.

After we design feasible schedules of controlling the tumor size as mentioned above, the
next goal is to optimize the different schedules. For example, we may aim at producing a
schedule that results in the smallest possible tumor (volume) at the end of the treatment. The
question then becomes an optimal control[66] problem in the replicator dynamical system.
Typical methods for this problem involve Pontryagin Maximum Principle (PMP) developed
in 1956 by the Russian mathematician Lev Pontryagin and his students[91, 98, 21, 113]. It is
common to assume that the optimal control for a replicator equation is a bang-bang control
98, 21|, while for stochastic simulation with Moran process, it is reported [122] to have a high
entropy schedule (Low-Dose Metronomic schedule) to be optimal for minimal tumor volume.
The continuous limit of the Moran process with infinite population size is proved [114, 115]
to be the adjusted replicator equation, a rescaled form of replicator equation. In Chapter
4 we apply the maximum principle to a general 2-by-2 evolutionary game along with both
the standard replicator equation and the adjusted replicator equation so we can compare
with the stochastic model. We find that the behaviors of these two dynamic systems are
quite different depending how the drug alters the fitness landscape. The optimal schedule
for the standard replicator equation to minimize tumor size is bang-bang control, while for
the adjusted replicator system, may not be piecewise constant if the drug favors one type of
species instead of reducing the fitness of the other one. Details are presented in Chapter 5.

Finally, in Chapter 6 we use our time-dependent control method for a different problem of
levitation of a mass by non-constant blowing schedules using the optimal control techniques.
This work is inspired by the time-dependent optimal drug schedules previously used to
prevent tumor recurrence. We present a model of a mass (say a ping-pong ball) blown by
streaming gas and floating in air. We show that constant blowing can never levitate the ball

from its starting point to a floating point in mid-air. Our goal is to design a time-dependent



blowing schedule (analogous to our adaptive chemotherapy schedule) to levitate the ball to
a target point that finds its rest point in minimal time. We prove that bang-bang control
is optimal for minimizing time and streaming gas volume, while minimizing energy requires
extra segments corresponding to the singular control from optimal control theory. The results
are identical to the solution from Pontryagin Maximum principle. For more details about

how the problem is analyzed and discussed, see Chapter 6.



Chapter 2

Capitalizing on Competition: An Evolutionary Model of
Competitive Release in Metastatic Castration Resistant

Prostate Cancer Treatment

The development of chemotherapeutic resistance resulting in tumor relapse is largely the
consequence of the mechanism of competitive release of pre-existing resistant tumor cells
selected for regrowth after chemotherapeutic agents attack the previously dominant chemo-
sensitive population. We introduce a prisoner’s dilemma game theoretic mathematical model
based on the replicator of three competing cell populations: healthy (cooperators), sensitive
(defectors), and resistant (defectors) cells. The model is shown to recapitulate prostate-
specific antigen measurement data from three clinical trials for metastatic castration-resistant
prostate cancer patients treated with 1) prednisone, 2) mitoxantrone and prednisone and
3) docetaxel and prednisone. Continuous maximum tolerated dose schedules reduce the
sensitive cell population, initially shrinking tumor burden, but subsequently “release" the
resistant cells from competition to re-populate and re-grow the tumor in a resistant form. The
evolutionary model allows us to quantify responses to conventional (continuous) therapeutic
strategies as well as to design adaptive strategies. These novel adaptive strategies are robust
to small perturbations in timing and extend simulated time to relapse from continuous

therapy administration.



2.1 Introduction

In his now classic 1961 study of competition for space between two species of barnacles
in the intertidal zone off the Scottish coast, Joseph Connell [27] discovered something inter-
esting. The blue barnacles Balanus normally occupied the intertidal zone, while the brown
barnacles Chthamalus occupied the coast above high tide. Despite the commonly held belief
that each occupied their own niche because of different adaptations to local micro-conditions,
Connell hypothesized that the colonization of the intertidal zone by Balanus was actually
preventing Chthamalus from inhabiting this region. To test this, he removed the blue bar-
nacles from the intertidal zone and tracked the subsequent penetration of Chthamalus into
this region. He concluded that Chthamalus had undergone relief from competition with Bal-
anus which allowed it to flourish where previously it could not. The point, he emphasized,
was there was nothing inherent about the micro-environment of the intertidal zone that was
preventing Chthamalus from occupying this region. It was simply the competition against
a more dominant species that was holding it back. Without the presence of that species,
Chthamalus happily claimed both zones as fundamental niches. Thus, the important notion
of competitive release was formulated (see Grant [45]). When two (or more) sub-species com-
pete for the same resources, with one species dominating the other, if the dominant species is
removed, this can provide the needed release from competition that can allow the less dom-
inant species to flourish. The mirror image of competitive release is the related notion of
character displacement developed by Brown and Wilson [20] in which competition can serve
to displace one or more morphological, ecological, behavioral, or physiological characteristics
of two closely related species that develop in close proximity. These concepts are now well
established as part of the overall framework of co-evolutionary ecology theory and play an
important role in the evolution of chemotherapeutic resistance in cancer [74, 6, 46, 32].

Since co-evolution among competing clones and subclones is now a well established [86]
process in malignant tumors, the mechanism of competitive release should be expected to
play a role and affect the chemotherapeutic strategies one might choose to eliminate or

control tumor growth. Indeed, tumor relapse and the development of chemo-therapeutic
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resistance is now thought largely to be a consequence of the evolutionary mechanism of
competitive release of pre-existing resistant cells in the tumor which are selected for growth
after chemotherapeutic agents attack the subpopulation of chemo-sensitive cells which had
previously dominated the collection of competing subpopulations. This concept, perhaps
most forcefully advocated by Gatenby and collaborators [38], is gaining acceptance by clin-
icians. A recent (2012) systematic literature analysis of cancer relapse and therapeutic
research showed that while evolutionary terms rarely appeared in papers studying therapeu-
tic relapse before 1980 (< 1%), the language usage has steadily increased more recently, due
to a huge potential benefit of studying therapeutic relapse from an evolutionary perspective
[1]. Anticancer therapies strongly target sensitive cells in a tumor, selecting for resistance
cell types and, if total eradication of all cancer cells is not accomplished, the tumor will recur
as derived from resistant cells that survived initial therapy [88]. It is argued by Gatenby [38]
that eradicating most disseminated cancers may be impossible, undermining the typical goal
of cancer treatment of killing as many tumor cells as possible. The underlying assumption of
this approach has been that a maximum cell-kill will either lead to a cure or, at worst, max-
imum life extension. Taking cues from agriculturists who have long abandoned the goal of
complete eradication of pests in favor of applying insecticides only when infestation exceeds
a threshold in the name of “control" over “cure," there are those who advocate for a shift

from the cure paradigm in cancer treatments to a control paradigm [38, 12].

2.1.1 The likelihood of pre-existing resistance

Pre-existing resistant cells should generally be present in all patients with late-stage
metastatic disease (for single point mutations which confer resistance), a conclusion sup-
ported by probabilistic models [17] and from tumor samples taken prior to treatment [61, 96]
which have been reported for melanoma [56], prostate cancer [97], colorectal cancer [29, 62],

ovarian cancer [103], and medulloblastoma [77]. According to this view, treatment failure



would not be due to evolution of resistance due to therapy, but rather the pre-existing pres-
ence of resistant phenotypes that are relatively sheltered from the toxic effects of therapy
(32].

The likelihood of pre-existing resistance has important therapeutic implications. If we
assume no pre-existing resistance, then most models predict maximum dose-density therapy
will reduce the probability of resistance largely because this treatment minimizes the number
of cell-divisions, thereby minimizing the risk of a mutation leading to acquired resistance [32].
By contrast, in pre-existing resistance scenarios, the maximum dose-density therapy strat-
egy lends itself to competitive release due to the evolutionary nature of tumor progression.
Most pre-clinical efforts that aim to maximize the short-term effect of the drug on sensitive
cells does not significantly affect the long-term control of cancer [17]. This is because the
phenomenon of competitive release can occur via the harsh selective pressure imposed by
the tumor microenvironment after cancer therapies diminish the presence of the dominant
(i.e. the chemo-sensitive) subpopulation. Additionally, the process of metastasis may allow

a resistant subpopulation in the primary tumor to emerge elsewhere [116].

2.1.2 Leveraging the cost of pre-existing resistance

Pre-existing mutations that are responsible for conferring resistance may be associated
with a phenotypic cost, or a reduced fitness, compared to the average fitness of the sensitive
cell population [40, 41]. Even factoring in this fitness cost, deleterious mutations are still
expected to be present in late-stage metastatic cancers [16]. This cost can come in many ways,
such as an increased rate of DNA repair, or an active pumping out of the toxic drug across
cell membranes. All of these strategies use up a finite energy supply that would otherwise be
available for invasion into non-cancerous tissues or proliferation. The rapid removal of chemo-
sensitive cells during therapy releases the resistant population from unwanted competition
and thereby permits unopposed proliferation of the resistant cell population. In contrast, the

goal of an adaptive therapy is to maintain a stable tumor burden that permits a significant



population of chemo-sensitive cells for the purpose of suppressing the less fit but chemo-
resistant populations, consistent with the philosophy that it takes an evolutionary strategy
to combat an evolving tumor [116]. There is some evidence that adaptive therapies may be
beneficial for a range of fitness cost (or lack thereof) and therapeutic sensitivity [36, 49].

A theoretical framework for these adaptive therapies first developed by Gatenby [40],
leverages the notion that pre-existing resistance is typically present only in small population
numbers due to a cost of resistance. This less fit phenotype is suppressed in the Darwinian
environment of the untreated tumor but treatments that are designed to kill maximum num-
bers of cells remove the competition for the resistant population and ultimately select for
that population during tumor relapse!. While the goal of an adaptive therapy (to capitalize
on the competition resistant subpopulations incur through maintaining a stable sensitive
cell population) has gained some level of acceptance, the ideal adaptive therapy schedule in
practice, for different tumor types and growth rates is far from settled. Gatenby’s paper mod-
ulates dose density only, while stating that an ideal adaptive therapy would also modulate
the drug, as well as the dose schedule (both dose and density) [40]. Some of these evolution-
ary ideas were tested experimentally using mouse models with modulated dose strength and
dose vacations designed to maintain a stable, controllable tumor volume [31, 105]. This two-
phase adaptive therapy involved an initial high-dose phase to treat the exponential growth
of the tumor and a second phase designed for stable tumor control using a variety of strate-
gies (such as decreasing doses or skipping doses when stability is achieved). Several spatial,
agent-based computational models have modulated dose strength with respect to a thresh-
old value of tumor size (a fraction of the original tumor burden) [36, 8]. Findings suggest
that adaptive therapies based on evolutionary treatment strategies that maintain a resid-
ual population of chemo-sensitive cells may be clinically viable, and is currently extended

to an on-going clinical trial (NCT02415621) which adaptively controls the on/off cycling of

Tt is important to note that both high-dose, maximum tolerated dose schedules and low-dose, metronomic
dose schedules have this cumulative goal of achieving maximum cell-kill over the course of many cycles of
treatment.
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abiraterone [134]. We refer the reader to similar approaches used in mitigating antibiotic
resistance [4, 48].

With these advances in mind, the goal of this manuscript is to use the evolutionary
framework introduced and advocated over the past 10 years [40, 38, 36, 8, 134] to mathe-
matically model the important parameters of competitive release and use that framework
to better understand therapeutic implications of the cost of developing resistance and to
learn how to exploit competition between subpopulations. Here, we ignore clonal dynamics,
mutations between subpopulations, and non-genetic (rapid, bidirectional) state transitions,
to focus on the inter-subpopulation competition [106, 51, 90]. Specifically, we introduce a
three-component replicator system with a prisoner’s dilemma payoff matrix [119] to model
the three relevant subclonal populations: healthy cells (H), sensitive cells (S), and resistant
cells (R). We consider healthy cells as the surrounding non-neoplastic cells that do not con-
tribute to the overall growth of the tumor, but nevertheless compete with neoplastic cells
for space and resources. Using the nullcline information in a triangular phase plane repre-
sentation of the nonlinear dynamics of the system, we first show the essential ingredients
that render competitive release possible. Then, using the parameters that control selection
pressure (hence relative growth rates) on the three subclonal populations, we attempt to
maintain the tumor burden at low levels so that the resistant population does not reach

fixation.

2.1.3 Retrospective analysis of metastatic castration-resistant

prostate cancer

A recent retrospective analysis of tumor measurement data (PSA levels) from eight ran-
domized clinical trials with metastatic castration-resistant prostate cancer (mCRPC) used
a simple linear combination of exponentials model to estimate the growth and regression
rates of disease burden over time [127]. In total, over 67% of patients were fit to models
with a positive regrowth rate, indicating failure due to resistance. Prostate-specific antigen

(PSA) measurement data for patients in each treatment silo (prednisone only, mitoxantrone
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Pre-treatment Post-treatment Tumor re-growth

Tumor is dominated by After chemotherapy the sensitive Resistant cells eventually repopulate a
sensitive cells which out- cell population is reduced, leaving larger proportion of the tumor,
compete both healthy cells and resistant cells free to re-populate rendering the subsequent rounds of
resistant cells. without competition. chemotherapy less effective.

@ Healthy @ Sensitive @ Resistant

Figure 2.1: Schematic of competitive release in a tumor — (a) Prior to treatment, a
tumor consists of a large population of sensitive cells (red) and a small population of less fit
resistant cells (green) competing for resources with the surrounding healthy cells (blue); (b)
Chemotherapy targets the sensitive population (middle), selecting for the less fit resistant
population that thrives in the absence of competition from the sensitive population; (c)
Upon regrowth, the tumor composition has larger numbers of resistant cells, rendering the
subsequent rounds of treatment less effective.

and prednisone, docetaxel and prednisone) were obtained through the Project Data Sphere
open data portal (https://www.projectdatasphere.org), and we show that this model is able
to adequately fit data for each treatment type with the additional capability of allowing us
to track responses to conventional therapeutic strategies and design new adaptive strategies
as the tumor evolves. The model can be used to test previously proposed adaptive thera-
pies, but we propose a novel schedule utilizing quantitative tools from nonlinear dynamical
systems theory which use the current global state of the nonlinear replicator system with
respect to the nullcline curves of the equations as well as parameters controlling relative
fitness levels of the competing sub-populations. The simulated chemotherapeutic strategies

that we implement, based on tracking the phase-space structure of of replicator system, are

12



ones that can adapt on the same timescale as the inherent timescale of evolution of the sub-
populations comprising the tumor, i.e. are as dynamic as the tumor. While this approach
cannot be preplanned by the oncologist at the beginning of therapy like classical strate-
gies, we provide discussion to explain how an evolutionary game theory model describing
the fitness landscape (described below) is useful to understand the underlying features of
a dynamical fitness landscape associated with a cost to resistance: a three-way prisoner’s
dilemma. Specifically, the model indicates a boundary over which an adaptive therapy will
cease to be effective. Our model focuses on cost to resistance, as opposed to specific mecha-
nisms of resistance (i.e. hormone resistance, for example). This has the advantage in some
ways as being agnostic to resistance mechanisms, but on the other hand, in this manuscript,
we can not distinguish between different mechanisms: the analysis explores the effect of a
fitness competition between subpopulations on the competitive release phenomenon.Three
common therapies used in mCRPC do show that a fit of our model to prostate data lead to
the emergence of a cost of resistance in a majority of patients, without predetermining a value
to the cost in the model a priori. Similarly, ref. [127] found that continuous administration
of different therapies (i.e. different resistance mechanisms) is associated with slow tumor
regrowth rates (i.e. a cost of resistance conferred to growth potential). We now describe the

model.

2.2 Materials and Methods

A schematic of a finite-population three component model (healthy, sensitive, resistant)
of competitive release is shown in figure 2.1, where the tumor consisting of sensitive and
resistant cells is competing with the surrounding healthy tissue. At diagnosis (see figure
2.1, left), the tumor is dominated by sensitive cells (red) which out compete the surrounding
healthy population (blue) during unhindered tumor progression. A small portion of resistant
cells (green) remains in small numbers, suppressed by the larger sensitive population. After
several rounds of chemotherapy, the tumor shrinks, leaving the resistant population largely

unaffected (figure 2.1, middle). Inevitably, the tumor relapses due to the small number of
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Figure 2.2: Clonal evolution of competitive release — A fishplot (sometimes known as
a Miiller plot), showing the tumor quantity (vertical axis) and composition (sensitive: red;
resistant: green) over time (horizontal axis, left to right) with important events annotated.
After first driver mutation (left), initial exponential growth of sensitive population occurs
until diagnosis (dashed line). Continuous therapy targeting the chemo-sensitive population
responds well with a decrease in tumor burden. In the absence of sensitive cells, the resistant
population (existing in small numbers before the start of therapy) grows to become the
dominant subpopulation at relapse, albeit typically with lower exponential growth rate due
to the cost of resistance.

sensitive cancer cells remaining after therapy (figure 2.1, right). In the absence of competi-
tion from the dominant sensitive population, the resistant cells grow unhindered, rendering
subsequent rounds of chemotherapy less effective. Subsequent application of identical thera-
pies will have a diminished effect. Figure 2.2 shows the process in a ‘Miiller fishplot’, which
we will use later to track the subclonal populations. This representation was first utilized
in cancer to compare modes of clonal evolution in acute myeloid leukemia (see [30]) and is
particularly useful in computational models where every cell type can be tracked in time. A
fishplot shows the tumor burden (vertical axis) over time (horizontal axis). The first resis-
tant cell is assumed to arise from a single sensitive cell, undetectable by current methods of
measurement. The schematic depicts unhindered tumor growth after the first driver muta-
tion (figure 2.2, left) where the tumor grows exponentially before diagnosis, during which
time a resistant mutation occurs (figure 2.2, middle). After diagnosis (dashed line), a regi-

men of continuous chemotherapy shows initial good response and tumor regression, but the
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resistant population grows back (although at a slower growth rate) unhindered by competi-
tion, leading to relapse (figure 2.2, right). Previously, a linear combination of exponentials
model has been proposed to track the tumor quantity via prostate-specific antigen (PSA)
measurement data [23]. The tumor quantity ¢(¢) is a function of the exponential death rate
of the sensitive cells, d, the exponential growth rate of the resistant cells, g, and the initial
fraction of resistant cells, f [17]. In this equation, ¢(¢) is the tumour burden at time t in
days, normalized to the PSA level at t=0, (see figure 2.3, blue lines). The model can be

written as follows:

q(t) = (1= fle™™ + fe. (2.1)

This model, shown to be a reasonably good description of the changing tumor size dur-
ing therapy for colorectal, prostate, and multiple myeloma cancers, identifies the important
parameters in competitive release: initial fractional resistance (f), and birth/death rates
(g,d) for the resistant and sensitive populations, respectively. The model is used to fit
prostate-specific antigen (PSA) measurement data from retrospective analysis of three ran-
domized clinical trials with metastatic castration-resistant prostate cancer to estimate the
growth (g) and regression (d) rates of disease burden over time. Four representative patients
are chosen from the control arms of each randomized trial and shown in figure 2.3: treatment
with prednisone only [75] (left column: figures 2.3B,E,H,K); treatment with mitoxantrone
and prednisone [112] (middle column: figures 2.3C,F,I,Ll) and treatment with docetaxel and
prednisone [89] (right column: figures 2.3D,G,J,M). PSA data and model fits are normalized
by ¢q(t = 0) (black dots) and exponential fits are shown in blue.

Despite the fact that the model (2.1) curve-fits data reasonably well (labeled “exp.
in figure 2.3), it contains no evolutionary information or concepts, a keystone principle
behind competitive release. We also include in the figure 2.3 fits of our model presented
here (eqns. 2.2, 2.3) in red (labeled “rep." in figure 2.3, where ¢(t) is given by eqn. 2.4,
below). Our evolutionary model is able to capture similar trends as the exponential model

of equations (eqn. 2.1) but has the important property of allowing us to calculate cost of
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resistance associated with model fit. While each drug (columns) may have very different
resistance mechanisms, ten of the twelve patients shown have a cost of resistance (a — f3,
described below). In the last section we will describe the dynamical phase portrait and
implement adaptive strategies to capitalize on competition between resistant and sensitive

subpopulations in order to maintain tumor control.

2.2.1 The replicator equation model

The dynamics of the fitness landscape of three competing cell types are described by the
replicator equation (see [114]), which is a deterministic birth-death process in which birth
and death rates are functions of cell fitness, and cell fitness is a function of prevalence in the
population. Each ith cell type (i = 1,2,3) competes according to equation 2.2, where xy,
Tg, x3 are the corresponding frequency of healthy (H), sensitive (S) and resistant (R) cells,

respectively, such that >, z; = 1.

o= (fi = () (2:2)
Here, & is the vector @ = (x1,22,x3) and (Az); is the ith element of vector Az.

The prevalence of each sub-population, x;, changes over time according to the chang-
ing population fitness, f;, as compared to the average fitness of all three populations
(f) = fixy + foxs + fzxs. If the fitness of the sub-population is greater than the aver-
age fitness (f; — (f) > 0), that sub-population grows exponentially, whereas if it is less
(fi — (f) <0), it decays.

In order to directly compare results to previously published models of tumor quantity,
q(t), during competitive release (i.e. equation 2.1), the tumor quantity can be written as the

sum of the resistant and sensitive tumor populations (z, x3 respectively), ¢(t),
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G(t) = wo(t) + 5(1), (2.4)

normalized by it’s initial condition, ¢(0). This is shown in a schematic in figure 2.3A. These
represent the same subpopulations shown in green (resistant) and red (sensitive) in figure
2.2.

Before therapy, each subpopulation (healthy, chemo-sensitive, and resistant cells) the
selection pressure is constant across all cell types (i.e. w; = w, i = 1,2,3) at a level that
represents the natural selection pressure the tumor environment imposes on the different
subpopulations. These values discussed in the literature are typically small, in the range
w; = w =~ 0.1 — 0.3. This is a weighting parameter between neutral dynamics (w = 0) and
fitness-dependent dynamics (w = 1). Typically in replicator systems, this parameter scales
out with time. In our model, we treat each subpopulation selection parameter independently.
We implement chemotherapy in our model by changing the selection pressure parameters
on each of the subpopulations of cells. Therapy can be administered at different doses (i.e.
values of the drug concentration: ¢;0 < ¢ < 1). A higher value of ¢ indicates a stronger
dose of chemotherapy drug (described in more detail in [122]). This follows the schematic in
figure 2.4 which depicts the change in the fitness landscape before and after therapy. In figure
2.3, dose concentration is assumed to be constant for a specific drug while patient-specific
parameters are the selection pressure (w), cost of resistance (discussed below), and initial
fraction of resistant cells (f). Values are altered as follows (see figure 2.4 for explanation of

changing fitness landscape):

w; = (l+c)w (healthy) (2.5)
wy = (l—c)w (sensitive) (2.6)
w3 = w (resistant) (2.7)
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The fitness landscape (eqn. 2.3) is described in detail by the entries of the payoff matrix

A,
H S R
H a b o
A= (2.8)
S h j k
R I m n

where each pairwise cell-cell interaction is described by the row and column values, which are
parameters in the fitness equation (2.3). The 3 x 3 payoff matrix is constructed as a standard
prisoner’s dilemma matrix where healthy cells are the cooperators and sensitive/resistant
cells are the defectors. In the absence of resistant cells, we describe in more detail the
dynamics of the system and its relevance to tumor growth in the appendix. The key features
are the Gompertzian growth of the cancer cell population which saturates at a lower overall
population fitness level than the initial all healthy cell population. This necessitates the
following inequalities of the payoff matrix below (eqn. 2.8): h > a > j > b | > a >
n>o,and kK >n > j > m. Note that these payoff entries remain constant before and
during therapy: chemotherapy is viewed as affecting the selection balance among the three
subpopulations. This is implemented in our model by a change in the the selection pressure
parameters only (see eqns. 2.5, 2.6, 2.7). More discussion of why the prisoner’s dilemma
matrix, which models the evolution of defection, is a useful paradigm for cancer can be found

in [119, 118] and the appendix.

2.2.2 The linearized system and the cost of resistance

An additional important feature of the payoff matrix is the notion of the cost of resistance
which is highlighted in figure 2.4A. With no therapy, the sensitive cells exhibit fastest growth
due to their higher fitness value relative to both the resistant population and the healthy
population. The difference between the baseline fitness values of the sensitive cells and the
resistant cells can be thought of as the ‘price paid’ by the resistant population to retain their

resistance to toxins. This cost, in our model, is quantified as the difference in the (linearized)
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growth rates of the two populations (type 2: sensitive; type 3: resistant). Linearizing eqn
(2.2), (2.3), (which form a cubic nonlinear system if expanded out) gives rise to the sensitive-

resistant uncoupled system:

Ztg = T2 (29)
iy = P, (2.10)
with the growth parameters:
a =wi(l—a)+wy(h—1) (2.11)
B =w(l—a)+ws(l—1). (2.12)
Using eqns (2.5), (2.6), (2.7) gives:
a =wh—a)—cwlh+a—2) (2.13)
g =w(l—a)+cw(l—a). (2.14)
With no therapy, ¢ = 0, we have:
a =w(h—a) (2.15)
g =w(l—a). (2.16)

We call the fitness cost of resistance the difference between these growth rates with no
therapy, hence (o — ) = w(h — [), where we require h > [ in the payoff matrix. However,

the w parameter is patient-specific, allowing each patient a varied cost.

2.3 Results

It is useful to view the nonlinear dynamical trajectories of the system using the trilinear

coordinates shown in figure 2.5A, which gives a representation of the clonal phase space
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for every possible value of ¥ [102]. The corners represent saturation of a single cell type
(e.g. the top corner represents # = [1,0,0], or all healthy cells). The healthy (H; top
corner), sensitive (S; bottom left corner), and resistant (R; bottom right corner) populations
compete according to equation (2.2) and follow trajectories shown (black) in figure 2.5C.
Figure 2.5C shows the complete dynamical information for untreated patient dynamics
(¢ =0, a = 0.020, B = 0.018, w = 0.1). All internal trajectories (black lines) lead to
tumor growth and eventual saturation of the sensitive population (bottom left corner, “S").
Instantaneous relative velocity is indicated by background color gradient (blue to red). Sub-
population “nullclines," the curves for which #; = 0 are shown for healthy (dashed blue),
resistant (dashed green), and sensitive (dashed red). On one side there is positive growth
(#; > 0); on the opposite side negative growth (z; < 0). These nullclines delineate the phase

space into three regions.
e Region 1: @y >01g >0 12 <0;
e Region 2: @y <0 2g> 01 <0;
e Region 3: 15 <025 >0 25 > 0.

Likewise, figure 2.5D shows the complete dynamical information for the patient treated
with chemotherapy (¢ = 0.6, = 0.020, § = 0.018, w = 0.1). Trajectories initially move
away from the sensitive/resistant corners toward healthy, but subsequently relapse to the
saturation of the resistant subpopulation. The phase space for treated dynamics is divided

into six regions by the three nullclines.
e Region 1: 25 > 025 >0 25 < 0;
e Region 2: 2y > 0125 <0 2x < 0;
e Region 3: @y > 0125 <0 x> 0;

e Region 4: oy <025 <0 x> 0;
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e Region 5: 2y <025 >0 25 > 0;
e Region 6: ty <0 2g >0 25 < 0.

An important detail emerges from the model: during treatment, the resistant nullcline is
reached before the healthy nullcline (figure 2.5D). For example, a tumor with an initial diag-
nosis in region 2 (see figure 2.5D) can be expected to respond to treatment. The trajectory
will follow along the black line towards the healthy corner (i.e. decreasing tumor quantity)
until the trajectory passes over the nullcline for the resistant subpopulation (dashed green
line; & = 0) reaching region 3. Subsequently, the trajectory passes the healthy nullcline
(dashed blue line; 5 = 0) and the tumor relapses (g < 0), this time toward saturation of
the resistant subpopulation.

If the desire is to maintain treatment until the point of positive progression, this occurs
when the trajectory is far past the resistant nullcline. Appearances (based on tumor burden)
can be deceiving — while the tumor may appear to be responding, the overall state may be

well past the point of no return, and the resistant population is preparing to re-populate.

2.3.1 Managing competitive release

Figure 2.5B shows a schematic of the two resistant nullclines from 2.5C and 2.5D
(untreated: solid green line; treated: dashed green line) overlaid on the same phase por-
trait. From the initial condition (purple dot) treatment begins as the trajectory (solid blue
line) approaches the nullcline, positive resistant growth can be avoided by a well-timed drug
holiday (solid red line). Here, we propose an adaptive therapy with the goal of trapping the
trajectory between the treated resistant nullcline and the untreated resistant nullcline, cre-
ating an orbit in a closed loop for a finite period of time to ‘steer’ tumor evolution in region
2 of figure 2.5B. We do this by altering the dose concentration parameter ¢ (a parameter
that can be accessed clinically) in eqns (2.5) in an off-on (bang-bang) fashion, (eqn. 2.6,
2.7) between the two resistant nullclines: the untreated nullcline from figure 2.5C and the

treated nullcine from 2.5D.
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While all details of the ‘tumor phase space’ may not yet be directly measurable in the
clinic, we propose that all successful adaptive therapies will operate in regions 1 and 2 in
figure 2.5D; otherwise they ultimately will not be successful. In this way, meaningful insight
is gained into the dynamics behind the cost to resistance, regardless of the mechanism of
that resistance. Previous adaptive therapy schedules (described in the introduction; see
(36, 8, 31, 134]) have benefited from not crossing this “hidden" resistant nullcline. We
now propose one example of an adaptive therapy schedule which actively captures and uses
information from the dynamic phase space.

The simple control paradigm proposed indirectly controls the resistant population by
systematically choosing when to administer therapy and when to give drug holidays. These
holidays allow a sufficient number of sensitive cells to remain in order to suppress the resistant
population. A continuous dose of therapy is administered until the treated nullcline (g = 0)
is reached (see figure 2.5D, green dashed line). This is the starting point of positive growth
for the resistant population (further therapy would result in ©zr > 0). A drug holiday is
then imposed until the second nullcline is reached (see figure 2.5C, green dashed line). The
sensitive population is allowed to regrow until it is large enough to suppress the resistant
population once again (and when g = 0). Therapy is administered to allow the tumor to
cycle back and forth between the two nullclines. This bang-bang (on-off) strategy allows an
extension of relapse times. We emphasize that the specific times we turn the therapy on
and off in this bang-bang strategy cannot be pre-planned, but depend on the position of the
trajectory in the tumor phase space as the disease evolves.

Next, we measure the success of this control paradigm compared to continuous treatment
via two important measures of therapy effectiveness: progression free survival (PFS) and time
to relapse. PFS is the time to which the patient has a measured response, before relapse of
the tumor: shown in figure 2.6A, bottom. A more useful metric is “time to relapse," where
disease reaches initial state. Measuring the effectiveness of a chemotherapy schedule based
on the killing rate or progression free survival alone are not sufficient predictive measures of

long-term cancer control [17]. PSA data from a single patient who relapsed due to treatment
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resistance (figure 2.3B) is replotted in figure 2.6A (black dots) along with the model best
fit of continuous treatment (blue; therapy 1). Also shown are simulated new drugs with
increased effectiveness of killing sensitive cells (red, yellow) simulated by increasing the
effective dose concentration with identical patient-specific parameters (from the patient in
figure 2.3B). Each increased dose corresponds to a slightly shorter PFS, but an increased
time to relapse to the initial tumor burden. However, despite the increase in relapse times,
none of these doses optimizes tumor control, as seen in the fishplots (figure 2.6, B,C,D). At
the point of relapse to the initial tumor burden, the tumor is dominated by the presence
of resistant subpopulations (green), rendering future treatments ineffective. Oftentimes, the
effectiveness of a new chemotherapy drug is be determined by PFS times when drugs that
have high killing rates of sensitive cells may have shorter times to progression and lower
total tumor burden at all times (everything else equal). The figure clearly shows that all
treatments have similar progression free times but with a greater range of relapse times (even
though continuous treatment always eventually leads to relapse).

Next, compare continuous treatments to the proposed control paradigm (solid black line)
for identical initial conditions and identical drug dose. As seen in the fishplot (figure 2.6E),
the resistant population (green) is suppressed during drug holidays, leading to an extended
time without relapse. This adaptive technique is successful for two reasons. First, the
drug holidays allow an adequate sensitive population size to suppress the growth of the
lower-fitness resistant population. Second, the resistant population is never allowed to reach
a positive growth under treatment (i > 0), therefore cannot take over the tumor cell
population. In order to test the robustness of this method, similar control paradigms were
simulated with error in administration times: slightly shorter time on therapy (1 day; figure
2.6A; green) and slightly longer (1 day; figure 2.6A, purple). All else equal, it is better to err

on the side of longer treatment on periods without decreasing off treatment time (purple).
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2.4 Discussion

The chemotherapeutic scheduling strategies outlined in this paper cannot be pre-planned
by the oncologist at the beginning of therapy like classical strategies [84], as they rely on
significant decision making and continuous monitoring of the different subpopulations of cells
that co-evolve as the tumor progresses. This means that the quality of the cell population
monitoring system is crucial to the entire strategy, as has been pointed out in [33]. There can
be no adaptive tumor control strategy without continuous monitoring of the subpopulations
as it is not the tumor burden that is of primary interest, but the heterogeneous balance
of the subpopulations comprising the tumor. In addition, the information gleaned from a
detailed monitoring system cannot be acted upon unless the various administered drugs are
sufficiently targeted to act efficiently and exclusively on specific subpopulations . These two
systems must be in place (sensing and actuating) in order to successfully shape the fitness
landscape and steer a growth trajectory in a desired direction. We also want to emphasize
a separate point, which is that it is not enough to know in detail the current state of the
system in order to steer it successfully. One must also have a description of all possible
nearby states of the system, both under therapeutic pressure and without therapy. Better
yet is to have a global picture of all possible states of the system, with nonlinear nullcline
information, as one would obtain by analyzing the full phase space of the entire system.
With this information, one would know where to steer the system to get to a desired state,
even if one does not know how to achieve this (clinically). In current state-of-the-art medical
practice, such sophisticated sensor-actuator capability is not yet sufficiently developed as it
is in many engineering contexts where versions of adaptive control theory are routinely used.
Many similar challenges, and the necessary steps towards their implementation, present
themselves in the ecology and pest control communities, and we point to Gould’s article
[44] for a nice early overview. More recently, connections between the approaches developed
in the past by ecologists and possible future strategies for oncologists have been discussed
by Gatenby and collaborators [39]. Other groups [64, 18, 65] have also developed highly

mathematical approaches to tumor control from different points of view. Clearly not all
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of the clinical steps are in place to effectively test and implement many of the strategies
that have been explored theoretically. Yet it is still important to continue to develop the
kinds of mathematical models and computer simulations that would serve to identify the
many possible schemes, parameter ranges, and sensitivities that could be tested via clinical
trials that focus on adaptive therapies with the goal of suppression of potential evolution of

resistance.
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Figure 2.3: Model fits of PSA measurement data for metastatic castration-
resistant prostate cancer — Prostate-specific antigen (PSA) measurement data of four
representative patients from three randomised clinical trials with metastatic castration-
resistant prostate cancer. (A) A single patient data shown with model fit (eqn. 2.4) of
growing resistant population (green), decaying sensitive population (red), where the sum
represents an overall initial good response and eventual relapse (q(t), dashed line). Left
column: treatment with prednisone only [75]; middle column: treatment with mitoxantrone
and prednisone [112]; right column: treatment with docetaxel and prednisone [89]. PSA
data is normalized by ¢(t = 0) (black dots). The data is fit using the exponential model
(eqn. 2.1; blue curve) and the replicator model (eqns 2.2, 2.3). Each patient is fit reasonably
well with both models. Data was fit by parameter sweep of cost (o — [, eqn. 2.15, 2.16),
initial fractional resistance f and selection pressure w. Parameters used are o — 3 = [0.02,
0.07, 0.20, 0.00, 0.20, 0.00, 0.20, 0.03, 0.20, 0.01, 0.15, 0.19]; f = [0.20, 0.02, 0.09, 0.05, 0.03,
0.07, 0.10, 0.10, 0.09, 0.10, 0.03, 0.03]; w = [0.10, 0.20, 0.20, 0.30, 0.20, 0.10, 0.30, 0.15, 0.10,
0.15, 0.20, 0.20] for B - M respectively.

26



A @ Sensitive Cancer Cell
Fitness advantage of driver .
mutation (prisoner’s dilemma) @ Resistant Cancer Cell

( J Healthy Cell

v

Fitness cost
of resistance

Fitness '
Low Fitness High Fitness

No Therapy (w;= w,= w3 )

Baseline value of
selection pressure
No selection in unperturbed tumor Strong selection
w=0 w w=1 W, - Altered selection pressure on
| | sensitive cancer cell population
1 | 1
w, - Altered selection pressure on
healthy cell population
w; - Unaltered selection pressure on
resistant cell population
w,=(1-c)w w,=(1+c)w
2 Wy =W 1
L J
L]
Selection difference
C due to therapy: w; - w, = 2¢

Unaltered fitness of resistant

Chemotherapy results subpopulation remains constant
in fitness gap between before, during therapy
healthy, sensitive cells

Fitness '
Low Fitness High Fitness

During Therapy (w, <w; <w; )

Figure 2.4: Fitness landscape before and during therapy — (A) Before therapy,
a driver mutation leads to a fitness advantage of the cancer cell (red) and a subsequent
resistant-conferring mutation comes at a fitness cost (green). Parameters determined by the
prisoner’s dilemma payoff matrix reflect these relative fitness differences. (B) Rather than
change the elements of the game payoff matrix directly, the selection parameter is manipu-
lated for healthy (increased) and cancer (decreased) subpopulations such that w; —wy = 2c.
(C) Changes in w; results in a new relative fitness of each subpopulation during therapy.
The fitness of the resistant population is unaffected by therapy’s selective pressure, but the
healthy population is given an advantage over the chemo-sensitive population.
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Figure 2.5: Dynamic phase portraits before and during chemotherapy — (A) Tri-
linear coordinate phase space representation; (B) Schematic of proposed adaptive therapy
concept using the resistant nullclines to determine therapy “on" and “oftf" times in order to
trap the tumor in the controllable region 2, and reach approximate cycle that repeats back
on itself in red. The continuous therapy is also plotted in dashed blue, for comparison. Two
nullclines divide the triangle into 3 regions; region 1: @z < 0 for both therapy on and off;
region 2:2 g > 0 for therapy off and 2r < 0 for therapy on; region 3: £z > 0 for both therapy
on and off. (C) Before chemotherapy, the healthy (H), sensitive (S), and resistant (R) pop-
ulations compete on a dynamical fitness landscape, with several solution trajectories shown
(black) and the instantaneous relative velocity indicated by background color gradient (red
to blue). All internal trajectories lead to tumor growth and eventual saturation of the sensi-
tive population (bottom left corner). Each population nullcline (line of zero growth: &; = 0)
is plotted: healthy (dashed blue), sensitive (dashed red), and resistant (dashed green). The
nullclines divide the triangle into 3 regions. Region 1: 2y > 0 g > 0 2 < 0; Region 2:
g < 0dg > 02 <0; Region 3: &y < 0 &g > 0 2xr > 0; (D) Chemotherapy alters the
selection pressure to the disadvantage of chemo-sensitive cancer population and advantage
of the healthy population (shown for ¢ = 0.6, = 0.020, 5 = 0.018, w = 0.1). In this case,
the nullclines divide the triangle into 6 regions; Region 1: 5 > 0 g > 0 2 < 0; Region 2:
Ty > 0125 <02 <0; Region 3: 25 >0 &g <0 2 > 0;Region 4: 25 <025 <0 2 > 0;
Region 5: g < 0 &g > 0 2 > 0; Region 6: 25 < 0 &g > 0 £z < 0; Solution trajectories
(black) show initial trajectory toward healthy saturation (triangle top) but eventual relapse
toward resistant population (bottom right of triangle) upon passing the resistant nullcline.
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Figure 2.6: The effect of dose on tumor relapse and progression free survival under
continuous and adaptive therapy — (A) PSA data is from a single patient (see figure
2.3B) under continuous treatment (Mitoxantrone and Prednisone) is replotted (black dots)
along with the best model fit (eqns. 2.2, 2.3) in blue. Using identical patient parameters,
continuous treatment of two “new" drugs with higher effectiveness (i.e. increased effective
dose, ¢) is shown in red and yellow. Time to relapse significantly increases with increasing
dose while the progression free survival shows marginal, but decreasing, difference. An
adaptive therapy (see figure 2.5B) is also simulated (solid black line), showing an increased
control over the tumor; Similar control paradigms were simulated with error in administration
times: slightly shorter time on therapy (1 day; green) and slightly longer (1 day; purple).
(B) The same four therapies are shown in a fish plot. Continous therapies show relapse to
initial tumor size is dominated by chemo-resistant population (green). The adaptive therapy

successfully suppressed the growth of the resistant population (bottom). Parameters used:
a— =002 w=0.10; f =0.2
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Chapter 3

Nonlinear adaptive control of competitive release and

chemotherapeutic resistance

We use a three-component replicator system with healthy cells, sensitive cells, and resis-
tant cells, with a prisoner’s dilemma payoff matrix from evolutionary game theory to model
and control the nonlinear dynamical system governing the ecological mechanism of com-
petitive release by which tumors develop chemotherapeutic resistance. The control method
we describe is based on nonlinear trajectory design and energy transfer methods first intro-
duced in the orbital mechanics literature for Hamiltonian systems. For continuous ther-
apy, the basin boundaries of attraction associated with the chemo-sensitive population and
the chemo-resistant population for increasing values of chemo-concentrations have an inter-
twined spiral structure with extreme sensitivity to changes in chemo-concentration level
as well as sensitivity with respect to resistant mutations. For time-dependent therapies,
we introduce an orbit transfer method to construct continuous families of periodic (closed)
orbits by switching the chemo-dose at carefully chosen times and appropriate levels to design
schedules that are superior to both maximum tolerated dose (MTD) schedules and low-dose
metronomic (LDM) schedules, both of which ultimately lead to fixation of sensitive cells
or resistant cells. By keeping the three subpopulations of cells in competition with each
other indefinitely, we avoid fixation of the cancer cell population and re-growth of a resistant
tumor. The method can be viewed as a way to dynamically shape the average population

fitness landscape of a tumor to steer the chemotherapeutic response curve. We show that the
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method is remarkably insensitive to initial conditions and small changes in chemo-dosages,

an important criterion for turning the method into an actionable strategy.

3.1 Introduction

It is widely appreciated that the development of chemotherapeutic resistance is the pri-
mary reason for recurrance of cancer in patients undergoing treatment, and remains one
of the primary challenges in the field of oncology [58, 1, 17]. As a tumor grows, and
even as tumor cells spread throughout the system and metastasis ensues, standard pre-
scheduled chemotherapeutic protocols such as maximum tolerated dose (MTD) and low-dose
metronomic schedules (LDM) often show early success as the tumor regresses temporarily.
Schematics for several kinds of chemotherapeutic schedules are shown in Figure 3.1. A typ-
ical chemotherapeutic cycle might involve one strong dose every three weeks, or a dose for 5
consecutive days, followed by a 28 day rest period [88]. After months of fixed periodic cycles,
the cancer often recurs and the tumor begins to regrow. Because of the genetic and cellular
heterogeneity of a typical tumor [116], instead of killing all of the cancer cells and thereby
eliminating the tumor, the chemotherapeutic regimen actually selects for a resistant pheno-
type [105, 39, 44, 27]. The diversity of cells within a tumor effectively protects the tumor
from single-line or pre-scheduled chemotherapeutic assaults by allowing for elimination of
the chemo-sensitive population in order to accomplish the subsequent release of the chemo-
resistant population. By reducing the relative fitness of the sensitive cells, chemotherapy
acts as the primary mechanism of natural selection that selects specifically against rapidly
dividing cells [68].

The characterization of a typical tumor as an adaptive landscape made up of competing
cells of varying degrees of fitness, which determine growth rates of the various subpopulations
is a more accurate characterization of a tumor and suggests an ecological or evolutionary
approach [74, 6, 10, 9, 31, 107, 12, 118, 122, 119]. If one had access to time-resolved infor-
mation [33] on the relative balance and growth rates of the subpopulations of cells making

up the tumor, then one could use chemotherapy as a control device (accuator) to keep the
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subpopulations in balance, competing with each other indefinitely, without any one of the
cancerous subpopulations dominating the landscape [105]. Chemotherapy would then be
regarded more as a maintenance mechanism than a cure [38, 54] and one would be imposing
no more selection than is necessary as has been advocated by Read et al. and others [94].

We introduce an evolutionary game theory model of chemotherapeutic resistance [58]
along with a method of adaptive control to design adventageous chemotherapeutic schedules
that are able to overcome, or at least manage resistance. The mechanism of resistance that
we model is based on the ecological notion of competitive release [44, 104, 74] of the resistant
cell population when the sensitive cell population is reduced below a certain threshold. Above
the threshold, the sensitive cells are able to outcompete (on average) the resistant cells due
to the inherent cost-of-resistance [5] which tilts the fitness landscape of the system in favor of
the sensitive cell population allowing the tumor to grow. Under sufficient chemotherapeutic
pressure, the sensitive cell population is reduced enough to allow the resistant population
to begin to flourish and eventually regrow the tumor in a form that is much harder to
treat. A quantitative understanding of this phenomena is necessary in order to develop
chemotherapeutic strategies (i.e. adaptive therapies) to combat it, a point of view adopted
and developed in [38, 40, 107, 17, 10, 9]. In this paper, we frame the problem as one in
nonlinear dynamical systems theory and use trajectory transfer methods developed relatively
recently in the orbital mechanics literature [60, 43, 47, 99, 93] to design chemotherapeutic
schedules that have the potential to outperform more standard approaches [84].

The mathematical model we use is based on a three-component replicator dynamical sys-
tem with a frequency dependent fitness function based on a prisoner’s dilemma (PD) payoff
matrix [85, 52]. Cell interactions occur between three cell types that form our ecosystem:
healthy cells (H); chemo-sensitive cells (S); and chemo-resistant cells (R). The healthy cell
subpopulation can be thought of as non-neoplastic cells that have a lower fitness than the
chemo-sensitive subpopulation. The independent variables represent relative frequencies in
the total population, and the tumor alone would be made up of S + R cancer cell subpop-

ulations. In a PD scenario, the healthy cells act as cooperators while the cancer cells act
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(c) (d)

Figure 3.1: Schematic dose schedules.(a) Maximum tolerated dose (MTD) schedule; (b)
Low dose metronomic (LDM) schedule; (¢) Adaptive schedule; (d) General time-dependent
schedule accuated by piecewise constant dose concentrations.

as defectors [7]. Unchecked, the defectors saturate the population as the average fitness
decreases to a sub-optimal outcome. The goal of chemotherapeutics in this framework is
to coax the defectors to cooperate, leading to a higher fitness Nash equilibrium [85, 52].
Growth rates are determined by cell fitness functionals which, in turn, depend on subpopu-
lation sizes, i.e. they are frequency dependent. There is a time-dependent controller in our
model which determines chemotherapeutic dose schedule and concentrations. Although the
model system is nonlinear and the control parameter enters as a coefficient in most all of the

terms of the three-component cubic nonlinear system (making classic control schemes [18]
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non-applicable), we use nonlinear trajectory design techniques introduced and developed in
an orbital mechanics context [60, 43, 47, 99, 93]. In that body of literature, time-dependent
controllers are used to design orbit transfers in a Hamiltonian mechanics setting, piecing
together partial orbits at different energy levels and switching energies at carefully chosen
times, much like classic Homann transfers for satellite control [92]. While the replicator sys-
tem we describe is not a Hamiltonian system in which orbits transfer from one energy level
to another, the time-dependent chemotherapeutic parameter, C'(t), can be used to design
adventageous orbits in the replicator dynamics tri-linear phase space in a similar manner
where piecewise constant dose concentrations are used, C; = const. for carefully chosen time
intervals t; < t < t;11, (i = 0,...,n) with switching times ¢; chosen in such a way as to
produce a periodic (closed), continuous, piecewise differentiable orbit that stays trapped
in a desirable region of the phase space. Orbits designed this way are shown to maintain
a higher average level of fitness for the full population and avoid tumor recurrance. The
existence of such orbits for appropriately chosen chemotherapeutic schedules in our model
system suggests the possibility that similar orbits may also exist in a more complex tumor
environment with carefully designed adaptive schedules [134, 40]. The general technique
of designing an orbit with a time-dependent controller should also work in other contexts
such as microbial drug resistance [81] or pest management [44, 19], although with perhaps
different numbers of competing subpopulations and different payoff matrices that determine

the fitness landscapes.

3.2 A three-component replicator system

The model we develop is based on a three-component replicator nonlinear dynamical
system governing three competing subpopulations of cells: & = (x1, 22, 73)" = (x5, vs, 2r)7,
where z; represents the proportion of healthy cells (H), x5 represents the proportion of
sensitive cells (S), and 3 represents the proportion of resistant cells (R), with 21 +zo+x3 = 1.
In this context, the model makes the well-mized assumption on the cell population [85, 52],

i.e. no spatial dependence is modeled in order to highlight the method in as clean a setting
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as possible. For discussions and comparisons of well-mixed models vs. those with spatial

dependence, see [132]. The equations which describe the subpopulation interactions are:

i1 = (f1 = (f)x1, (3.1)
by = (f2 — (f))ze, (3.2)
i3 = (fs — (f))xs. (3.3)

with f; representing the fitness of each of the subpopulations (i = 1,2,3) as their rela-

tive populations change, and (f) representing the average fitness of the entire population.

The exponential growth-decay rates of each of the subpopulations are then determined by

(fi — (f)) which dictates whether the subpopulation fitness is above or below the average

population fitness, hence whether the subpopulation decays or grows.

The fitness of each of the three subpopulations are defined by the linear functionals:

S
fa
fs

= 1- wy + wy (Af)l y (34)
= 1-— Wy + Wo (Af)2 s (35)
= 1- W3 + W3 (Af)g s (36)

where 0 < w;(t) < 1, (i = 1,2,3) are time-dependent selection parameters (that serve as

our controllers) we use to shape the fitness landscape of the system. A is the payoff matrix

associated with the cell-cell interactions, which we describe in §3.3. The time dependence in

our model enters through a chemo-concentration parameter C(t):

wy = wo, (3.7)
ws = w, (3.9)
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where wy scales time (we typically take wy = 1). Note that the chemotherapy parameter acts
linearly on the sensitive cell population lowering its fitness, although the three populations
are coupled nonlinearly through [3.1]-[3.3]. The average population fitness is defined by the

quadratic functional:

(f) =z fi +22fo + 2315 (3.10)

in the usual way. It is straightforward to see (for fixed values of the chemo-concentration
parameter C') that the fixed points of the system [3.1]-[3.3] are of three basic types: (i) There
are the three fixed points at each of the corners of the triangular phase space diagram shown
in Figure 3.2, when two of the subpopulation values are zero, and the third is saturated:
(x1,m9,23) = (xg,vs,2r) = (1,0,0);(0,1,0);(0,0,1); (ii) There are three possible fixed
points on the triangle sides, which correspond to one of the subpopulation values equaling
zero, with the other two having fitness values equal to the population average: x; = 0,fy =
(), fs=A(f); 22 =0,f1 =(f), fs = (f); 25 = 0,f1 = (f), fo = (f); (iii) There is the balanced
fitness state, when none of the subpopulation values is zero, but each of the subpopulation
fitness values equals the population average:f1 = (f); fo = (f); fs = (f). Which of these
fixed points lies on or inside the triangular phase space, and their stability properties, depend
in detail on the parametric values, which we describe in §3.4.

By using a prisoner’s dilemma payoff matrix (see section 3.3) we ensure: (i) Gompertzian
growth of the cancer cells [83]; (ii) a reduction in overall fitness of the population as the tumor
grows; and (iii) a fitness cost associated with resistance. We first study the details of the
nonlinear dynamics associated with eqns [3.1]-[3.3] for constant values of the chemotherapy
parameter 0 < C' < 1 to demonstrate the mechanism of competitive release for threshold val-
ues C' > 1/3. Then we investigate piecewise constant time-dependent functions C(t) to show
how to avoid the evolution of resistance of the tumor. Figure 3.1 shows several examples of
the chemotherapeutic schedules we consider. These include maximum tolerated dose (MTD)

schedules (Figure 3.1(a)), low-dose metronomic schedules (LDM) (Figure 3.1(b)), adaptive
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Figure 3.2: The competitive release mechanism. (a) The three-component phase space
associated with competing populations of (H, S, R) cells. (b) With no therapy, the S corner
of the triangle is a globally attracting fixed point, while the H and R corners are unstable.
All initial conditions lead to a saturated tumor. Filled circles are stable, unfilled circles
are unstable. (c) For continuous chemotherapy above a threshold level, the R corner of
the triangle is a globally attracting fixed point, while the H and S corners are unstable.
All initial conditions (except those lying on the separatrix connecting the interior balanced
fitness state to the S — R side) lead to a resistant tumor.

schedules (Figure 3.1(c)), and more general time-dependent schedules (Figure 3.1(d)) which
we break-up into piecewise constant doses as done in forming the Riemann sum approxima-
tion to an area under a curve. In all cases, we compare outcomes of the different schedules

holding the total dosage, D, fixed over time period T,
D= / C(t)dt = const. (3.11)
0

3.3 The prisoner’s dilemma as a cancer model

We first describe the standard version of the PD payoff matrix [85] in a 2 x 2 setting
to make clear why the PD evolutionary game gives rise to a Gompertzian (i.e. ‘S-shaped’)
growth curve when two sub-populations compete. To be specific, we first describe what

happens when healthy cells compete with cancer cells using the 2 x 2 payoff matrix:
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App = o« b = 50 ) (3.12)
c d 5 1

with ¢ > a > d > b. The first row and column correspond to the payoffs associated with the
cooperator (C) in the PD evolutionary game, and the second row and column correspond
to the payoffs associated with the defector (D). In the simplest tumor growth paradigm in
which a population of healthy cells competes with a population of cancer cells, the healthy
cells are the cooperators, while the cancer cells are the defectors. In any mixed population
7= (zc,2p)T, 0< 26 < 1;0 < xp < 1; xc +xp = 1, the fitness functions, f = (fe, fp)7,

associated with the two subpopulations are:

f = App7, (3.13)

which in component form yields:
fe = (App@)1 =3 20+0-zp, (3.14)
fD = (Apr)Q :5$C+1 Tp, (315)

while the average fitness of the total population is given by the quadratic form:

(fy = 7T Appi@ =322 +5zcrp + 23 > 1. (3.16)

Note that the average fitness of the healthy state (z¢,xp) = (1,0) is given by (f)|(ze=1) = 3,

while that of the cancerous state (z¢,xp) = (0, 1) is given by (f)|z,=1) = 1, which minimizes
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the average fitness. Tumor growth is then modeled as a 2 x 2 evolutionary game governed

by the replicator dynamical system:

ic = (fc — <f>)$c, (317)
ip = (fpo—{f))zp. (3.18)

It is straightforward to show:

ip = [(c—a)— (d—b)ep(l — zp) (1_(1“) _ xD) ,

c—a

with fixed points at zp = 0,1, (c—a)

(C=ErEE From this, we can conclude that for any initial

condition containing at least one cancer cell: 0 < zp(0) < 1, we have:
(i) z2p > 1, z¢ > 0ast — o0
(ii) (f) > 1last— oo.

Condition (i) guarantees that the cancer cell population will saturate, while condition (ii)
guarantees that the saturated state is sub-optimal, since (f)|@p=1) < (f)|@c=1)- For these
two reasons, the prisoner’s dilemma evolutionary game serves as a simple model for tumor
growth both in finite population models, as well as replicator system (infinite population)
models [118, 119, 122, 114].

For our purposes, we now generalize to a three-component system where the fitness
functions [3.4]-[3.6] are defined via a payoff matrix A which is a 3 x 3 matrix defining the
evolutionary game played by the cell population. For this, we take every 2 x 2 sub-matrix

to be a PD game, i.e. we take A to be the 3 x 3 PD matrix:

a b c 3 15 15
A=|d e f|=] 4 2 28], (3.19)
g h i 3.9 —2 2.2
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with the PD inequalities [85]:

g>a>1i>c, (3.20)
d>a>e>b, (3.21)
f>i>e>h. (3.22)

The numerical values in [3.19] are chosen for convenience and satisfy the constraints [3.20]-
[3.22]. In each cell-cell interaction, the healthy cells z; (healthy H) are cooperators, and the
two-species of cancer cells, x5 (sensitive S), and x3 (resistant R), are the defectors. In any
interaction between a chemo-sensitive cell (S) and a chemo-resistant cell (R), the sensitive
cell is the defector, while the resistant cell is the cooperator. The payoff matrix [3.19]
guarantees that for any interaction between two cells, the system retains features (i), (ii)
detailed previously (i.e. tumor growth leading to sub-optimal fitness). In addition, the
payoff matrix also imposes a cost to resistance if we add the extra constraint d > ¢g which

guarantees:

fs = drg+exs+ frgp (3.23)

> fR = gry + hxs +irg

It is worth pointing out that shaping the fitness landscape by adjusting the selection

parameters (wy, w9, ws) is equivalent to choosing
fi = (A%),, (3.24)

where:

1l—wi+aw; 1—w+bwy 1—wi+ cw
A= 1l—wy+dwy 1—wy+ews 1—ws+ fws

1 —ws+gws 1—ws+ hws 1—ws+ tws
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To see this, use the fact that (1 —w;) = (1 — w;)(x1 + 22 + x3) in the fitness equations
3.4]-]3.6].

C=79/228

C=79/228

C=1/2

< i <
-

S C=1/C:7/10ﬂ Cc=1/3 R

Figure 3.3: Fixed point locations. Tracking the location of the fixed points as a function
of chemo-concentration parameter C'. The fractional values indicate that the values are
analytically obtained.

3.4 Results

3.4.1 Continuous therapy

For the purposes of understanding how to implement time-dependent therapies in our

model, we first describe the phase space dynamics for constant values 0 < C' < 1, so
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Figure 3.4: Basins of attraction and nullclines. Panel showing the separatrices and
nullclines (dxy/dt = 0, dxg/dt =0, deg/dt = 0) through the balanced fitness interior fixed
point that determines the basin boundaries of attraction of the S state and the R states.
The interior fixed point is the one in which each of the subpopulation fitness levels exactly
matches the average fitness of the entire population. Filled circles are stable, unfilled circles
are unstable.

total dose delivered over time period ¢ is D = C'-t. Figure 3.2 shows the mechanism of
chemotherapeutic resistance via competitive release determined by the system [3.1]-[3.3] (for
constant (') as depicted in the triangular phase space diagram shown in Fig 3.2(a). With no
therapy (Fig.3.2(b), C' = 0), the sensitive corner S is globally attracting, while the H and
R corners are unstable. When the continuous therapy parameter C' = 0.6 (Figure 3.2(c)),
the resistant corner is globally attracting, while the H and S corners are unstable. Filled
corners are stable, unfilled corners are unstable. This is the basic mechanism of competitive

release induced by sufficiently strong chemotherapeutic dose [105].
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Figure 3.5: Basin of attraction areas. Areas of basin of attraction of S fixed point and
R fixed point as a function of chemo-concentration C.

Intermediate values of C' reveal a much more complex picture. We show in Fig 3.3 the
location of the fixed points as a function of C'. For values 79/228 = 0.34649... < C' < 0.7, the
balanced fixed point state is an interior fixed point, which forms the central spiral associated
with the basin boundaries between the asymptotically stable S corner and R corner, shown
in the panel in Figure 3.4. Also shown in the figure are the nullclines defined by the curves
dry/dt =0, drg/dt =0, drgr/dt = 0. Opposite sides of each of the nullclines mark a change
in whether the particular subpopulation decays or grows. The mixed population state exists
between values 1/3 < C' < 1/2 where the basin of attraction sizes (areas), shown in Figure

3.5, change sensitively (as C' varies), one at the expense of the other, in an intertwined spiral
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Figure 3.6: Fitness landscapes as a function of time. With no therapy (C' = 0), the
fitness curves are contunuously decreasing functions as the tumor saturates with the sensitive
cell population in a sigmoidal shaped growth curve. With continuous therapy (C' = 0.6), the
fitnesses initially increase indicating tumor regression, but eventually decrease. The healthy
subpopulation initially increases before the resistant population eventually saturates the
tumor. Initial condition (0.9,0.09,0.01) with wy = 0.1

structure centered at the balanced fixed point state. The steep transition curves between the
two states occuring for small changes in the chemo-concentration parameter highlights the
sensitivity of the system to chemotherapeutic dosing levels. Also worth highlighting in Fig.

3.4(b),(c) is the sensitivity to resistant mutations of the final asymptotic state of the system,

44



even if no pre-existing mutations exist in the population. As the tumor grows, assuming
no pre-existing resistant mutations, the dynamics would traverse down the left side of the
triangle from the H corner to the S corner. As it does, the very thin passageway (on the
H-S side of the triangle in Figure 3.4(b),(c)) associated with the basin of attraction of the
resistant corner indicates that one single resistant mutation would push the trajectory off
the side into the basin of attraction associated with the R corner instead of converging to
the S corner.

The fitness landscapes are shown in Figure 3.6 both for C' = 0 and C' = 0.6. With no
therapy, the fitness curves are monotonically decreasing functions as the sensitive population
saturates the tumor in a sigmoidal shaped [83, 118] growth curve. With continuous therapy
above threshold, the fitness curves initially increase (i.e. tumor regression), but eventually
decrease monotonically as the tumor relapses. The healthy cell population initially increases,

but eventually the resistant population saturates the tumor.

3.4.2 Time-dependent therapy

Figure 3.7 shows the key idea behind the method we use to design trajectories for eqns
[3.1]-[3.3] for time-dependent chemotherapeutic schedules C'(¢). With no chemotherapy, C' =
0, since the sensitive corner S is a globally asymptotically attracting fixed point whose
basin of attraction is the full region, all trajectories that start inside the triangle eventually
get trapped in the left S corner. By contrast, with chemotherapeutic levels at C' = 0.7,
competitive release acts to create a basin of attraction for the right resistant corner R for
all initial conditions inside the triangle. Using these families of solution trajectories, we
overlay the solution curves in Figure 3.7(c) to show the underlying curvilinear grid that
spans the full tri-linear phase plane. By switching between the two values C' = 0 and
C = 0.7 at times when two curves intersect, it is possible to transition from a trajectory
associated with the C' = 0 family to one associated with the C' = 0.7 family. This creates
multiple possibilities for designing complex orbits using piecewise constant values of C', with

switching at appropriately chosen times.
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One such trajectory is shown in Figure 3.8(a) achieved by switching between the two
values C' = 0 and C' = 0.5. The trajectory starts at point A ((H,S,R) = (0.5,0.4,0.1))
using a trajectory with C' = 0.5. When the trajectory reaches point B, the chemotherapy
is switched off C' = 0, and the system then travels back down to point A in a closed loop.
With switching times labeled 77 and T, (which are computed by monitoring the relative
balances of the three subpopulations) , this closed orbit can be maintained indefinitely. By
contrast, Figure 3.8(b) shows the corresponding MTD and LDM trajectories with the same
initial condition (point A) using the same total dosages over the same time-periods. The
MTD trajectory eventually gets trapped in the left S corner, as does the LDM trajectory.
Figure 3.8(c) shows the schedules for all three cases. In all cases, we first design the adaptive
schedule, then we create the MTD and LDM schedules using the same total dosage D.
Neither the MTD nor the LDM standard chemo-schedules is able to prevent the system from
saturating with a full grown tumor, whereas the adaptive schedule keeps the system trapped
indefinitely near the top H corner of the system. Figure 3.8(d) shows the average fitness of
the system for the MTD, LDM, and adaptive schedules. It is clear that the adaptive schedule
is able to maintain a higher average fitness throughout the full course of chemotherapy.

Figure 3.9 shows the sensitivity of the system to the chemo-concentration levels chosen.
Here we switch between C' = 0 and C' = 0.6 (higher average dose than in figure 3.8) to
construct the closed loop (figure 3.9(a)), which looks very similar to that in Figure 3.8.
But notice that for these values, the LDM schedule creates an orbit that saturates at the
R corner, whereas the MTD schedule saturates at the S corner. The actual schedules are
shown in Figure 3.9(c). Figure 3.9(d) compares the average population fitness of the three
schedules, showing the adaptive schedule maintaines a higher average throughout. Notice
that LDM initially achieves a higher average fitness before tumor regression occurs.

In Figure 3.10 we show the result of toggeling between values C' = 0.3 and C' = 0.6
to maintain the periodic loop (Figure 3.10(a)). For this case, both the MTD and LDM
schedules send the trajectory to the R corner (Figure 3.10(b)). Figure 3.10(d) shows the
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initial benefit of the MTD and LDM schedules in terms of higher initial average fitness, but
eventually the adaptive schedule shows its superiority over both.

Figure 3.11(a) shows that we can actually design an orbit that starts at an arbitrary
point A inside the triangle, and send it to an arbitrary point B. We accomplish this by
constructing the incoming and outgoing orbits from point A for two different C' values, and
those associated with point B for those same two C' values, showing that they must intersect
at some point which we label O. By sending the orbit out from point A to point O, then
switching values of C' at point O until we arrive at point B, we complete the transfer. One
can immediately see the potential richness in the possible design of different orbits one can
construct by switching values of C' among two, three, or more values, at appropriately chosen
times. Figure 3.11(b) shows the richness of the curvilinear grid that can be created with
three values of C' = 0,0.3,0.7 and the multitude of possible paths from one point to another
inside the triangle if one allows for switching among the three values shown.

H H

Bl converge to S [ Iconverge to R

C=0.7
(b) ()

Figure 3.7: Dynamical trajectories for constant C.(a) With no chemotherapy (C' =
0), the sensitive corner S is a globally attracting fixed point. All initial conditions inside
the triangle move to S along the sample trajectories shown. (b) Above the chemotherapy
threshold C' > 0.5, all initial conditions inside the triangle move to the resistant corner R.
Shown are sample trajectories for C'= 0.7. (c¢) Overlay of the solution trajectories for C' = 0
and C' = 0.7 create a curvilinear grid throughout the triangle. By switching between these
two values of ', we construct a global trajectory made up of segments of the two families of
trajectories.
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Figure 3.8: Constructing a closed loop trajectory using C' = 0 and C = 0.5, with
Cavg = 0.366.(a) By using segments of a trajectory for C' = 0 and C' = 0.5, switching values
at points A and B, we construct a closed periodic orbit. (b) Using the same total dose, we
show the MTD and LDM trajectories starting from point A. Both eventually move to the S
corner, although initially the MTD trajectory moves toward the H corner (tumor regression)
before recurrance. (¢) The MTD, LDM, and adaptive schedules are depicted. (d) We plot
the average fitness (f) for the three different chemo-schedules. The adaptive schedule is able
to maintain a higher average fitness throughout.

3.4.3 Robustness

To be clinically actionable, at the very least it would be important that the method not be
sensititve to specific initial conditions and parameter values. We describe several remarkably

robust features of the strategy in this section. We show in Figure 3.12(a) an example of a
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Figure 3.9: Constructing a closed loop trajectory using C' = 0 and C' = 0.6, with
Cavg = 0.375.(a) By using segments of a trajectory for C'= 0 and C = 0.6, switching values
at points A and B, we construct a closed periodic orbit. (b) Using the same total dose, we
show the MTD and LDM trajectories starting from point A. The MTD trajectory eventually
moves to the S corner, while the LDM trajectory moves to the R corner. Both trajectories
initially move toward the H corner (tumor regression) before recurrance. (c¢) The MTD,
LDM, and adaptive schedules are depicted. (d) We plot the average fitness (f) for the three
different chemo-schedules. The adaptive schedule is able to maintain a higher average fitness
throughout, although LDM initially achieves higher average fitness before declining.

continuous family of closed orbits that are easily achievable by using a bang-bang strategy,
with blue orbits (no therapy) and red orbits (C' = 0.7) forming a continuous family of closed,
and nearly closed loops. The associated dose schedules are shown in Figure 3.12(b)-(j), with
average doses all very close to 0.4. Because of the continual interlacing of these orbits, and
the robustness of their associated schedules, it is clear there is nothing particularly special
about any of the values shown, or the average dose - any of the orbits and schedules would
work. Interestingly, Figure 3.13 shows that the entire region on the right side of the triangle
centered on the dashed curve can be populated by continous families of closed orbits each
centered at any point on the line. Figure 3.13(a) depicts the defining feature of the line
which requires that two orbits with different C' values have a point of tangency lying on it.
A necessary and sufficient condition for this is f; = f3, which defines a line, a condition
obtained by requiring that tangent vectors associated with two different values of C' point
in opposite directions, as shown in Figure 3.13(a). Figure 3.13(b) shows examples of closed

orbits obtained at 5 representative points on the dashed line.
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Figure 3.10: Constructing a closed loop trajectory using C' = 0.3 and C' = 0.6, with
Cavg = 0.396.(a) By using segments of a trajectory for C' = 0.3 and C' = 0.6, switching values
at points A and B, we construct a closed periodic orbit. (b) Using the same total dose, we
show the MTD and LDM trajectories starting from point A. Both trajectories move toward
the R corner after initially moving toward H. (¢) The MTD, LDM, and adaptive schedules
are depicted. (d) We plot the average fitness (f) for the three different chemo-schedules.
The adaptive schedule is able to maintain a higher average fitness throughout. Both MTD
and LDM initially show higher average fitness before declining.

3.5 Discussion

The model shows that if the chemo-dose exceeds a threshold value of C' > 0.5, the tumor
may regress for a period of time, but eventually regrows to form a resistant tumor (Figure

3.2(c)) as long as there is at least one resistant cell in the population (i.e. a pre-existing
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Figure 3.11: Constructing orbit transfers. (a) We take two arbitrary points labeled A
and B and construct the incoming and outgoing solution trajectories from each, using two
values C' = 0 and C = 0.7. There must be a crossing point, which we label point O. The two
segments AO followed by OB is the two-switch trajectory that takes us from A to B. (b)
Shown is the curvilinear grid constructed by families of solution curves for the three values
C=0,C=0.3,C =0.7. Any point of intersection can be used as a starting point and an
ending point to construct a three-switch orbit.

resistant mutation). This process of competitive release is very robust and occurs for all
initial distributions of the three subpopulations. For chemo-doses that are not as large,
the results are much more sensitive to small changes in C since the phase space diagram
generally has two basins of attraction, one associated with a saturated sensitive state, the
other with a saturated resistant state, and these basins of attraction are spirally intertwined.
Small differences in the balances among the three types of cells comprising our model, and
a single resistant mutation can determine whether the long-time dynamics converges to the
S state or the R state. The relative areas of the basins of attraction also sharply change
with small changes in chemo-dose values between 1/3 < C' < 1/2 reflecting the sensitivity
in choosing the optimal chemo-dose levels. There is no constant value of C' for which the
system converges to the H state, as this state is always unstable.

By contrast, for a time-dependent chemotherapy parameter C(t), one can design a rich,

robust, and potentially endless array of trajectories (i.e. tumor responses) that remain in
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desirable regions of the triangular phase space indefinitely, depending on how many time-
switches and different dose levels one is willing to accept. One can, in principle, steer the
system trajectory along any path (in the model). Identifying a given trajectory in our model
as well as the chemo-therapeutic schedule that produces it is fairly straightforward and
amounts to superposing the response curves associated with different constant therapies,
and piecing together a global trajectory made up of sections generated from each of the
constant therapy curves. Of course, in a clinical setting this procedure will be much more
complex but suggests the possibility of using actual chemo-therapeutic responses with differ-
ent chemo-schedules used on different patients as a design template to combine in new ways
to predict possible responses to various time-dependent switching strategies. By using one
dosing schedule to create a time-limited response, then a different dosing schedule to create
a different (time-limited) response, one could think of piecing together finite-time limited
responses to create new outcomes, superior to what would have been achieved by sticking to
one single chemo-schedule.

One of the challenges of testing and designing new schedules via clinical trials is that short
term gain in average fitness with LDM or MTD does not always result in more long-term
increased averaged fitness levels, i.e. recurrance sets in if the schedule does not completely
eradicate the tumor. This is clearly shown in our simulations. The possibility of designing
complex orbits with various potentially adventageous features is virtually endless if one allows
for enough switches among many different levels of the chemo-concentration parameter C'.
In this manuscript, we have focused on comparisons of average fitness levels to evaluate the
quality of the schedule. One could, of course, imagine designing orbits that maximize a
(time-averaged) population fitness while minimizing total dose, or perhaps delay recurrance
as long as possible while avoiding regions of the phase space (i.e. relative balances of the
subpopulation levels) where the total tumor burden becomes unsustainable. The fact that
closed loop trajectories can be designed in our model three-component replicator system
by chemo-scheduling alone suggests the possibility that similar orbits could potentially be

created in an actual tumor environment, microbial environment, or pest management setting
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with the right accuation (chemo-schedule/antibiotic regimen/pest control schedule), where
fixation of the sensitive population or fixation of the resistant population are both avoided
indefinitely as the balance is managed with proper adaptive therapy. This, of course, all
hinges on our ability to carefully and frequently monitor the tumor environment [33]. Clinical
trials that make use of adaptive scheduling ideas are currently being carried out at the Moffitt
Cancer Center, and results show great promise [134]. More possibilities exist with the use
of combination multi-drug therapies [10, 81, 130], or immunotherapies [95], but these are
outside the scope of our model which focuses only on the use of dosing schedules to shape

the fitness landscape of a tumor to steer its evolutionary response.
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Figure 3.12: Robust family of nested orbits. (a) One example of a (continuous) family of
nested closed orbits using bang-bang strategy toggling between C' = 0 and C' = 0.7, all with
similar total dose (C' ~ 0.4). A closed loop can be made arbitrarily small around a center
point described in Figure 3.13. (b) Schedule associated with orbits 1 and 4; (¢) Schedule
associated with orbits 1 and 5; (d) Schedule associated with orbits 1 and 6; (e) Schedule
associated with orbits 2 and 4; (f)Schedule associated with orbits 2 and 5; (g) Schedule
associated with orbits 2 and 6; (h)Schedule associated with orbits 3 and 4; (i)Schedule
associated with orbits 3 and 5; (j) Schedule associated with orbits 3 and 6.
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S

Figure 3.13: All closed orbit families are centered on dashed line defined by f; = f3.
(a) As a family of closed orbits enclose smaller and smaller loops, they intersect at a point
of tangency. The point of tangency must lie on the dashed line. (b) Examples of several
closed loop orbits centered at different points down the line.
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Chapter 4

The role of synergy and antagonism in designing

multi-drug adaptive chemotherapy schedules

Chemotherapeutic resistance via the mechanism of competitive release of resistant tumor
cell subpopulations is a major problem associated with cancer treatments and one of the main
causes of tumor recurrence. Often, chemoresistance is mitigated by using multidrug schedules
(two or more combination therapies) that can act synergistically, additively, or antagonis-
tically on the heterogeneous population of cells as they evolve. In this paper, we develop
a three-component evolutionary game theory model to design two-drug adaptive schedules
(timing and dose levels associated with C(t) and Cy(t)) that mitigate chemoresistance and
delay tumor recurrence in an evolving collection of tumor cells with two resistant subpopu-
lations: R; (sensitive to drug 1, resistant to drug 2), and Ry (sensitive to drug 2, resistant
to drug 1). A key parameter, e, takes us from synergistic (e > 0), to additive (e = 0), to
antagonistic (e < 0) drug interactions. In addition to the two resistant populations, the
model includes a population of chemosensitive cells, S that have higher baseline fitness but
are not resistant to either drug. Using the nonlinear replicator dynamical system with a pay-
off matrix of Prisoner’s Dilemma (PD) type (enforcing a cost to resistance), we investigate
the nonlinear dynamics of the three-component system (.5, Ry, Ry), along with an additional
tumor growth model whose growth rate is a function of the fitness landscape of the tumor
cell populations. We show that antagonistic drug interactions generally result in slower rates
of adaptation of the resistant cells than synergistic ones, making them more effective in com-

bating the evolution of resistance. We then design closed loops in the three-component phase
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space by shaping the fitness landscape of the cell populations (i.e. altering the evolutionary
stable states of the game) using appropriately designed time-dependent schedules (adaptive
therapy), altering the dosages and timing of the two drugs using information gleaned from
constant dosing schedules. We show that the bifurcations associated with the evolutionary
stable states are transcritical, and we detail a typical antagonistic bifurcation that takes
place between the sensitive cell population S and the R; population, and a synergistic bifur-
cation that takes place between the sensitive cell population S and the Ry population for
fixed values of C; and C5. These bifurcations help us further understand why antagonistic
interactions are more effective at controlling competitive release of the resistant population

than synergistic interactions in the context of an evolving tumor.

4.1 Introduction

We study a mathematical model to explore the role of synergisitic vs. antagonistic
multidrug interactions on an evolving population of cancer cells in a tumor. Our model
builds on the (single drug) adaptive therapy model developed in [78] and is based on a
replicator dynamical system of three (well-mixed) populations of cells: (i) sensitive cancer
cells, S, that are sensitive to both drug 1 and drug 2, (ii) a resistant population, R;, that
is sensitive to drug 1 but resistant to drug 2, and (iii) resistant population, R, that is
sensitive to drug 2 but resistant to drug 1. The replicator dynamical system governing the
relative frequencies of (S, Ry, Ry) makes use of a 3 x 3 payoff matrix A of Prisoner’s Dilemma
type [52, 85, 7, 119]. We introduce chemotherapeutic schedules using time-dependent dosing
functions C(t), Ca(t) that alter the fitness levels of the sensitive cell population and the
two resistant populations independently allowing us to shape the fitness landscape of the
population of cells adaptively as the tumor evolves [40, 39, 107, 32, 37, 134, 34, 35]. Our
general goal in this context is to design schedules that delay tumor recurrence (re-growth)
due to competitive release of the resistant cell population [42, 17, 63, 58] and to quantify the

role of synergistic and antagonistic drug interactions in this process.
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To quantify the synergistic vs. antagonistic effects of the two toxins on the evolving
populations, we use a parameter e which we alter. When e > 0, the drugs interact synergis-
tically, when e = 0, the drugs are additive, and when e < 0, they interact antagonistically.
Level curves of the fitness profiles as a function of C; and Cs are shown in figure 4.1 which
can be compared with figure 1 of [50]. Details of how we define our fitness functions in the
context of our replicator model will be described in §II. In the neutral case, additive drug
interactions (figure 4.1(b)) accomplish exactly the kill rate that the sum of each of the two
would accomplish acting independently. By contrast, synergistic drug interactions (figure
4.1(a)) bend the curves inward, indicating that the growth rates (fitness) are lowered more
than the two dosages would accomplish independently, while antagonistic interactions (figure
4.1(c)) bend the curves outward, indicating that the growth rates are lowered less than the
two dosages would accomplish independently.

There is a large and dedicated literature on characterizing the interactions of many
different combinations of toxins on static cell populations. As far as we are aware, the first
comprehensive study of synergistic vs antagonistic effects was carried out by Bliss [14] in
1939, using joint probabilities, leading to a formula that is commonly called the Bliss index
for drug interactions. A similar but slightly modified criterion was introduced by Loewe [71]
and more recently developed further by Chou and collaborators [25]. These indices have all
been used to help quantify the many different types of interactions that can occur with two
or more toxins applied jointly in a static population of cells. In this context, it is common
to assume that synergistic interactions are desirable in most circumstances, as a lower total
dosage accomplishes the same Kkill rate as a higher dose would accomplish if the drugs acted
independently. These kinds of studies have been used effectively to choose appropriate drug
cocktails to individual patients by testing wide ranges of combinations on tissue samples
obtained from patient tumors [110].

When the interacting population of cells are evolving, however, the relevant criteria
become more complex. This is due to the fact that the subpopulations of cells respond

differently to the different toxins applied, and as they respond, an ever-changing (adaptive)
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Figure 4.1: (a) e > 0 showing synergistic profiles; (b) e = 0 showing additive profiles; (c)
e < 0 showing antagonistic profiles.

combination of toxins might be required to accomplish a given goal. Instead of necessarily
killing the maximum number of cancer cells with the least amount of toxin, it is often
the case that the goal becomes avoiding chemo-resistance and delaying unwelcome tumor
recurrence to the maximum extent possible. A strategy called resistance management [94]
is often advocated and occasionally implemented [10]. These kinds of strategies have been
advocated and implemented in chemotherapy settings [42, 39, 134, 37, 122, 121, 9], but
perhaps have been most elegantly and thoroughly carried out in a bacterial setting (since
experiments are more practical) by Kishony and collaborators [50, 76, 3, 100, 11, 57] who even
discuss strategies that might reverse antibiotic resistance [11]. See also [128] for recent work
discussing both microbial populations and cancer cells and [82, 131] for novel sequential
therapy methods. In the context of evolving microbial populations [70], mutations occur
frequently and it is important to consider not only pre-existing mutated subpopulations, but
also mutations that occur as a result of the application of antibiotic agents. In the case of
chemotherapeutic resistance in tumors, it is often assumed that resistant mutations occured

before the application of treatment, hence it is common to separate the subpopulations into
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sensitive and resistant subpopulations as we do in our deterministic model which does not
include further mutations during treatment. See [16] for further discussions of these and
related issues, and [53, 15| for discussions of the general approach of using evolutionary
game theory in biology.

In section §II we introduce the details of the three-component replicator dynamical system
that we use. Section §III describes the effects of constant chemotherapy schedules on the
evolving populations, using the range of values 0 < C; < 1, 0 < Cy < 1 (with a total dose
upper threshold C1+C5 < 1), along with our parameter e over a range of positive (synergistic)
to negative (antagonistic) values. We describe in detail the transcritical bifurcations that
occur and the tumor growth in response to the chemotoxins. In §IV we introduce adaptive
time-dependent schedules (C(t), Cy(t)) along with the parameter e with the goal of delaying
tumor recurrence and we discuss the rate of adaptation of the cell populations in this context.
Finally in §V we discuss the relevance of our model to the design of adaptive-therapy clinical

trials.

4.2 A three-component replicator system

4.2.1 Why the prisoner’s dilemma game?

To understand why the prisoner’s dilemma (PD) game is a useful paradigm for tumor
growth, consider a two-component system, with a population of healthy cells H, and a
population of sensitive cancer cells S, each competing for the best payoffs. The standard

version of the prisoner’s dilemma payoff matrix is:

a b 30
A= = , (4.1)
c d 5 1
where the first row corresponds to my payoffs if I choose to cooperate (associated with the

healthy cell population (H)) and the second row corresponds to my payoffs if I choose to

defect (associated with chemo-sensitive cells (S)). I am better off defecting than cooperating
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if my opponent cooperates (first column), since my payoff is 5 instead of 3. I am also better
off defecting than cooperating if my opponent defects (second column), since my payoff is
1 rather than 0. No matter what my opponent does, I am better off defecting. But my
opponent uses the same logic and comes to the same conclusion - that she is also better
off defecting, no matter what I do. The result is that we both defect and get a payoff of 1
(second row, second column) which is less than we would have gotten had we both cooperated
(payoff of 3). The fact that defect-defect is a sub-optimal Nash equilibrium (neither player is
better off by making a different choice) is the essence of the prisoner’s dilemma game [52, 85]
and the reason it is so widely used as the basis for modeling the evolution of cooperation in
many different contexts. For cancer cell modeling, the healthy cells are the cooperators and
the cancer cells are the defectors. Unlike other contexts in which game theory is used, cells
are not making strategic decisions, instead, their strategy is encoded in their reproductive
prowess, and selection is frequency dependent. In any mixed population ¥ = (2, zs)7,
0<axy<1;,0<zg5<1; 2y +xs =1, the fitness functions, f: (fu, fs)T, associated with

the two subpopulations are:

f= Az (4.2)
which in component form yields:
fs = (AZ)y =5 w5 +1-xg, (4.4)

while the average fitness of the total population is given by the quadratic form:

(fy = zTAZ =32} + brgrs + 0% > 1. (4.5)

The average fitness of the healthy state (zq,zs) = (1,0) is given by (f)|@,=1) = 3, while

that of the cancerous state (xg,zg) = (0, 1) is given by (f)|g=1) = 1, which minimizes the
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average fitness. For the static game, the cancerous state (v, rs) = (0,1) = p*7 is a strict
Nash equilibrium since p*7 Ap* > p? Ap*, for all p [52]. We can then embed this static game

into an evolutionary context using the replicator dynamical system [85]:

iy = (fu —(f))zu, (4.6)
is = (fs — (f))zs, (4.7)

from which (using values from eqn (4.1)) it is straightforward to show:

IiSS = iL‘S(l — $S)(2 — .735), (48)

with fixed points at zg = 0,1,2. The cancerous state (z; = 1) then becomes an asymptoti-
cally stable fixed point of the dynamical system (4.8) and an evolutionary stable state (ESS)
of the system (4.6), (4.7) which serves to drive the system to the strict Nash equilibrium
under the flow. The fact that this ESS also corresponds to the one with the lowest average
fitness is an extra feature of the PD game. For any initial condition containing at least one

cancer cell: 0 < 2g(0) < 1, we have:
(i) z¢ > 1, zg — 0as t — o0
(ii) (f) > 1ast — oc.

The first condition (and the structure of the nonlinear equations) guarantees that the can-
cer cell population will saturate at the carrying capacity of 1 in an S-shaped (logistic)
growth curve, while the second guarantees that this asmptotically stable carrying capacity
is sub-optimal, since (f)|zg=1) < (f)|@@y=1)- For these two reasons, the prisoner’s dilemma
evolutionary game serves as a simple paradigm for tumor growth both in finite population
models, as well as replicator system (infinite population) models [118, 119, 122, 114]. This

two-component system alone, however, is not able to account for the evolution of resistance.
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4.2.2 The three-component model

The model we employ is a three-component replicator dynamical system for the three

subpopulations of cells: (S, Ry, Rs) = (1, z2, x3)

iy = (fi = (f))z1, (4.9)
Ty = (fo — (f))z2, (4.10)
i3 = (fs — (f))xs, (4.11)

where each dependent variable represents the relative frequencies of cells, with z; + x5 +
r3 = 1. In these equations, f; represents the fitness of subpopulation ¢ = 1,2,3, while
(f) represents the average fitness of all three subpopulations. These equations then give
rise to the obvious interpretation that if a given subpopulation’s fitness is above(below) the
average, it grows(decays) exponentially - reproductive prowess is directly associated with the
deviation of the fitness of a subpopulation from the average fitness of the entire population.

The fitness functions are frequency-dependent (i.e. non-constant), which couples eqns

(4.9)-(4.11) nonlinearly. The subpopulation fitness f; (i = 1,2,3) function is given by:

fi = 1—w;+w(AZ); (4.12)
ai; Qa2 Qi3

A = Q21 Q22 A23 (4'13)

az1 asz g3

where A is a 3 x 3 payoff matrix which introduces the evolutionary game being played by x1,
x9, and z3. In this paradigm, the sensitive population (x) are the defectors (higher fitness)
and both groups of resistant cells (xo and x3) are the cooperators (lower, but not equal

fitness). We use 0 < w; < 1 as a parameter to determine the strength of selection in the
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system. When w; ~ 0, selection is relatively weak and the evolutionary game does not play a
big role in the balance of the three subpopulations. When w; ~ 1, selection is strong, and the
game plays a bigger role. Both of those limiting cases have been discussed in the literature
[129, 117], but the tumor response through the full range of values is poorly understood.
We use the selection parameters w; as our mechanism to introduce chemotherapy, by way of

altering the relative fitness of the three subpopulations:

wp, = U}()(l - Cl — CQ — 60102) (414)

Here, (' is the chemotherapy parameter associated with drug 1, Cs is that for drug 2, and
e is our synergy (e > 0) vs. antagonism (e < 0) parameter, and we take wy = 0.1 which sets
the timescale in our simulations. Level curves of the effective fitness functions defined by

eqns (4.14)-(4.16) are shown in figure 4.1. The average fitness of the population is given by:

(f) = hizi + foza + faxs. (4.17)

The condition for the payoff matrix A to be of (PD) type is:

ag < ap; < ag < G2 (4.18)
as1 < app < asz < ays (419)
a3 < Q9o < G333 < U923 (420)
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and for definiteness, we choose the specific values:

2 28 28
A= 115 21 23 (4.21)

1.5 1.8 2.2

For the static game, it is easy to show that the cancerous state (S, Ry, Ry) = (21, %2, 23) =
(1,0,0) = p*T is a strict Nash equilibrium in the absence of chemotherapy (C; = 0,Cy = 0)
and an ESS for the replicator system, as shown in the diagram of figure 4.2(a) where the
entire triangular region is the basin of attraction for the S population.

A seperate important ingredient in our model is our tumor-growth equation, which we

take as:

Ttumor = (<f> - g)*l'tumor (422>

where the growth(decay) of the tumor is a function of the average fitness associated with
the tumor minus a constant background fitness level ¢, associated with the surrounding
tissue (say healthy cells) and micro-environment [123]. When the average fitness level of
the population of cancer cells is higher than ¢, the tumor grows, and when it is lower, it
regresses. Our chemotherapy functions C; and Cy largely control this complex dynamic by

modifying the Nash equilibria and ESS’s of the system via the fitness function (4.12).

4.3 Constant chemotherapy

First, we examine the dynamical system for different constant levels of the chemo-
parameters C1, Cy (0 < C; < 1; 0 < Cy < 1; O+ Cy < 1) in the case of additive

e = 0 interations, synergistic (e > 0) interactions, and antagonistic (e < 0) interactions.

4.3.1 Additive interactions e =0

Figure 4.2 shows the panel of trajectories for three different scenarios. To start, figure

4.2(a) shows the trajectories with no chemotherapy — all trajectories lead to the S corner
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which saturates the tumor. In these figures, solid circles denote the ESS states, while open
circles denote the unstable states. Figure 4.2(b) shows trajectories with C; = 0,Cy = 0.8. In
this case, competitive release of the R; population allows it to take over the tumor, with all
trajectories leading to the Ry corner. For these parameter values, R is the ESS (and strict
Nash equilibrium) of the system. Figure 4.2(c) with C} = 0.8, Cy = 0 depicts competitive
release of the Ry population, with all trajectories leading to the Ry corner, showing that Rs
is the ESS of the system.

In figure 4.2(d) we plot three different constant therapy schedules together, showing how
they can intersect at different times. This gives the possibility of switching the therapies off
and on at the intersection times in order to create a trajectory that stays in a closed loop and
never reaches any of the corners — these closed loops represent scenarios in which the three
subpopulations stay in perpetual competition, driven by a time-dependent schedule that
shapes the fitness landscapes in such a way as to manage chemotherapeutic resistance. We
will describe the systematic construction of these closed loops in §4.4. Figure 4.3 shows the
tumor size (using eqn (4.22)) plotted logarithmically. The untreated tumor (C; = 0,Cy = 0)
grows exponentially, while each of the treated tumors initially show tumor regression up until
t ~ 75, then tumor recurrence due to chemotherapeutic resistance (either of the Ry or Ry
populations), an unwelcome common scenario. This scenario is clearly depicted in prostate
cancer data sets shown in [120] and widely discussed in the clinical literature. Our goal is to
show how specially designed adaptive multi-chemotherapies can push the tumor recurrence
point further to the right on these plots.

The full range of possible profiles are shown in figure 4.4. For certain ranges of chemo-
dosing, there are mixed basins of attraction to each of the corners, hence multiple evolution-
ary stable states of the system. In the top row, with C; = 0, the two critical values where the
ESS’s bifurcate are Cy = 1/3 (R; changes from unstable to stable via a transcritical bifurca-
tion) and Cy = 1/2 (S changes from stable to unstable via a transcritical bifurcation). In the
left column, with Cy = 0, the two critical values where the ESS’s bifurcate are C} = 7/18 (Ry

changes from unstable to stable via a transcritical bifurcation) and Cy = 1/2 (S changes from
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stable to unstable via a transcritical bifurcation). This panel shows the complexity associ-
ated with the stability and basins of attraction of the three tumor subpopulations even in
such a simple model, but also gives us the opportunity to exploit the inherent underlying
dynamics associated with the different trajectories using piecewise constant chemo-dosing

protocols.

C1=0 C2=0e=0 C1=0 C2=0.8 e=0
S S

.Converge toR,

[ IConverge to S

(a) (b)
C1=0.8 C2=0e=0
S

S |—C1=0.8,C2=0
—C2=0,C1=0.8
—C1=C2=0

.Converge toR

2

(c) (d)

Figure 4.2: Depiction of evolutionary stable states (ESS) for different chemotherapy values.
(a) With no chemotherapy, the tumor saturates to the S corner regardless of the initial
make-up of the three subpopulations. (b) With C; = 0, and Cy = 0.8, competitive release of
the resistant population R; drives all trajectories to the Ry corner. (c¢) With C} = 0.8 and
Cy = 0, competitive release of the resistant population Ry drives all trajectories to the Ry
corner. (d) Trajectories associated with three different constant combinations of Cy and Cs,
depicting the overlap of the trajectories at different times.
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Figure 4.3: Tumor growth curves (log-plots) for untreated and constant therapies. Tumor
recurrence (dashed line) occurs at ¢ ~ 75 dimensionless time units.

4.3.2 Non-additive interactions

Using the panel in figure 4.2 as our guide, we focus in more detail on the values C; = 0.35,
Cy = 0.27, comparing the effects of synergistic interactions and antagonistic interactions with
values e = —0.4, —0.3,—-0.2,—-01.,0,0.1,0.2,0.3,0.4 in figure 4.5. For strongly antagonistic
interactions (e = —0.4, —0.3, —0.2), only the two subpopulations S and Ry compete for dom-
inance (both ESS), with the R; population being an unstable state. For strongly synergistic
interactions (e = 0.2,0.3,0.4), the two subpopulations R; and Ry compete for dominance
(both ESS), with the population of cells S sensitive to both drugs being an unstable state.
It is the intermediate regime e = —0.1,0,0.1 that is the most interesting, and has all three
evolutionary stable populations competing for dominance (all three ESS) with intertwined
basins of attraction for each. We examine the details of the bifurcations that occur between

the two-species co-existence and three-species co-existing states next.
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Figure 4.4: Panel showing the full range of trajectories, ESS and their basins of attraction for
constant additive therapies in the range 0 < C; < 1,0 < Cy < 1, ¢ + Cy < 1. Bifurcation
values along top row are Cy = 1/3, Cy = 1/2. Bifurcation values along left column are
C,=T7/18, Cy =1/2.

Transcritical bifurcations

In figure 4.6, we focus on the range of antagonistic values e = —0.21, —0.19, —0.175, —0.15
for fixed values of € and C5. The relevant bifurcation that occurs at the critical value
el = —310/1701 = —0.1822 takes place at the R; corner, when the fixed point R, = 1
goes from unstable (e < e(*)) to asymptotically stable (e > e(®) in a transcritical bifurcation

(exchange of stability). Through the bifurcation point, a stable fixed point (shown in figure

4.6(a) outside the triangle below R;) moves up the Ry — S side of the triangle (Ry = 0),
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Figure 4.5: The effect of synergy (e > 0) vs. antagonism (e < 0) on the ESS and the basins
of attraction for a fixed choice of constant combination therapies C; = 0.35, Cy = 0.27. (a)
e=—04; (b) e=—-0.3; (¢c) e = —0.2; (d) e = —0.1; () e = 0; (f) e =0.1; (g) e = 0.2; (h)
e=0.3; (i) e = 0.4.

and exchanges stability with the fixed point at the R, corner. In figure 4.7 we show the
details of the collision of eigenvalues that takes place (figure 4.7(a)) and the process in the
dS/dt vs. S plane (figure 4.7(b)-(e)). Figure 4.7(b) shows the classic transcritical bifurcation
diagram (see [109]). When the level of antagonism is sufficiently large, there are only the
two evolutionary stable states S and Rs.

In figure 4.8 we highlight the bifurcation that takes place in the synergistic regime around

values e = 0,0.1,0.2,0.3 for fixed values of C; and C5. The transcritical bifurcation occurs
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at the critical value e{®) = 30/189 = 0.1587 takes place at the S corner, when the fixed point
S = 1 goes from unstable (e > e{*)) to asymptotically stable (e < e(*)). In figure 4.9 we show
the details of the bifurcation diagram that governs this synergistic transcritical bifurcation.
When the level of synergism is sufficiently large, there are only the two evolutionary stable
states Ry and R,.

In figure 4.10 we show the areas of three basins of attraction through the full range of
values —0.3 < e < 0.3. The basin areas begin to rapidly change in the antagonistic regime
at e = —0.2 and, in general, show much more sensitivity to changes in e in the antogonistic
regime than the synergistic regime.

Figure 4.11 shows the average fitness curves (figure 4.11(a)) and tumor growth curves
(figure 4.11(b)) through a range of values of e. Notice, in the beginning, the average fitness
of the antagonistic case e = —0.3 is higher, but ends up lower over time. The tumor growth
curve in this case follows the same trend - initially tumor growth is highest, then ends up
lowest. Tumor recurrence time for the antagonistic case is also pushed later in time (¢ ~ 300)

showing the effectiveness of antagonistic drug interactions in terms of managing resistance.

4.4 Designing adaptive schedules

Many new possibilities can be created with time-dependent chemoschedules C(t), Co(t),
if we monitor the balance of the subpopulations and adaptively make changes at judiciously
chosen time points. The basic idea is shown in figure 4.2(d) where we see how the trajectories
associated with different constant chemotherapy schedules cross. At any of the crossing
times, it is possible to switch from one trajectory to another by switching the values of C; or
(5 at those crossing times (typically termed bang-bang control [64]). This basic procedure
allows us to design schedules that take us from any point A in the triangle to any other
point B along the legs of a path that are separated by the switching times. Using multiple
time-switching, we can also design trajectories that form closed loops and never converge to

any of the corners.

71



C1=0.35 CZ=SO.27 e=-0.21 C1=0.35 C2§O.27 e=-0.19

|_|Convergeto S
[l Converge to R2

| |Convergeto S
[ Converge to R2

(a) (b)

C1=0.35 C2=0.27 e=-0.175 C1=0.35 C2=0.27 e=-0.15

| |Convergeto S S | IConvergeto S S
[iConverge to R q [l Converge to R 1

i Converge to R2 [l Converge to R2

(c) (d)
Figure 4.6: The opening of the basin of attraction for R; via a transcritical bifurcation at
e = —310/1701 = —0.1822, C; = 0.35, Cy = 0.27. At the bifurcation point, the areas of the
basins of attraction of the respective regions are S = 76.2%, Ry = 13.8%. (a) e = —0.21; (b)
e=—0.19; (¢) e = —0.175; (d) e = —0.15.

Figure 4.12 shows examples of how closed (piecewise differentiable) orbits are designed
in practice. In each of the figures, point O is fixed, as is the untreated (blue) curve with
Cy =0, Cy = 0. Consider the loop OABO created figure 4.12(a), with additive interaction
parameter e = 0. In traversing the OA leg, we use C} = 0.5, C5 = 0.2. When the trajectory
reaches point A, we switch to C; = 0, Cy = 0, i.e. no therapy. When we reach point B, we
switch to C7 = 0.2, Cy = 0.5 until we reach point O, and then we start the schedule again to

traverse the same loop as many times as we desire. The dose density plot is shown in figure
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Figure 4.7: Four ways of depicting the antagonistic transcritical bifurcation. (a) Eigen-
value collision that takes place as the two fixed points collide at the R; corner. The other
eigenvalue remains negative for both fixed points; (b) Transcritical bifurcation diagram; (c)
Pre-bifurcation phase plane; (d) Bifurcation phase plane; (e) Post-bifurcation phase plane.

4.12(b). Figures 4.12(c),(d) uses the same dosing values, but with e = 0.3 (synergistic).
The loop in this case is larger (encloses more area), so there is a larger deviation in the
subpopulations throughout the loop than there was for the additive case. Figure 4.12(e),(f)
shows an example of an antagonistic e = —0.3 adaptive therapy loop. Table I shows the
total dose D, time period T', and average dose D/T for each case. The antagonistic adaptive
loop delivers the smallest total dose over the shortest time-period to achieve one closed loop,
whereas the synergistic adaptive loop delivers the smallest average dose over the loop, since
the time-period is longest.

Figure 4.13 shows the tumor growth curves for each of the adaptive schedules as compared

with the untreated growth curve (exponential growth), and constant therapy curve (each

73



C1=0.35 C2=0.27 e=0 C1=0.35 C2=0.27 e=0.1
| _IConvergeto S S [ _IConvergeto S S
Converge to R, [Converge to R,

[ Converge to R, [Converge to R,

C1=0.35 C2=0.27 e=0.2 C1=0.35 C2=0.27 e=0.3
(]

.Converge toR 1 .Converge to R1
.Converge toR, .Converge toR,

Figure 4.8: The closing of the basin of attraction for S via a transcritical bifurcation at
e =30/189 = 0.1587, C; = 0.35, Cy = 0.27. At the bifurcation point, the areas of the basins
of attraction of the respective regions are Ry = 72.3%, Ry = 17.7%. (a) e = 0; (b) e = 0.1;
(c) e=0.2; (d) e=0.3.

e -0.3 0 0.3

D | 118.23 | 119.42 | 120.47

T 178.7 | 192.5 | 206.7
D/T | 0.6616 | 0.6204 | 05828

Table 4.1: Total dose (D), Time period (T), and Average Dose (D/T) associated with adap-
tive therapies with antagonistic, additive, and synergistic drug interactions.

shows tumor regression followed by recurrence). In each case, the adaptive loop overcomes
recurrence, with the antagonistic schedule minimizing the tumor re-growth leg (AB) of the

schedule.
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Figure 4.9: Four ways of depicting the synergistic transcritical bifurcation. (a) Eigenvalue
collision that takes place as the two fixed points collide at the S corner. The other eigen-
value remains negative for both fixed points; (b) Transcritical bifurcation diagram; (c) Pre-
bifurcation phase plane; (d) Bifurcation phase plane; (e) Post-bifurcation phase plane.

A final metric that we use for comparisons is the rate of adaptation of the subpopulation

1, defined by:

a;(t) = 1/; z;(s)ds, (4.23)

which is the time-average of subpopulation level x;(t).

Figure 4.14 shows the rates of adaptation associated with the two resistant subpopulations
Ry and R, during the course of the adaptive schedules. Notice the rate of adaptation is lowest
for the antagonistic interaction, which is the main reason the tumor growth curve in figure
4.13(c) is most effective at controlling and delaying tumor recurrence as the cell population

evolves.
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Figure 4.10: Areas of the three basins of attraction as a function of the parameter e. Note
the sensitivity of the S and R; regions in the antagonistic regime —0.2 < e < —0.1.
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Figure 4.11: (a) Average fitness curves for e = 0.3,0.15,0,—0.15, —0.3; (b) Tumor growth
curves (log-plot) for e = 0.3,0.15,0, —0.15, —0.3.

4.5 Discussion

The role of synergistic vs. antagonistic combination drug interactions on the dynamical

balance of evolving subpopulations of cells is not simple to characterize. In general terms,
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Figure 4.12: Closed loop adaptive schedules OABO using three cycles for e = 0,0.3, —0.3.
(a)e = 0, OA: Cl = 0.5,C2 = 02, AB: Cl = 0702 = O, BO: Cl = 0.2,02 = 05, (b)
Corresponding adaptive schedule; (¢) e = 0.3, OA: C; =0.5,Cy = 0.2, AB: C;, =0,Cy =0,
BO: €y = 0.2,C5 = 0.5; (d) Corresponding adaptive schedule; (e) e = —0.3, OA: C) =
0.5,Cy = 0.2, AB: C; = 0,Cy =0, BO: C; = 0.2,Cy = 0.5; (f) Corresponding adaptive

schedule.
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Figure 4.13: Tumor growth curves for the adaptive schedules from figure 4.12 as compared
with untreated growth (exponential) and constant schedule which eventually leads to tumor

recurrence. (a) e =0; (b) e =0.3; (¢) e = —0.3.

antagonistic interactions are able to exert a more targeted and subtle range of influences

on an evolving population than synergistic ones which, roughly speaking, cause the two

drug combination to effectively act as one. This limits their flexibility for designing effective

strategies to manage resistance, although might be useful in producing a bigger killing effect
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Figure 4.14: Rates of adaptation for e = 0,0.3,—0.3: (a) R; rate of adaptation; (b) Ry rate
of adaptation; (c) x; rate of adaptation; (d) x rate of adaptation;

with a smaller dose. As a by-product of the ability to deliver a more nuanced effect on the
balance of cells, the sensitivity to small changes in the relative doses of the two drugs in
an antagonistic setting seems to be higher than in a synergistic setting (as shown best in
figure 4.10). This, perhaps, makes these interactions harder to control. Tumor recurrence
times for the antagonistic drug interactions are delayed more effectively than for synergis-
tic interactions, consistent with the fact that adaptation rates are slower for antagonistic
interactions. Anatagonistic drug interactions provide more flexibiility in designing adaptive
resistance management schedules. Additional features to our model could be the introduc-
tion of mutations that might occur in response to the chemotherapy, which potentially could
be handled using a mutational replicator system [85], or a finite-cell Moran process based
model [118]. Tt might also be possible to analyze existing individual patient data and tumor
response curves (as was done in [120]) to design and optimize better multi-drug strategies
retrospectively, which is ongoing by our group. There are also ongoing adaptive multi-drug

clinical trials at the Moffitt Cancer Center that show promise in prostate cancer patients.
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Chapter 5

Optimal control of evolutionary games: The two-by-two

case

In this chapter, we focus on the optimal control problem in the replicator system with
two species competing based on evolutionary games. The control u(t) in this problem repre-
sents an external/manual factor that alters the fitness landscapes, thus it alters the entries
of the payoff matrix and changes the game type the species play. Additionally, we place
an extra constraint on the integral of the control u(t), which indicates the external effect
could only function for finite time. After the Pontryagin Maximum Principle is applied to
the dynamical system according to an appropriate payoff function, we find that the stan-
dard replicator equations and the adjusted replicator equation may have different behaviors.
For example, if we want to minimize the final frequency of the defector in the Prisoner’s
dilemma game, the standard replicator equation always has bang-bang control as optimal,
while the adjusted replicator equation may have a very complex time-dependent function
as the optimal solution. However, the adjusted replicator equation is a nonlinear re-scaling
of the replicator equation. The comparison between two replicator systems highlights that
adjusted replicator equations differs from the standard replicator equation when the timing
is sensitive, especially in optimal control problems. The solution to this optimal control
problem, therefore, helps to build the proper models for each individual problem in evolu-
tionary games and it could contribute to the drug-scheduling, adaptive therapy, or resistance

prevention when these models are applied to clinical data.
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5.1 Introduction

In an evolutionary process, the final outcome may not be ideal. It is desirable to develop
a control theory framework for the evolutionary process in order to select for particular
phenotypes or genotypes [28]. Then modeling and optimizing this whole process requires
control and optimal control techniques, and there are a lot of applications reported, such as
prey-predator system|[101], drug dosage design and resistance prevention[55, 13], or coopera-
tion networks|[2]. Particularly, a lot of literature have discussed about optimal chemotherapy
scheduling for cancer with differential equations[73, 111, 125, 79, 22], or stochastic birth
death process[126, 26].

This paper is also inspired by the optimization for chemotherapy, but we keep the analysis
general, without including much detail associated with cancer modeling. In section 5.2 we use
an evolutionary game model[108] to determine the fitness landscape of the two competing
species. The control u(t) alters the fitness, thus it actually change the game type and
the corresponding evolutionary stable strategy[108, 85, 52]. The system is then evolved
with standard replicator equations or adjusted replicator equations. After that, we use the
Pontryagin Maximum principle[67, 66, 98, 113] to find out the optimal control of the dynamic
system in section 5.2.2.

In section 5.3, we analyze the properties of the optimal control, and we find that standard
replicator equations and adjusted replicator equations may have different behavior. With
appropriate target function for optimization, the standard replicator will have bang-bang
control to be optimal, while the adjusted replicator equations may have more complex time-
dependent optimal control. Numerical simulations of a prisoner’s dilemma game[87, 85, 52]
are provided in section 5.4. Because the Prisoner’s dilemma game has the defector as the
Nash equilibrium[87] while the defector is not optimal for maximizing payoff, we use the
Prisoner’s dilemma game as a cancer model[124] and controlling the defector is analog to
controlling the tumor. Numerical results shows that standard replicator equation always has
bang-bang optimal control to minimize the final defector. However, when the average fitness

increases with the control value, the adjusted replicator equation will have a slowly increasing
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function as the optimal control. The adjusted replicator equation has been proved to be the
continuous limit of the Moran process[114, 115], and similar results has been reported[126]
that high entropy performs the best with Moran process simulation. The reason of the
difference is explained in section 5.45. High average fitness will weaken the effects of the
control, and the bang-bang control in this case has the highest fitness when u(t) = 1, so it

won’t be optimal any more.

5.2 model

5.2.1 evolutionary games and replicator dynamics

Now consider there exist two competing species with x; and x5 as the individual frequency,
so the sum always equal to one x1 + x5 = 1. The selection is based on the fitness landscape

of the system, and the individual fitness is determined by the 2-by-2 payoff matrix A:

fi = (AD) (5.1)
a a

A - 11 12 (5.2)
Q21 Q22

where 7 = [z1,75]T and i = 1,2.Suppose u(t) is the control for the system, and it could be
any external influence such as drugs for some disease, disinfection for the bacterial, foods for
one single animal, etc. The value of the control u(t) is always positives but smaller than 1
at any time.

0<u(t) <1 (5.3)

The fitness will be altered when the control u(t) is none zero. Without losing generosity,
we assume the altered selection tends to be in favor of x;, which means it will either reduce
the fitness of x5 or increase the fitness of x;. Suppose the change of fitness is proportional

to the control and the coefficient is the linear combinations of the frequencies as shown in
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eq.b.4.a; and ay are constant. There’s no constant in the coefficient because adding any

constant is equivalent to adding it to both a; and as.

Af = (o121 + aaxs)ult) (5.4)

First if fy is reduced by Af, then let’s denote the altered fitness as f2/. Because of the
change of the fitness landscape, the game type, indicated by the new payoff matrix A, is
varied as well. Reducing the fitness of the z5 is equivalent to reducing the entries in the
second raw. Similarly, if f; is increased, then entries in the first row of the payoff matrix

will be increased as well.

aii a12

fi = fh-Afes A= (5.5)
_0,21 — U Ay — O{QU_

ail +oau agp + QU

it Af e A= (5.6)

21 22

S

Once we construct the fitness landscape, the system is simulated with either the standard
replicator equation or the adjusted replicator equation. It is worth pointing out that both
of them can be transformed into an single variable ODE by eliminating x;. We will use this

result to simplify our system later.

T = (fi — (f))xi (5.7)

First let’s consider the standard replicator equation in eq.5.7 where (f) = fix1 + foxs is
the average fitness. It’s quite simple to combine the formula of the fitness with the replicator

equations. In eq.5.8 the standard replicator equation is rewritten with single variable x,.
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Here we only put one single equation because increasing f, and reducing f; by Af lead to

the same ordinary differential equations, thus the same trajectory.

To = (ag —an —oqu(t))(l — x2)2x2 (5.8)
+(a22 — a12 — O[QU(t))(l — $2)$22 (59)
o= fh—Afefil = A+Af (5.10)

However, if we take the adjusted replicator equation in eq.5.11 for the simulation, we
can find that increase f5 or reducing f; are quite different because of the average fitness
(f) in the denominator. In the next section we will discuss both for the adjusted replicator

equation.

- Uim),
Ti = 7 (5.11)
o= h-Afe i =fH+Af (5.12)

Since the control u(t) goes against xo, if we aim at minimizing the population of x5 and
there’s no extra constraint on the control u(t), the optimal control will simply be u(t) = 1
for all time. In reality, for example about drug scheduling, the total dosage the patient can
take with a period is limited, and the task for the doctor is to distribute drugs over time for

the patient. Therefore the extra constraint in eq.5.13 is put on the integral of the control

u(t).
/OT u(t)dt = D (5.13)

Where D is a fixed constant and 7" is the terminal time. For simplicity, we denote x5 as

x as the single variable in the remaining sections.

r = 1o (5.14)

rn = l—x (5.15)
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5.2.2 Pontryagin Maximum Principle

The Pontriagin Maximum(Minimum) Principle[67, 66, 98, 113] is a widely used method
to solve optimal control problem. Assuming that our target is to minimize a general cost

function in eq.5.16

minimize : /OT L(x(t), u(t), t)dt + ¢(x(T)) (5.16)

The standard form for the Maximum Principle is applied for dynamic system with boundary
value constraint, so we need to convert the integral constraint in eq.5.13 into the standard
form. Eq.5.17 defines a new variable d(t) so that the constraint is transformed into an ODE
with two boundary values. Together with the standard replicator equation the new dynamic

system is constructed in eq.5.21.

d ()= [ u(s)ds (5.17)

d (t) = u(t) (5.18)

d (0)=0 (5.19)

d (T)=D (5.20)

X = F(X) (5.21)
X = [z(t),d@®)]" (5.22)
F(X) = [(fo= (Mz,u®)]” (5.23)

If we use the adjusted replicator equation rather than the standard ones, we only need

to update F(X):
F(X)= [(<f2<_f><f>)a:,u(t)] (5.24)
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Then following the notations from [113], we construct the Control Theory Hamiltonian

as eq.5.25. A1 and Ay are the co-state function, or in Physics they correspond to momentum.

H(z,d, A\, \p,u) = N F(z)+ L(z,u,t) (5.25)

A= )" (5.26)

Assuming that u*(t) is the optimal control for this problem, with corresponding trajectory
x*(t), d*(t), there exist co-state functions \;*(¢) and Ay"(¢) that satisfy the canonical equation

5.27

(1) = o (5.27)

&) = OH (z*(t), d*(b), aA;;‘(t), A" (1), u(t)) (5.28)
() = - 2HE@ (0, &), g;*(th*(t)’u(t)) (5.29)
A ) = L OH(x (1), d* (1), 22*@), Ao (1), u(t)) (5.30)

z(0) = o (5.31)
d(0) = 0,d(T)=D (5.32)
i) = 26D s

At any time point, the optimal control u*(¢) will minimize the Control Theory Hamilto-

nian as shown in eq.5.34

w(t) = arg min H (™ (), d*(£), \ (), o™ (1), u(t)) (5.34)

Now the optimization problem turns into the two-point boundary value problem, and the

solution will be the optimal control and the corresponding trajectory.
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5.3 Results

Now consider the case where the function L only has explicit dependence on the trajectory
L = L(z(t)). We can use eq.5.34 to find some useful properties of the optimal control
function u*(¢). For standard replicator equation and adjusted replicator equation, we denote

the Control Theory Hamiltonian as Hyq and H,g respectively in eq.5.35 and 5.36

Hugy = )\1(fQ<_f><f>)x + Xou + L(z(t)) (5.36)

In addition, the f; and f are affine functions of the control u(t) no matter how you alter the
fitness, thus the average fitness (f) is also an affine function of u(t). As a result, so does the
Control theory Hamiltonian H,y for the standard replicator equation. To minimize Hy,
the optimal control «*(¢) depends on the sign of %. It % # 0 holds almost everywhere,

the then optimal control will be the bang-bang control.

0 2w >
u*(t) = (5.37)
1 s <

For the case of the adjusted replicator equation, things are more complex and hard to see
the minimal values of H,4. Finding the minima is first step by taking the partial derivative

of u(t) and setting it to 0 in eq.5.38:

OH o a((f)o — pAUDY  xo(f)?
du (f)*
-0 (5.39)

(5.38)

As mentioned in section 5.2 f1, fo, (f) are all affine functions of wu(t), so the solution to the
minima in eq.5.38 is actually solving a quadratic equation. Also the minima may not be the

global minimal. The control is bounded between 0 and 1 so even if the minima falls within
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the range, we still have to compare the minima with the boundary value at 0 and 1. In
conclusion,it’s possible that the optimal control w*(t) is still bang-bang control, but for some
cases it may be some value between 0 and 1, different from the standard replicator equation.

We will give an example in section 5.4

5.4 discussion

Now we consider the case of chemotherapy dosage scheduling for cancer. The game
between the cancer cells and surroundings healthy cells is a Prisoner’s dilemma game[124]
in eq.5.40. The cancer cells play as a defector and the healthy cells are the cooperator. In a
Prisoner’s dilemma game the defector, thus the cancer cell, is an evolutionary stable strategy
(ESS) and Nash Equilibrium (NE)[87, 85, 52], but the average fitness for all cancer cell will
be lower than the one with all healthy cells. We want to find the optimal scheduling of
the chemotherapy w*(¢) so that the frequency of cancer cells is minimized at the end of the

therapy. The corresponding cost function is updated as eq.5.41

30
A= (5.40)
41
L =0 (5.41)
px(T)) = =(T) (5.42)

5.4.1 f5 decrease

Now we consider the altered game in eq.5.43, and the fitness of the cancer cells is reduced
with a1 = 5 and ay = 0.When u > 1/4, the game type changes from prisoner’s dilemma
game to coordinate game, and x = 1 becomes an evolutionary stable strategy for the system.
Before we find the optimal solution for this problem,I want to introduce two pre-determined

therapy schedule. One is the Maximum tolerated Dose (MTD), which provides the patient
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as high dose as possible in the beginning then stops the drug, and the Low dose Metronomic

therapy, which gives the patient constant dosage throughout the treatment.

A = (5.43)

Pre-determined! schedule
—MTD
08 = 'LDM

0 0.3 0.6 0.9
time

Figure 5.1: Schema for the Maximum tolerated Dose (MTD) and Low Dose Metronomic
(LMD) schedule. The integral of these two schedule are the same.

Fig.5.1 is an example of the MTD versus LDM with T'= 1, D = 0.3. The corresponding
numerical simulations are in Fig.5.2. We can see that in this case the MTD works better
than the LDM for both standard replicator equation and adjusted replicator equation. We
know that unless singular control exists, bang-bang control will be optimal for standard
replicator equation. After solving the two point boundary value problem from eq.5.27, the
optimal control for both ODE system is the bang-bang control, and the schedule is exactly
the same as the MTD therapy in Fig.5.1. The corresponding trajectory x*(t), therefore, is
just the same as the MTD curves in Fig.5.2(a) and Fig.5.2(b).
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Figure 5.2: Simulation results with D = 0.3,7 = 1,2(0) = 0.1 and payoff matrix in eq.5.43
(a) the corresponding trajectory for MTD and LDM simulated by standard replicator equa-
tion.(b)the corresponding trajectory for MTD and LDM simulated by Adjusted replicator
equation.

Optimal schedule

0 0.3 0.6 0.9
time

Figure 5.3: Bang-bang optimal control for both standard replicator equation and adjusted
replicator equation

89



5.4.2  f; increases

However, as we discussed in section 5.3, the bang-bang control may not be optimal for
adjusted replicator equation. Here we consider increasing the fitness of x; by the same
amount as in section 5.4.1, and the new payoff matrix is shown in eq.5.44 with increased

entries in the first row.

, 3+4u(t) 0
A = (5.44)

4 1

Because we have proved in section 5.2 that the increasing the first row or decreasing the
second row are the same for standard replicator equation, the corresponding trajectories
for MTD and LDM schedule should be identical to Fig.5.2(a). The optimal control for the
standard replicator equation will just be bang-bang control, the same as Fig.5.3, so we will
focus on the Adjusted replicator equation for this section.

Fig.5.4 is the trajectories simulated with adjusted replicator equation with D = 0.3,7T =
1,2(0) = 0.1. Contradictory to what we get in section 5.4.1, the LDM method works better
than MTD schedule so the MTD is no longer the optimal control. Similar results simulated
by Moran Process has been reported that high entropy schedule, correlated with LDM meth-
ods, outperform other schedules. After we numerically solve the two point boundary value
problem in eq.5.27 based on Pontryagin Maximum principle, we have the optimal control
u*(t) and trajectory x*(t) in Fig.5.5

The optimal control u*(¢) is non-trivial in this case as an slowly decreasing function, but
the value is always close to 0.3 so it is more similar to the LDM schedule and that’s the
reason why the LDM has better performance than MTD method, or the regular bang-bang

control.
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Figure 5.4: Simulation results with D = 0.3,7 = 1,2(0) = 0.1 and payoff matrix in eq.5.44
with Adjusted replicator equation.

" optimal control u*(t) 5.7 trajectory x*(t)
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= = 041
03 0.09
0 0.08 ‘ : :
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Figure 5.5: (a)optimal control u*(t) for adjusted replicator equation (b) the corresponding
trajectory z*(t)
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5.4.3 Time re-scaling

To convert the adjusted replicator equation to the standard replicator equation, we need

the transformation[114] for the timing in eq.5.45

ds = w (5.45)
L e, (5.46)

This transformation actually varies the time structure, so after that the terminal time T" and
the integral value D are varied as well. Eq.5.47 provides the new terminal time as T's and
Eq.5.48 gives the new integral under the new time coordinate s. We can see that if the average
fitness (f) increase a lot when the control u(t) increases, then after the transformation the
time range of high u(s) value will be shorten, the integral of dose value u(s) is also reduced.
For example, for bang-bang control, the new time range for u(s) = 1 will be relatively shorter
but the new time range for u(s) = 0 will become longer. That’s why in section 5.4.2 the
bang-bang control doesn’t work very well because increasing the control u(t) dramatically
increases the average fitness (f). In the other hand, if the average fitness (f) decreases with

the control u(t), the bang-bang control could be enhanced.

T _ OTS dsz/OT{?) (5.47)
D = /OT u(s)ds — /OT “i?;ﬁ (5.48)

5.5 Conclusion

In this paper we solve the optimal control problem for 2-by-2 evolutionary game evolving
with standard replicator equation or adjusted replicator equation. After we simplify the
problem into the standard form, the optimal control is found by the Pontryagin Maximum
principle. We take the prisoner’s dilemma game as the numerical example and the standard

replicator equation always has bang-bang control as optimal to reduce the defector, while

92



the adjusted replicator equation, possibly Moran process as well, may have a no-trivial time
dependent function as optimal control, especially when the average fitness of the system
increases with the control value. This results take a deeper insight into the evolutionary
game models, and it will potentially help to find the optimal drug scheduling as a medical

problem.
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Chapter 6

Optimal control of levitation by blowing

Is it possible to levitate an object with constant blowing? We show that it is not possible
to levitate the object from the origin to a pre-specified height z* using constant blowing,
because the point at which the downward gravitational force balances the upward blowing
force is an elliptic fixed point of the governing equations, so there is no transfer trajectory that
connects the origin to z*. To overcome this, we design time-dependent blowing schedules that
achieve the transfer borrowing on orbital transfer ideas developed in the orbital mechanics
literature. Then we ask which of these schedules are optimal. We show that, generally,
it is bang-bang (on-off) blowing schedules that achieve the transfer in minimal time, using
minimal energy, and minimal air volume. For certain parameter values, however, there are
more complicated blowing schedules that are optimal (with respect to energy) which can be
designed using the Pontryagin Maximum Principle (PMP) and singular control. The model

we describe is frictionless and treats the object (i.e. a ping-pong ball) as a point mass.

6.1 Introduction

Is it possible to levitate a ping-pong ball from rest to a fixed height by constant blowing?
At first glance, one might imagine the answer is as simple as supplying a blowing force
from below that exactly balances the gravitational force pushing down at the height z*
where you want the ball to levitate as shown in figure 6.1. An experiment, such as the one
shown here: https://www.youtube.com/watch?v=bCRjPFh1SYk might even confirm that it

is achievable, until one examines the problem more closely. Let the ball start from rest, at
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x = 0 where the blower is located. If one supplies a constant blowing force that is required
to balance the ball at height x* > 0, it turns out, surprisingly, that it is not possible to
drive the ball to the position required for the forces to balance. We will show why, and
describe how to overcome the problem by using non-constant blowing schedules designed
appropriately. We formulate the problem as one in nonlinear dynamics and optimal control
and show how some blowing schedules are better than others. The methods are borrowed
from orbit transfer ideas developed initially in the orbital mechanics literature [60] in which
intersecting phase space trajectories at different fixed parameter values are pieced together
by switching from one parameter value to the other at precisely the time at which the
trajectories intersect, creating a time-dependent control protocol that drives the system to a
desirable state not achievable without the switching time. This idea is also currently being
developed to design time-dependent chemotherapeutic schedules that achieve better results
than standard protocols, making use of the replicator dynamical system as a tumor growth
model in the context of evolution. In this paper, our goal is to use the simplest possible
model to elucidate how the method can work in settings more commonly developed using
more standard control theory ideas, and we show that the methods yield equivalent results.

Using air to levitate objects (as opposed to acoustic or magnetic levitation) is a common
method of conveyance and has been explored in micro-manufacturing settings as discussed in
[59], but to our knowledge, the observation that non-constant blowing is required to levitate
to a fixed height has not been discussed in the literature. Reference [24] discusses the design

of a low-cost air levitation system for teaching control engineering.

6.2 The model

The model we consider is the simple dimensionless nonlinear system:

mi = —mg + mgb(t) exp(—ax) (6.1)
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Figure 6.1: Ping-pong ball levitated by blowing through a straw. The streaming air blows
upwards along the positive x direction against the gravity. x* marks the equilibrium posi-
tion where the forces balance. For full video, see https://www.youtube.com/watch?v=
bCRjPFh1SYk

Here, b(t) is a dimensionless blowing parameter (proportion to amount of air per unit of time)
that we will use to levitate the ball from rest (v(0) = 0), z(t) is the vertical height, m is
mass, and « > 0 is a constant that controls the distance over which the blower’s influence
is felt. The ball starts at position z(0) = 0 where the blower is located, as shown in figure
6.1 and the goal is to levitate it to height marked z*. Our assumption in (6.1) is that the
influence of the blowing decreases exponentially from the location of the blower (z = 0), but
our results are not sensitive to that choice, as long as the influence decreases monotonically
with height. We also assume there is no frictional loss of energy as the ball levitates and that

the ball does not rotate, hence we treat it as a point mass.We emphasize that our model is
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simple in that it does not take into account the detailed fluid mechanical forces and dynamics
at the jet-ball contact point (that would create such effects as dissipation and rotation of
the ball). Our model is just complex enough to show that (i) it is not possible to drive
the ball from its resting state at the base to the levitated state at height z* with constant
blowing, and (ii) it is possible to drive the ball from its resting state to the levitated state by
piecing together time-dependent blowing schedules with precise switching times determined
from crossing phase-space trajectories. To levitate the ball, the upward blowing force must
exceed the downward gravitational force at © = 0, which implies that the right hand side of
eqn (6.1) be greater than zero (at x = 0). The condition for this is that b > 1.

The governing Hamiltonian for the system is given by:

1 bexp (—
Hiw,v) = Smu? 4+ mga + 9 exz( ) _ g, (6.2)

where we highlight the fact that b is a parameter we will vary in order to change energy
values. Notice for fixed x and v, it is evident that Ej,, > Ej,, when by > by since eqn (6.2) is

linear in b. The corresponding Hamiltonian equations of motion are:

OH

mE = oo =mu (6.3)
mo = —aalz = —mg + mgbexp(—ax). (6.4)

For any given b, the forces balance (i.e. acceleration is zero) when:

r=x"= (6.5)

where the right hand side of eqn (6.1) is zero. With the condition b > 1, the equilibrium

position is positive x* > 0.

97



The phase space diagram in the (z, v) plane, obtained from plotting level curves H(x,v) =
Ey = constant, is shown in figure 6.2(a) for different energy values. The elliptic fixed point
where the forces balance correspond to:

B = H(z*,0) = L (In(b) + 1). (6.6)

!
At the origin where the blower is located, the energy value is:

mgb

E) = H(0,0) = —= > E. (6.7)

We show in figure 6.2(b) curves EY for increasing values of b. We also show in figure 6.2(c)

the family of free-fall trajectories (b = 0) associated with energy values Fy = %va + mgzx
which start at (z,v) = (0,v").

To compute the point z,,,, shown in figure 6.2(a), we follow the phase curve that passes
through the origin to the point x,,.., using the fact that the Hamiltonian is constant, which

gives rise to the transcendental equation for x,,q.:
AT maz = O(1 — exp(—aTinaz))- (6.8)

The left and right sides of eqn (6.8) are plotted in figure 6.2(d) where the intersection defines
Tmaz- Because x* is an elliptic fixed point, it is not possible to traverse from the origin to
this point on a phase curve, i.e. there is no constant energy trajectory that passes both
through the origin and z*. Instead, the levitating ball starting at the origin will reach height
Tmaz > ¥, then drop back down to the origin in a periodic orbit, always overshooting height
x* where we want to position the ball.

For future use, notice the velocity formula from eqn (6.2) is:

2 b
v = j:J — [Eb — mgxr — o exp(—ax)|. (6.9)
m a
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6.3 Time-dependent blowing

To levitate the ball from the origin to 2* we need to drop the energy from its initial energy
value E} to the final energy Ej by altering our blowing parameter b. Consider the family of
phase curves for two different choices of the blowing parameter b = b; > by > 0, as shown in
figure 6.3. The diagram depicts two different paths to traverse from point O to point z*. The

blue curve corresponds to energy value Ej, = Ep for value b = by, giving rise to the elliptic

In(by)
a

balance point x*|y, = . The red curve that intersects z*|,, corresponds to energy value
E, = EY obtained by choosing blowing parameter b = by < by, where Tpaelp, = *|p,. To
traverse the red elliptical path that connects O to the resting point x*, we first use blowing
parameter value b, > 1 until the ball arrives at x*, say at time ¢t = ¢;. Then we can balance
it there if we instantaneously change to value b; > by at t1, which traps the ball at the elliptic

fixed point. We call this a two-step schedule since it requires choosing two different value of

b with one switch-time ¢;. To calculate t1, we need to integrate eqn (6.9) from O to z*:

= [El?z — mgx — "2 exp(—ax)}

In(b1)/«
t = / do (6.10)
0 \/2 mgbs

A useful quantity to track is the energy:

5= [ " Bt (6.11)

required to achieve a given transfer, where ¢y is the time the ball reaches 2*. In this case,

we have:

(E) = Ep -t (6.12)
_ mobs (6.13)
(6]
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A second quantity we track is the area under the b(t) curve:

o) = [ Y b(t)dt (6.14)

which we think of as the total volume of air used to transfer the ball through time t;. In

this case, we have:
(b(t)) = by - t;. (6.15)

A second path that takes the ball from O to x* traverses through point A. Consider the
piecewise differentiable path O — A — z*. On the first piece from O — A we launch
the ball using blowing parameter value b; until time #; when we reach point A. At that time,
we set b = 0 and let the ball free-fall along path A — 2* until time ¢, when we arrive at

x*. For this, we use the free-fall trajectory given by:

1
r = —59t2+UAt+xA (6.16)

v = —gt4ova (6.17)

where (24, v4) mark the position and velocity coordinates at point A in figure 6.3. We know
from eqn (6.17) that v = 0 (maximium height) at time ¢ = v4/g. Therefore for the total

time to traverse the free-fall trajectory, we have:
tg—tl ZUA/g. (618)

Here, we use:

/ch dx
0 \/ﬁ1 {E,?l — mgx — " exp(—am)}

t = (6.19)
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Eliminating ¢ in eqns (6.16),(6.17) gives the parabolic curve:

U2+ UE‘+
r = —— — +
29 29 4

beginning at (z4,v4) and ending at the point (z*,0), where:

2
|
r* = (UA +x,4> = n(cfl).

29

At time ¢ we then let:

02
b=0b, =exp loz <A —|—xA>]
29

(6.20)

(6.21)

(6.22)

to trap the ball at this resting point. We call this a three-step sequence since it requires three

sequential values of b (b = by;0 = 0;b = by) and two switching times ¢; and ¢,. The total

energy along the trajectory is:

(E) = E) ti+Ey-(ta—t1)

where Fj is the free-fall energy with b = 0, and (z,v)

trajectory, we have:

@[
(0%

bi -t +1In(b)(t2 — t1)],

(6.23)

(6.24)

(z*,0), i.e. Ey = mga*. For this

(b(t)) = by -t + 0 (ty — t1) = by - 1.

Path Time t; | Energy (E) | Air volume (b(t))
O — zx 1.036 21.83 2.227
O— A— xx | 0.6662 16.84 0.7482

(6.25)

Table 6.1: Time, Energy and Air volume values for two trajectories shown in figure 6.3. The

results are simulated using variables: by = 6, = Ilm™!, g = 9.8m/s* m = 1kg.
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It is clear that once we allow for a time-dependent blowing function b(t), there exist many
schedules that allow us to achieve the goal of moving the ball from the origin to the resting
point z*, each taking a different total time to achieve the transfer and each expending a
different amount of energy and air. We show in Table 6.1 numerically computed values for
the two different paths described in figure 6.3 which shows in all cases, the three-step path:
O — A — z* (which includes a free-fall segment) is more efficient than the more direct
two-step path: O — z*. A more comprehensive panel of schedules, using different fixed
values of the parameter b, and the trajectories that achieve the transfer to the levitation
point, is shown in figure 6.4.

We are now is a position to formulate the problem as one in optimal control theory to
ask, of all possible schedules, which one achieves the transfer from O to z* in minimal time?

Which transfer uses minimal energy? Which transfer uses minimal amounts of air?

6.4 Optimal blowing schedules

Consider the problem of finding time-dependent blowing schedules b(t) and the corre-
sponding trajectories (x(t),v(¢)) in the phase plane that accomplish the task of moving the

ball from (0,0) to («*,0) in total time ¢¢, subject to the equations:

mi = —mg+ mgb(t) exp(—ax) (6.26)
2(0) = 0;#(0) =0 (6.27)
x(ty) = x%%(ty) =0. (6.28)

We use the fact that > 0, and we assume the blowing function is bounded from below and

above: 0 < b(t) < bpae-
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6.4.1 Minimum time strategy

The transfer time ¢; is given by:

ty = dx = dx
b o df — / _ / a 6.29
/ /0 o dx/dt Jo w (6:29)

To minimize t;, we need to minimize the area under 1/v(z) from 0 < x < z*, as shown

in eqn (6.29). We claim that a bang-bang strategy, in which we choose b = by, initially,
until switching time ¢, at the point (z,v) = (z,,vs), when we choose a free-fall trajectory
b = 0, accomplishes the minimization. To see this, consider the trajectories associated with
the two extreme (constant) values b = 0 and b = by, as shown in figure 6.5(a). The lower
(red) trajectory is given by the curve El?maac' At the switching time t = t,, we switch values
of the blowing parameter to b = 0, so that the ball travels on a free-fall trajectory Ey to the
final resting point (z*,0) at time ¢;. These curves define a sector in the first quadrant of the
(x,v) plane as shown in the figure. We show in figure 6.5(b) the same curves in the 1/v vs.
x plane and consider the areas under the curve using El?m from 0 < z < x4, and Fy from
rs < x < x*. In the interval 0 < = < zy, for any (v(t),z(t)) associated with the schedule
b(t), the following function will be used to derive the maximum velocity v,,q, for each fixed

xT.

d 1 2 bmaxg —ax(t)

o <2v(t) + gx (t) + s (6.30)
= (b(t) = baa) vge > (6.31)
< 0 (6.32)

Thus the initial value gives the upper bound:

1 b
imv(tf + mgzx (t) + W@ﬂw(t) (6.33)
1 bmax —
< imv(O)2 + mgx (0) + %e az(0) (6.34)
bma/x
— MPOmacd _ po (6.35)

o bmaz
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From this, we know that v(t) is bounded by

2 bmam
v < \J —_ [Egmaz —gr — geagﬁ] = Unmax (636)
m a
Hence:
Ts d Ts d
/ T < / @ (6.37)
0 Umaz 0o v
Similarly, in the interval z, < x < x™*:
d /1 , .4
" (2v(t) + gz (t)) (6.38)
= b(t)vg (6.39)
> 0 (6.40)
Thus the final value gives the upper bound:
L2
Ev(t) + gx (t) (6.41)
1
< 51)(1tf)2 + gz (tf) (6.42)
= gx’ (6.43)

From this, we know that v(¢) is bounded by

v <4/2[gz* — 97| = Unmaa (6.44)

Hence:

z* z*
/ T < / @ (6.45)
zs Umazx Ts v
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Therefore the minimum-time transfer is achieved using the bang-bang strategy. An example

of an optimal time trajectory and schedule is shown in figure 6.6.

6.4.2 Minimum air volume strategy

To minimize eqn (6.14), first consider that:

, dv(z)dx
= - = 6.46
o o g = V@ (6.46)
= —g+ gb(t) exp(—ax), (6.47)
which gives:
b = M (6.48)
gexp(—ax)

From this, we have:

/ T b()dt (6.49)

- [T (6.50)

e V(v tg de

B /0 gexp(—ax) v (6:51)
(o) o exp(a)

= /0 p exp(aa:)+/0 #daz (6.52)

The first term can be integrated by parts, and using the fact that v(0) = v(xy) = 0 gives:

/Otfb(t)dt - /Omf explas) ;. (6.53)

(%

— /fa—vexp(aa:)da:.
0o g

It is easy to see that maximizing v(z) will minimize both integrals, which gives the same

result as the bang-bang strategy to minimize time (shown in figure 6.6).
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6.4.3 Minimum energy strategy

The problem of finding a minimum energy strategy is more complicated. We start with:

t tr 1 b _
"Hat = /f( o 4 ga 4 OPLEAT) (6.54)
0 2 «
i1
_ /’ Lt ge+ P (6.55)
d
= / —v +gx+v+g)—x (6.56)
0 v
d
/ Sty +dx—+g) ° (6.57)
0 o v
dr = d
/ v +gm+g)—x+/ & (6.58)
0 [0 0 (0

The last integal is simply v(z*) — v(0) = 0, using the boundary conditions. So,

tr

Hdt — /0 " F(o(2))da, (6.59)

flo) = (;zﬂ Y g+ g)/v. (6.60)

0

To minimize this integral, we consider each fixed, x, and minimize with respect to v(z), i.e.

of 1 g+ / 2g
%_5_7_0 = v(z) = 2gx—i—; (6.61)

However, the value above may not be achievable for all z, e.g we have v(z = 0) = 0, so

\/an: + 29/« \/2ga; + 29/ < Uz

Umaz V297 + 29/ > Unmag

According to figure 6.7, if the switching point (v, ) is on the right side of the curve

v(x) = (6.62)

v(z) = /297 + %g, then the extra transfer segment will exist connecting the b,,,, trajectory

with the b = 0 trajectory. This gives a sufficient condition:

2
v > 1[2g2s + =2 (6.63)
(0%
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where

In(1 — 2z
T, = _M (664)
(67

vy = 2g1* — 29, (6.65)

After we simplify the equations:

* 1
s < a (6.66)
Meanwhile, the inequality is the necessary condition as well because the equations:
-1
Ts = = (6.67)
2
Umaz = /297 + 29/« (6.68)

have no solution in the interval 0 < x < z;. In summary eqn (6.66) is both a necessary and

sufficient condition for the existence of the extra transfer segment shown in figure 6.7(a).

6.5 Pontryagin Maximum Principle

The Pontryagin maximum (or minimum) principle (PMP) [91] is the most widely used
method to find the optimal control scheme for certain dynamical systems. We will first give
a statement of the PMP specifically for our problem and for proofs or more general versions,

see reference [91, 66, 98, 113].
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Following the notation of [113],consider a general dynamical system with fixed intial

condition Xy, fixed final condition X, and control b(?):

X(t) = f(X(t),b(1))
X(0) = Xo
X(ty) = Xg

0 S b(t) S bmax

And the target is to minimize some objective function:

mn YLK (), b(t))dt.

b(t)€[0,bmaz]

(6.69)
(6.70)
(6.71)

(6.72)

(6.73)

First, we construct the control theory Hamiltonian function H by introducing the Lagrange

multiplier vector A:

H(X(t),\#),b(t) = L+ X'f

(6.74)

The dynamical system for this optimal control problem be same as eqn (6.3) and eqn

(6.4) so we have:

X = (a(t),0(t)"

f = (u(t),—g+ gb(t) exp(—az(t)))"

(6.75)

(6.76)

Suppose A = (A, )\U)T, the control theory Hamiltonian function for this problem will be:

H=L+M\Nv+\(—g+ gb(t) exp(—ax))

(6.77)
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Assuming that b*(¢) is our optimal control function, with the corresponding optimal
trajectory z*(t),v*(t), there exist functions A\,*, \,”, which satisfy the canonical equations of

Hamilton:

OH (z*,v*, A\, A", b%)

-k

v I\,
o OH (2, 0%, A5, A7, b%)
v X
v (6.78)
Cy OH (z*,v*, A\, A\, b%)
A= —
ox
- OH (z*,v*, A", A", 0%)
A= .
ov

The optimal control b*(¢) will minimize the control theory Hamitonian H at any time point:

b*(t) = argmin H (™, v*, A\, \,", b(t)) (6.79)
b(t)€[0,bmaxz)

If we leave the final time ¢; as a free parameter, we need to impose one extra constraint on

the final state:

H (2"(ty),v"(ty), A" (tr), A" (tf), 0% (tf)) = 0. (6.80)

Together with the initial condition in eqn (6.27) and final condition in eqn (6.28), the opti-
mal control problem becomes two-point boundary value problem. For the three cases we
considered in section 6.4, L = 1 minimize the time, L = b(¢) minimizes the air volume and
L = H minimize the energy respectively. It’s not hard to observe that for all the cases the
control theory Hamitonian H is linear with the control b, so eqn (6.79) can be simplified

. )
based on the sign of %

0 2>
b*(t) = (6.81)
bax 22 <0

This is the bang-bang schedule as calculated previously. The special case %—II;I =0 will be
dealt with in the next section. If %—II;I is non-zero almost everywhere, the optimal control b

will be switching between 0 and b,,,4,., thus a bang-bang control. After solving the two-point
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boundary value problem for L = 1 and L = b(¢), the optimal bang-bang control is identical

to section 6.4.

6.5.1 Singular control

For the minimum energy case L = H, bang-bang control may not provide a solution to
the two-point boundary value problem for the reason that %—? = 0 will hold for at least some
time interval in which case the Pontryagin minimum principle fails to yield the complete
solution. For this, we need to implement what is called singular control [21].

oH

The most simple method to solve this problem is to repeatly differentiate %, and set it

to zero [21, 133]. First we know that

OH

for some time interval, so set the first order and second order time derivatives of %71};1 to 0 as

well:

d (aH) —0 (6.83)

dt \ ab
d? (OH
7o (ab> — 0. (6.84)

Since the canonical equations (6.78) give the formulas of &*, v*, }\;, )\Z, the time derivatives

can be easily calculated with the chain rule.

After solving the equations (6.82),(6.83) and (6.84), we have the following:

M) = —; (6.85)
A () = —v*(t) (6.86)
b(t) = 2e®, (6.87)
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Now we achieve the formula b(t). We will show that eqn (6.61) in section 6.4 (the transfer

segment) is actually a singular arc. Take the time derivative of equation (6.61):

d d
%v(x) = £\/29x + 29/«

29 dx
t

B 2,/2gz + 29/ @ (6.39)

g
v

\/29x + 29/«

=9

Together with eqn (6.1), the control b(t) for this segment will be:

b(t) = (0 + g)e™*/g

= 2e**

(6.89)

which is identical to the singular arc in eqn (6.87) (shown as the transfer segment in figure

6.7(a)).

6.6 Discussion

We have shown, using basic classical mechanics techniques along with orbit transfer ideas
(60, 80], that in almost all parameter cases, it is a bang-bang control schedule that achieves
the transfer of the ball to the levitation point x* in minimum time, with minimum air
volume, and expending minimum energy. There are, however, some parameter values for
which a minimum energy transfer is only achieved with the use of an extra transfer segment
that connects two bang-bang arcs. The transfer formula is obtained analytically and is an
example of the use of singular control methods [21]. Tt might be of some interest to formulate
similar optimal control problems associated with other forms of levitation, such as acoustic

levitation or magnetic levitation.
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It is worth noting that aside from choosing an appropriate time-dependent function b(t)
to levitate the ball to the elliptic point, there are other mechanisms we could exploit. The

simplest would be to add a small amount of dissipation to the model, proportional to the

velocity:

mi = —mg + mgb(t) exp(—ax) — yi. (6.90)

Here ~ is our dissipation parameter. We show in figure 6.8 a trajectory that ends up at x*

(as t — o00) after oscillating around it more and more tightly.
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\
° x*
O % 0 \%
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X —b(1-exp(-ax))
—aX
@) V @) X X

max

(c) (d)

Figure 6.2: (a) Phase curves in the (z,v) plane for 5 different values of the energy Ej. Zpax
marks the maximum height that the ball can achieve on the energy curve Ej, = E}, while the
elliptic point z* marks the levitation point where the forces balance E, = Ej. (b) Energy
curves E, = E? going through the origin for four different values of b. (c) Phase curves of
free fall (b = 0) with different values of energy. (d) ., marks the intersection of the two
curves defined by the left and right hand sides of eqn (6.8).
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—b(t)=b , across O X
e x fixed point for b(t)=b,
—b(t)=b2 across x and O

—b(t)=0 across X

*

O v V

Figure 6.3: Diagram showing two different paths from point O to point z*. Orbits corre-
sponding to energy E, = E} for two different values, b = b; (blue) and b = by < by (red).
Height z* represents the elliptic fixed point associated with b = b;. The value of b is chosen
so that x,,., for the red orbit intersects x*. The pink orbit corresponds to a free-fall tra-
jectory b = 0 with an initial upward launch velocity v* so that the trajectory intersects x*.
Point A, with coordinates (x4, v4), marks the intersection of the free-fall trajectory with the
blue orbit.
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Three-step b(t) Corresponding trajectories Four-step b(t) Corresponding trajectories
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time ° v time v
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Figure 6.4: Examples of piecewise constant blowing schedules that move the ball from the
origin to the target point (z,v) = (2*,0). Parameter values are given by: b € [0,6],a =
Im™ g = 9.8m/s* x* = log(2)meter,m = lkg, and we choose T = 1.34s for time scale.
(a) Two-step schedule: b(t) starts with b = chg”*eaz* then it switches to b = 2. (b)

The corresponding trajectories for the two-step sche(liule. Note that the ball will remain at
equilibrium on second step, so the trajectory only has one segment. (c¢) Three-step schedule
with blowing on the first segment, followed by free falling (b = 0) for the second segment. (d)
The corresponding trajectory for (c¢). The trajectories will get closer and closer to vertical
axis with the increase of initial b(t). (e) Examples of general three-step schedule, with b; for
first segment and by for the second. (f) The corresponding b(t) for the examples of general
three step schedule. (g) A schematic of a four-step schedule, where ¢; t5 and t3 mark three

switching points.(h) The corresponding trajectory for (g)
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Figure 6.5: The schematic of the trajectory driven by a general blowing function b(t) as
indicated in blue. For comparison, we show what we call the bang-bang strategy, starting
with maximum blowing by, from ¢ = 0 to ¢ = ¢, then free fall b = 0 from ¢t = ¢, to t = 5.

Any general trajectory associated with b(t) is trapped between the two segments of the other
orbit.

X

b .

max ax

b=e
5
tS tf
0 time t
(a) (b)

Figure 6.6: The bang-bang (on-off) strategy is optimal to attain the transfer in minimum

time and using minimum air volume. (a) The actual trajectory for the transfer; (b) The
time-dependent blowing schedule.
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Figure 6.7: Minimum energy strategy.(a)phase space. Simulated with parameters b, =
20, = Im~ ' 2" = In(5)m,g = 9.8m/s*,m = 1kg (b)corresponding schedule for (a)
.(c)phase space simulated with parameters: by, = 5,a = Im ' z* = In(5)m,g =
9.8m/s*, m = 1kg.(d) corresponding optimal control and it’s still bang-bang control.

117



&

O V

Figure 6.8: Constant levitation with dissipation.The numbers for the simulation are b =
5,a=1m™ g =98m/s? z* = log(5)m,m = 1kg,y = 1kg/s
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Appendix A

replicator dynamics of tumor growth

To understand why the prisoner’s dilemma is a useful paradigm for tumor growth resulting
from competing subpopulations, we focus on the 2 x 2 case only. The standard version of
the prisoner’s dilemma payoff matrix [85] in a 2 x 2 setting in which healthy cells compete

with cancer cells is:

a b 3 0
A= - , (A1)

c d 5 1

where the first row and column correspond to the payoffs associated with the cooperator (C)
in the PD evolutionary game, and the second row and column correspond to the payoffs
associated with the defector (D). In the simplest tumor growth paradigm in which a popu-
lation of healthy cells competes with a population of cancer cells, the healthy cells are the
cooperators, while the cancer cells are the defectors. In any mixed population Z = (z¢,zp)7,
0<2c<1;0<ap<1;2c+xp =1, the fitness functions, f: (fo, fp)T, associated with

the two subpopulations are:
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which in component form yields:

fe = (AZ)=3-2¢+0 zp, (A.3)

fD = (Af)2:5'l’c+1'l’p, (A4)
while the average fitness of the total population is given by the quadratic form:
(fy = &A% =32} + Szcap + 25 > 1. (A.5)

The average fitness of the healthy state (zc,zp) = (1,0) is given by (f)|zo=1) = 3, while
that of the cancerous state (z¢,xp) = (0,1) is given by (f)|@,=1) = 1, which minimizes the
average fitness. Tumor growth is then modeled as a 2 x 2 evolutionary game governed by

the replicator dynamical system:

to = (fo—(f))re, (A.6)
ip = (fp—(f))zp. (A7)

It is straightforward to show:

ip = [(c—a) — (d— B)zp(l — zp) (1_(2%) _ xD) , (A8)

with fixed points at zp = 0,1, (C_((IT%. From this, we can conclude (using values from

eqn (A.1)) that for any initial condition containing at least one cancer cell: 0 < zp(0) < 1,

we have:
(i) 2p = 1, z¢ > 0ast — o0
(ii) (f) > 1ast — oc.

Condition (i) guarantees that the cancer cell population will saturate, while condition (ii)

guarantees that the saturated state is sub-optimal, since (f)|wp=1) < (f)|@e=1)- For these
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two reasons, the prisoner’s dilemma evolutionary game serves as a simple paradigm for tumor
growth both in finite population models, as well as replicator system (infinite population)
models [118, 119, 122, 114]. Note that the 2 x 2 system alone it not able to account for the

evolution of resistance.

131



	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Abstract
	Introduction
	Capitalizing on Competition: An Evolutionary Model of Competitive Release in Metastatic Castration Resistant Prostate Cancer Treatment
	Introduction
	The likelihood of pre-existing resistance
	Leveraging the cost of pre-existing resistance
	Retrospective analysis of metastatic castration-resistant prostate cancer

	Materials and Methods
	The replicator equation model
	The linearized system and the cost of resistance

	Results
	Managing competitive release

	Discussion

	Nonlinear adaptive control of competitive release and chemotherapeutic resistance
	Introduction
	A three-component replicator system
	The prisoner's dilemma as a cancer model
	Results
	Continuous therapy
	Time-dependent therapy
	Robustness

	Discussion

	The role of synergy and antagonism in designing multi-drug adaptive chemotherapy schedules
	Introduction
	A three-component replicator system
	Why the prisoner's dilemma game?
	The three-component model

	Constant chemotherapy
	Additive interactions e = 0
	Non-additive interactions

	Designing adaptive schedules
	Discussion

	Optimal control of evolutionary games: The two-by-two case
	Introduction
	model
	evolutionary games and replicator dynamics
	Pontryagin Maximum Principle

	Results
	discussion
	f2 decrease
	 f1 increases
	Time re-scaling

	Conclusion

	Optimal control of levitation by blowing
	Introduction
	The model
	Time-dependent blowing
	Optimal blowing schedules
	Minimum time strategy
	Minimum air volume strategy
	Minimum energy strategy

	Pontryagin Maximum Principle
	Singular control

	Discussion

	Reference List
	replicator dynamics of tumor growth

