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A bstract

This d issertation is concerned w ith integrable point vortex m otion on  a  sphere. First, we 
solve the equations governing the relative motion of three po in t vortices o f arb itrary  strength 

m oving on the surface of a  sphere of radius R. The system  is m ore general th an  the corresponding 

one in the plane [5, 9. 10, 43, 73, 87. 8 8 , 98, 101] and reduces to  it in the lim it R  — oc. as long 
as the three vortices rem ain sufficiently close to each o ther d u ring  the course o f their m otion. 
VVe use cartesian coordinates in which the vector -t; points from  the center of the sphere to 

the vortex w ith strength  F, . An im p o rtan t conserved q u an tity  is the cen ter o f vorticity vector. 

c =  (£2 T,-). which, with no loss o f generality, we align w ith th e  z-axis. Based on the
size of this vector relative to the radius of the sphere, we classify the  m otion  into one of five types: 
super-radial, radial, sub-radial, degenerate, or a  lim iting super-radial case. This categorization 
allows us to draw  several conclusions abou t the qualitative m otion of the vortices.VVe then fully 

characterize all fixed and relative equilibria on the sphere. For fixed equilibria, the vortices must 
lie on great circles (geodesics). If the strengths are equal, they form an  equilateral triangle. 
O therwise, the triangle shape is specified once the strength  o f the  vortices is given. The relative 

equilibria are classified as either degenerate (c =  0) or non-degenerate (c ^  0). For each type, 
the shape o f the vortex triangle is described and the frequency o f ro ta tio n  is com puted. As in 

the planar problem , it is possible to introduce trilinear coordinates and s tu d y  the motion in a 
phase plane, which allows us to  locate all the equilibria, as well as to  characterize more complex 

relative dynam ics.
VVe then describe self-sim ilar vortex collapse on the sphere, s ta tin g  necessary and sufficient 

conditions for coilapse to  occur, com puting  the collapse tim es and  vortex  trajectories on the 

route towards collapse. Collapse trajectories occur in pairs, called ‘p a rtn e r s ta te s ’, which have 
two distinct collapse tim es t ~  <  r + . T h e  collapse tim e th a t is achieved for a given configuration 

depends on the sign of the parallelpiped volume formed by th e  vortex position  vectors, hence 
depends on w hether the vortices (Tx, To, 1 3̂ ) are arranged in a  righ t-handed  or left-handed sense. 
From  a given collapsing configuration, one can obtain the p artn e r s ta te  by reversing the signs of 

the r,-’s, or alternatively by using a  discrete sym m etry associated w ith th e  in itial configuration 

th a t leaves all relative distances unchanged, bu t reverses the sign o f the parallelpiped volume. 

In the plane, there is only one collapse tim e associated w ith a  given configuration —  the partner 

s ta te  is one th a t expands self-similarly [5].

viii
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The instan taneous stream line patterns th a t can occur are  then  considered. After s ta tin g  som e 
general results based on the  spherical topology, we categorize all possible instan taneous s trea m ­

line patterns and  describe their stagnation point s tru c tu re  for the cases of two and three vortices. 
For the case o f two vortices, the only non-degenerate p a tte rn s  th a t can arise are a figure eight 

(lemniscate) o r a  lim acon, which are hom otopically  equivalent. For the case of three vortices, 

there are 12 topologically  d istinc t prim itives, from  which an  additional 23 pa tte rns can be pro­
duced via continuous deform ations on the sphere (hom otopies). All possible stream line p a tte rn s  
th a t arise from th ree vortex  m otion can be ob tained  v ia linear superposition o f the prim itives and 
their hom otopic equivalents. In this sense, the prim itives can be viewed as the 'bu ild ing  blocks’ 

for the general in stan tan eo u s flow topology. T h e  equations o f m otion and stream line p a tte rn s  

in the stereographic p lane are obtained using the pro jected  equations of m otion in H am ilton ian  

form. We describe s tream lin e  patterns for three vortex  fixed equilibria and relative equ ilib ria  as 
seen in bo th  a  fixed and a ro ta tin g  frame o f reference. D ynam ical bifurcations of the s tream lin e  
patterns are s tud ied  for a  collapsing and special period ic  so lu tion , although to  generally under­

stand th is problem  w ould require more extensive co m p u ta tio n . We conclude w ith a discussion of 
the relevance o f the  th ree vortex topological classificat ion schem e and the bifurcation o f s tream ­
line topologies for understand ing  global a tm ospheric  w eather patterns (spherical isobars) and 

large scale m ixing phenom ena.
Finally, we exam ine vortex m otion on the sphere w ith solid boundaries. T his problem  is 

more relevant to  oceanographic flows than  a tm ospheric  ones, where the boundaries m odel the 

effect of coastlines an d  shores. For highly sym m etric  dom ains, we show th a t known so lu tions in 
the plane, ob ta in ed  by the  m ethod of images, can be used to generate solutions on th e  sphere 

by stereographic p ro jec tion . We explicitly com p u te  the partic le and vortex m otion for several 
dom ains on the sphere, including a spherical cap, a  longitud inal wedge, channel and rectangle.
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C hapter 1

Introduction

A variety of coherent vortical s tructu res are observed in the E a r th 's  atm osphere and oceans 
[93]. These range from trop ica l cyclones and the w inter po lar vortex  in the atm osphere, to 

eddies and rings in the  large scale ocean circulation. A strik ing  featu re o f these vortices is their 
relative persistence in the presence o f adverse effects like vorticity  g rad ien ts, dissipation and wave 

dispersion, a  prim e exam ple being the raging storm  on Ju p ite r - the ‘G rea t Red S p o t’, now visible 

for more than  300 years [59].
Coherent s truc tu res are a  characteristic feature of quasi-geostrophic and  two dim ensional 

turbulence. In the last ‘20 years they have been generated and  extensively studied in the labora­
tory and in analy tica l and num erical sim ulations. Flierl [33] showed theoretically  the instab ility  

of geostrophic vortices and th e  appearance of dipolar and  trip o la r s tructu res. M cW illiams [63] 
showed th a t an in itially  ran d o m  vorticity  field generates m onopoles and  dipoles over time. Legras 

et al [57] found a  trip o la r vortex  arising in an evolving two d im ensional flow. T he im portance o f 
such vortex triples and  their em ergence in physical system s has also been docum ented in [17] and 

[26]. These stru c tu res have also been studied experim entally by van Heijst et al [102], K loost- 
erziel and van Heijst [53] an d  Hopfinger et al [46]. A nother aspect th a t  has received extensive 

atten tion  is the  in teraction  o f these structures especially the m erger o f vortices, supposed to  be 

key to understanding  the dynam ics of QG and 2 - D turbulence [30, 41, 78].
It is not only o f in trinsic in terest to  understand the dynam ics o f these structures, bu t also 

of im portance in env ironm ental engineering applications. T h is  is because, in general, these 

structures move around  tran sp o rtin g  m om entum , heat, b io ta  and  p o llu tan ts . T he strong localised 
quality and persistence o f these structu res has natu ra lly  led to  th e ir  being modeled m ainly  as 

solitons [62] or vortices. It is w ith  the la tte r  model th a t  we will be concerned in this study. In 
particular, a  large num ber o f  analy tical and  numerical stud ies have focused on understanding 
the genesis and m otion  o f tro p ica l cyclones [2, 4, 20, 38, 50, 91]. A resu lt of these studies is th a t  

the basic m echanism  behind th e  fam iliar northwestward (southwestvvard) movem ent of cyclonic 

(anticyclonic) vortices is essentially  nonlinear and inviscid (H opfinger and van Heijst [47]). T h e  
study o f these stru c tu res in oceanography is more recent and  da tes  back to  the M ODE program m e

1
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( L978) [65]. O f course, the emergence and evolution of such structures has been much studied 
in the context o f ‘2 - D turbulence. However, m ost o f these are not directly  applicable to the 

geophysical case, as they deal w ith plane geom etries and d o n ’t consider ro tation  and  stratification 

effects.

1.1 L iterature Survey

Let us first consider the classical 2 - D hydrodynam ic problem  on the sphere i.e giVen an initial 

vorticity d istribu tion  u ( 9 .6 ,0 ) ,  find a stream -function  ip such th a t A e: =  —a;{Q,o.t) .  T he 
vorticity is advectivelv conserved, according to  K elvin’s Theorem  [89]:

Since we are interested in m odeling eddies, u(9 .  <?. 0) can be considered to be m ade of two parts - 
u e representing the vorticity  of the eddy and  u/f, representing the background or am bien t vorticity. 

A com m on, though not the only, choice for ub is the p lanetary  vorticity, f =  2 Q cos 9 where Q 
is the E arth 's  angu lar velocity and 9 the co-la titude. Sim ilarly, u e can be m odeled in a variety 
of ways - by point vortices, by singular (b u t not point vortices) and by nonsingular vortices. 
In every case, the  equation to be solved is ( l . l ) :  the m odels differ only in the choice o f initial 

conditions. Thus, we have a  range of possibilities :

1. u e =  r ,-£(©,• — o)S(9i —0), uit - — r , / 4 7 r/?2. T he problem being studied is point
vortex m otion on a s ta tio n ary  sphere, ip is the fam iliar logarithm ic function o f the distance 

from the vortex [14]. T h is is the class of problem s we will be studying.

2. uie =  5Zi=i — <f>)S{9i — 9), u b{0) =  2 fico s0 . T his problem is of finding the point 
vortex m otion  on a sphere which is in solid body ro ta tion . This is m ore com plicated than  
the previous case. A m ore detailed descrip tion will be given below.

3. u e ~  0, wb(0) ^  0. Polvani and Dritschel [82] use th is model, bu t in their case wj, does not 

correspond to the E a r th ’s ro tation. T hus, solutions are obtained for & rp =  —u  where u  
is piecewise constan t, being uib =  ujv ,  n o rth  of some latitude 9o and ub =  w s to the south . 
T he northern  vortex patch  is supposed to  m odel the w intertim e polar vortex and the  patch 

configuration produces a  zonal flow peaking  a t 9q ra th e r than  the trad itio n a l solid body 

ro tation . S tab ility  of the  interfacial Rossby waves is one of the concerns o f th is study  and 
the results are applied to  explain the ribbon  like features in S a tu rn ’s atm osphere.

4. u e = u s , u/6 (0) =  0. u s is a  singular vorticity  d istribu tion , bu t not due to  a  point vortex. 

T he singular vorticity  d istribu tion  generates a  background vorticity field for t >  0 unlike 

in the po in t vortex  case . Thus, in th is case, Ub ^  0 for t >  0. We are no t aware of any 

studies w ith such a  m odel.

2
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5. uie =  LJn, ,  Ljfe 0. T he vortices have a nonsingular vorticity  d is trib u tio n  u ns. i.e. they 
are actually  vortex patches. T h e  governing equations for in terac tin g  patches of constant 

vorticity on a sta tionary  sphere are derived in [5’2]. Some num erical stud ies on such patches 

are reported in [26. 27. 28. 29].

T he full equations governing fluid m otions on a ro tating  planet are q u ite  com plicated and a 
variety of approxim ate equations have been used. One such set o f equations, for homogeneous, 

inviscid flows, are the shallow w ater equations from which we can derive the conservation of 

potential vorticity (PV):

D  y  + /
« < V > = o ( i2»

( 1 .2 ) is the s ta rtin g  point for m ost analyses of vortex m otion on ro ta tin g  p lanets, ut is the radial 
com ponent of the relative vorticity, /  th e  local p lanetary  or am bien t vorticity  and H  the fluid 

depth . One can readily see the effects o f  geometry, ro tation , s tra tifica tion  and  topology in the 
problem, from (1.2). Thus, the spherical geom etry enters through ^  and  /  , the rotation through 
/  and the stratification, topographic an d  surface effects through H .  In con trast, in trad itional 

2-D vortex dynam ics. /  =  0 and H  =  constan t. (1.2) holds in the  stratified  case also, but with 
H  having the in terpretation  of a  height over which there is an a rb itra ry  bu t constant density  

difference, A p (H  =  - A p |^ )  [21].
To isolate the various effects, a varie ty  o f studies have been m ade in which one or the o ther 

term  has been neglected or accounted for, in an approxim ate m anner. We look at a  few of these 

below -

1. The well-known geostrophic flow, w ith  attendan t vertical rig id ity  o f  fluid colum ns, is recov­
ered in the Ro < <  1 lim it ( w < <  f  which is assum ed constan t). Here, the  Rossby num ber, 
Ro =  U /Q L where U and L are typ ical velocity and length scales in th e  problem.

2. If surface waves and b o ttom  topography  are not allowed, we have H  =  const, and the 

equation describes 2-D m otions o f a thin spherical layer o f fluid in the  rigid cap approxi­

m ation. T his is sim ilar to the s itu a tio n  described by (1.1) except th a t  , in this case, u;& is 
not a function of tim e. T his m odel has been used by K laytskin and  Reznik [54] to  ob ta in  
a point vortex solution on a  ro ta tin g  sphere such th a t the  vortices transla te  along circles 
of la titude w ith constant velocity U . T he m ain results of th is s tu d y  are th a t eastw ard and 

westward travelling vortices generate  fundam entally different velocity fields. 4> in th is case 

is a  first order Legendre function.

3. A much studied form is the  quasi - geostrophic PV equation . M any different versions of 
the equation have been used am ong  which are the non - d ivergent and divergent barotropic
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m odels ( on the sphere and on the 3  - p lane), n - layer baroclinic m odels and  o th er m odels 
considering the effect of topography on eddy propagation . VVe look a t a few o f  these below.

(a) Non - divergent QG on the 3  - plane (also known as the rigid lid approx im ation) : 

All the  studies surveyed till now, stud ied  the problem  on a  spherical geom etry. How­

ever m ost o f the  geophysical lite ra tu re  does no t deal with spherical geom etry . Instead.

m odel o f the sphericity o f the E a rth 's  surface. T he equation th a t has been studied 

the  m ost in this context is the  non - divergent quasi-geostrophic equation

i. B jerknes and Holm boe [13] were am ong th e  earliest to  s tudy  vortex  m otion on a 

3 - plane in the context of low Rossby num ber flows i.e they were looking a t the 
linearised version of (1-3). T hey  predicted  westward m otion. Flierl [34] showed 
th a t the westward m otion occurs a t a  speed that is dependent on the  scale of 

m otion and hence the vortex d isin tegrates.

ii. For non - negligible Rossby num ber, (1.3) has been stud ied  by Rossby [8 6 ] and 
Adem  [2]. They predict th a t an isolated cyclonic vortex would d rif t in a  no rth ­

westward direction.

iii. Recent studies using th is m odel include C han and W illiam s [20], K orotaev and 

Fedotov [55], Reznik and Dewar [85] and  Sm ith and Ulrich [94]. In itia l vortex 
stream functions range from  algebraic  to  algebraic - exponential ( th is  sim ulates a 

hurricane profile) and algebraic - G aussian . Many of these stud ies are concerned 
w ith the motion o f tropical cyclones.

iv. T he effect of topography in th e  rigid lid approxim ation is exam ined by Carnevale et 
al [19] and  Grim shaw et al [42] . In  the first work, the effect o f b o tto m  topography 
on m odon propagation is s tu d ied . T he m odon, which is a dipole, is m odelled by 

two po in t vortices. In the  second, the  au th o rs  exam ine the  evolution of an eddy 
placed on a topographic slope on an  f  plane.

(b) D ivergent QG equation :

In  th is approxim ation, surface effects are allowed and the po ten tia l vortic ity  is given

the dynam ics is studied on the 3- plane, which is the sim plest possible dynam ical

(1-3)

by

(1.4)

4

perm ission of the copyright owner. Further reproduction prohibited without perm ission.



where Rd is th e  rad ius of deform ation. The second term  describes the stretch ing  of 
vortex lines, an effect not possible in the s tric tly  2 - D  divergent model.

i. (1-4) is used by T ribb ia  [100] and Verkley [103] to s tudy  modon propagation  on 
a  sphere. M odons are exact solutions orig inally  found by Stern [96] on the 3  - 
p lane. T h e  m odon stream function has a  d ip o la r shape, is confined w ithin a circle 

and  vanishes ou tside. More recently, Neven has studied modon propagation  on 
a  sphere in a  variety o f contexts - m odons in shear flow [69], baroclinic m odons 

[TO] and  q u ad ru p o le  modons [71]. T hough, in these studies, the 3  - plane approx­

im ation  is no t m ade, the  authors look for m odon solutions which ju s t p ropagate  
along a la titu d e  and are not free to  move around  on the entire sphere.

ii. T here  is a  large lite ra tu re  using (1.4) on the 3  - plane. Zabusky and M cW illiam s 
[106] use a  m o d u la ted  point vortex m odel w here the circulation around each point 

vortex  can change w ith  time. Morikawa and  Swenson [67] studied the s tab ility  of 
a ring o f vortices on an  /  - plane (3  = 0). Friedlander [38] has extended their 

analysis to th e  3  - p lane and investigates the stab ility  of a  ring of cyclones and an ti 
- cyclones. In all crises, the vortex stream functions are modified Bessel functions 
o f the second kind. Such vortices are known as geostrophic vortices.

iii. Reznik [84], S u ty rin  [97], Nycander and S u tyrin  [76] and Shapiro and O oyam a 
[92] use th is  m odel to study cyclone m otion on a 3  - plane. In [84], ip is w ritten  

as the sum  o f a  regular (i/v) and a singu lar part ip, which is m ade up o f the 
s tream fu n ctio n s  of all the vortices, each being proportional to the modified Bessel 

function. R esults are obtained for the m otion  o f a  high intensity vortex ( one 
whose s tre n g th  g reatly  exceeds the local p lan e ta ry  vorticity) and the results are 

used to  exp la in  the  northwestward m otion o f a  cyclone.

iv. T he g enera tion  and evolution of the d ip o la r m odon on a ff - plane has been 

the  su b jec t o f m any studies. An extensive review of these solutions and their 
ap p licab ility  to  m odeling eddies in geophysical flows can be found in [35]. More 

recently, m odon  dynam ics has been stud ied  on the 7  - plane which takes qu ad ra tic  

corrections to  /  in to  account [72].

(c) S tratified  m odels :

A variety  o f s tu d ies  have been made in the  stra tified  case also. Prom inent am ong these 
are those using  n - layer models, where the d en sity  is constant in each layer. Each 

layer has a  d ifferent stream function and the P V  is conserved for each layer. Some 
two layer s tu d ies  are by Gryanik [44], Hogg and  S tom m el [48], Yano and Flierl [104], 

Davey et al [23] and  Young [105]. In particu lar, [105] is a  very interesting s tudy  o f  the 
in teraction  o f a  sm all num ber of baroclinic vortices. Finally, Shapiro [91] has used a 
three layer m odel to  s tudy  hurricane evolution on the 3  - plane. Point vortex m otion

5
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in a two layer model on th e  sphere is currently being studied by Jam aloodeen and 

Newton [49].

There is one final point w orth m entioning, before we go on to  consider point vortex models.

( 1 .2 ) indicates th a t the 8 - effect (expressed in /  =  f 0 + 8y  ) and the  topographic effect ( 

expressed by H) have sim ilar dynam ical consequences [47]. T his dynam ical sim ilarity  has been 
exploited by a num ber of investigators [L8 . 32. 61] to  study vortex m otion on a  3  - plane in the 

laboratory. Since, in a lab, f  =  const., the topography is varied instead, to sim ulate the 3  - 

effect. The experim ents confirm the general tendency of northwestward (southwestward) drift of 

cyclonic (anticyclonic) vortices.

1.2 Point V ortices

W ith  this brief background, we now consider the role of point vortex m odels in these problems. 

A point vortex can be visualised as a  vortex  line in an infinitesimal thin layer o f  fluid so that the 
only com ponent o f vorticity is norm al to the flow plane.This idea can be extended to the case 
when the fluid m otion is on a  d ifferentiable m anifold. Again, the point vortex is pictured as a 
vortex line in an infinitesimal layer o f fluid covering the manifold so th a t the only component of 
vorticity is along the local norm al. S tudies of point vortex m otions on m anifolds, and especially 

com pact surfaces like a  sphere, are in teresting  for the following reasons :

1. They generalise the p lanar m otions. Indeed, one would expect these m otions on manifolds 

to  approach those in the plane whenever the vortices are close to being in a tangent plane.

2. New qualita tive features o f the m otion , which were absent in the p lanar case, may emerge 

due to  the presence of inherent length  scales in the geom etry o f the  surface.

3. As m entioned earlier, there exist a  variety of intense vortical s tru c tu res in the ea rth ’s 

atm osphere and oceans. Such eddies have been modeled as point vortices by Bogomolov 

[16]. The point vortex m odel is useful in understanding w hat role the  spherical geometry 
plays in the motion of these eddies. One is no longer confined to  la titu d in a l neighborhoods, 

which is the  case in the 3  - p lane approxim ation.

In the case of a  sta tionary  sphere, all th e  vorticity is concentrated a t points and instead of an 
infinite num ber o f degrees o f freedom , we have only a finite num ber, =  0  is autom atic since 

the vortices move with the local fluid velocity and the background vorticity  is a constant. Thus,
the problem  is reduced to finding a  s tream  function which satisfies

A rfi =  - j r  r ‘- ^ -  ~
1 = 1
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where A  is the Laplace - B eltram i operator on the sphere. T he background vorticity  -Jb is 

in general a  non-zero constan t because the Stokes' Theorem  stipu la tes th a t f  u:dA =  0 for all 
possible ui d istribu tions on a  com pact closed surface, and in particu lar on a  sphere.

T he set of ODEs governing the m otion o f the vortices on a sphere was first given by Bogomolov 

[14, 15]. [14] also contains an analysis of the m otion o f three identical point vortices on the  sphere, 

hence generalises the p lanar results in Novikov [73]. Hallv [45] derived the  equations o f  m otion 

on an a rb itra ry  m anifold. He also exam ined the  stab ility  o f vortex streets on a  sphere. K im ura 
and O kam oto [52] described the equations governing the m otion o f vortex patches on a  sphere. 

The papers by Polvani and  Dritschel [82] and D iB a ttis ta  and Polvani [25] although not prim arily  
focused on point vortices, do contain sections which describe aspects of point vortex m otion . In 

particular, in [82], the  equations are given in vector form , the form th a t leads to  much sim plicity  
in analysis and  one th a t  we use a lot in our work. In [25], point vortex and  finite a rea  vortex 

pairs on a  ro ta ting  sphere are stud ied  in an effort to  m odel atm ospheric blocking phenom ena.

T he case o f point vortex m otion on a ro ta tin g  sphere is ra ther com plicated. VVe now have 
a varying background vorticity  field which interacts w ith the vortices, affects their trajectories 
and is itself affected by them . T hus, the m otion of th e  vortices cannot be described by a  system  
of ODEs but instead one m ust now solve in add ition , partia l differential (for the m otion of 

the continuous background vorticity  field) and integro-differential (for the stream  function v  ) 
equations. Bogomolov [16] obtained a 1-term so lu tion  for the m otion o f a  single vortex on a 
rotating sphere and it was seen to exhibit the fam iliar northwestw ard (southw estw ard) m otion 

characteristic o f cyclones (anticyclones). Various point vortex studies on the  d  - plane were 
refered to earlier. However there are few studies investigating point vortex m otion on the entire 

sphere.
On the o ther hand , independent of any geophysical considerations, point vortex m odels have 

been studied and used in a  variety o f contexts for m ore than  125 years. It was known to Kirchhoff 
that the point vortex equations form a H am iltonian system ; Poincare showed th a t the m otion of 
three vortices in the unbounded  plane was integrable. However, ideas from  non-linear dynam ical 

systems have been applied  to  these system s extensively only in the last 20 years. M otivated 
mostly by advances in dynam ical system s and com puta tional techniques, the  focus has by and 

large been on the dynam ics of point vortices in the plane [5, 6 , 8 , 9, 10, 31, 43, 73, 74, 75, 77, 

87, 8 8 , 98, 101], bo th  integrable [5, 9, 10, 31, 43, 73, 75, 77, 87, 8 8 , 98, 101] and  non-integrable 

[6 , 8 , 74] configurations.
Point vortices are  a ttrac tiv e  for m odeling eddies because the  conservation of vorticity  is 

autom atic, m aking th em  m ore am enable to  m athem atica l analysis. However, the m odel is not 

very useful if one is interested in how the eddies form  and  deform , how they  affect and are 

affected by wave m otions and  how they in teract w ith o th er eddies. Experim ents have shown th a t 
cyclonic and anticyclonic vortices ( generated in the lab) behave very differently as do vortices 

with differing core vorticity  d istribu tions like the sink vortex and the stirring  vortex ( these have
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different net angu lar m om enta). T he poin t vortex model does not m ake any distinctions between 
all these cases. F in ite  sized vortices can support waves on their cores: point vortices, having no 

stru c tu re , are incapable of these. Finally, point vortices interact very differently th an  distributed  
vortices - two isolated point vortices can never touch bu t two patches can.

O ur general goal in this work is to  s tu d y  the effects of spherical geom etry  on the m otion 

o f point vortices.In general, o f course, bo th  the curvature of the sphere as well as its ro tation 

will influence th e  dynam ics. However, in this work we ignore the effects o f ro tation  and thus 
focus exclusively on how the  spherical geom etry  influences the vortex m otion. T he motion of 

N poin t vortices on a s ta tionary  sphere for N =  L,2 is fairly sim ple. A single vortex doesn 't 

move: two vortex motion is sum m arised  in A ppendix I. The m otion o f three vortices, though 

m ore com plex, is still integrable and hence we can study the dynam ics analytically. This is 
th e  conten t of C h ap ter 2. T he work therein  generalises that in A ref [5], G robli [43] and Synge 

[98] and thus is o f more geophysical significance. In C hapter 3, we describe the  mechanism of 

finite tim e collapse of three vortices, in p articu la r the phenom enon o f p artn e r states. C hapter 

4 deals w ith stream line topologies in po in t vortex flows on a  sphere. In the last chapter, we 
consider point vortex m otion in bounded dom ains on a  sphere: explicit so lu tions are provided for 

som e special dom ains using the im age m ethod . Appendix II contains som e o f the  M athem atica 
and  Fortran  program s th a t were used to  draw  som e of the figures in th is work. Finally, there 
is by now a very extensive and com plete lite ra tu re  on the three vortex problem  in the plane 
[5, 6 . 8 , 9, 10, 43, 73, 74, 75. 77. 87. 8 8 . 98. 101] and whenever possible, we m ake connections 
to  th is lite ra tu re  a t the app ropria te  tim es. In some sense, parts o f th is work can be viewed as a 

generalization  o f [5, 7, 43, 73, 98] to  th e  sphere.
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C hapter 2

M otion  o f  th ree  vortices

In this chapter, we s tu d y  the m otion of three vortices on a  sphere. It will be shown th a t  this is 
the most general in tegrable point vortex m otion. Three vortex interaction is the sim plest case in 
which the inter-vortical distances can vary w ith tim e. Hence, understanding the relative m otion 

o f three vortices is the key to  understanding the relative m otions of a larger num ber o f vortices.
This chapter is organized as follows. We first write the  general equations of m otion for N- 

vortices on a sphere o f rad ius Ft, bo th  in cartesian and spherical coordinates. We em phasize the 
Ham iltonian s tru c tu re  o f  the equations, the conserved quan tities and Poisson bracket stru c tu re . 
The most im p o rtan t conserved quan tity  is the center of vorticity vector c =  M /c ,  where M  =  

5 lf= i TiX,- is the  m om ent o f vorticity  and cr =  ^  T, is the to ta l vorticity. In §2.2 we re-form ulate 
the equations in a  m ore geom etric way by w riting the equations th a t govern the length o f  the 
three sides of the triang le form ed by connecting the vortices with chords through the sphere. This 

formulation allows us to  classify all motions into one o f five sta tes which we call: super-radial, 
sub-radial, radial, degenerate , and lim iting super-radial. In the plane, this classification is not 

possible because there is no inherent length scale analogous to  the radius of the sphere. In §2.3 we 
study all equilibrium  configurations, separating the discussion into the fixed equilibrium  sta tes 

and the relative equilibrium  sta tes . In §2.4 we use trilinear coordinates introduced in [5, 98] for 
the planar problem  to  reduce the general m otion to level curves in a phase plane. T h is allows 

us to describe m ore general m otions of the three vortices. In §2.5 we describe a special periodic 
solution where we can work ou t the details of the absolute m otion. T he special case in which the 

vortices collapse in finite tim e is studied in C hap ter 3. For those interested in a  quick survey of 

the m ain results, we have organized them  in a  series of propositions. Proposition 2.1 covers the 
fixed equilibria, while proposition 2.2 describes all relative equilibria. Proposition 2.3 locates all 

the equilibria in the phase plane.
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2.1 E quations o f  M otion

W ritten in vector form, the system  of 3N equations governing the m otion of N vortices on the

surface of a sphere of radius R is given by. [82]:

L f i t e L  (2 D
1 4x f t ^  (ft^-xi-xj)

xi =  (£;, t/i: r,) represents the vector from the center of the sphere to  the ith  vortex, with strength 
r,. The denom inator can be m ore com pactly written as (ft2 -  xi • xj) = -f- where ftJ- = |xi — xj| 
is the chord distance between the  two vortices. Since the vortices are  constrained to lie on the 
surface of a sphere of radius ft, it is clear th a t the above form ulation  has a redundancy in it, as 

the constraint:

I =  ^ r a |x Q|2

= ft2 rQ =  const.

has not been used.
Although the cartesian representation o f the equations makes th e  analysis m ore transparent, 

one can also write the equations in spherical coordinates, which h as d istinct advantages in un­
derstanding the general s tru c tu re  of the problem. The equation for the ith vortex is given by, 

[15. 52):

A _  I v '  rjsin(gj)sin(g>,- -  Oj) ...
‘ — 471-ft2 ^  I —cos( 7 , j)

- 1  ^  ry (sin (0 ,)co s( 0 y ) - c o s ( 6>i)sin(0 j)co s(d f -  <Pj)) / 0  ^
«„(«,>,■ = j ^ } _ , ----------------- 1 - coshy)------------------ ‘ ’

where cos(7 ,-/) =  cos(0,-) cos(0y) +  sin(0i) sin(0y) cos(0,- -  <£y). N ote th a t the denom inator f t2( l  -  
cos(7 ij)) =  l f j /2 .  Figure 2.1(a) shows the angles locating the i th  vortex . Because the constraint 
th a t the vortices lie on the surface o f the sphere of radius R h as  been explicitly used in this 

formulation, the system  has been reduced to 2N equations. One advan tage of this formulation is 

that the equations can be w ritten  in H am iltonian form. The H am ilton ian  is given by:

u  =  4 ^ 5  E r ‘ r ;  ‘ O  <2 - 4 >
><j
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Figure 2.1: (a) Location o f po in t vortex  T; in spherical coordinates, (b) G eom etry  of the 3 vortex 
problem .

One can then introduce the conjugate variables P, = v/|r, |cos(01) and Qi =  \/jT 7 \&i which puts 

the system  in standard  H am ilton ian  form:

Pi =
d H
dQi

Q .  _  J J L
Q' dPi

By introducing the Poisson bracket:

;V

[ / .* ]  =  £ i r (
I d f  dg d f  dg

T, 3  cos{9i) d<pi d 6{ d  cos(0 ,-)'

we can write the equations m ore com pactly:

3cos (#,-)
at =  [cos

w  = ^

It can then be easily verified th a t ,  in addition  to  the H am ilton ian , one has the following conserved 

quantities:

Q = ^  £  r,-a:f = ^2  sin(0«)cos (<£>)
x = l 1=1

 ̂ N AT
P  £  r,2/f =  £  r t- s in (0 ,-) sin(<fo)P  =
R  f

1 = 1 1 = 1
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I * ^
5  - — r , r ,  =  Y 2  r .  cos{6i)

i= I i = I

There are three integrals in involution:

[ H ,P 2 +  Q 2] =  0

[H ,S \  =  0

[P2 +  Q 2. 5] =  0

m aking the three vortex problem  on the sphere (as in th e  plane [5, 6. 43. 73, 98]) in tegrable. It 

follows from the conservation of Q ,P  and S th a t the cen ter of vorticity vector:

c =  M / a  (2.5)

is also a  conserved quan tity  which will be im p o rtan t for understanding the relative dynam ics in 
the three vortex problem . Because o f the sym m etries inherent in the problem  (as long as the 

sphere is non-rotating), it is always possible to  orient th e  axes so th a t the vector c is aligned with 
the z axis, hence its intersection w ith the sphere is th e  N orth Pole. This will be our convention 
th roughout this chapter.

T here is one further point worth m aking concerning the  four  vortex problem . It is s tra ig h t­
forward to  show th a t:

[P,Q] =  s

[ a s ] = P

[S,P] =  Q

In addition , we also have th a t [H,P]  =  0 and [H, Q] =  0. Therefore, if we choose th e  values 

(Q ,P ,S )  =  (0 ,0 ,0 ), then we have 4 integrals in involution, nam ely (H ,Q , P ,S ) .  T h e  condition  
th a t all three quantities are zero is equivalent to  requiring th a t the center of vorticity  vector c  =  0. 
Hence, if we restrict ourselves to  the case where the cen ter o f vorticity is zero, the  four vortex 
problem  is integrable. T his special degenerate case o f  the  four vortex problem  on the sphere is 

analogous to the p lanar case considered in [31]. In th a t  case, the condition for in tegrability  is 

also c =  0. However, as shown in [31], it follows th a t £ I i= i I\- =  0, a condition not required on 
the  sphere.

As a  final com m ent, notice th a t the equations for the vortex motion in the p lane can be 

w ritten  in vector form  as:

X. = jr (lySTrR. x (Xi-Xj)

12
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where X; =  er x, + e y m  is the vector locating th e  i vortex (for example, see [89]). On the sphere, 

we can rew rite (2 . 1 ) as:

V -  ( r j / 2 ~ ) ( X j / / ? )  x  ( x i  - X j )  
x, -  7 2

which d irec tly  mimics the p lanar equations (and the Biot-Savart law [89]). since the  vector Xj 

/  R  is the u n it norm al on the sphere located a t the vortex with streng th  r,-. T his form ulation 
carries over in a  straightforw ard way to general curved surfaces by replacing Xi /  R  w ith h j ,  the 

unit norm al located a t vortex fy .

2.2 G eom etrica l Form ulation

The equations for the relative dynam ics o f the  vortices can be easily derived from the original 

system  (2 . 1 ):

- r ,  <»>‘ 23  ‘31

i  -  7^1 (2-7)

dt rrR

d(/23~) r  1 t
dt n R

d[l 3 1 2) r 2r
dt

1

-1 £
0 [ i  -  7T"] (2.8)

*12 l 23

V is the volum e of the parallelopiped formed by the vectors x i .  X2 .X3 . i.e.

V = x x ■ (x 2  x x 3 )

Notice th a t the sign of V  can be positive or negative depending on whether the  vectors form a 
right or left handed coordinate system . In [5, 98], this is taken care of by in troducing  crijk which 
indicates th e  o rien ta tion  of the triangle spanned  by the three vortices. For us, it is m ore useful 
to allow the  qu an tity  V  to take on both  positive or negative values. If V  = 0 ,  the three vortices 

lie on a  g rea t circle. In fact, a  sim ilar system  o f equations can be derived for the separations in 

the N -vortex  problem  and is given by

d{U f)  _  1 r  v  r 1 1
~ d T ~ ^ R p  ”  Wifc=i

where the  "  m eans the  sum m ation excludes k =  i and  k =  j.
O ther geom etric quantities th a t  are useful in  visualizing and understanding  the  relative motion 

of the th ree vortices are the area A(t)  o f  the p lane triangle formed by the  th ree vortices and the

13
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normal vector n  pointing from the center o f the sphere through the plane spanned by the three 

vortices:

n ( X i  -  X 2 ) X (x2 -  X 3 )

X i  X X 2  +  X 2 X X 3 + X 3 X  X i

Some of these quantities are shown in figure ‘2.1(b). T he equations for A{t).V{t)  in term s o f 

are:

T he volume V  can also be w ritten  in term s of A .R ,  and a. where a is the radius of the circle in 

which the vortex triangle is inscribed:

Again, in all these cases, the  ±  sign depends on the orien ta tion  o f the vortices. In the lim iting  

case where a / R  is sm all, it is easy to see th a t the leading term  is given by I ' ~  2,4/?, in which 
case our equations agree w ith  the p lanar equations stud ied  by A ref and Synge [0 . 98].Hence when 
a / R  is sm all, we expect th e  m otion to correspond to  the p lanar m otion. This m eans th a t the 
closer the vortices are to a  g reat circle, the more the dynam ics should differ from the p lanar case.

Two useful a lternative ways of w riting the volume V  are:

V

.4

(2 . 10)

(2.9)

V  =  ± 2 ,4 s / R 2 -  a-

c • n V  =  x i • n

T hen a  sim ple constra in t on the spherical flow is given by:

(c — Xi) - n  =  0

which says th a t the vector (c — Xi) m ust lie in the plane of the  triangle. This constra in t form s 

the basis of a  useful classification scheme th a t we describe in §2.2.2.

Equations (2.6) - (2.8) have the 2 invariants:

(2 .11)
«<J

14
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T h e second q u an tity  can more usefully be w ritten  as:

^  , ^Trii-CV  ̂ _  ,,2 , i / r 3,,2 a / r w,2 i i / r3
^ 2  — e x P (  f  r ~ r  '  —  1 1 2 )  ( ‘ 2 3 )  ( 3 1 )

L i t  2 t  3

O th er useful form ulas are given bv:

( 2 . 12)

l |c ||2 =  

llnll =
c • n =

A = 

v  =

n =

In the  last three identities, the sum m ation  is m ade over cyclic perm uta tions o f  i , j . k  from I 

to  3, where i ^  j  ■£■ k. Finally, ano ther im p o rtan t q uan tity  governing the vortex m otion is 

the  harm onic m ean of the vortex s tren g th s .h =  5  5Z F*- ^ h e  geom etric m ean g  =  (T iT o ra )* . 
a lthough  not as im portan t, also appears in som e equations.

2 .2 .1  S ym m etr ies

T h e s tru c tu re  of the equations o f m otion give rise to  the  following discrete sym m etries:

I. If Ti, T2 , - r„;xi,X 2 , ...,xn satisfies the equations of motion,

then so does —Ti, — —r„; —xi, —X2 , —, —xn-

‘2. If Ti, T2 , - rn;xi,X 2 , x n; t satisfies the equations of motion, 
then so does —T i ,-T 2 , —rn;xi,  X2 , x n; —fc.

3. If Ti, T2 , ..., r„;xi,X 2 , - ,x n; t satisfies the equations of motion, 
then so does Ti, ..., rn; — x i, — X2 , — xn; — t.

4. The equations (2.1) are invariant with respect to cyclic or anti-cyclic permuta­

tions of all indices.

By m aking  use o f these sym m etries it will be sufficient to  consider only the two cases: T i , T2 , T3 > 

0; T i, r 2 >  0, r 3 <  0. T he invariance o f (2.1) to  cyclic and  anti-cyclic p erm u ta tio n s is easily veri­

fied. Cyclically perm uting the indices corresponds to  exchanging the positions o f th e  vortices but

15
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respecting the right hand rule. Anti-cyclically perm u tin g  the indices corresponds to exchanging 
th e  positions o f the  vortices in such a way as to  change to  the left hand rule. A lthough this 

perm uta tion  does not affect the system  (2.1), it does have the im portan t effect on (2.6)-(2.8) of 
changing V to — IT T h is change is im portan t and will be described in more detail in C h ap te r 3 
when we analyse the  collapsing states.

2 .2 .2  G eo m etr ic  classification  sch em e.

As a  first step  tow ards classifying all motions on th e  sphere, we m ake use of the  fact th a t c is a 

conserved q u an tity  and  th a t (c — x;) must always lie in the plane spanned by the three vortices. 

T here are then 5 d istinc t families of m otions, based on the relative size of ||cj| as com pared to 

th e  radius o f the sphere.

1. S u p e r - r a d ia l  s ta te s : | |c | |  >  R.

For this case, shown in figure 2.2. the tip  o f  the vector c, (labeled c~) lies outside the 
sphere. Since th e  vector c is conserved, the po in t c* rem ains fixed in the plane P  spanned 
by the  three vortices. At any fixed tim e, the vortices m ust lie on a curve which is a  slice 

of the sphere by the plane P .  The plane can, o f course, tw ist and tilt, but always passes 
through the  point c". Shown in figure 2.2(b) are  the family of curves achieved by tiltin g  P  
downwards w ithout tw isting it. From these figures, we can conclude:

(i) No fixed la titu d e  sta tes are possible.

(ii) T he only g rea t circle s ta tes are the fam ily where c lies in P, hence c and n  are perpen­

dicular.

(iii) No collapse is possible.

(iv) Because C \  <  0 these states are only possible if T i, To >  0,T3 <  0.

2. S u b - r a d ia l  s t a t e s :  |[c(| <  R.

For this case, shown in figure 2.3, the point c" lies inside the sphere. T he plane P  slices 
the sphere on curves shown in figure 2.3(b). F rom  this, we can conclude:

(i) Only one fixed la titude  s ta te  is possible, where c is parallel to  n, hence c is perpendicular 
to  the plane P .  T h is fixed latitud inal s ta te  gives the sm allest radius a.

(ii) T he only g rea t circle s ta tes are the fam ily w here c lies in P,  hence c and n  are perpen­

dicular.

(iii) No collapse is possible.

3. Radial states: ||c|| =  R.

This case is shown in figure 2.4. The point c* lies on the sphere, and the slices of the sphere

16
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( a  )

( b )

Figure 2.2: Super-radial s ta tes : (a) c“ lies outside the sphere, (b) family of intersections o f P 
with the sphere as the plane swings down.

are shown in figure ‘2.4(b). From these, we conclude that:

(i) No fixed latitudinal states are possible.

(ii) T he only great circle sta tes are the  family where c lies in P ,  hence c and n  are perpen­
d icular.

(iii) Collapse is possible only a t the  point c" (i.e. the North Pole).

(iv) These states are possible only if C \ — 0

4. D e g e n e r a te  s ta te s :  ||c || =  0.

T his case is the m ost sym m etric and  is shown in figure 2.5. T he plane P  m ust pass through 
the center o f the sphere, which m eans the vortices m ust lie on the curves shown in figure 
‘2.5(b). From  this, we can conclude:

(i) No fixed latitud inal sta tes  are possible.

(ii) All s ta tes  are great circle s tates, hence a — R.

(iii) No collapse is possible.

17
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(iv) C i = <r2R 2 for th is case.

6 . L im it in g  s u p e r - r a d i a l  s ta te s :  ||c || =  oo

This final case is a  lim iting case o f the super-rad ia l s ta tes  where c" =  oo. For th is  to  hold, 

we m ust have a  =  0. T he plane P  cu ts the sphere as shown in figure '2.6 so th a t  M  is 
perpendicular to n . We can conclude th a t:

(i) No fixed la titu d in a l sta tes are possible. All s ta te s  m ust lie on so called ‘vertical la titu d e s ' 

shown in figure ‘2 .6 (b).

(ii) G reat circle s ta tes  are only possible if M  lies in P .

(iii) N'o collapse is possible.

The dynam ics associated w ith these five s ta tes are described in the rem ainder o f the ch ap te r.

2.3 E quilibria

We define equilib ria  as vortex motions in which th e  in ter-vortical distances stay  fixed. Fixed 
equilibria are given by the  fixed points of the system  (‘2 . 1 ) whereas relative equilib ria  are given 
by the fixed points o f the  system  (2.6)-('2.8). We will refer to cases where c =  0 as ‘degenerate", 
and where c ^  0  as ‘non-degenerate".

2.3.1 F ix ed  E q u ilib ria

We start the section by sum m arizing all possible fixed equilibrium  states for three vortices on 

the sphere.

Proposition 2 . 1  (Fixed Equilibria). /. A necessary and sufficient condition fo r  fixed  equi­
libria is 5Zf=1 r,-(rj + r̂ -)x; = 0, i ^ j  k, which implies that all fixed equilibrium  sta tes  
lie on great circles.

2 . I f T i  = r 2  =  r3, then the fixed equilibria fo rm  equilateral triangles and are degenerate great 

circle states.

3. I f  the vortex strengths are not all equal, then the fixed  equilibria are non-degenerate great 
circle states with positions and strengths that sa tis fy  the condition:

Ti tan(Q!) =  Tt tan(o:2) =  T3 tan(ct3)

The norm al vector n is perpendicular to c. I f  F i, T2, T3 > 0, the triangle is acute. I f  

Tj, Tt > 0 , T3  < 0 , the triangle is obtuse.

18

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



V

( a  )

( b )

Figure 2.3: Sub-radial s ta tes  : (a) c" lies inside the sphere, (b) fam ily of intersections of P with 
the  sphere as the plane swings dow n.

To prove necessity in p art (1), we s ta r t by setting tim e derivatives in (2.1) to zero:

£
f j ( X j  X X j )

(R 2 - x i -  xj) 

T hen  take the cross product w ith  r ;x ; :

=  0 .

r -v -  .. y  r i ( xJ * x 0  

‘ 1 2-  (R 2 -  Xi • X j )j* i

N ext, use the following m anipulations:

X j  X  ( X j  X  X i ) =  ( X i  • X i ) X j  -  ( X i  • X j ) X i  

=  llx i | | 2 Xj -  ( X i  - X j ) X i  

=  R rx j  -  (X i  • X j ) x i

19
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\

( a  )

( b )

Figure 2.4: R adial s ta tes : (a) c' lies on the sphere, (b) family of intersections of P w ith the 
sphere as the plane swings down.

and sum  over i to  get:

X ] r >r j ( x i +  xj )  =  °
■<j

3

Y. rtxi(<r -  r,-) = o 
1

=>
3

Mcr =  ^ 2  TfXi
I

from which th e  condition in part ( 1 ) follows. To see th a t th is condition is also sufficient, assume 
th a t it holds. T hen :

3

^ r fxi(<r- rf) = o 
1 = 1

^ ri(r2 + r3)xi + r2(r3 + r r)x2 + r3(ri r2)x3 = o (2.13)

20
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Taking the do t product Xi w ith  (2.13) for i  =  1 .2 ,3  gives:

r2(r3 + TlKi, + r3(rt + r2)/si — ri(r2 + r3)/[2 + r3(ri - f r 2)/23
= r,(T2 + r3)/5l + r2(r! -+r3)/f3
= 2/?2[r1(r2 +  r3) +  r2(r! +  r3) + r3(r t + r2)]

After some m anipulations, th is yields:

(Ti +  r2)/5! = (r1 + r3)/22

(r2 +  r3)/22 = (r t + r2)/;3 (2.14)

Finally, su b stitu tin g  these relations into the cartesian equations (2.1) and m aking use of (2.13) 

gives X; =  0 .
It is clear th a t the vortices m ust lie on a great circle because x i ,  x 2  a n d  x 3  are linearly dependent.

We next prove p art (2). For fixed equilibria, we know from part (1) th a t Mcr =  ^  r?X j =  0.

Also we have th a t M  =  =  0. Therefore:

TjX i +  T5 x 2  +  ["5 x 3  =  0

r txi +  r2x2 + r3x3 - o

M ultiplying the second equation  by Ti and subtracting  from the first gives:

r2(r2 — r L)x2 = r3(rt — r3)x3

which m eans th a t either Ti =  T2 =  T3  or tha t x 2  is parallel to x 3 . M ultiplying the second
equation by T2  and su b trac tin g  from the first gives

Fi(r1 — r2)xi = r3(r2 — r3)x3

which m eans th a t either Ti =  T2  =  T3  or tha t x i  and x 3  are paralle l. Since it is not possible 

for Xi parallel to x 2  parallel to  x 3 , we can conclude th a t Ti =  T2 =  T3  and th a t Xi +  x 2  +  x 3  

=  0. T he second condition im plies th a t the vortices m ust lie on an equilateral triangle. To see 

this, write

Xi =  R(cos(9i)i +  sin(#i)./) 

and let 61 =  0 with no loss o f generality. Using x x +  x 2  +  x 3  = 0  gives:

1 +  cos(0 2) +  cos(0 3) =  0
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(a )

(b )

Figure 2.5: D egenerate s ta te s  : (a) c ' is a t the  origin, (b) vortices m ust lie on great circle.

sin(02) +  s i n ( < ? 3 )  =  0

Solving these equations gives and 63  =  hence the triangle is equ ilateral. Figure
2.7(a) depicts th is s ta te .

To prove p a r t (3),s ta r t  w ith (2.14) which gives:

r2 = r 1 I2 4 - I 2 - I 2‘ 12 ‘ 2 3  ‘ 331
/ 2 .1 2  _  12 
‘12 r  ‘ 31  ‘ 2:

r, =
2 3

- 1 - / 2  _  / 2  
2 3  ' ‘ 31  ‘ 12

/2 _i_ [2 _  [2
*12 ^  *31 *23

We also have th e  following elem entary relations between th e  sides and the angles o f a triangle:

I l2 =  llz + *3!

*23 =  i l l + i i  2

i l l =  l f2 + llz
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( a )

( b )

Figure 2.6: L im iting super-rad ia l s ta tes  : (a) plane P is paralle l to  c. (b) vortices m ust lie on 
vertical latitudes.

Using these relations, th e  above equations can be w ritten:

r 2 /3 i c o s ( a ! )  =  r y 2 3  c o s ( a 2) 

r 3/i2cos (a i)  =  r y 23 cos (0 3 ) (2.15)

We also have the sine form ula for the  sides and angles o f a  triang le :

/ 2 3 I31

s in ( a ! )  sin ( a 2) sin ( a 3) 

Using this in (2.15) gives th e  re la tion  in p a r t (3).

A non-degenerate great circle s ta te  is shown in figure 2.7(b). T h e  vortex triangle can be e ither 

acute or obtuse.
There are several points w orth  em phasizing:

1. It is clear th a t the necessary condition generalizes to  N vortex  equilibria on the sphere.
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c

( a )  ( b )

Figure 2.7: Fixed equilibrium states, (a) Ti =  To =  173, equilateral triangle, degenerate great
circle s ta te , (b) Non-degenerate great circle s ta te .

2. In the  plane, fixed equilibria im ply h =  0 [77]. On the sphere it can be shown that fixed 
equ ilib ria  im ply Ii ^  0 .

3. In th e  plane, only collinear configurations can be fixed [77], whereas on the sphere only 

vortices placed on a great circle can be fixed. T his is because o f the  condition (2.13) which
im plies th a t the three vectors X i, X2  , X3  are co-planar.

4. In th e  plane, fixed states are possible only for T i, IN > 0 .  1^ <  0[77]. On the  sphere, fixed 
s ta te s  are possible for both H ,  r 2, 173 >  0 . and r i , r 2 > 0 , r 3 < 0 .

2 .3 .2  R e la tiv e  E quilibria

T he s ta r tin g  point for an analysis of the relative equilibria on the sphere is th a t  c - xi =  const. 
Therefore each vortex moves on a cone around  the center of vorticity vector staying on a  fixed 

la titu d e . Since each o f the vortex triangle sides is constan t, we can conclude th a t  there is only 
one frequency o f ro tation  around c, which we label 4>i =  ui = const. F igure 2.8 depicts the 
general s itu a tio n , which we sum m arize in:
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Proposition 2.2 (Relative Equilibria). I. For degenerate relative equilibria,all sta tes he 
on great circles, and the positions and strengths sa tisfy  the relations:

ricosec('2ai)  = r 2cosec(2a 2) = r3cosec(2o3). 

The vortices rotate around a fixed vector:

i r^x^o) r 2x2(0) r3x3(o)1
X-  2rR [ q3 + r5l + rl2 ]

with frequency given by the form ula:

_  i  r p 2 / T i  £ 1  , ^ 3 \ 2  r i T o / f o  +  r 2 r 3f j 3 4-  r i r 3 / f 3 l I / 2  
W 1/2 /2 ' ;2 ' 12 12 12 i

^ 7i n  In 3  <3[ q 2 *12 23 43 I

2. For non-degenerate relative equilibria, the vortices rotate around c with constant frequency 
given by:

■ -  A / B  (2.16)
2 - R i y ^

where:

.4 = /l2/ |1[r;(4R2- ^ 2) + r2r3(4R2- / j 2 - l | 1) + r5(4i?2 - / | I)

+ 2i?2r2r3[/r2(/r2 -  4 )  +&(& -4)]] 
b  = (r 2 /i2  + r3 /51 )[r2 (4R2 -/r2) +  r3(4/?2 - / 2 1 ) ] - 4 R 2 r 2 r3/53

A ll such equilibria can be classified in one o f  two cases:

(a) The vortices fo rm  an equilateral triangle, but do not lie on a great circle. The rotation 
frequency simplifies to:

u  = [cr2R 2 -  S / i r ^ o r a s 2 ] 1/ 2 ^ ^ 2  (2.17)

The norm al vector, in general, is neither parallel nor perpendicular to c. However i/Ti = 
r 2  = r3, the norm al vector is parallel to c, and the case is a sub-radial latitudinal state  

shown in figure 2.3. I f  a  — 0, the norm al vector is perpendicular to M  and the case is a 
lim iting super-radial state shown in figure 2 .6 .
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(b) The vortices lie on a great circle, but fo rm  triangles o f arbitrary shape. The sides o f  
the triangle and vortex strengths satisfy:

V' (0) — h L ~ [ 2 { l l 2 ^ 23  +  2̂3 3̂1 +  3̂ 1 1̂ 2 ) 1̂2 ~  2̂3 — ^31] — ^2^23^31 — 0 
/ 0 / ~

r ( 0 )  =  ^ [ 2 « E iL 7 ^ L (r‘ +  r f c )~ ^ S /o ( r > - r 2)] =  o

The norm al vector n is perpendicular to c.

To prove th e  first p a rt of the proposition , s ta r t  w ith

c = 0 => r txi + r 2x2 + r3x3 = 0 (2 .18)

Taking the  d o t product o f xj with the  above for i = L.'2,3 gives:

r 2/i2 +  r v f ,  =  

r 3/53 +  r i / r2  =

IV 3 1  +  r 2 / ? 3  =  2cr R~ (2.19)

From these, we can w rite T2 and r 3  in term s of T i and the f j S  as:

p  _  p  3̂1 ( ^ 1 2  +  2̂3 ~  ^3l)
2 ~  l l h ( lh  + lh ~ lh )

r  r  ^ 2 ^ 3  +  ^ - ^ )
1-3 — t f -----------------------------• I- (I- _t_ / 2  _  ;2  \

t 2 3 ' . t 31 ■ *12 l 23  /

which upon using the standard  triangle re la tions become:

r i c o s e c ( 2 a i )  =  r 2 c o s e c ( 2 a 2 ) =  r 3 c o s e c ( 2 a 3 )

To get expressions for x  and ui, s ta r t  w ith the  equation:

... _  1 r r 2 X2  x x i  _ r 3 x 3  x Xx,
Xl ~  2^ r l l f 2 +  J

Using (2.18) in the  above and noting the fact th a t  the vortices are in re la tive equilibrium  gives:

r 2 x 2  x  x i  1  1

Xl =  — 2 k R — ~  *17 X2 x Xl

Likewise, one can  show : x 2  =  &2( x i  x  x 2). Taken together, we have : At2 Xi +Atxx2  =  x  =  c o n s t, 

which gives x i  =  x  x x i  from which the expressions for x  and ui follow.

For the  second p a rt, the s ta rtin g  point is based on our previous observation  th a t  each vortex 

moves on a  fixed la titu d e  ro tating  around c  w ith constan t frequency. T h e  fact th a t  u; is constant
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Figure 2.8: Vortices in relative equilibrium  move on cones.

follows from equation  (2.3) whose right side is constan t. O f course, if a vortex is on the axis of 
ro ta tion , it stays fixed, and  for it, u  is undefined. (2.16) follows on using the following relations 

in (2.3):

to \ - R a  C l ~ Vj rk ljk
C° ^ i} l|M || 2/JHMIir.-

cos{<pi — <pj) =  cosec(Qi)cosec(9j)[\. — cos(#,) cos(9 j ) — l^j/'2R2]

Since u/i =  uj2  =  ui3 anyone o f  the  three equations for 0 could be used. We use the one for which 

9 yt 0 , 7r so th a t the vortex is no t on the axis of ro ta tion .
T he two cases (a),(b) are ju s t  the  conditions giving the fixed points of (2.6) - (2.8), i.e. relative 

equilibria. We s ta r t  w ith case (a) where / 12 =  / 2 3  =  Izi — s, and  V £  0. (2.16) can be specialized 
to  yield (2.17) for th is case. For Ti =  T2 =  T3 , (2.17) fu rther specialises to the result in [15]. 

Since n - c = V  0, in general, it follows th a t n is a t an angle to  c. Figure 2.9(a) shows the 
equilateral triangle s ta te  for general F i , r 2 , r 3 - If the  vortex streng ths are equal, we see th a t 
n = 0 which im plies th a t  n= const. B ut we know th a t c =  const, and xj - c = const. For bo th  

o f these conditions to  hold, x:- m ust describe a cone around bo th  c and n, which is possible only 
if they are parallel. T h is s ta te , in which the vortices ju s t  ro ta te  on one fixed latitude, is shown 

in figure 2.9(b). If cr =  0, n. • M  =  trV  =  0, which im plies th a t  n and M  are perpendicular. T he 
frequency is ob tained  by se ttin g  cr =  0 in (2.17), as :

_ ^ ( r i  +  r i  +  r i ) ] 1 / 2  

W 2 irRs
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Figure 2.9: Non-degenerate relative equilibrium  sta tes.(a) - (c) : Equilateral triangle non-great- 
circle states, (a) T he situation  for general T i, To. {"3 . (b) Ti =  IN =  f 3  : Vortices move on one 
fixed latitude, (c) cr =  0 : Vortices move on different fixed latitudes, (d) G reat circle state.

T his case is shown in figure 2.9(c). T he p lan ar lim it R  —¥ 00, s fixed gives ui =  0, i.e. in the 
p lanar limit the configuration does not ro ta te . T his is not surprising because a  =  0 leads to a 

rigid translation o f the vortices in the plane. If we com pute the linear velocity of each vortex as:

2 r ? s 2
= ujRsin{9i) =  u /fl[l -  rv  - ,  ] 1 / 2

(L 1 i 2  - f t 3 )/t:- 

and take the lim it R  -+ 00, s fixed, we get the lim iting value:

[ i c r f  +  r l  +  r 2 ) ] 1 / 2
V =  — -------------- -------------------------

27rs

which is the velocity of a transla ting  configuration in the plane [87].
Case (b) com prises till great circle configurations, so th a t V  =  0. It is straightforw ard to prove 

th a t V  =  0 if V(0) =  0 and V(0) =  0. T his can be seen by differentiating (2.10) repeatedly and 

using induction. Finally, n  and c  are perpendicular for this case because x i , xo, x 3  are co-planar. 

Figure 2.9(d) depicts this case.
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- 1

Figure ‘2.10: Phase p lane defining trilin ear coordinates and showing a  -5-sided dom ain  and the 
physical region for 1^ =  1, F 2  =  T3  =  — I, C \ =  —3 R 2

As a final com m ent, we m ention th a t  the stability  properties of the various equilibria have 
been studied in [79].

2 .4  P h ase  P la n e  D yn am ics

In this section we form ulate the equations o f relative m otion in the phase plane [5] and identify 
the equilibria. Then we discuss the relative dynamics.

The dynam ical system  (2.6) - (2.8) has a 3-D phase space. However, this can be reduced to 
a  ‘2-D ‘phase p lane' by m aking use o f the  first invariant (2.11), as pointed ou t by Synge [98] for 
the p lanar problem . To this end, we in troduce the variables

6t =  3 /;3r 2r 3/C i

62 =  3/51r 3r 1/C i

63 =  3fr2r 1r 2/C i  (2 .2 0 )

Then it is clear from  the defining equation  for C \ tha t:

61 -+• f>2 +  6 3  =  3

First we assum e C \ ^  0. T h e  case C i =  0 is treated in §2.5 and  the next ch ap te r. As in Aref 

[5], we use trilinear coord inates (see figure 2.10) to define an  a rb itra ry  po in t P  in the  plane. The
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height of the trian g le  ABC is 3 and (2.11) is identically satisfied for any po in t P  in the phase 
plane. T he trilin ea r coordinates 6 1 , 6 0 , 6 3  a re  related to the rectangular coord ina tes x.y by

6 1  =  y

6 0  =  i ( 3  — y -  \/3.r)

h  =  | ( 3 - y + \ / 3 x )  (2.21)

T he second in v arian t (2.12) in the b variables becomes:

/ ( 6 1 , 6 0 , 6 3 ) =  | 6 1 | 1 / r , | 6 o | I / r - | 6 3 | l / r ; >  ( 2 . 2 2 )

Curves defined by 7 (6 1 , 6 0 , 6 3 ) =  k , w here k is a constant, are called phase curves. T his is the
sam e equation  for the  phase curves in the  p lan ar case, as discussed in [5]. Using (2.21). (2.22)
can be w ritten  as

y) =  - p  In \y\ + ~  In 1 3  ~  y  ~  ^  +  -J- In ~  * +  ^ * 1  =  c o n s t. (2.23)
I  1 I 2 *  I 3  2

It is s tra igh tfo rw ard  to  verify th a t, in te rm s o f the  cartesian variables

y  =  61

x  =  ( 6 3  — 6 o ) / \ / 3

there is a  H am ilton ian  structu re  (see [60] for a  general discussion) for the equa tions o f motion:

6y/3geV { x ,y )  dH
k R C { dy

Qs/Zg6V {x ,y )  dH  ,0 „ |X
9 =  ^ R C T ~ ^  (i24)

It is in teresting  to  no te  th a t the H am ilton ian  stru c tu re  of the relative equations, (2.6) - (2.8), 
rem ains hidden in th e  original form bu t becom es transparent when the cartesian  variables are 

used, in the m an n er described above.
T hough  the  phase p lane is unbounded, th e  system  obviously does not explore all o f it, because 

of the com pact geom etry  of the sphere. T h is  is also clear from considering (2.20). Since the 

vortices lie on a  sphere of radius R, the  m ax im um  value attained by is 2R ,  which m eans the 
6 , ’s lie between 0 an d  c  * k . T his m eans th a t  the region accessible to  the system  is th e  interior

of a  polygonal d o m ain  D, which can have 3 to  6  sides depending on the values o f T i, To, T3  and
Ci- A 5-sided d o m ain  is shown in figure 2.10, for Ti =  T2  =  5 ^ 3  =  — 1 and  C i  =  —3 R 2. Even
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within the dom ain D. the physically relevant region is restricted by V 2 >  0. which is called the 

physical region [5]. For the sam e values of T,- and C \, the physical region is also shown in the 

figure.
T he physical region boundary, given by V =  0 is expressed in the b variables as

ZR 2Vp — bybnbzCi =  0 (2.25)

where Vp =  [2 ( F i r 2 6 i 6 3  +  r 2  T3 6 3 6 3  -t- TsT 1 6 3 6 1 ) — (T 1 6 1 )~ — ( ^ 6 3 ) ' — (T3 6 3 )-]. (2.25) shows 
an im portan t difference between the plane three vortex and the spherical three vortex problem s. 

In the  plane. Vp =  0 gives the  physical region boundary i.e. for a  given set of T's. we have a 

fixed boundary. In contrast, on the sphere, the boundary  is also a function of C 1 which means 

th a t, for a given set of T s. we have m any physical region boundaries, depending on th e  initial 
vortex separations, or in o ther words, one for each value of C \. Figures 2 .11(a),(b) show these 

boundaries for three values o f C’i, for the case r i  =  r 2  =  r 3 = l .  As can be seen, in som e cases, 
the physical region is restricted to  isolated points, a  s itu a tio n  not possible in the p lan ar 3 vortex 
problem . Since isolated points are devoid of dynam ics, these can give rise to  new equilibria, the 
reason why the num ber o f equilibria  is higher for the sphere than  for the plane.

As mentioned in §2.2. V can take both positive and negative values during  the  course o f the 
vortex m otion. The phase plane can be thought o f as 2-sided with the front side having all the 

positive values and the backside all the negative ones. The two sides are jo ined together a t the 
physical region boundary, given by the V =  0 curve. When the system, evolving along a  phase 
curve, reaches the physical region boundary, its subsequent evolution will be on the  o th er side of 

the phase plane.
Using (2.24), we get an im p o rtan t relation for V  as

, , d v -  a n ,
K -  7 f t c f ( i r ' 5 r  -  (2J6)

(2.26) says th a t V  =  0 a t points wherever the curves V 2 =  const, and th e  phase curve H =  

const, are tangent.
W'ith these prelim inaries, we now locate all the equilibria of Propositions 2.1 and  2.2 in the 

phase plane :

P r o p o s i t io n  2 .3  (L o c a t io n  o f  E q u i l ib r ia ) .  I. Fixed equilibria are represented in the phase 
plane by points P  whose trilinear coordinates are given by

. 3r2r3(r2 + r3)
6 1  = E,<i r.T^r, + r,-)
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Figure 2.11: Physical region for Ti =  r 3 =  T3  =  1. (a) For C\ =  9 R 2. the physical region 
consists of isolated points A, B, C and D. For C i =  S R 2. the physical region is the area enclosed 
by the inner triangle plus the isolated points A, B and C. (b) For C\ = 6  R 2. the physical region 
is the area enclosed by the innerm ost curve, (c) Phase d iag ram  showing the physical region and 
phase curves for Ti =  r 3 =  T3  =  1 , C \ =  3R 2.

, s r a iM r a  +  r o
Oo —

_ s r t r o c r x  +  r , )
3 "  +  (2 ' 2 °

with:

c  _ + r2) +r2r3(r2 + r3) + r3rI(r3 + r1)]
(i*i + r2)(r2 + r3)(r3 + ri)

2. (a)Degenerate relative equilibria are located by points U  whose trilinear coordinates are 
given by

H T . +  r s - r y )  
b 1 =  -----------------------
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(b) Non-degenerate relative equilibria are represented by points Q or S  where

(i) Q are points representing equilateral triangle configurations, with trilinear coordinates 
given by,

Q = (— ■ — • — )*  x T i h  r 2h r 3h ’

(ii) S  are points at which the physical region boundary, V  = 0 and the phase curve, H  = 
const, are tangent.

The trilin ear coord inates o f P are ob tained  on using the definitions (‘2.‘20) in ('2.14). Since, 

for a fixed equilib rium , V =  0 (Proposition 2.1). (2.25) w ith the 6 ,- s supplied by (2.27) yields the 
sta ted  expression for C \. If Ti =  To =  T3 . then P represents a degenerate fixed equ ilib rium .

T he trilin ear coordinates o f U are ob tained  on using definitions (2.20) in (2.19). C i has the 
stated  value because c =  0 for a  degenerate equilibrium . T he condition for equ ila tera l triangles 

(i.e. equal sides) yields the coordinates of Q. Q is a  s ta tio n ary  point of (2.22) and is a  m axim um  

for (i) T i. F t, r *3 >  0  and (ii) T i, Tt >  0 , T3  <  0 , h <  0 , in which case the curves given by (2 .2 2 ) 
are closed around Q . For T i. To >  0 , 1^3 <  0, h >  0, Q is a  saddle point and the curves are open, 

see Aref [5]. From  P roposition  ‘2.2, ‘2(b), we know th a t  all non-degenerate great circle relative 

equilibria satisfy  V =  0 and V  =  0. This, w ith (2.26), yields the condition s ta ted  in (ii).
We now discuss th e  general relative m otions o f 3 vortices on a sphere. We first consider the 

case r l ir2,r3 >  o. By (2 .11),,we have C j >  0. T h is im plies that |c | <  R  i.e. the  m otions 
belong to  the su b rad ia l category. By (2.20), 6,- >  0 and  so the region in the phase p lane th a t  is 
relevant to  the  m otion  is the interior of the  equ ila tera l triangle formed by the  po in ts  A  =  (0,3) ,  

B  =  (—•v /3 ,0), C  =  ( \ / 3 , 0). Q = (1/Tyh,  l / V 2h,  I / T 3 /1) is a global m axim um  for (2.22), hence 
all phase curves are closed around Q. The details o f th e  m otions are presented for T i =  r 2 = r 3 = l  

and for a  value o f C 1 =  3R 2.

Shown in figure 2.11(c) are the physical region for th is case and three phase curves a ,b  and 

c each of which is representative of a different ty p e  o f m otion on the sphere. T h e  curve a  lies 
entirely in th e  physical region, so V ^  0 a t any tim e, which means the vortices never a tta in  a 

great circle s ta te , an d  hence m aintain  their in itia l o rien ta tion . The curve b is tan g en t to  V  =  0 
a t the points J ,K  and  L. From  Proposition 2.3, 2 (ii), we know th a t these points represent relative 

equilibria. All in itia l s ta tes  on curve b evolve to  one o f these states. T he curve c intersects
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\ ' =  0. Consider the evolution of an in itial s ta te  on this curve, like the  one represented by the 

point P in the figure. T his s ta te  corresponds to  the  vortices not being on a  great circle as I ' ±  0. 

The evolution will take this s ta te  to  e ither the s ta te  S or the s ta te  T , bo th  o f which lie on the 
physical region boundary i.e. where V  =  0. T he actual s ta te  a tta in ed  will depend on the initial 

o rien ta tion  of the vortices i.e w hether V  >  0 o r V  <  0- On reaching the boundary, the s ta te  

will continue to evolve on the o th e r side of the  phase plane until it again hits the boundary, 

this tim e from the o ther side, upon which it is back on the sam e side th a t it in itially  started  
on. T hus the evolution continues in a  periodic m anner. T his means, th a t  on the sphere initially 

non-great circle planes become g rea t circle planes periodically. T his scenario holds in general for 

any P i, To, r 3 >  0, however, the various curves will lack the sym m etry  o f the  present case. These 

qualita tive  m otions are the exact co u n terp arts  o f  the p lan ar 3-V m otions, as described in [5j.
T h e  other case we consider is T i, To >  0. P3 <  0. We need to d istinguish  two cases Ci £  0 

and C i =  0. T he second case will be considered in the next section and  chapter. For C\ ^  0. 

the relevant regions in the phase plane are regions II and III (figure *2.10).
If h <  0, Q is a m axim um  which is global in region III. and the earlier discussion applies. In 

region II, the phase curves m ust pass through A and B and  since V' =  0 never passes through 

these points, it follows th a t these curves are intercepted by it so th a t th e  m otions correspond to 
the ones represented by curves b and  c, discussed earlier. If h >  0, Q is a saddle point and the 
phase curves are open, so again they  always m eet the physical region boundary. Again, all these 
m otions are quite  sim ilar to the ones already described in the plane, say  in Aref [5], except that  
in the last case, the  m otion can becom e unbounded in the plane, som eth ing  th a t is obviously not 

possible on the sphere.

2.5 A  sp ecia l so lu tion

In this section, we first describe th e  phase plane and then com pute the  relative and absolute 
m otions of the vortices when Ti =  T3 =  — r 3 =  T and C i =  0. These conditions im ply, by (2.11) 

and (2.12), th a t

'l2  =  ' i h + '3 i  (2-28)

and

^ 2 1  =  const. (2.29)
12
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(*2.28) says th a t  the vortices always form a right triang le  w ith / [ 2  giving the length o f the hy­
potenuse. / 0 3  an d  (31 are given by / [ 2  cos a  and / i 2 s i n a  where a  is the angle between (12 and

/ 23 -

Since C \ — 0, we redefine the phase plane variables 6 :- :

6 : =  2̂3 /4 T  1 R 2'- h  =  l l v/AV 2R 2\ 6 3  =  /r 2 / 4 r 3 H2.

so th a t we have the  following identity

6 i + 6 2 +  63 =  c l /4 /2 2( r l r 2r 3) =  o.

We no longer have tri-linear coordinates. However, we can still represent the s ta tes  o f the 

system  in a  phase plane. For this, we use 6 1 , 6 2  as th e  rectangu lar coordinates. It is readily seen 
th a t 6 1 , &2  > 0  so th a t the  phase plane is the first q u ad ran t. T he physical region is given by the 
triangle OAB (see figure *2.1*2) with A =  (0 ,p) and B =  ( f , 0 ) .  Lines OA and OB are inaccessible
to the m otion because these correspond to ‘2 vortex collapses. However. AB is accessible and  all

the sta tes on th is  line are great circle sta tes which im plies th a t  / i 2 =  2R. It is also clear, from the 
fact th a t / 2 3  =  0 at A and increases m onotonically to  ‘2R a t B, th a t ct decreases m onotonically 

from £  a t A to  0 a t B.
T he phase curves are given by +  J_ =  const. A typical curve. PSQ is shown in the  figure. 

These are hyperbolas sym m etric with respect to the line 6 1  =  6 2 i.e. if (&J.65) lies on che curve, 
then so does (6 2 ,6 () (Points E and F in the figure). O n the front side of the plane, where V  >  0. 
the vectorfield has the direction shown. It will, o f  course, be in the opposite direction, on the 

backside.
Further, we have a  =  const, on any ray through th e  origin, such as OC, because, on th is  line,

l~
—1  =  -ip- =  ta n 2  a  =  A =  const. (*2.30)
6 1  12 3

In particu lar, the angle bisector OW  has a  =  — i.e all s ta tes  on this line are isosceles right 
triangles. M oreover, V  =  0 on OW  which m akes W  a  non-degenerate great circle relative 

equilibrium . (P roposition  2.2,2(b))
We can fu rther deduce, from the phase plane, th a t

1 ) I12 has tim e period T  whereas / 2 3  and / 3 1  have periods 2T . T his is because, / 1 2 (B) =  l i2{Q) 
=  2R, as po in ted  ou t earlier.

2 ) the vortex  triangle has the sam e shape and size a t four different tim es, in general, in one 

period.
T his can be seen qu ite  sim ply by considering s ta te s  such as E and F, corresponding to  the 

intersection o f  the  phase curve PQ w ith the rays O C and OD, sym m etric with respect to  6 1  =  

6 2- T he slopes o f OC and OD are ta n 0  and cot/3 respectively. By (2.30), this m eans th a t  the
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triangle corresponding to E will have a  given by tan 2 Q£ =  cot'3 and th a t corresponding to  F by 
ta n 2 cip =  tan  li. These two relations im ply « £  =  z? - O f which, together with (2.29). m eans the  

2 triangles are congruent. In exactly, the sam e way. we ob ta in  tw o m ore such triangles from the 
backside o f the plane, m aking a  to ta l of four times th a t a triang le  a tta in s  the same shape and 
size, in one period. However, th e  great circle triangles a tta in  th e  sam e size and shape only three 

tim es in one period.
We now com pute first the relative, and using that ,  the abso lu te  m otion of the vortices.

Using (2.28) and (2.29), we have

V  =  i i - ^ h z h i y j ~  L̂2

and from (2.6) we get.

^ ( l h )  =  T FC° -  I h )  y / ( 4 &  -  f?2)(Z?a -  4 / i2 sin2 2a„) (2.31)

where ao is the value of a  a t t =  0 and the initial s ta te  is taken  on the line AB in the phase 
plane, for convenience i.e. / 1 2 (0 ) =  2R . (Since the m otion is periodic, this can be done w ithout 

any loss o f generality). (2.31) is in tegrated  to give

, n r  o Ut . o .  . o uf .x112 =  2/t|cos~ — +sm~ 2a0s m “ — J 2

where

T cosec'2ao

Using this in (2.28) and (2.29) gives us I23 and / 3 1  as

1̂ 2 ( ^ 1 2  i  y j Ifo — 4/?2 sin" 2ao) , 
h z  =  [ ------------------------------ 2------------------------------- J 5

and

I i 2 (^i2  T  \ / 1\-> — 4 / ? 2  sin2  2 q 0) ,
h i  =  [------------- ^ --------------------- I 1

T h e  appropriate  sign is chosen depending on whether h 3  >  / 3 1  (segm ent QS of the phase curve) 

o r Inz < h i  (segment PS).
We can conclude the following abou t the relative m otion :
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Figure 2.12: Phase d iag ram  for C \  =  0. Ti =  T2  =  —T3  =  I.

1) T h e  period of is half th a t o f I23 and  /3 1 .

2 ) / 1 2 > 2̂ 3 . h i  caa never equal zero i.e. there is no collapse.
However, the vortices can be m ade to  approach  w ithin e o f each other, no m a tte r  how sm all 

c is. T h is  is because /[o. the biggest o f  separa tions, has a m inim um  value of 2 R s i n 2 o o ,  attained  
a t tim es t =  i2n±Hl_ n = 0 ,l. ..  Hence, by choosing ao. the in itia l angle as ^ s in - 1  ^  or — 

^ s in - 1  the closest distance of approach  o f the  vortices can be m ade to be c, an event term ed 

e - collapse, in [58].
Knowing the /tJs. we now com pute the  frequencies and the spherical polar angles 0, and d, 

for the three vortices.0 , is given by th e  form ula

T he frequencies are calculated using (2.3) and  are given by

2 T R 2 1

(2-32)
- _  _  2YR?  1

02 ~ U2 ~  7T ( }

<j>3 =  u)z =  ~ l 2~ (2-34)
12

We first in tegrate (2.34) to  get

0 3 =  ta n  1 sin 2ao tan  ^  (2.35)
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( C )

Figure 2.13: Vortex trajectories for r \  =  F2 =  - T 3 =  1. C i =  0. T he vortices always form a  
right triangle, (a) Top view (b) View from the bo ttom  (c) Top view through a transparen t sphere

Then using (2.34), we get

=  a’3 +  cos

—1<31 4 R - - I '? ,<p 2 =  0 3  — COS ' ----------------
i 12 y  a b ?  -  %

Finally, we have form ulae for the cartesian coordinates o f the  vortices :

Xi =

y  l =

zi =

123
W  12

l23 

12

-^-[2 i?: 
2 R

l23 ^ A R ^ l f ^ c o s ( Y )  ~  2/^31 sin(2or0) s in ( y )  

^2Z \J4i?2 -  f? 2  s i n ( y )  s in (2 a0) +  2 .R/ 3 1  c o s ( y )
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*3 = \/4/?- -/r2cos(y)

y3 =  4/2- - / j 2s i n (2a0) s i n ( y )

--3 =  Yr ^ R 2 - i U]- 

T he following conclusions can be draw n abou t the absolute m otion :

1) All the vortices have a period of T  =  whereas l i3 has tim e period ^  and I23 and l3l 

have periods T .
2) If ao =  f-, we have the non-degenerate great circle relative equilibrium , m entioned earlier, 

corresponding to  the point W in the phase plane. Vortex 3 stays fixed on th e  c axis whereas I 
and 2 go around  on the equator at a frequency, u,  deduced from (2.16) as

r
^  “  AttR2

In figure 2.13, we plot the trajectories of all three vortices for T =  I and an in itia l angle qq =  10°.
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C hapter 3

C ollapse o f  th ree  vortices

W hen three point vortices o f differing signs move on the  surface o f a  sphere, it is possible for 
them  to collapse self-sim ilarly  in finite tim e. T he corresponding collapse process for p lanar po in t 
vortices has been well s tu d ied  [5, 73, 75, 98], yet despite th e  fact th a t  the spherical problem  is 

more geophysically relevant [‘25, 82], this is the first work to  s tu d y  spherical collapse.
In this chapter, we describe the collapse process in d e ta il, and  con trast it with the p lanar 

collapse process for which m uch m ore is known. Aside from  its inherent m athem atical in terest, 
there is recent evidence [26. 27] th a t  three vortex collapse in the plane and on the sphere is the 
m ost frequent in teraction  for finite sized vortices in d ilu te  2D turbulence sim ulations.

In §3.1, we present th e  necessary and sufficient conditions for self - sim ilar collapse and  

describe the collapse process in detail.W e calculate the  collapse tim es and  the vortex velocities 
during  the collapse process. In §3.2. we present a 'geom etric ' view o f collapse; in particu lar, we 

exam ine why for a  given se t of vortex strengths and in itia l separations, there are "partner’ s ta te s  
which collapse in different tim es. In §3-3, we study  the collapse process in the stereographic 
plane; in th is p lane the collapse is not self-similar. F inally, in §3.4, we describe the phase p lane 
for the collapsing system  an d  present another view o f how ‘p a rtn e r s ta te s ’ come about.
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3.1 C ollapse process

O ur analysis is based on the equations for the chord lengths (fl2, / 23 . h i )

T his system  has two invariants (cf. §2.2)

Ci =  r r r o ^  +  r 3iy § 3 +  r3r 1/51 =  o (3.4)

C 2  =  ( / r 2 ) 1 / r M 4 ) l / r i  - ( * 5 i ) 1 / r 2  ( 3 -5 )

which arise from the conservation o f m om entum  and energy. T he first invarian t is zero due to

the fact that the chord lengths vanish a t collapse. This implies th a t the vortex streng ths cannot

all have the sam e sign, so we use the  convention f i  > 0. T2 >  0, T3 <  0.
We recall a form ula for the m agnitude o f c (cf. §2.2) :

M 2 =  r 2 - c \ / ct

from  which we conclude

C i =  0 o  |ic|| =  R, (3.6)

assum ing a  0.
We s ta rt w ith the ansatz th a t  th e  ratios of the relative distances betw een vortices rem ain 

constan t th roughout th e ir m otion:

(3.7)

(3.8)

*12 II

*23 =  A ,rh
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where:

Al “  ( W 0 ) ’
. _  ,*23(0) 2

A2 “  ( W 0 ) ’

T he second conserved quantity , Cn yields:

(̂ 3 i ( 0 ) ^ l / r ‘ =  const.

implying

E f  = ° (3-9)
i=i 1 ‘

There are two observations one can make regarding the conditions (3.6) and (3.9). Using these 
conditions together, it is possible to prove th a t neither equilateral, nor isosceles triangles can 

collapse, hence 112 ^  Z2 3  ^  ^ 3 1  • Furtherm ore, if we m ake the assum ption th a t Ti .To > 0 . r 3 < 0 ,  
then / l2, which is the chord length joining the two vortices of like sign, must have length lying 

in between the o ther two.
The collapse tim es are ob tained  analytically by using (3.1).(3.2),(3.3) along wi th (3.7),(3.8) 

to get a scalar equation for /§x

£ < « ■ >  =  s 5 ( ^ r ) V 7 ' 3 '

=

which gives a relationship to  be satisfied am ong the vortex  strengths and the in itia l conditions:

iMAi - 1) = r 2(A2 -  Ax) = r 3(i -  a2).

These conditions can be derived from the previous conditions (3.4) and (3.5).

Solving for / | x is s traightforw ard  and gives:

& (* ) =  & (0 ) ±  12 (3.10)
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where:

a  =  >/1 -  ^ 3 i ( ° )

Since the coefficient:

pa,-2 _  rj(Al -  A2)2 
4 l6 -2 /? 2 (A!A2)

we know there are two zeroes o f t ^ f ) .  one positive, o n e  negative. We denote the positive collapse 

tim e r*  (the ±  corresponds to the ±  in front o f th e  te rm  linear in ' t ' ) .  It is straightforw ard to 

verify that  the negative zero is — r ? . After som e a lg eb ra , (3.10) reduces to  the exact formula:

where

_  4ttR 2v/7

ly(<) = M ° ) ( 1  +  5 r ) ‘/2 ( l  -  i ) ‘/2 (3 U >

r  =  r 3f ( V , ^ - t ) i ( 1 ± i , ) > 0  ( 3 ' 1 2 )

with

7  =  2(Al +  A2) - ( A i  - A , ) 2  -  1

?3 = ' J l - p l U Q )

p — Ai A2 / R~~i-

Note th a t, for the same initial vortex separations and  vortex streng ths, we have, in general, 

two distinct collapsing states with d istinct collapse tim es. We call these collapsing states “p a rtn e r’ 
states. O f the two collapse times ( r* ) ,  the one w hich occurs for a given configuration depends 
on the orientation  o f the vortices, V(0) as well as 1^(0). For the p lanar case, Aref [5] shows 
th a t associated with each collapsing configuration, th e re  is a  ‘p a r tn e r’ expanding state . These 

p artner sta tes in the plane are the analogs of the p a r tn e r  s tates on the sphere. We can com pare 
these collapsing s ta tes  more closely with those in th e  plane by expanding the formulas (3.11) 

near collapse. T heir asym ptotic expansions near co llapse are:

/0 -(i) ~  A • (1 -  ^ t ) 1 ' 2  +  B  - (1 — ^ r ) 3 ' 2  +  0 ((1  -  ^ ) 5' 2) (3.13)
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with constants .4 and  B  given by

B  =  +  (3.15)
v ( I T a )

The planar result of A ref [5] gives the exact collapse fo rm ula

M O = M O ) - ( 1 - V / 2 .

The leading term  o f  (3.13) agrees with the exact p lanar resu lts  aside from the coefficient. The 

higher order term s represent the corrections due to  the spherical geometry.
We next calcu late  the trajectories of each vortex on th e  rou te towards collapse. A difference 

between the p lanar an d  spherical problems is th a t for the p la n a r case, there is only one frequency 

associated with the collapsing sta te , [75] given by:

n a *
■ ,J =  L

On the sphere, however, since the orientation o f the vortex  triangle changes in tim e, in general 

ip! zfc. o2 0 3 .  T he frequencies are given by the form ulas:

uJi =  0 i =  -^-[r,-(cos(0j) — cot(0,-) sin(0j) cos(o,- -  O j))//?• 4-
Z7T

r fc(cos(0fc) -  cot(0, ) sin(0fc) cos{4>k -  <?«))/&] (3.16)

where i 7 = j  k. To w rite these frequencies directly  as functions of time,we first need to  calculate 

cos(0,) in term s of th e  ftJs. It is straightforw ard to  derive:

cos(9i) = 1 + (317)

To calculate cos(<p,- — <pj) in term s of Uj , we s ta r t  w ith:

ifj =  '2R? (1 — cos(9i)cos(9j) — sin(0,-) sin(0y) cos(dt- — <pj)) (3.18)

which gives:

cos(4>i — 4>j) =  cosec(9i)cosec(9j)( 1 — cos(0,-) cos(0/) — l f j / 2 R 2)

Finally, using the  form ulas (3.17) and (3.18) in (3.16) gives th e  result:
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Figure 3.1: Vortex paths for collapsing partner s ta tes, (a) Vortices collapse in tim e r+ (b) 
Vortices collapse in tim e r _ .  Notice th a t the vortices are anticlockw ise in (a) and clockwise in
(b).

u j p  -  (fj +  r fc)/(8;rfi2)
i +

where i ^  j  ^  k.  Note th a t  in the  above formula for u p , the expression for length should 

be th a t on the sphere, as given by (3.11). These equations can easily be integrated to give 

expressions for the angles

Oi(0  =  0 ,(0) +  Di ln( ' +  ff,-[tan- 1 (7 i< +  £,-) -  ta n -1 d,] (3.19)
T  — t ~t ‘

where:

A {  T + T ~

= l]k (0) r+  +  r -

i ( r t + r 2)3 +  r f ( i  +  i/A) +  r j ( i  +  A) 
r 2( l + A )  47r(r: + r 2)
_i a ( r 1 +  r 2)3 +  r? ( i  +  i/A) +  r j ( i  +  A)
T i i  +  A 4 x ( r i  +  r 2)
(IN +  r 2)3 +  r 3(i +  i / a) +  r f ( i  +  A) 

47r(r! +  r 2)2
_  2 ( A , a , -  +  /3,-)r+ r ~ ________________ 1________________

y /-[ ( r +  +  r - y -  +  4 r+ r - / t t , - /? fe(0)]

= r i r fc/(4rIfi2cr)

= (Fy + rfc)/(87Tfi2)
2  

y /- [ (T +  +  T - y - + 4 T + T - /a il]k (0)]
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x  _  _____________r*  -  r - _____________

y/~ [(r+  + r - y - + 4 r + r - / Qil]k m

where A is related to Ao by A =  Near collision, we can use the asym ptotic expansions for

l i j { t )  to get expansions for the frequencies:

( l= F a )  . 1 r, p t , ^ ^ r .  +  r . - .C a 2 - ! )
 ---------^ ------,j1p  ~  87_ ^ 2 +  ^ 3 )  +  ^ ( ^ 2  k ( 0 ) J ) i ------- 2----------^  ~ Q i ^ 3 ( ° ) ) ]  +  ^ ( ( l  — t / r * ) )

~^— ” 'i,p  _  1 +  +  ^  ( ^ 2  [ 2  ( Q ) J  — 2— ~ +  *̂ a 2 ^ i ( 0 ) ) ]  +  0 ( ( L  — t / r ~ ) )
( > T a )

'jj- —  ............................11 i i  i -» i - f -  n  i >  — -

- , i ( 0 )

^ ----J-.------------II I , -I- I -> I -+- rt~t > ----
,-(0 )

^3 ~  -—^ —-^p — g _ ^ 2 [(Ti +  To) + R 2( ^ 2  /i>-(oyJ- )(■— 2 — " +  ^Ck3 ^i2 (0 ))] +  0 ((L — t / r J"))

Notice that the leading term  of each frequency agrees (up to a  m ultiplicative constan t) with the 
planar frequency u;p . T he correction term s m ake each frequency distinct. We show in figure 3-1 

two partner collapsing trajectories for the three vortices ( Tj =  1 , IN =  L. f^  =  — £).
We sum m arize here our m ain conclusions:

P r o p o s i t io n  3 .1  (S e lf - s im ila r  c o l la p s e ) .  1. Necessary and sufficient conditions fo r  self- 
sim ilar collapse on the sphere are given by:

(i) C\ =  0 

( “J E r  =  °
fn i)  The vortices do not form  an equilibrium.

2. Collapsing configurations occur in pairs, which we call 'partner states'. For each given 
collapse configuration with collapse tim e denoted r + , its partner state is obtained by anti- 
cyclically perm uting the indices. The collapse tim e associated with the partner state is 
r~  £  r+ .

3. The lengths o f  the sides o f the vortex triangle are given by the formulas:

M 0 = i r ( 0 - ( l - < / r ± )1/2

where:

F ( t ) = l i j ( 0 ) . ( l  + t / T * ) ^ -  

with >  0 given by form ulas (3.12). N ear collapse, the asymptotic expansions are: 

l i j i t )  t / r * ) 1' 2 +  B - (  1 -  t / r * ) 3' 2 +  0 ((1  -  t / r ± )5f 2)
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where .4 and B  are constants given by the form ulas (3. I f ) , (3.15).

4- Each vortex trajectory has a frequency associated with it, defined by Oi = -j, (i=  1.2.3) with:

u i —  ( w p — A ) / U  +  a iLjk{t))

where:

i  E ( r «- + r;)/('yM)H
i , J =  I

a,- = rJrfc/(4rt«2<r)
3i = (Tj + rk)/(8-R2)

Notice that a ,  —* 0 ,Bi —> 0 as R  —»• oo. hence uj; —► ljp , which has the fo rm  o f the frequency 

associated with the p lanar problem [5], but with the spherical lijs .

5. Integrating the form ulas fo r  *Ji and using the erplicit expressions fo r  9{ gives us the exact 
form ulas fo r  the tra jectories o f  the collapsing vortices, in term s o f  polar coordinates centered 
at the collapse point ( r , ) =  (R sin (d i), ©,);

r ,  =  2 R l j k  y j —&i  ( 1  +  a . l j f . )

and the angles o* are given by the form ulas (3.19).

6. Near collapse, the frequencies have asymptotic expansions given by the form ulas:

Ui ~  6 -Up +  Pi +  0 ((1  — t / r i ))

where S =  ( 1  ^  a ) / ‘2  and pi is given by the form ula:

* = + r ‘>+ ^ o I i )(l2V i i  + 2“ i' i (0))I

To understand why th e  conditions in ( 1 ) are sufficient, we need to  describe the phase plane 

associated with the collapsing s ta tes . We do this in the last section.
Hence, there are th ree differences between the spherical collapse process and  the planar col­

lapse process

•  The spherical collapse has two d istinct collapse tim es, whereas the  p lan ar collapse has one. 
In the plane, the analogue of the partner s ta te  is a  self-sim ilar expanding  s ta te  [5] which 

cannot occur on the  sphere because of the ex tra  length scale R  which pu ts  an upper bound 

on the m axim um  chord length.
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( a )

( b )

F igure 3.2: (a) C~ lies on sphere surface and  on the  vortex plane P. (b) Fam ily o f intersections 
o f P w ith the sphere. Vortices are squeezed to  the N orth Pole as P becomes tangent there.

•  T h e  exact form ulas for chord lengths are different for the sphere and the plane, however 

the  leading term  near collapse agrees w ith  the  p lanar result, w ith  higher order corrections 

due to  the spherical geometry.

•  In the  plane, the vortices all ro ta te  w ith  th e  sam e angular velocity as they collapse, whereas 
on the  sphere, each has a d istinc t an g u lar velocity.

3.2  A  geom etric  v iew  o f  co llap se

To understand  the collapse process fu rther, and  in particu la r why th ere  are two distinct collapse 
tim es r *  associated w ith a  set of in itia l conditions we m ake use o f th e  constra in t (3.6).

F igure 3.2 shows the relevant geom etry, w ith  the tip  o f the c vector, denoted C*, lying at the 
N orth  Pole. T h e  vortex plane, denoted P ,  alw ays intersects this po in t, hence the  vortices lie on 

the  circles form ed by intersecting the  plane w ith  the sphere. We first com pu te  the angle between 

c and  n , which we denote a (t) .
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(a)

1 cr.

(b)

y-r.

(d)

Figure 3.3: P artn er s ta te s  (a) I, (b) IP, (c) II, (d) I I p . C onfigurations I and I I P collapse a t time 
r ~ , while Ip and II collapse a t tim e - + . In all cases the in itia l lengths are the sam e.

Since

c - n  =  ||c ||| |n || cos(a) =  V. 

and ||n || =  2|.4| >  0 and ||c[| =  R , we have

cos(or) =  V f2 \A \R  = ± ^ / l  -  a 2 /  R 2 

Differentiating this form ula gives

(3.20)

1 d ,  
a  =  . - - (a -)R 2 sin (2a) dt

which, after using some identities gives

a  = p  r2v  (  I 1
sin (2 a ) n R  f| 3

(3.21)
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where

Al A o 
P =  R2[2( A t + A 2) - ( A 1 - A 2)2 -  1] >  ° '

From (3.20) we can infer th a t

•  V ''> 0 = > 0 < a < | - = >  sin(2 a ) >  0 .

• 1/ < 0 = > t < q < ~ = >  sin (2 o ) <  0 .

Thus, from (3.2 L) it is clear that

•  C k > 0 l f / i 2 < .  ^ 23  ,

• d  <  0  if li2 > 2̂3-

Suppose we have the collapsing configuration shown in Figure 3.3(a), which we call configuration 

( /) .  It is set up so th a t r t , r 2 >  0 .T 3  <  0, / 1 2  >  h s  and C(0) >  0. T h en  by (3.21). we have 
d  <  0 and hence a  j. 0 as t —> t ~  . To get the partner s ta te  associated  w ith configuration ( /) .  
consider the sam e set-up, but w ith the signs of the T’s reversed. Because it is the partner s ta te  
associated w ith ( /) ,  we label this configuration ( /p). We have d  >  0. hence a  "f — as t —y r +. The 
partner s ta tes are related to each o th er by the opposite directions in which the plane P swings 

in order to become tangent to the sphere a t the North Pole, thereby squeezing the vortices to 
their u ltim ate  collapse. A nother way o f achieving the partner s ta te  re la ted  to  (I)  is by using the 
discrete sym m etries inherent in the problem  (cf. §2 .2 . 1 ). Consider a  configuration ( / / )  obtained 

by reversing the signs of the x or y  coordinates of configuration ( /) .  All the chord lengths 
remain as in (I) , as do the vortex streng ths F i , r 2 >  0 ,T 3  <  0. O nce again, q  <  0 , hence 

a  i  0 as t —¥ r +. Then, configuration (/ / p ) is obtained by reversing th e  signs of the T’s, giving 
d > 0 , a t 7r a s * —̂v r ~ .

3.3 Stereographic p ro jection

The change o f variable

r,- =  ta n ( 0 ,-/2 )

results in a stereographic projection of the vortex T,- onto the ex tended  com plex plane C which 

is tangent to  th e  sphere at the  N orth  Pole, as shown in figure 3.4. T h is  point of tangency is a t 
the origin o f C, while the South Pole m aps to  the point a t infinity. A n im p o rtan t aspect of the 
stereographic projection is th a t it is conform al [6 8 ] and vector fields o n  the sphere are m apped 

in a one-to-one fashion to  vector fields on C.
50

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Figure 3.4: Stereographic p ro jection  of three vortices.

By a straigh tforw ard  com putation , one gets the new H am iltonian in C as 

1 V-' n n , f  r i  +  H  ~  2 r‘rJ cos(®- ~ ° j ) \

*  =  4 ^  g  f ' r > ^  (  U  +  r f H i + r l ,  J (3.22)

with the new equations o f m otion

r d 3 (l +  r f f d n
YiTt{ri) = ------------ 2 — W i

d6i ( l + r f f - m
1 dt 2 Or?

where (r,-,d,-) are the p o la r coordinates of the vortex  T,- in the complex plane C.
O ur goal in this section is to show th a t the collision process in the stereographic p lane is not 

self-similar. To prove th is, we will show th a t the ra tio s  r i 2 / r 2 3  and r 1 2 / r 3 i are functions of tim e, 
where r,-y is the  d istance between vortex r,- and fy  in C. It is straightforw ard to  show th a t

tfjrr . = ------------------------------------J-
a h ?[ i  +  ( i v r ^ v r . K j J t i  +  ( r fcr f/4 /? v ry ) /2 .]

where i ^  j  ^  k, i , j , k  =  1, • • •, 3. Then we can w rite / 1 2  and  I 0 3  in term s o f I 3 1  to  get

r 12  —

r31 —

Al /2 ‘31
4 R 2 (1 +  a 2/5i)
A2 / 2 ‘ 3 1

AH2 (1 +  ^ 2 3̂1) ( 1 +  “ 3^31)
1 / 2  ‘ 3 1
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where

Qi =

Go =

«3 =

From these formulas, it is clear th a t

•  r, j  —y 0  as t —)- r * ,

•  r i 2 / r 2 3  and r 1 2 / r 3i are functions of time unless a j  =  Go =  q 3, which is not possible.

This shows th a t the collapse is no t self-sim ilar.

We end this section w ith several remarks:

1. As shown in the previous section, the angle a  between c and n  is not constan t, which is 
the reason the collapse form ulas on the projected C plane are not self-similar.

2. T he H am iltonian system  in the stereographic p lane is useful for several o ther purposes 
as well. In particular, in study ing  the stream line topology for the :V-vortex problem  on 
the sphere, it is advantageous to  study the projected  stream lines on the C plane. T h is  is 
presented in the next chap te r.

3.4 C ollapse in th e  phase plane

To understand why the conditions in Proposition 3.1, (1) are sufficient, we now consider the  
phase plane associated w ith collapse. We use the phase plane coordinates introduced in §2.5, 
where also C i =  0. These are given by

bi = ll3/4TiR2; b2 = I |,/4 r2i?2; b3 = li2/ir3R2,
so th a t we have the following iden tity

bi 4* b2 +  b3 = C i/A R ~ {T iT 2 r 3) =  0.

We can no longer use trilin ear coordinates. However, we can still represent the sta tes o f the 

system  in a  phase plane. For th is , we use b \,b 2 as the rec tangu lar coordinates. It is readily seen
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( a ) ( b )

b.

b,
( c )

Figure 3.5: Phase plane showing the p artn e r collapsing states. Both sta tes s ta r t  off a t P. but on 
opposite faces. The one on the front face collapses directly towards the origin, the o th er evolves 
first to Q on the V  =  0 curve, before collapsing to the origin on the front face.

th a t 6 I t 6 o >  0 so th a t the phase plane is the first quadrant. T hrough each po in t P  =  (6 1 . 6 2 ) 
there is a  curve of the type

where A =  6 0 / 6 1  => A is a  constant i.e. the phase curves are stra igh t lines passing through the

b f^b!p  ( 6 1  +  6 0 ) ^  =  const. (3.23)

Assum ing th a t the conditions in Proposition  3.1,(1) hold, (3.23) can be w ritten as ( 6i^ 6; ) iT ( ^  =  
const, or

const

origin. Now, since the the physical region given by V 2 >  0 is always a  closed curve through the 

origin for this case, it follows th a t all non-equilibrium  initial states evolve to  the  origin, in finite 
tim e, which corresponds to collapse.
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Figure 3.5 shows th e  (&i, 6 o) phase plane, with each co llapsing  tra jecto ry  lying on a  ray going 
through the origin. For definiteness, we show the case Ti =  T2  =  1. T3  =  — T he p artn e r 

states associated w ith  a  given collapsing configuration are shown on the diagram . The partn er 
states shown in figures 3.3(a) and (c) have identical /t J 's and  T’s. therefore are located by the 

sam e point P . However for case (a) we have V  >  0, while for case (c) we have V  <  0. In 

both  cases, the sign o f  V  is the sam e. For case (a), the tra je c to ry  evolves stra ig h t to the origin 
along the ray (on th e  front face V > 0  ), collapsing at tim e t ~ . S ta te  (c) evolves away from the 
origin (on the back face V  <  0 ) until it hits the V  =  0 curve, corresponding to  a  great circle 

configuration, then  evolves to  the  origin on the front face V  >  0, collapsing a t  the la ter tim e 
r + >  r ~ .  T he difference between th is process and the correspond ing  one in the plane, described 

in [5], is th a t for the p lan ar problem , there is nothing to b o u n d  the  coordinates from above, hence 
the accessible region is unbounded. As a result, the tra jec to ry  analogous to s ta te  (c) continues 
to  travel away from th e  origin on th e  same ray, representing a  self-sim ilarly expanding sta te . An 
analogous explanation  can be given for the partn er s ta te s  show n in figures 3.3(b) and (d).

We have seen th a t  self-sim ilar collapse requires C \ =  0 and  h = 0 . If h >  0 or h <  0. we 
no longer have collapse. T h is  is because, although the physical region boundary, V =  0, passes 
through the origin, the  phase curves either d o n 't pass th ro u g h  the origin (h >  0 ) or they are 

intercepted by the V =  0 curve before they can reach the orig in  (h <  0). T he representative 
phase plane for each o f  these cases is shown in figure 3.5(b) (F[ =  r 2  =  l .T a  =  —1) and figure

3.5(c) ( r 1 =  r 2 =  i , r 3  =  - i ) .
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C hapter 4

Stream line to p o lo g ie s

This chapter describes th e  instan taneous stream line patterns produced by point vortices of gen­
eral strength  on the surface of a two dimensional sphere. T he com pletely  integrable cases of two 

and three vortices are trea ted  in detail both in a  fixed inertial fram e o f  reference, and for the 

case o f relative equ ilib ria , in a  ro ta tin g  frame of reference. One o f  the  m ain  results is a general 

topological classification o f the  1 ‘2  prim itive patterns th a t are allow able for the  case of three vor­
tices, from which m uch m ore general and complex structures can be constructed  via continuous 
deform ation and  linear superposition . T he analogous p lanar problem  has recently been studied 
by Aref and Brons [7]. A general topological classification for all in tegrab le  two degree-of-freedom 
Ham iltonian system s has been carried ou t recently by Fomenko an d  co-workers [36, 37].

We s ta r t by in troducing  the equations of particle m otion in th e  stereographic plane; these are 
com pared with the well known equations of motion in the physical plane [5, 6 ]. In §4.2 we s ta te  

several general results on stag n a tio n  points, consequences o f the Poincare Index Theorem . In §4.3 

we classify all topological p a tte rn s  for the two and three vortex problem , including the streamline 
patterns associated w ith  all relative equilibria, as well as the collapsing s ta te  (cf. C hapter 3) and 
a  special periodic so lu tion  (cf. §2.5). In §4.4 we view the p a tte rn s  for the  relative equilibria in a 

ro tating fram e o f reference chosen so th a t the vortex configuration is sta tio n ary . We end with a 
discussion of the  relevance o f  this s tu d y  to  a  general understanding o f global atm ospheric weather 

patterns. In particu la r, i t  is argued th a t the primitive patterns generated  from  the three vortex 

problem are probably also useful for understanding and classifying m ore com plex patterns in the 
general W -vortex problem . It is also conjectured th a t an im p o rtan t ingredient in understanding 

unstable global w eather phenom ena is an understanding of the d ynam ica l topological transitions 
from one stream line p a tte rn  to  another, a  study which is only in  its infancy and will require 
extensive com pu tation  an d  d a ta  analysis to fully understand.
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4.1 Stereographic projection

In this section, we project the equations o f m otion for a fluid particle to  the stereographic plane 
th a t was introduced in C hapter 3.

T he change o f variable

r  =  ta n ( 0 / 2 )

results in a stereographic projection of the partic le located at (9. 6) onto the  extended complex 

plane C which is tangent to the sphere a t the N orth Pole, as shown in figure 4.1. T his point 
of tangency is a t the  origin of C, while the South Pole ( 9 = k  ) m aps to th e  point a t infinity. 
Note th a t we have also non-dimensionalized the equations so th a t the eq u a to r projects to the 

unit circle. An im p o rtan t aspect of the stereographic projection is th a t it is conform al [6 8 ] and 

vector fields on the  sphere are m apped in a one-to-one fashion to vector fields on C.
T he H am iltonian for particle m otion projected on to  the extended com plex plane C is

, • > 1 , ( r2 +  r f  — 2 r r ,  cos ( 0  — O i) \  ,
n p ( r ,o ; n ,0 i )  =  ^ - ^ g r t-ln ^  ( 1  +  r 2 )( l  +  r ?) )  '

where r  and o  are the polar coordinates of the partic le in the complex p lane — notice th a t r 
and r,- are dim ensionless. T heir dimensional coun terparts are s =  '2Rr and sx- =  ‘2 /?r,. It will be 

convenient to  m ake this distinction when we take the  lim it R  —> oc in order to  m ake com parisons 
with the p lanar system . T he H am iltonian for the vortex m otion was presented in C hap ter 3.

T he equations o f m otion for a particle can then be w ritten

-  ■

*  =  < « )

In term s o f the  cartesian variables, we have

( 1  +  r 2 ) 2  &HP
x  — --------------------------------------------  —

4 dy
{l +  r2)2 d7ip

V = 4 dx'

where r 2  =  x 2 +  y 2, w ith %p being identical to  th a t  in (4.1), expressed in ca rtesian  variables. 

Using the com plex notation  z  — x  + iy, these last equations can be w ritten m ore com pactly  as

+ M L H L  (4 4)
“  2 d z  1 1
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Figure 4.1: Stereographic projection o f  sphere onto  the extended com plex plane C. T he point P 
is projected to P '.

where

1 N
U {Z' °  =  A ^tV - ^  Fi l0g ^  "  “' i,|2 /(1  +  i |r , |2 )(l +  !,“i||2 )J

(4.5)
1 = 1

W ritten out in expanded form, eq u a tio n  (4.4) becomes

8 ttR2 ] T r  x /(- -  -0  -  ^ - V ( i + -
.» = !

(4.6)

This equation, when w ritten for the vortex  m otion, generalizes the equation in Hally [45]. reducing 
to it when the to ta l vorticity vanishes, i.e. a  =  0 .

To see how (4.6) behaves in the p la n a r  lim it R  — oo, consider the equation  for the dim ensional 
variable w = '2Rz. T he system  (4.6) transfo rm s as

w — —l_,(4fl2 + iM|2)2
32trR4

;V

(4 +  1 H I7 F .2)2 
32tt

r i /{ w  -  Wi) -  a w '/ ( 4 R 2 +  |[tt'||2)
Ll =  l

' N
T . ? i/{ w  -  Wi) -  a w ’ / R 2(4 +  ||it;||2/ / ? 2)

Lf=l

Then, in the lim it R  —>■ oo where | |u ; | |/ i ?  < <  1, to  leading order we ob ta in  th e  equations

i ,V
w '  =  ^ 2  r i / ( w ~  ^ i) ,

i= 1

which correspond to the p lanar eq u a tio n s o f A ref [5], as one would expect.
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Although (4.6) gives the correct velocity a t all finite points in the plane, it should  not be 

used to calculate the velocity a t the point a t  infinity, i.e. the  image of the South Pole, since the 
stereographic projection is not continuous there. In the rest of the chapter, this po in t will be 
treated  separately. In particu lar s itua tions if  it appears th a t  the South Pole could be a  s tagnation  
point, this is ascertained by recourse to  th e  vector form o f the equations (2 . 1 ).

4.2 G eneral R esu lts

We s ta r t by sta tin g  som e general results regard ing  the stagnation  points on a sphere. T he m otion 
of a passive partic le in the field o f N  vortices is given by (4.6). T he stagnation  poin ts on the 
stereographic plane, r  =  z3, are s ta tio n ary  po in ts of (4.6) and  as such are obtained as solutions 

of the algebraic system

jV

ri / ( -  -  -;) = « ; / ( i  + ii- ii2)- (4-7)
j = i

It is useful to write this condition in cartesian  variables as well. The velocity field at an  a rb itra ry  
point x  on the sphere is

1 ‘V
*  =  J T r  r ->(xJ x x )/l!x i  “  XH2- (4-8)

j  =  l

The stagnation  points, x  =  x 5j are then  o b ta in ed  by solving the algebraic system

jV

j {x j  X x , ) / | | x ,  - X j l l 2  = 0 .  (4.9)
j = i

We now sum m arize some general topological consequences arising from the fact th a t  the 

vortices move on the surface of a  sphere. T h e  first consequence is contained in the following 
general theorem :

P o in c a r e  In d e x  T h e o r e m  ( P I T )  : The index, I / { S ) ,  o f  a two dimensional surface S , relative 
to any C l vector fie ld  f  on S  with at m o st a fin ite  num ber o f  critical points is equal to the 

Euler-Poincare characteristic o f  S , denoted  x (5 ’) , i.e. I / { S )  =  x ( S )  (see Perko [80]). 
R em arks

1. C ritical points refer to points where th e  vector field vanishes or is singular. In our case, 
these are the  stagnation  points and  th e  poin t vortex  locations, which in general are not 

stagnation  points.
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2. For a  sphere. \ ( 5 )  =  2. T h e  index of a  cen ter is + 1 . while that for a saddle is —1. Hence, 
if only centers and saddles are  present, and c denotes the num ber of centers, s the num ber 

of saddles, then

2 .

3. Recall th a t each vortex is a  center, hence there  are a t least N  centers, i.e. c > 'V. In the 
p lanar problem  stud ied  in A ref and Brons [7], c =  iV.

To understand and categorize the  vector fields and stream line patterns, we first need the 

following definition:

D e f in it io n : .4 sta tionary point, Xo, o f the system  x  =  / ( x )  is called non-degenerate i f  the

Jacobtan m atrix  D / ( x q  ) has no zero eigenvalues, otherwise it is called degenerate (see Perko 
[80]).

T he first question of interest is how m any s tag n a tio n  points are present in the flowfieid generated 
by Ar vortices. To answ er this, notice th a t (4.7) can  be w ritten

E S  — L 
—  1 7 1 = 0  11"3

along with its com plex conjugate

1 AZ^m=0 °m -
m ' 3 = S ( z , , z j ;  rj) (4.10)

_  E m = 0
Y'-V~ 1 L,um~s

(4.11)

T hen (4.10) can be su b stitu ted  in to  (4.11) to  o b ta in  an  equation only in z,

W i V - i )2 r  - m  ^____ _Z—/m=0 m **■?
—  v d  ’2—tm—0 am -s

(4.12)

which is an algebraic equation  of degree N 2 — 2 N  +  '2 and  hence can have a t  m ost as m any d istinct 
solutions. To establish the  types o f stagnation  po in ts th a t can exist in the  flow, one can use a  

standard  result from H am ilton ian  theory  (see Perko [80]) th a t  for a non-degenerate s ta tio n ary  
point, only saddles and centers can  occur.

More specifically, for th e  case N  =  1, (4.7) can  be m anipulated  in order to  ob ta in  the  result 
th a t

1
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showing th a t the  stagnation point occurs a t the antipodal point associated w ith the isolated 

vortex. By the Poincare Index Theorem , it is clear th a t this stagnation point m ust be a center. 
For the case jV =  2, it is clear th a t the vortices m ust lie on a great circle. From  (4.9) we know 
th a t the vectors X i. X2 , xs are coplanar, which m eans th a t all the stagnation  points m ust lie on 
this circle as well. If cr — 0. then (4.7) yields

E  - r y ) = 0 .
J = i

T his is the governing equation for s tagnation  points in the planar iV vortex problem , as discussed 

in A ref and Brons [7]. In this case it is known th a t there are at most N  — 2 s tag n a tio n  points 
and all stagnation  points are saddles, w hereas for the general spherical problem  ( cr ^  0  ), there 
are bo th  saddles and centers.

It is useful here to recall the definition o f a  Schwarz function, in order to fu rth e r characterize 
the stagnation  point structure:

D e f in it io n :  For a general analytic function  S (z), i f  the roots o f  the equation z~ =  S(z )  fill out

an analytic arc C . then S(z) is called the Schwarz function  o f C  (see Davis [24])-

VVe can then s ta te  the following theorem :

T h e o r e m  1  (S c h w a rz  f u n c t io n  th e o r e m ) .  The Schwarz function o f an analytic arc C' is a 
rational function  o f  z i f  and only i f  C  is an arc o f  a circle or a straight line.

T his m eans th a t the roots o f (4.10) fill o u t an  ana ly tic  arc iff S(z)  =  From  (4.10) we know
th a t

V >'v _ 1 a ~mOf ____ Z - ^ m = 0  m ~
i ( - )  -  T N - l b _m *

2—>m=0

where a ^ r- i =  <r. Thus, for iV > 2, S( z )  can be of the form required by th e  theorem  only if 
cr =  0. However, for the special case a  =  0, there can be at most N  — 2 stag n a tio n  points, and 

they are all isolated. Finally, for the case N  =  3, the  stagnation point m ust lie on the vortex 
circle. To see this, consider (4.9) which im plies

=  k W x *'
j = i  i

where lj =  ||x ,  — X j||2. Taking the dot p roduc t o f the  above equation with x„ gives

=  5 1  I f  ~  2B? ‘i = i  J
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Substitu ting  for k(t)  gives

- * » )  =  - 2 S 2 *» = o ,

since we have assum ed cr — 0. T his equation shows th a t  x i  — x 5 , X2  — x , .  and X3  — x , are co- 
p lanar, which together w ith  the fact th a t  the vortices lie on a circle implies th a t the stag n a tio n  
point is on the circle as well. We can now sum m arize these sta tem en ts concisely as a general 

proposition:

P r o p o s i t io n  4 .1  ( S t a g n a t io n  p o in t  p ro p o s i t io n ) .  In  a flowfield o f  .V point vortices on a 
sphere,

1. There are at m ost (:V2  — 2 N  +  2) stagnation poin ts i f  N  > 2.

2. The only possible non-degenerate stagnation po in ts are centers (index — +1) or saddles 
(index = - I).

3. For N  =  1 , there is only one stagnation point. I t is a center located at the antipodal po int 

to the vortex.

4■ For .V =  2 , all stagnation points must lie on the great circle passing through the two  

vortices.

5. I f  a  =  0. there can be at m ost iV — 2 stagnation points. I f  N  — 3 . the single stagnation  

point m ust lie on the vortex circle.

R em arks

1. One m ight wonder why N 2 — 2 N  -f- 2 is only an u p p er bound and not the actual num ber o f 
stagnation  points. T his is because all solutions o f (4.12) are not solutions of (4.10). As a  
simple exam ple o f th is, consider the  solutions o f th e  com plex equation

-- =  (4 .i» )

If one takes the com plex conjugate o f this equation , th en  uses this to get a single equation  

for z, one gets

-'2 =  - 1,

with solutions z  =  ± 2 . However bo th  these so lu tions fail to  satisfy (4.13).

2. For each saddle poin t, the angle a ,  between the inset and  outset is given by the form ula
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a ,  =  tan  1
2 { n l v - n xxn ay ) l i 2

n TT + n yy

T h en  one can show

~ R 2 ( I r 2)2 '

giving

a ,  - tan  1
2 tt / ? 2 ( 1  +  r 2 ) 2

W l y  - U z z ' H y y ) 1 1 2

From  th is form ula, it is clear th a t a* —*• ~ / ’2 when a  —>• 0. For the p lan a r problem , as was 
m entioned in A ref and Brons [7], th e  corresponding angle m ust be k / 2 .  Hence, q ,  agrees 
w ith the  p lanar case not only in the lim it R  —> oc, but also when a  = 0.

4.3  T opologica l c lassifica tion  o f  stream line p a ttern s

We now s tu d y  in som e detail the s tream line  p a tte rn s  for the case of two and  three vortices. In 

p articu lar, we classify all possible s tream lin e  topologies according to  a  set o f 'building block’ 
figures, which we call prim itives. Using on ly  continuous transform ations (hom otopies) on the 

sphere an d  linear superposition o f the p rim itives, all possible topologies can be constructed.

4 .3 .1  T w o  vortices

T he case o f two vortices is sim ple enough to  be trea ted  in detail. T he vortices necessarily lie 

on a  g rea t circle, so for convenience, we assum e they lie on the equator defined in the complex 
plane as th e  unit circle ||z|| =  1. W ithou t loss, we can fix the position and  streng th  o f one of 
the vortices, so we take Ti =  =  0, hence zi =  1. This leaves a  two param eter problem

as we vary the streng th , T E (—0 0 , 0 0 ), and  angle 4> E (0 , 7r] o f the second vortex, i.e. we take 

zo =  ex p (f^ ). T he only case in which the g rea t circle through the  vortices is no t unique is when 
they are on opposite sides of the sphere, hence <j> =. 4>m =  <r — we will tre a t th is case separately.

If we let zs denote the location o f the  s tag n a tio n  points, then we know from  (4.7) th a t it must 
satisfy th e  algebraic system

1 , r _ (i + r>;
z, -  1 z , -  exp(i<£) 1 + z ,z ;
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Figure 4.2: Special b ifurcation curves for the two vortex problem . Shown are the curves and 
r , [ \  in the (I\<2>) plane.

Since we know th a t ||-r, | | 2  =  1 . we can simplify the equa tion  to  obtain

F {z , - 0 , r )  =  ( 1  +  r)--; +  (l _  D (1  -  exp (io))=,  -  (1 +  r)e .x p (i<b) =  0. (4.14)

The solutions of this com plex quadratic are sum m arized in the following proposition:

P r o p o s i t io n  4 .2  (T w o  v o r te x  p ro b le m ) .  C onsider the solution o f  F{zs ;p,  T) =  0 on the unit 
circle | |c j | | 2  =  1, as a function  o f  the two parameters O £  (0 , 7r], F £  [—0 0 , 0 0 ]. [n the (0 , T) 
plane, define the follow ing two curves, shown in figure f .2 :

_  sin(0 / 2 ) -  1 _
+ sin(<p/2 ) +  1 ’ '  + -

Then, fo r  any fixed value <t> £  (0, tt], we have:

1. For r  >  r + o r T <  T _ , there are two stagnation poin ts zs =  z± given by

(p
=+ = e x p ( i ( - + a ) ) ,  =  e x p ( i ( -  +  tt -  a ))

where

. . .  1 — r . . d ,  , K 7T
sm (a) =  y — ^ s m ( - ) ,  ( - -  <  o  <  - ) .

The stagnation point at z+ is a saddle, while the one at r_  is a center.

63

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Figure 4.3: S tream line topology showing a cusp.

2. A t the endpoints T =  r ± ,  the roots coalesce and there is only one stagnation point, which 

is a cusp located at

zs =  e x p ( i ( |  ±  j ) ) .

3. For T €  ( r _ , r +). there are no stagnation points.

T he proof is based on an exam ination  o f the solutions to (4.14), which we w rite as

i( l  -  r )s in (o )  ± 2 cos2 ( f )A (D  
~±  ( 1  +  T)(l +  e.xp(— id))

h( r )  =  [ ( r -  r +) ( r -  r_) ]1/2.

There are no stagnation  points for T (E ( r _ , r +), because for these values, ||c± || ^  1. The

classification of type follows from  the eigenvalues of the Hessian evaluated a t the stationary 
points:

- 1 6 r2 sin4(£-) -  cr4[cosa -  c o s ( f ) ] 4  ^  q
"+ 4<r2[cosa — cos( ^ ) ] 4

From the Poincare Index T heorem , we can deduce th a t is a  center. W hen the center and

saddle coalesce, a cusp is ob ta ined . Figure 4.3 shows a cusp for T =  —3 +  2 \/2 , <f> =  tt/2 .
R em arks

1. T he stagnation  point always lies on the longer arc connecting the two vortices. z+ is on 

the  shorter arc for T >  0, and the longer one for T <  0. In the lim iting  case T —>■ ±oo, the 
s tagnation  point z+ coincides w ith the  first vortex, while in th e  lim it T —)• 0 , it coincides 
w ith the second. These lim its are clearly singular.
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2. As seen in figure 4.2. the lim it T —y — 1 is also special. In this lim it, there are no stag n atio n  

points irrespective of the location o f the  second vortex. This corresponds to  th e  case a  =  0 
in Proposition 4.1.

3. T he lim it o  —> 0 corresponds to  the p lan ar case stud ied  in Aref and Brons [7], since the 
vortices are close together. For the p lan ar problem , there are no stag n atio n  points for 
the case T =  — I. In the spherical problem  a s o  —>-0, —>• —1 and th e  s tagnation  

points d isappear. Hence, the  interval T 6  (T _ . T+) for the spherical problem  in which no 
stagnation  points exist is the anologue o f th e  isolated value T =  — I for the plane.

4. As d —¥ -  , —>■ 0~. T_ —¥ — oo. Hence when the vortices are a t an tipodal points, there
are no s tagnation  points for T 6  (—o o ,0 ). T h is  case can be sum m arized as:

L e m m a  4 .1 . Suppose the vortices are at antipodes on the sphere, i.e. let Y i =  1, ci =  I. 

ro =  — 1. Then:

(a) For T >  0, there is a continuum  o f  stagnation points located on the vertical latitude o f  

the sphere at a distance '2R / { I  +  T) fro m  c L.

(b) For T =  0. there is one stagnation point at r 3  =  — 1 . This is produced by the vortex  
located at Ci =  I.

(c) For T <  0, there are no stagnation points.

It is of some in terest to  study  the  bifurcations th a t  occur from one p a tte rn  to  an o th er as the 

param eters vary. We em phasize th a t these are  not dynam ical bifurcations for th e  two vortex 
problem , since all solutions are in relative equilibrium  so there can be no dynam ical bifurcations. 

B ifurcations in stream line topologies can occur as th e  param eters <j> and T are varied. T h e  changes 
fall into two general classes: (1) H om otopies due to  the spherical topology; (2) B ifurcations 
involving changes in the  num ber o f s tag n atio n  po in ts in the  flow.

1. To understand the first type of b ifurcation , consider figure 4.4. Shown in th is  figure is 

a  continuous deform ation o f one of the p rim itives (lem niscate as shown in figure 4.4(a)) 
on the sphere to  its hom otopic equivalent, th e  lim acon, as shown in figure 4 .4 (d ). As the 

sphere is pushed through the left loop o f  th e  lem niscate, it deforms to a  lim acon. For the 

p lanar problem  considered in [7], these two figures are not hom otopic equivalents since in 
th a t case, it is no t possible to  continuously deform  one to  the other.

2. Changes in the  num ber of s tag n atio n  po in ts in th e  flow' occur in two cases:

(i) T =  0: In th is case, the saddle poin t vanishes. As T goes through the origin p aram et­

rically, the lem niscate/lim acon switches to  lim acon/lem niscate. T his type o f  b ifurcation 
occurs in the p lanar case as well [7] and  is shown in figure 4.5(a), m arked as p o in t A;
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Figure 4.4: Continuous deform ation of a lem niscate to  a  limacon. In the  four steps (a), (b), (c).
(d), the sphere is pushed through the left loop.

(ii) T =  T±: At r  =  r+ (m arked as po in t C in figure 4 .5(a)), the  two stagnation  points 
coalesce to  form a  cusp. For T_ <  T <  there are no stag n atio n  points in the  flow. At 
the  value T =  T_ (m arked as point D in figure 4 .5(a)), the cusp then gives b irth  to  a saddle 

and center. T his kind of bifurcation is unique to  the sphere and canno t occur in the plane 
[7]. Figure 4.5(b) shows the topologies associa ted  with each o f the d istinc t intervals.

A q u an tita tiv e  understanding o f the first ty p e  o f bifurcation is achieved by tracking level 

curves o f the H am iltonian % given by (4.5). For N  =  2 the level curves, in cartesian  variables, 
are given by

[(r  -  l ) 2 -+- y2][(x -  cos(0))2 +  (y  -  s in (0 ))2]r  
--------------------- 7— — r—— , ■=-----------------------=  const.
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Figure 4.5: (a) Sam e curves as shown in figure 4.2. As T decreases down the dashed line, 
topologies change a t po in ts m arked A, B, C, D, and E; (b) P rim itive topologies in each region. 
Degenerate cusp occurs a t points C and D.

C onstant values for th ree  particu la r stream lines are o f in terest —  the ones going through z±  and 
the point a t co, which we call the dividing stream line. T h is stream line also passes through the 

origin and divides th e  com plex plane into two regions. D esignating these c± and  c j, we have

c_ =

Crf =  1 .

2 l+ r cos3( ^  +  | )

.  2, a  \ 
» n  ( j  -  j )

2,<f> O: 
c°s ( 4 - 2 )

(4.15)

(4.16)

(4.17)

The transition  from  a  p rim itive to its hom otopic equivalent occurs when a  s tagnation  point 

moves from one region to  the  o ther, i.e. crosses the d iv id ing  stream line. Only a  saddle can cross
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the dividing stream line since centers a re  local extrem a of the H am iltonian  and hence cannot 

live on the dividing stream line. T o o b ta in  the values of T a t which this occurs, we solve (4.15) 
num erically with c+ =  1, viewing T as a function  of a.

We sum m arize the behavior in the following lemma:

L e m m a  4 .2 . Consider © E (0, ~ ) . 3 tw o special values o f  T. which we denote  f  and  T. such 

that c+ = Ci =  1.

/. For <p >  t t /2 , we have r„  >  1. 0 <  I ”  <  1.

2. For o  <  jt/2, we have T. <  — 1. — 1 <  T ' <  0.

3. When o  = r/*2, we have T* =  0.

The curves r “, r .  are shown in figure .{.2.

Points B and E in figure 4.5(a) m ark  th e  values at which these hom otopic bifurcations occur. 
A typical bifurcation sequence is shown in  figure 4.5(b). For the case T >  0. we have a lemniscate 
topology which switches to  a lim acon a t T =  0 (point A), via a type II b ifurcation . T his topology 

persists until T =  T” (point B) a t which value there us a hom otopic b ifurcation (type 1) to a 
lem niscate which then gives rise to a  cusp  (C). In between points C and D (note th a t this region 
always includes r  =  — I ) there are no s tag n a tio n  points and the topology consists of sim ple closed 
stream lines. At point D. the cusp gives b ir th  to  a saddle and a  center, resu lting  in a lemniscate 

topology. Finally, a t T =  T. (point E), the lemniscate again transform s to  its hom otope, the 
limacon via a  type I bifurcation. For T <  T .,  we have the limacon topology. T h is  general scenario 

holds for all 6 €  (0 ,7r), w ith two exceptions. W hen o =  there are only th ree  bifurcations. For 
6 = - ,  the scenario described in lem m a 4.1 holds. These cases are not illu stra ted  in figure 4.5(a).

4 .3 .2  T hree vortices

We now consider the stagnation  po in t s tru c tu re  and stream line topologies in the case of three 

vortices o f general strength . T h is p ro b lem  is m uch richer than the two vortex  case, or the planar 
three vortex case as treated  by A ref and Brons [7]. We s ta r t  by s ta tin g  a  general proposition 
classifying the num ber of s tag n atio n  p o in ts  in the  flowfield:

P r o p o s i t io n  4 .3 . For the case N  =  3, le t M  be the number o f  non-degenerate stagnation points.

1. M  =  1,3, or 5.

2. I f  M  =  1, it m ust be a saddle. I f  M  =  3, there m ust be two saddles and one center. I f  

M  =  5, there must be 3 saddles and  2 centers.
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Figure 4.6: T hree vortex  prim itive chart show ing the  twelve prim itive topologies. N um ber down 
left denotes the  num ber o f saddle points. T h e  th ree num bers under each figure refer to  the 
num ber of hom oclinic - heteroclinic - triheteroclin ic  loops.

By Proposition  4.1, M  <  5. If we let s deno te  the  num ber o f saddles and  c the num ber of 
centers th a t are stag n a tio n  points, then

s +  c =  M  

—s +  c +  iV =  2.

From this we have

M + l  M  - I
s = ----------, c =  ----------,

2 ’ 2 ’

implying th a t M  =  1 ,3 ,5 . T h e  second s ta tem en t follows from  the  above and  the Poincare Index 
Theorem .

The m ain  result o f th is  section is a topological classification o f all possible prim itive topologies 
th a t can occur. T h is  classification scheme is in th e  sp irit o f Fomenko [36, 37] who has classified all 

possible topologies associated with integrable system s w ith two degrees of freedom . For the  th ree
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vortex problem  in the  plane. A ref and Brons [6] have recently identified all possible topologies. 
In three space, there have been recent a ttem p ts at using knot theory to understand and classify' 
flow structu res, see for exam ple C hrist et al [39] and M offatt [66]. See also the work o f Perry 
and Chong [81] and D allm an [22] for more on the role o f topology of stream line patterns in fluid 

flows.

T he classification in to  12 p rim itive topologies is shown in figure 4.6. T he left colum n lists the 

num ber o f saddle po in ts occuring  in the figure. The num bers along the bottom  of each figure 
indicate the num ber o f hom oclinic-heteroclinic-triheteroclinic loops in each figure. Hence, the 

upper left figure is the ‘least com plex ', while th a t on the b o tto m  right is the  ‘most com plex '. It 

is im p o rtan t to  understand  th a t  each prim itive can be continuously  deformed on the surface of 
the sphere to  a visually d is tin c t bu t topologically equivalent figure as was shown, for exam ple, 
in figure 4.4. Hence, each o f  th e  twelve figures represents a  hom otopy  equivalence class [90]. We 
show in figure 4.7 the  prim itives and  their topologically equivalent figures, o f which there are 23. 

As a  final point, we m ention th a t  anyr given stream line configuration associated with the three 

vortex problem  will be m ade up o f a  general com bination o f th e  prim itives and their topological 
equivalents. We show a  typical exam ple of such a  stream line  p a tte rn  in figure 4.8 which is a 
com bination o f lem niscate and lim acon.

4 .3 .3  R e la tiv e  eq u ilib r iu m  patterns

In this section we present the  stream line  patterns th a t occur when the three vortices lie in a 

relative equilibrium  configuration, as categorized and s tu d ied  in C hap ter ‘2. The dynam ical 

s tab ility  of these equilib ria  has been studied in Pekarsky an d  M arsden [79], hence it is now 
possible to  ascertain  which o f th e  stream line patterns are associated  w ith dynam ically stable 
p a tte rns. T he relevance o f th is to  global atm ospheric w eather p a tte rn s  is com m ented on in the 

final section.
T he num ber of s tag n a tio n  po in ts in the flowfield o f th ree vortices in a relative equilibrium  

could be 1,3, or 5 and  hence a  variety  of topologies are possible. We content ourselves w ith 

providing several exam ples o f som e of the interesting cases.
Figures 4.9 and 4.10 show two different topologies when the  vortices are in a  fixed equilibrium , 

hence lie on a  great circle w ith  s tren g th s  satisfying the ap p ro p ria te  relations as detailed in C hap ter
2. B oth configurations are isosceles triangles but with different angles. In the  first case, the equal 
angle is 40° and  there are three stag n atio n  points (two saddles and  a  center); in the second, the 

equal angle is 50° and  there are  five stagnation  points ( th ree  saddles and two centers). Both 

configurations are stab le  [79]. In fact, it can be shown th a t all fixed equilibria are stable. Figure 
4.11 shows fou r different topologies when the vortices are in a  re la tive equilibrium  sta te . Figure 
4.11(a) and 4.11(b) Eire G rea t circle states. Both configurations are identical isoceles triangles 

b u t w ith different vortex s tren g th s  ( Ti =  To =  1 in b o th  cases, T3  =  1 in figure 4.11(a), 
T3  =  —4 in figure 4.11(b)) lead ing  to  different topologies. A gain , bo th  are stab le configurations.
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Figure 4.7: H om otopic equivalent figures obtained by continuously deforming each of the prim i­
tives shown in figure 4.6.
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( a ) ( b |

I 3

(c>

Figure 4.8: Typical th ree vortex stream line pattern . Shown is a com bination o f a  lem niscate 
and limacon formed by a  three vortex cluster, (a) Front o f sphere: (b) Back of sphere; (c) 
Stereographic projection.

Figures 4.11(c) and (d) p e rta in  to  the  o ther type of relative equilibria, the equilateral triangle 

configuration. Figure 4.11(c) shows a sym m etric s ituation  where Ti =  To =  T3  and the vortices 
are on a fixed la titude  o f 45°. T here are three saddles and two centers and the topology is m ade 
up of prim itives (0 ,3 ,1 ) an d  (0 ,0 ,0 ) . In  figure 4.11(d), Ti =  1, r 2 =  2, T3  =  3. Since c is aligned 
with the z-axis, the vortices are not on a  fixed latitude . T h e  topology in this case is sim pler 

and consists o f a  pair of nested  lem niscates (prim itives (2 ,0 ,0 ) and (0 ,0 ,0 ) ). Both equilateral 

triangle configurations are stab le .

In general, it is possible to  say m ore abou t the stream line topologies th a t can occur when the 
vortices happen to  lie on a  g reat circle a t a given tim e, not necessarily in equilibrium . For th is, 

consider the great circle to  be m ade o f the  longitudes 0 and 7r  s o  th a t  in the  stereographic plane, 

the vortices lie on the x-axis. T h e  stagnation  points on the g rea t circle can be found by solving 
(4.7), which takes the form  o f a  cubic:

A x z +  B x 2 +  C x s +  D  =  0,
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( c )

Figure 4.9: S tream line topology for fixed equilibria —  vortices are on a fixed longitude, (a) Front 
o f sphere; (b) Back of sphere; (c) S tereographic projection.

Hence, the m axim um  num ber o f s tag n a tio n  points on the x-axis (great circle) is three. Also, 

sym m etry  requires an equal num ber o f  s tag n a tio n  points in the upper and lower half planes. 

Further, from  Proposition 4.3, the  m axim um  num ber of saddles and centers are two and three 
respectively. All 1 and 2 saddle p rim itives can  satisfy these conditions and  thus are topologies th a t 

can occur. However, among the 3-saddle prim itives, the  (2, 2 ,0) prim itives and  one hom otope of 

a  (3 ,0 ,1 ) prim itive (indicated by a  * in figure 4.7) violate one or m ore o f these conditions and so 

co n stitu te  topologies that cannot occur when the  vortices are on a  g reat circle and  in particular 
for fixed equilibria and great circle re la tive equilibria.

where

A  =  c r ^  X,- -  T i ( X j  - |-  X k )

B  = ^ 2  T{£j x k + o-(l -  ^2 x ix j )

D =  7 :  r.-gjxfc.
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( a )

2Z i

( C )

Figure 4.10: Fixed equilibrium  on the equator, (a) F ront of sphere; (b) Back o f sphere: (c) 
Stereographic pro jection.

4 .3 .4  O th er p a ttern s

In this section we show the stream line patterns for two dynam ical sta tes tha t are not in equilib­
rium . Figure 4.12 shows the stream line topologies for a  collapsing s ta te  (cf. C hap ter 3) a t three 
different tim es. As the  vortices spiral in towards the  collapse point a t the tip  o f the center o f 

vorticity vector, the stream line pa tte rn  retains the sam e topology throughout. Figure 4.13, on 
the other hand, shows stream lines for the special periodic solution th a t was com puted in §2.5. 

For this solution, there is one bifurcation in the stream line  topology during the course o f  one 

period, as seen by com paring  figure 4.13(a) and  figure 4.13(c). In more general problem s, of 
course one would expect m any m ore dynam ical bifurcations to  occur.

4 .4  R o ta tin g  fram es

W hen the vortices are in relative equilibrium , they ro ta te  rigidly abou t their center of vorticity  

vector, c, w ith a  fixed angu lar velocity w ( ||u;|| =  u  )(cf. §2.3). In this section, we stu d y  the
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( C )  ( d )

Figure 4.11: Four relative equilibria exhibiting distinct topologies, (a) G reat circle state: (b) 
G reat circle state; (c) Non- great circle s ta te , fixed latitude equ ila te ra l triangle: (d) Non- great 
circle equilateral triangle s ta te .

stream line patterns in a fram e th a t is co-rotating at the sam e angular velocity, so th a t the vortices 

are stationary  and the flow is steady.
If we designate the coordinates in this rotating frame ( 0 ,$ ) ,  it  is easy to see th a t they are 

related to the old coordinates by

0  =  e
= <p — Ult.

Im plicit in this form ulation is the assum ption th a t the vortices ro ta te  around the r  axis, or 

equivalently around the center of vorticity  vector c. T he equations o f  m otion  then take the form

6 =

$  =
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( c ) ( i i )

Figure 4.12: Collapsing s ta te  shown a t three different tim es. t~ is the collapse tim e. Note th a t the 
topology does not change du rin g  collapse, (a) t =  0: (b) t — .5 i“: (c) t =  .91": (d) Stereographic 
projection o f s ta te  (c).

where

n  = i

A tvBT- 

fi =  87r R ru ,

^ r t log(/f) + ^ c o s 2( - )

with being the d istance betw een a fluid particle a t [8 ,<p) and the vortex I\-. In  the com plex 
plane, the equations o f m otion  are equivalent to  (4 .2),(4 .3), b u t with the H am ilton ian  % given 
by

U  =
1

4t-R 2 £ r < '°8
IZ —  Z: \

+
i  +  INII2

76

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



( c )  <d)

Figure 4.13: Special periodic so lu tion  exhibiting  a single topological bifurcation through one 
period. T .  (a) Front of sphere; (b) Back o f sphere; (c) Tim e t =  T /4 : (d) S tereographic projection 
of (c).

T he stagnation points are again  given by solutions of — 0, or equivalently  ^  =  0. Using 
the above Ham iltonian, we see th a t  the stagnation  points are solutions to

r »_______ a : '  - 14 181
^ z - z i  l - H M P  ( l  +  l l - 'H2 ) 2 ' ( ]

Notice th a t (4.18) is sim ilar to (4 .7), w ith an additional term .
It is useful to write the governing equations in vector form as well. Since the  stagnation  points 

in the ro ta ting  frame are precisely those points a t which the fluid partic les ro ta te  with angular
velocity lj, these points, denoted x , ,  are solutions to

i N r1 ^ r . x f x x ,
X‘ = " * * ‘ =  2 ^ U — i? ' <4 '19>

i = l  1
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• I -4 33

(c >

Figure 4.14: Tw o vortex stream line p a tte rn , (a) Fixed inertial frame: (b) R o ta tin g  frame: (c) 
S tereographic projection of (a); (d) S tereographic projection of (b).

This can be w ritten

iV

E i r - '
1 = 1

x  Xj =  0,

which im plies

AT „

■j , -‘ — 2ttRuj =  A-xs ,
Ifi= i *

(4.20)

where & is a  scalar. We now examine the  cases N  =  2, 3 in more detail.

4.4.1 N = 2

For the case N  =  2, it is clear th a t the two vortices m ust lie on a great circle. Since c m ust be 
co-planar w ith  x t  and  X2 , w ithout loss we assum e th a t c is aligned with the z-axis and  $  =  0 

defines the p lane in which the vortices lie. We note th a t if the vortices are o f th e  sam e sign,
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(a) (b)

Figure 4.15: Two vo rtex  equilibrium , (a) C o-ro ta ting  fram e; (b) Stereographic projection.

they lie on opposite longitudes, while if they are of opposite sign, they lie on the sam e longitude. 

Then, in the com plex p lane, the  vortices lie on the x  axis.
All two-vortex m otions are rigid ro tations around the cen ter o f vorticity vector c. T h e  angu lar 

velocity is given by the form ula

(a2 -  r tr-d2)1'2
u J  -  - -----------------------------------   .

2/2

Since the vortices lie on a  g reat circle, we can categorize the stagnation  points into two classes: 

those on the great circle an d  those off it. Consider first those th a t lie off the great circle. From 
(4.20), it is clear th a t since the  three vectors x i . x i  and  u  lie in the same plane, w ith x 5 not
lieing in th a t plane, then th e  scalar k  =  0. From this, we have

Tixi t r2X0 r lXl +  r 2x2
/2 12 — /2 *

I 2 12

where we have used the  ap p ro p ria te  expression for ui. T h is  then im plies that

FlXl G? “  Tz) + 172X2 (*! _ = ° ’

which is possible only if l \  =  h  =  / 12- Hence, the off-great-circle stagnation  point lies a t the  
third vertex of an  equ ila tera l triangle formed w ith the two vortices a t the other vertices. Due to 

sym m etry considerations, it is clear th a t  there are two such stagnation  points, one on e ither side 
of the great circle. A sim p le  necessary condition for the  existence of these stagnation  po in ts  is 

that 112 < y/ZR, which is the  side of the largest equ ila tera l triangle th a t can be inscribed in  a  

sphere o f radius R.
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( a ) ( b )

Figure 4.16: Tw o vortex equilibrium  w ith r t 4-T2 =  0. (a) Fixed fram e: (b) C o-ro ta ting  frame.

To determ ine the stagnation  points on  the  great circle, we need to solve (4.18). In this case, 
we have =  x,- and z = z~ =  x . Using these in (4.18) gives a  q u artic  equation

.4x4 +  B x 3 +  C x -  + D x  + E  =  0,

where

.4 II M r1

B =  cr(l — X 1 X 2 )  — H

C = A  +  E  +  [x x i

D — cr( 1 — X 1 X 0 )  — £ i X i X o

E

Since a q u a rtic  can have at m ost 4 real so lu tions, the m axim um  to ta l num ber o f  stagnation  points 

in a fram e co-ro tating  with the vortices is 6 —  4 on the great circle and  2 off. Recall th a t  in 
the s ta tio n a ry  fram e, the m axim um  num ber was shown to be two. We show an exam ple o f a 

stream line topology w ith six stagnation  po in ts in figure 4.14, where for com parison purposes, the 

stream lines in the  stationary  fram e are show n as well. It is interesting to  no te  th a t  the stream lines 

in the s ta tio n a ry  fram e are a sim ple lem niscate, whereas those in the co -ro ta tin g  fram e form  a 
m ore com plex pa tte rn  consisting o f a  superposition  o f two lem niscates an d  one lim acon. Thus, 

we obtain  a  topology for the two vortex  problem  in the co-rotating fram e th a t  could only be 
achieved w ith  three vortices in the s ta tio n a ry  fram e. We m ention also th a t  the  topology shown 

in figure 4.14(d) is identical to  the  well know n ‘zero-velocity’ curves for a  restric ted  three body 
problem , as shown for exam ple in [99]. A no ther interesting exam ple is show n in figure 4.15. In 

this case, th e  topology is a superposition  o f prim itives (0,0,0),(2,0,0) and  (0,3,0). A case w ith 
four s tag n a tio n  points (two on the g rea t circle and  two off) is shown in figure 4.16(b) where
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the corresponding topology in the s ta tionary  fram e is shown as well in figure 4.16(a). In this 
case, a  — 0 and we have the well known bubble topology. W hen / 1 2  >  \ /3 R. the two stagnation  

points off the g rea t circle d isappear as do two o f the s tag n atio n  points on the great circle. Thus, 
there rem ain two stagnation  points on the g reat circle. Finally, we point out th a t we can  have 
a  configuration w ith no stag n atio n  points. T h is can happen only when the two vortices are of 

opposite sign and 112 >  \ / 3 R.

4 .4 .2  N = 3

As categorized in §2.3, there are two types of three vortex  relative equilibria: (1) G reat circle 
equilibria, including fixed equilibrium  states: (2) Non g reat circle equilibria. These are the 
equilateral triangle configurations with a rb itra ry  vortex  strengths.

We consider each of these in  tu rn .

4.4.2.1 Great circle relative equilibria

Since the center of vorticity  vector is aligned w ith  the z  axis, the vortices lie on the  sam e longitude, 
or on two longitudes on opposite sides of the sphere. W e choose these to  be the longitudes m arked 
0 and 7T. T he sides of the vortex triangle and the  vortex  strengths m ust satisfy V =  0 (cf. P rop. 
2.2) and the ro ta tion  frequencies u>. (2.16). We now look for stagnation  points in a  fram e co- 

ro ta ting  w ith these vortices.
As in the two vortex case, the stagnation  poin ts can  again be classified into great circle and 

non-great circle types. T he la tte r can be located by using the vector form o f the equations (4.20). 
w ith k =  0. Since the three vectors x,- and the an g u lar frequency vector lj are co-planar, we can 

write two of these vectors in term s of the o ther two (say x i  and xo ), so th a t (4.20) becomes

a ^ i  +  a o x o  =  0 , (4 .2 1 )

where a i  and an are scalar functions of the vortex  s tren g th s  and positions. From this, we can 

conclude th a t a j  =  0 and an =  0. T his yields:

r  1 . r 3 u
a t =  y r  +  - f i  u / i = 0

t  ‘ 3

1?2 T 3V
a2 = -Jn- +  - 7 3  W- =  0 ,

* 2  *3

where

X3  =  u x  1 +  VXn  

2 ttR w  =  U7iXi H- WnXn

If = 2[Rr — x x i  — zz{]
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( c )

Figure 4.17: (a) A seven stagnation  point topology in the co-rotating fram e. The topology is 
a  com bination o f prim itives (0.0,0), (2,1.0) and (0,3,0). T he sam e configuration, in an inertial 
frame, was shown in figure 4.11(a); (b) T hree stagnation  point topology in a  co-rotating frame. 
T he sam e configuration in an inertia l fram e was shown in figure 4.11(b); (c) Stereographic pro­
jection of (a); (d) Stereographic projection o f (b).

m ust be solved numerically.
For the  g reat circle stagnation  points, we can use r t- =  Xi and z =  x, in which case (4.18) 

takes the form o f a  quintic

*4x5 +  B x 4 +  C x 3 +  D x 2 +  E x  +  F  =  0,

where

A =

B  =

C  =

D =
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-c.s 0

( a ) ( b )

Figure 4.L8: (a) T h e  configuration of figure 4.11(d) in a  co -ro ta tin g  fram e. In this fram e there 
are 9 stagnation  po in ts —  5 saddles and 4 centers; (b) S tereographic projection o f (a).

E =  (<T + fl)xiX2X3 — ^  r,-(gj +  Xfc)

F  =  y ;  r j X j X k .

There can be a  m axim um  of 5 real solutions to the qu in tic . F igure 4.17(a) shows an exam ple 
of a  7 stagnation  po in t topology in the ro ta ting  fram e —  5 on th e  great circle and 2 off. T he 
structure is a superposition  o f prim itives (0.0.0), (2,1,0), and  (0,3,0). T he sam e configuration in 
an inertial fram e was shown in figure 4 .1 1(a). Figure 4.17(b) shows the  topology o f figure 4 .1 1(b) 
in the co-ro tating  fram e. In this fram e there are three s tagnation  points.

4.4.2.2 Non-great circle relative equilibria

In the m ost general case, the vortices lie on different la titudes and  form  an equilateral triangle. 
They ro ta te  a round  the center of vorticity vector w ith angular velocity given by (cf. §2.3)

W 2ttR12

To obtain  the s tag n a tio n  points in the co-rotating  fram e, one has to  solve (4.18). In general 
this m ust be done num erically. We examine th e  topologies of figure 4.11(c) and 4.11(d) In the 
co-rotating fram e. T he topology of figure 4.11(c) is m ain ta ined  in the co-ro tating  fram e. T he 
topology o f 4 .11(d), on the o ther hand, appears as shown in figure 4.18 when seen in the co- 

ro tating  fram e. F igure 4.18(a) shows the topology looking down on  the  sphere; figure 4.18(b) 
is the stereographic projection. T here are five saddles, m arked by A ,B ,C ,D , and  E, and four 
centers m arked F ,G , and  H, w ith  the  last on th e  far side so is no t visible, to  give a  to ta l of nine 

stagnation poin ts. T h e  topology is a  nested stru c tu re  w ith  lem niscates and lim acons inside one 

another.
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Shown in figure 4.19 is the topology for another equ ila tera l configuration in the co-rotating 

fram e, th is tim e with cr — 0 ( Ti =  1, r 2 =  T3 =  —1/2  ). T h is configuration is a 'lim iting  
super-rad ia l s ta te ' (cf. §2.2.2) such th a t the m om ent o f vorticity  vector M  is perpendicular to n , 
the vector norm al to  the vortex plane. Also, by the s tab ility  criterion o f [79], this is an unstable 

s ta te  as ^ iT , <  0. In the co-ro ta ting  frame, we see the  fam iliar bubble topology. There are 
three saddles and two centers. In the inertial fram e (not show n), there is just one saddle, and 

it lies on the  vortex circle as s tip u la ted  in Proposition 4.1. It is interesting that even in the two 
vortex case, for cr =  0. we have a  bubble type topology in the co-ro tating  frame (figure 4.16). 

T he dynam ics o f dipoles and tripoles (2 and 3 vortex clusters w ith a  =  0 ) has been the subject 
o f num erous recent studies. ([25], [83])

4.5 C on clu sion

One o f the  m ain goals o f this ch ap te r has been to  identify  and  classify all of the possible in­

stan taneous stream line p a tte rn s  on a  sphere th a t are o b ta in ab le  from integrable point vortex 
m otion. T h e  12 prim itive topologies, along with their 23 add itional hom otopic equivalents form 

the  building blocks for all global integrable stream line p a tte rn s  achievable on a sphere. These 
integrable tem plates can be used as a  first step in perform ing a  Melnikov analysis if one wanted 

to  induce chaotic m otion on the sphere under app ropria te  pertu rb a tio n s. An example of this was 
recently published [12]. O ne m ight then reasonably ask th e  following questions:

•  How representative are these patterns for more general flows?

•  How do these topologies evolve dynam ically? In particu la r, can one identify the bifurcations 
th a t occur on the spherical surface as the p a tte rn s  evolve?

•  W h a t role do the b ifurcations o f patterns and  th e  evolution of instantaneous streamline 
structu res play in the  m ixing and transport of L agrangian particles and the stretching of 

passive interfaces?

W hile we do not yet have an  answer to the first question , we do have indications that these 

pa tte rns, along w ith the  add itional patterns produced by the  integrable four vortex problem  

ob tained  under the restric tion  c  =  0, do cover m any o f th e  structu res one finds in much more 
com plex flows. For exam ple, one can  find a picture of spherical instantaneous streamline patterns 

in Gill [40], figure 2.3. We have decomposed this figure in to  10 connected components and  can 

show th a t  the  topology requires a  m inim um  of 7 vortices to  produce such a  field. Nonetheless, 

despite the  fact th a t  a t  least 7 isolated vortices are required  to  produce this instantaneous flow, 
the vast m ajo rity  o f topological s tructu res in this figure are  contained in our prim itive chart for 

the  three vortex problem .
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Figure 4.19: E quilatera l configuration in a co -ro ta tin g  fram e, cr =  0. There are 3 saddles and 2 
centers.

The second question is clearly connected to  th e  issue of structu ra l stab ility  of the flow under 
its natural dynam ics. In general, to understand  th is second question for any reasonably com ­
plex flowfield will require extensive num erical co m p u ta tio n s together with m ore sophisticated 

visualization techniques. This is also related to  the  th ird  question, which has also not yet been 
sufficiently explored. A much more restricted analysis o f this type was in itiated  in Meiburg, 

Newton, Ftaju. and  Ruetsch [64] for a two d im ensional shear layer model. For this problem, 
a topological b ifurcation was first identified in a  m odel flow made up of point vortices, then 
verified th a t it persisted  in a direct numerical N avier-Stokes sim ulation. This was followed by 
a com putation o f Lyapunov exponents associated w ith the  evolving interface in cases for which 

the bifurcation occured. and compared with cases where it did not occur.
It is our opinion th a t a  better understanding o f  global weather patterns will involve a deeper 

analysis o f the in terp lay  between topology and dynam ics o f the stream line patterns produced by 
the flow. T he dynam ical transition  from one topology to  ano ther is probably an underappreciated 

global instability m echanism  of enhanced a tm ospheric  m ixing in the fully nonlinear regime and 
is certainly w orthy o f fu rther investigation.
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C hapter 5

M otion  in dom ains w ith  boundaries

In this chapter, vve s tu d y  particle and vortex m otion in  a  sim ply connected dom ain D on the 
sphere. This problem differs from the ones considered ea rlier for three reasons :

1) On the boundary, dD ,  the condition of no fluid p en e tra tio n  has to be satisfied.

2) Because of the presence of the boundary, the co n stra in t f  u d A  = 0  no longer holds.

3) The presence o f boundaries can break sym m etries th a t  would otherw ise exist, reducing the 

num ber of conserved quan tities. Since the la tter are re la ted  to  conservation laws, as few as two 
vortices could exhibit non - integrable motion in a su itab le  dom ain.

First, we write the governing equations for N vortices in  an a rb itra ry  sim ply connected dom ain 

D.  We then cast the problem  in term s of the G reen’s function  o f the  first kind. In the next section, 
we consider the m otion in D' which is the projection of D  o n to  the stereographic plane. For several 
special sym m etric dom ains, we describe a m ethod th a t uses known image vortex solutions for the 

p lanar vortex problem to construct sim ilar solutions to  th e  problem  in the stereographic plane 
and hence in D. In particu lar, we present the H am ilton ians H p and H v, for the particle and 
vortex m otions respectively. In the last section, we show exam ples o f several dom ains D  th a t are 
am enable to solution by this m ethod. The stream lines an d  p a th s  of an  isolated vortex are shown 

for these dom ains. A general s tudy  o f the scope o f the p la n a r im age m ethod was carried ou t by 
Keller [51]. The analogous spherical problem apparen tly  has not been studied system atically.

5.1 G overning E quation

Consider the flow due to  N point vortices of strengths T,- an d  located a t {&i,<pi) E D ,  1 <  z <  N .  

The flow is described by a  stream -function ip which is a  so lu tion  to

N

a <p = - ^ 2 r c,s(e,<p,ea,0 a) e  d
a~I

Ip =  0 e  dD (5.1)
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T he G reen 's function G for a  single source can be w ritten as G  =  G \  -I- G i  where G\  is the 
G re en s  function for the sphere with no solid boundary  [52]

G i(8.0.0a,4>a) =  — —— ln( L — co s6 cos 0a — sin 8 sin 6a cos(«j> — o a ))
47T

such th a t

1
A G i — —6(8 . o. 8a . o a ) -f-

4 t tR 2 

Gn satisfies

A G ’ =  - 4 ^  £  °
C  2 — —G\

— -— In(l — cos 9 cos 0Q — sin 0 sin 6a cos(<p — <6a ) ) , (#T o) £  d D  (5-2)
4tt

T he G reen ’s function for N sources located at (9a , o a ) £  D  is given by linear superposition :

:V

0 :0 1 ,0 1 , ~;8.v ,4>n ) =  T .  G ( 8 , o: 8a , o ,a )
n = I

.V .V

= ^  G'i (0. o : 8 a . o a ) +  G i ( 8 . o \ 8 a . o a ) (5.3)
Q = 1 Q:=l

ip is then o b ta in ed  by ii> =  Y2a=i ^ a G ( 8. o: 9a . o Q).
T he stream -function  generates a H am ilton ian  vectorfield in the usual way :

8 =  — —  —

/22 sin 0 d o '
1 3 ^

o  =  —
R 2 sin 8 89

VVe define the  partic le  H am iltonian as H p =  — so th a t the above equations are in standard  
H am iltonian form  w ith  conjugate variables P  =  cos 9 and Q = 8 :

P =  ™E.
8Q  ’

v  8P

T he m otion  o f the  i th  vortex is given by sim ilar equations w ith the  vortex  H am iltonian, Hv 
in place o f H p an d  conjugate variables P,- =  cos 8{, Q { =  fa.
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Figure 5.1: S tereographic projection of dom ain D  to dom ain  D'  in the complex plane.

5.2 M eth od  o f  Im ages

For dom ains with special sym m etries, H p and H v can be constructed  using the m ethod o f im ages. 

In this section, vve describe a  m ethod th a t uses known im age vortex  system s for the p lanar vortex 
problem to solve the problem  in the  stereographic plane and hence in D.

Consider the problem  analogous to (5.1) for the m otion generated  by N planar vortices,in a 
dom ain D ', where D '  is th e  stereographic projection of D  on to  the  com plex plane (figure 5.1). 

T he stream -function. xl< in th is  case is given by

A'
At:- =  — ^  r a d'(x,y. x a . y a ) <£ D'

a —I
xh = 0 on dD '  (5-4)

It will be shown below th a t  if th is problem  can be solved by th e  m ethod of images, then  this 
system  of images would also solve (5.1). For this, we recall the form s o f H p and Hv for the m otion 

of M vortices 7 a , 1 <  a  < M , in the  stereographic plane :

M
H  =  1 In

?  4 7 r f i 2 £ !  ( 1  +  M 3 ) ( l  +  I * a | a ) ’

HV ~  4 T ^ ^ 7a7^ l n ( l  +  | L | 2) ( l  +  | ^ | 2) '  (5 '0)

The corresponding equations o f partic le  and vortex m otions are given by
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Also consider the  m otion of M p lanar vortices with particle and vortex H am iltonians given 

by the familiar

2n
a < / 3

The corresponding equations o f  m otion given by

M

H v =  70 7/3 In \za -  =p\. (5.7)

  l_  y -  7a
= "  2t  '

-a  -3J — i

We now establish the following lem m as -

L e m m a  5.1. Let D' be a domain fo r  which (5-4) can be solved by the method o f  images. Then 

52a= i 7a =  0 where ~/a , 1 <  a  <  iV are the N  vortices and the rest (M  - N )  are image vortices.

To prove this, we need only consider the case of a  single vortex o f s treng th  T i.e. N  =  1. 

By the Riem ann M apping T heorem , 3 C =  / ( - )  such th a t any dom ain  D'  can be analytically 
m apped to the upper half plane (U H P). T h e  com plex potential transform s as w (£) =  w (f[ : ) )  
which implies =  ip (f(z )) .  Now, the im age system  in the UHP consists of ju s t one vortex 

w ith strength — T located a t  Q  where Q  locates the vortex in the  UHP and so

Expressing (j =  / ( c ) ,  we see th a t

( 5 ' 9 )
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Since we have assum ed th a t (5.4) can be solved by the m ethod  of im ages, it necessarily follows 
that

f {  = ) =  (=

/ ( r ) - r ( - t - )  =  ( z - z - i ) { = ~  z - 2) - - ( ,+  !)) (5.10)

where r +n and z - n locate the nch positive and negative im age vortices respectively and q =  4f — 1. 

Thus, xp is a  linear superposition  of &'s due to equal num bers of positive vortices (strength +F) 

and negative vortices (s treng th  —r )  which implies cr =  0.

R e m a rk  For certain  D ' . M could be infinite w ith the sets o f positive an d  negative vortices. P 
and N, both countably  infinite. Let Pm and N m be the  m th subsets of P  an d  N i.e their elements
are the first m  positive and the first m negative vortices respectively. In th is  case, we define

<r =  lim Y '  (pi +  n,)m-4«3 *m —f o o  •
« =  l

where p,- 6  Pm ,n t- 6  so th a t again a  =  0. An exam ple o f such a  dom ain  is an infinite strip

bounded by y = 0  and y = h .

L e m m a  5 .2 . Let I  be the system o f  M  point vortices o f  strengths j a . such that Y1q = i 7q =  0
and located at (xQ,p Q). in the stereographic plane and [I be an identical p lanar system. Then I
and 11 have the same streamlines.

(5.8) in com ponent form  is

M
i a ( y - y a ) _  A

^  r  i It  —

"  (-r -  ^ q )2 +  {y — y a )2 2n-’ 

M 7 a { z - X a c )  _  B
2 "  ^  (x -  x a)2 +  ( y - y Q)2 ~  2 -  

The stream lines are given by

dy_ _  £  
dx A

(5.11)

In the stereographic p lane, the particle velocity is given by (5.6a). Since, by assum ption, a =  0, 
(5.6a) gives

-  •(!■ +  l- l2)2 7q
2 8 t tR 2 ^ z - z aa : l
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which in com ponent form is

(I + r~ + y~)~ ~/a[y — y<*)
* = ----------~ ------- Z . 7 7 3 T - T FSirR2 ^  (X - r Q)2 + ( y -  y„)2 '

, 2  \Ty - ( x - + y -  +  l ) ' ^  ~ja  ( x  — jr,
8- R 2 ^  ( r  -  x a)2 +  (y -  ya )-

Stream lines in this case are given by ^  ^  i.e. exactly by (5.11). T hus, if cr =  0, the stream lines
in the planar and stereographic flows are identical for identical vortex positions.

Hence, given a  dom ain  D  on th e  sphere and one vortex o f s tren g th  F located a t (0V,OV) €  D. 
the particle and vortex H am ilton ians. Hp and H v are calcu lated  as follows :

1) Map D  stereographically  to  D ’ . (0V,OV) m aps to  (r v , o v).

2) Consider the  identical problem  for planar vortex m otion  in D'  which we assum e can be 
solved by the m ethod  o f im ages. From  (5.9),

, / ( - - ) - / ( rt ) ,
=  const.  (3-12)

gives the stream lines. Here, r  =  r e 10 and  C =  / ( - )  m aps D'  to  th e  UHP.
3) By Lem m a 5.2, (5.12) describes the stream lines in the  stereographic plane as well. Hence, 

taking into account (5.5), the partic le  Ham iltonian. HP is given by

= J w ? ' " b w -/-(=.■)1 <,'U)

4) To get the  H am iltonian  for th e  vortex motion, we use (5.5b) w ith the positive im age vortices 

located at r+ Q, l  <  a  < q and  the  negative ones a t <  /? <  (<7 4- !)• Thus, we get

H .  =  - £ L [  lim  l n pi 1 ,= + 1„ (* + 11'!2)!1 + l-’- i l2) -- -d  +  I'-Js+ a
4 1 ' (1 +  |--+1P )(1  +  |--+, | S) . . . ( I  +  |5+, | S)

which yields

r r  _  _ £ l _ r i  l ^ l 2  I _________ i _________ | 2  , 1 ( 1  +  k » | 2 ) ( l  +  k - l l 2 )  • • • ( 1  - b  [ - - ( g - H ) ! " ) ! / r

u ~  dz  “ / ( z )  — / * ( - u )  + n  ( 1  +  | ^ + i  l2 ) ( l  +  I - + 2 I2 ) ( 1  +  l ^ + q l 2 ) 1 ( ' }

5 .2 .1  Solvable D o m a in s

We now present Hp and  H v for several dom ains. In the  following discussion, a  vortex o f s tren g th  

T is located a t  (9V,4>V) £  D.
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Figure 5.2: V ortex m otion  in a  circular cap. (a) Instantaneous stream lines for 8V =  3 0 ° , =  270°. 
(b) Vortex p a th s  are constan t latitudes.

E x a m p le  1 : S p h e r ic a l  cap . D  is the spherical cap bounded by the  la titu d e  8 = 8q. D ' , the 

stereographic projection o f D , is the disk o f  radius r0 =  tan  % . T he im age system  consists of 
ju s t one vortex. — T a t  the inverse point r,- = jj2-.©,• =  <pv. Hence,

_  r |n ( r 2 -  2r r v cos(<p -  o v) +  r 2) r 2
A~R2 r 2r 2 — 2 rrvr% cos(p — 6V) +  rj) 

The stream lines are given by

(r2 — 2r r v cos(o — d v ) +  r 2)
r 2r 2 — 2rrvr% cos(o  — ©„) +  rj)

=  const.

A few representative stream lines are p lo tted  in figure 5.2(a) for 8q =  60°,8V =  30°,<?t, =  270°. 
H v is easily calcu lated  as

r- , ( i  +  i- -„ i! ) ( i  +  i - - , f )

=  -------

and so the  vortex  p a th s  are given by

( l  +  r 2 ) ( r 2 + r 4 )

(r o -  r 2)2
=  const.

Vortex paths for different initial conditions (8v ,<j>v) are shown in figure 5.2(b). In the stereo­

graphic plane, the  p a th s  are circles centered a t the origin, while on the  sphere they are fixed 
latitudes.
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E x a m p le 2  : S e c to r .  D  is the  sector bounded by the longitudes 0 and ~ /m .  in £  A'. D'  is a 

wedge of angle ttj m .  Since / [ : }  = z m maps D' to the UHP, by (5.13),

r
Hp 4.~R2 ln 1 _-m -  - : r

It is not difficult to see th a t there are ‘2m - 1 image vortices, w ith the positive vortices located 

a t c+a =  zvel2iza!m, 1 <  q  <  m — 1 and the negative ones a t z ~ t3 =  ~*e,2~0/ m _ l < 3 < m .  T he 

streamlines are given bv

r - — *2 r  r " 1 cos m [6 — ©t. ) -I- r~m—--------------- ----------   — =  const.
r - m — '2 r mr™ co sm (o + o t ) +  r - m

Figure 5.3(a) shows a  few- s tream lines for m  =  3 and 0V — o v =  45°. T he vortex H am iltonian,using 
(5.14), is

T2 m 2|r„ |2m~2(l -+- |r u |2)2
~  47rf?2 | c - : r P

and so the vortex p a th s  are given by

(1 +  r 2)2O \ O

=  const.
r-  sin" mo

Vortex paths for different in itial positions (9t. . ©r ) are shown in figure 5.3(b) while the stereo­

graphic projection of the p a th s  is shown in figure 5.3(c). T hough the stream lines of the stere­
ographic and p lanar vortex flows are the same, the vortex paths are not. To illustra te this, we 

p lo t the p lanar vortex p a th s  in a  wedge in figure 5.3(d), for the sam e initial positions th a t were 
shown in 5.3(c); the paths are closed in the spherical dom ain whereas in the p lanar wedge, they 

are open.

E x a m p le  3 : H a lf  s e c to r .  D  is the  half-sector bounded by longitudes 0, tt/m , m (= N  and
the equator. D '  is the sector of a  circle. f ( z )  =  ( yj; ! ;^)2 m aps th e  sector to the  UHP and so

r  ( I ± £ ^ . ) 2  _  / 1 ± £ £ . ) 2

p  4 ^ 2 m  ' ( i + : " ) 2  ( | + - ; ^ ) 2

Streamlines are given by

[ r m — ‘2r m r™ cos m (0  — <j>v ) +  r 2m][r2mr 2m -  ‘2 rmr™ cos m {4> +  <pv) +  1] _  CQnsi
[r2m — 2r mr™ cos m(<j> +  <f>v ) +  r l m][r2mr 2m — 2 rmr{J* cos m(<p — 4>u) +  1] C° US
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•J

( c ) ( d )

Figure 5.3: Vortex m otion in a sector, (a) Instan taneous stream lines for 9V =  45°.o v -  45°. (b) 
Vortex paths on the sphere, (c) S tereographic projection o f vortex p a ths, (d) Vortex paths in a 
planar dom ain .

There are 4 m  - I im age vortices located as follows : (m - I) positive vortices a t  z+Q =  r t.e‘2Ta/ m, 
l < Q < m  — I, m positive vortices a t  =  ± .e,2z'‘3/ m _ I < 0  < m , m  negative vortices at 
z _ a = z*et2*a t m , 1 <  a  < m  and  m negative vortices a t : - p  =  _L.ei2*0/m   ̂  ̂ < 3  < m. The 

image system  for m  =  2 is shown in figure 5 .4(a). Figure 5.4(b) shows a  few stream lines for 

dv = 4 5 ° , <j>v =  60°.
To get the  vortex H am iltonian , we first com pute

df_ 4m l*t, r - I |r? > +  ll
{d z U~ z'  |(1 -  c - ) 3 |

Using (5.14) we get

„ _ r2 16m 2 |z ,, |2" - 2 | ^  +  l | 2 ( l  +  |z „ |2)2
V — j no

1(1 - z " ) T  k £ § £ ) 2 - ( £ § ^ ) 2 i2
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- r

C a)

( b )

Figure 5.4: Vortex m otion  in a  half-sector, (a) Im age system , (b) Instantaneous stream lines for 
8U =  45°.<j>v =  60°. (c) Vortex paths on the sphere.

T he vortex p a ths are then  given by

[(1 +  r2m)2 -  4r 2m cos2 m 0 ](I +  r 2)2
r 2(r 2m _  ]^2 sfn2 rn(j) -  const.

Vortex paths for m  =  2 and  different initial positions (0V, 6V) are shown in figure 5.4(c). 5.5(a) 
shows the stereographic pro jection of these paths. Shown in figure 5.5(b) are paths o f p lanar 

vortices in an identical dom ain .
E x a m p le  4  : C h a n n e l .  D  is the “channel” bounded by the longitudes 0 and it and th e  curve 

tan  f  s in 0  =  c, a  co n stan t. D'  is an infinite channel whose boundaries are y =  0 and y  =  c. 
/ ( z )  =  e*z!c m aps D '  to  th e  UH P and so

Hp =  l n leIr.-/C_ erz*/cl~-
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( a >

Figure 5.5: Vortex m otion in a  half-sector, (a) Stereographic projection o f vortex paths, (b) 
Vortex paths in an identical p lan ar dom ain .

On sim plification, the stream lines are given by the curves

sinh2 ±-{x -  x„) +  sin2 M y  -  yv )
 -̂=£-------------------------  =  const.
sinh- £ { x  -  x v ) 4- sin" ^ (y -F  yv )

Several stream lines for the case c =  1. x v =  0 ,y t, =  .4 1 4 2 ...  are shown in figure 5.6(a). The 
num ber of image vortices, as is well known, is infinite.

From (5.14). we calculate

r o  o / , , O , 0 , 0- n - ( H - j - + y ) -
11 v —  A r>o O O w-4trR- c- s in ' f

so th a t the vortex paths are

/  ̂ . ° . ° \°(1 +  x - +  y -)-
- =  const.

sin- f  y

Vortex paths for different in itial positions (9v ,<pv ) are shown in figure 5 .6(b). A stereographic 
projection o f the paths is shown in figure 5.6(c). Figure 5.6(d) shows the paths o f planar vortices 
in an identical dom ain. These are s tra ig h t lines parallel to  the x-axis.

E x a m p le  5 : R e c ta n g le .  D  is the  rectangle bounded by the longitudes 0 and  <pi and latitudes 

01 and 62. D '  is the annular sector bounded by the circular arcs o f rad ius r i  =  ta n d i /2  and 
ro =  tanOn/2 and by the radial lines <p =  0 and  <f> — <f>i. D '  m aps to  the  rectangle

D "  =  { (x ,y ) |ln r i  <  x <  In r2 ,0  <  y <  <j> 1 } under the m ap u =  In c  where u is the plane of 
the rectangle D " .
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- 2 - 1 0  1 2

<d>

Figure 5.6: Vortex motion in a  channel, (a) Instantaneous stream lines for =  45°,o v =  90°. 
(b) Vortex paths on the sphere, (c) S tereographic projection of vortex paths, (d) Vortex paths 
in an identical planar dom ain.

The rectangle is m apped to the low er half-plane (LHP) by the m ap, [1]. w =  V [u  — Inr^) 
where V(u)  = 'P{u:g2,gZ) is the W eierstrass’ V  function and g'2,gZ are the VVeierstrass invariants, 

which are related to the half-periods u> a n d  u / .  In the  present case, ui =  In r o / r i  and  u '  =  r'di- 
Thus, the annular sector D' is m ap p ed  to  the LHP by f ( z )  =  P (ln  ^-).

The image system  for a  vortex in a  rectang le consists o f a doubly infinite la ttice  whose corners 
are occupied by image vortices [56, 107]. T hus, even for a vortex in an annu lar sector, we will 

have a doubly infinite lattice of im age vortices. Using (5.13), we have the partic le  H am iltonian 
for the annular sector as

21C &  ' p d n ^ - P d n i L ) 1- 

Using (5.14), the vortex H am iltonian is ob ta ined  as

„  T* , ( l  +  r . » ) ^ ( l n ^ )  ,

2 n,7>dn ̂ )-7>(ln if)1’
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( a ) (b )

Figure 5.7: Vortex motion in a  rectangle, (a) Instantaneous stream lines for 9V =  45°.o v =  30°. 
(b) Vortex p a th s  on the sphere.

Several stream lines for the case <i>i =  tt/ 4 ,9 \  — 7t / 6 , # 2  = tt/3  and  9V =  tt/ 4 . c>v =  7t / 6  are 

shown in figure 5.7(a). Figure 5.7(b) shows the  vortex paths for different in itial positions (9v . o v ).
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A p p e n d ix  I . T w o  v o r te x  p ro b le m .

The two vortex  problem  can be com pletely solved, and certain aspects o f the  solution are de­

scribed in [25]. We sum m arize the solution in a  form  th a t is consistent w ith  our treatm ent of 
the th ree vortex  problem . There are two invarian ts given by the H am ilton ian  H  and the center 
of vorticity  vector c:

H = d ^ r ‘r!ln('-=)
r  1X1 + r 2x2 

c “  ri + r 2

Since th e  H am ilton ian  is conserved, the d istance between the two vortices rem ains fixed. There 
are two sep a ra te  cases to  consider: c =  0 and  c ^  0.

c =  0 :

In th is degenera te  case, the vectors x i  and  x 2 are linear m ultiples o f each o ther, hence point 

in opposite d irections, i.e. the vortices lie on opposite  sides o f the sphere. Since the length of 
each vector is equal to  R.  we must have |T i | =  |T 2|. It is easy to  show th a t  for any strengths, if 
the two vortices lie on opposite sides of the sphere, they are in fixed equ ilib rium . Furtherm ore, 
since each vortex  lies a t an elliptic fixed point o f the  flow, the equilibrium  is nonlinearly stable. 
Recall th a t  in th e  plane, no fixed states are possible for N =2.

c ^ O  :

For th is case, there is no loss in generality in always orienting the vortices so th a t the c vector 
points s tra ig h t up. O ur s ta rtin g  point is the  form ula:

M
x ‘- =  x Xi

Then the  possible configurations can be listed as:

1. In general,the  above form ula implies th a t  the  two vortices move on cones around the center 

o f vortic ity  vector c. If M  x xj =  0, i.e. if the vortices are directly  opposite  each other, then 
as in the  degenerate case c =  0 , the vortices are in a  fixed, nonlinearly  stab le  equilibrium . 

I f M  x x ;  j^O , then the frequency of ro ta tio n  is given by u  =  ||M ||/27rf? /i2  -

2. If  T i =  To, th e  vortices are on the sam e la titu d e  b u t on opposite sides o f the  sphere.

3. If  T i +  T2 =  0, the vortices are on the  sam e longitude and sym m etrically  placed on equal 
la titu d es  on either side of the sphere.
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A p p e n d i x  II

A ppendix II has some o f  the  fortran  and m athem atica program s th a t were used to draw  pic­

tures in this work, special.f is used to  plot the vortex paths in the special periodic solution (cf. 

§2.5). Vortex trajectories for the positive collapse tim e. r+ are caculated by colp.f. All contour 

plots on the sphere are draw n using the m athem atica  package, contour.m .  w ritten by Dr.AIlan 

Hayes, M athem atica C onsu ltan t. UK. supplem ented with a short program  in M athem atica w rit­
ten for the specific problem . Two program s for p lo tting  stream lines on a sphere, w ithout and 

with dom ains, are included, 

s p e c ia l .f

T he fortran program  given below calculates the vortex paths for the special periodic solution 

(cf. §2.5).

cProgram  t o  c a l c u l a t e  v o r t e x  p a t h s  i n  s p e c i a l  p e r i o d i c  s o l u t i o n

o p e n ( 9 5 , f i l e = ’v l . o u t ’ ) 

o p e n ( 9 6 , f i l e = ’v 2 . o u t ’ ) 

o p e n ( 9 7 , f  i l e = ' v 3 . o u t ' )

p i = 4 * a t a n ( l . )  

ami = 1.  

am2 = 1 .  

am3 = -  1 .

s ig m a  = am i + am2 + am3 

alphaO  = p i / 1 8  

u = a m l / 2 / p i / s i n ( 2 * a l p h a 0 )  

t a u  = 4 * p i / u

do 10 i = l ,1 0 0 1

t = ( i - l ) * t a u / 1 0 0 0

e l l 2 = s q r t ( ( c o s ( u * t / 2 ) ) * * 2 + ( s i n ( 2 * a l p h a 0 ) ) * * 2 * ( s i n ( u * t / 2 ) ) * * 2 )  

e l l 2  =  2 * e l l 2

v  = s q r t ( e l l 2 * * 2  -  4 * ( s i n ( 2 * a l p h a 0 ) ) * * 2 )  

i f ( ( 2 5 1 . I t . i ) . a n d . ( i . I t . 7 5 1 ) )  g o  t o  2 

a l p h a = .5 *  a s  i n ( 2 * s  i n ( 2 * a l p h a 0 ) / e l 12)
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e ! 2 3  = s q r t ( ( e l l 2 / 2 ) * ( e l l 2 + v ) ) 

e l 3 1  = s q r t ( ( e l l 2 / 2 ) * ( e l l 2 - v ) ) 

w l = s q r t ( 4  -  e l l 2 * * 2 )  

w2 = s i n ( 2 * a l p h a 0 ) * s i n ( u * t / 2 )

x l  = e l 2 3 * w l * c o s ( u * t / 2 )  -  2 * e l 3 1 * w 2  

x l  = ( e l 2 3 / e l l 2 * * 2 ) * x l  

y l = e l2 3 * w l* w 2  + 2 * e l 3 1 * c o s ( u * t / 2 )  

y l = ( e l 2 3 / e l l 2 * * 2 )  * y l  

z l  = . 5 * ( 2  -  e l 2 3 * * 2 )

x2 = e l 3 1 * w l * c o s ( u * t / 2 )  +  2 * e l2 3 * w 2

x2  = ( e l 3 1 / e l l 2 * * 2 ) * x 2

y2=  e l3 1 * w l* w 2  -  2 * e l 2 3 * c o s ( u * t / 2 )

y 2 = ( e l 3 1 / e l l 2 * * 2 ) * y 2

z 2  = . S * ( 2  -  e l 3 1 * * 2 )

x3 = w l * c o s ( u * t / 2 )  

y3 = wl*w2

z 3  = , 5 * ( 2  -  e l l 2 * * 2 )  

go t o  3

2 a l p h a  = p i / 2  -  . 5 * a s i n ( 2 * s i n ( 2 * a l p h a 0 ) / e l l 2 )

e l 2 3  = s q r t ( ( e l l 2 / 2 ) * ( e l l 2 - v ) ) 

e l 3 1  = s q r t ( ( e l l 2 / 2 ) * ( e l l 2 + v ) ) 

wl = s q r t ( 4  -  e l l 2 * * 2 )  

w2 = s i n ( 2 * a l p h a 0 ) * s i n ( u * t / 2 )

x l  = e l 2 3 * w l * c o s ( u * t / 2 )  -  2 * e l3 1 * w 2  

x l  = ( e l 2 3 / e l l 2 * * 2 ) * x l  

y l  = e l 2 3 * w l* w 2  + 2 * e l 3 1 * c o s ( u * t / 2 )  

y l =  C e l 2 3 / e l l 2 * * 2 ) * y i  

z l  = . 5 * ( 2  -  e l 2 3 * * 2 )

x2  = e l 3 1 * w l * c o s ( u * t / 2 )  + 2 * e l2 3 * w 2  

x2 = ( e l 3 1 / e l l 2 * * 2 ) * x 2
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y2=  e l 3 1 * w l * w 2  -  2 * e l 2 3 * c o s ( u * t / 2 )  

y 2 = ( e l 3 1 / e l l 2 * * 2 ) * y 2  

z 2  = . 5 * ( 2  -  e l 3 1 * * 2 )

x3 = w l * c o s ( u * t / 2 )  

y3 = wl*w2

z 3  = . 5 * ( 2  -  e l l 2 * * 2 )

3 w r i t e ( 9 5 , * ) x l , y l , z l

w r i t e ( 9 6 , * ) x 2 , y 2 , z 2  

w r i t e ( 9 7 , * ) x 3 , y 3 , z 3

10 c o n t i n u e

s t o p  

end

colp.f

Given T [. To. T3  and in itia l vortex separations I in, /0 3 • ^ 3 1  such th a t the conditions for collapse 
are m et (cf. §3.1). the following fortran  program  gives th e  vortex paths for the positive collapse 

tim e. r + . A sim ilar program , which is not presented, gives the paths for the negative collapse 
tim e, r_ .

cP rogram  t o  c a l c u l a t e  v o r t e x  p a t h s  f o r  c o l l a p s e  t i m e  t a u +

c  ' c o l x p . o u t '  g i v e s  t h e  x t h  v o r t e x  p a t h  f o r  t a u +

o p e n ( 6 0 , f i l e = ’ c o l l + . o u t ’ ) 

o p e n ( 6 1 , f i l e = ’ c o l 2 + . o u t ’ ) 

o p e n ( 6 2 , f i l e = ’ c o l 3 + . o u t ’ )

p i = 4 * a t a n ( l . )  

ami = 1.  

am2 = 1 .

am3 = -  a m l* a m 2 /(a m l+ a m 2 )  

s ig m a  = ami +  am2 + am3 

e l l 2  =  .5  

e l 2 3  = .6 7 4
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e l 3 1  = .214

v d o t  = ( e l l 2 * * 2  -  e l 2 3 * * 2 ) * ( a m l + a m 3 ) / e l 3 1 * * 2  

v d o t  = v d o t  + ( e l 2 3 * * 2  -  e l 3 1 * * 2 ) * ( a m 2 + a m l ) / e l l 2 * * 2  

v d o t  = v d o t  + ( e l 3 1 * * 2  -  e l l 2 * * 2 ) * ( a m 3 + a m 2 ) / e l 2 3 * * 2  

v d o t  = 2 * v d o t - e l  12**2*  ( a m l- a m 2 ) - e l2 3 * * 2 * ( a m 2 - a m 3 )  

v d o t  = v d o t  - e l 3 1 * * 2 * ( a m 3 - a i n l )

am bdal = ( e l l 2 / e l 3 1 ) * * 2  

ambda2 = ( e l 2 3 / e l 3 1 ) * * 2  

ambda = 1 .  /  ambda2

a  = (am l+am 2)**3 + a m l * * 3 * ( l + l / a m b d a )  + am2**3 * (1+am bda)

a  = a / ( 4 * p i * ( a m l  + am 2))

a l  = a /a m 2 /( l+ a m b d a )

a 2  = a * a m b d a /a m l/( l+ a m b d a )

a 3  = a /(a m l+ a m 2 )

a l p h a l  = a m 2 * a m 3/(4*am l*s ig in a )  

a l p h a 2  = a m 3 * a m l/(4*am 2*s ign ia )  

a l p h a 3  = am l* a m 2 /(4 * a m 3 * sig m a )

b e t a l  -  (am2 + a m 3 ) / 8 / p i  

b e t a 2  = (am3 + a m l ) / 8 / p i  

b e t a 3  = (ami + a m 2 ) / 8 / p i

gamma = 2*(am b d a l + ambda2) -  (a m b d a l-a m b d a 2 )* * 2  -  1 

r h o  = ambdal*ambda2/gamma  

a l p h a  = s q r t ( l .  -  r h o * e l 3 1 * * 2 )

t a u p = 4 * p i * s q r t  (gamma) * ( l + a l p h a ) /  (a b s (a m b d a l-a m b d a 2 )  ) /a m 2  

t a u m = 4 * p i* s q r t  (gamma) * ( 1 - a l p h a ) /  ( a b s  (am bdal-am bda2) ) /am 2

w=t aup * t  au m /(taup + tau m )

e l = a l * w / ( e l 2 3 * * 2 )  

e 2 = a 2 * w / ( e l 3 1 * * 2 )  

e 3 = a 3 * w / ( e l l 2 * * 2 )
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c l = l . / ( s q r t ( - ( ( t a u p + t a u m ) * * 2 + 4 * t a u p * t a u in / ( a lp h a l* e l2 3 * * 2 ) ) )  ) 

b l = 2 * ( a l* a l p h a l+ b e t a l ) * t a u p * t a u m * c l / ( a l p h a l* e l 2 3 * * 2 )  

gammal = 2 * c l  

d e l t a l  = - ( t a u p  -  ta u m )* c l

c 2 = l . /  ( s q r t ( - ( ( ta u p + t a u m )* * 2 + 4 * ta u p * t a u m /( a lp h .a 2 * e l3 1 * * 2 )  ) ) ) 

b 2 = 2 * (a 2 * a lp h a 2 + b e t a 2 )* t a u p * t a u m * c 2 /(a lp h a 2 * e l3 1 * * 2 )  

gamma2 = 2 * c 2  

d e l t a 2  = - ( t a u p  -  ta u m )* c2

c 3 = l  . / ( s q r t  ( - ( ( t a u p + t a u m )* * 2 + 4 * t a u p * t a u m /( a lp h a 3 * e l l2 * * 2 ) ) ) ) 

b 3 = 2 * ( a 3 * a lp h a 3 + b e ta 3 )* ta u p * ta u m * c 3 /(a lp h .a 3 * e l l2 * * 2 )  

gamma3 = 2 * c 3  

d e l t a 3  = - ( t a u p  -  tau m )*c3

c  C a lc u la t io n  o f  t h lO ,  t h 2 0 ,  t h 3 0 ,  p b i l O ,p h i 2 0 , p h i3 0

th lO  = a c o s ( l  +  a m 2 * a m 3 * e l2 3 * * 2 /(2 * a n il* s ig ii ia ) )

t h 2 0  = a c o s ( l  +  a m 3 * a m l* e l3 1 * * 2 /(2 * a m 2 * s ig in a ))

t h 3 0  = a c o s ( l  +  a m l* a m 2 * e ll2 * * 2 /(2 * a m 3 * s ig in a ) )

p h ilO  = 0

p h i2 0  = ( l - c o s ( t h . l 0 ) * c o s ( t h 2 0 ) - . 5 * e l l 2 * * 2 ) / s i n ( t h l 0 ) / s i n ( t h 2 0 )  

p h i2 0  = a c o s ( p h i 2 0 )

p h i3 0  = ( l - c o s ( t h l 0 ) * c o s ( t h 3 0 ) - . 5 * e l 3 1 * * 2 ) / s i n ( t h l 0 ) / s i n ( t h . 3 0 )  

p h i3 0  = a c o s ( p h i 3 0 )

t l 2 3  = 1 - c o s  ( t h 2 0 ) * c o s ( t h 3 0 ) - s i n ( t h 2 0 ) * s i n ( t h 3 0 ) * c o s ( p h i 2 0 - p l i i 3 0 )  

t l 2 3  = s q r t ( 2 * t l 2 3 )

i f  ( a b s ( t l 2 3  -  e l 2 3 ) . g t . l e - 3 )  g o  t o  102

g o  t o  103

102 p h i2 0  = 2 * p i  -  p h i2 0

t l 2 3  =  1 - c o s  ( t h 2 0  ) * c o s ( t h 3 0 ) - s  in ( t h 2 0  ) * s  i n ( t h 3 0 ) * c o s  ( p h i2 0 - p h i3 0  ) 

t l 2 3  = s q r t ( 2 * t l 2 3 )
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103 x lO  = s in ( t h lO ) * c o s ( p h lO )  

y lO  = s i n ( t h l O ) * s i n ( p h l O )  

z lO  = c o s ( t h l O )  

x 2 0  = s in ( t h .2 0 ) * c o s ( p h 2 0 )  

y 2 0  = s i n ( t h 2 0 ) * s i n ( p h 2 0 )  

z 2 0  = c o s ( t h 2 0 )  

x 3 0  = s in ( t h 3 0 ) * c o s ( p h 3 0 )  

y 3 0  = s i n ( t h 3 0 ) * s i n ( p h 3 0 )  

z 3 0  = c o s ( t h 3 0 )

vO =  x l0 * ( y 2 0 * z 3 0  -  y 3 0 * z 2 0 )  -  y l0 * ( x 2 0 * z 3 0  -  x 3 0 * z 2 0 )  

vO =  vO + z l0 * ( x 2 0 * y 3 0  -  x 3 0 * y 2 0 )

i f  ( ( v O .g t .O )  .a n d . ( v d o t . g t . 0 ) )  g o  t o  100 

i f ( (v O . I t . 0 ) . a n d . ( v d o t . I t . 0 ) )  g o  t o  100 

i f ( ( v O . g t . O ) . a n d . ( v d o t . I t . 0 ) )  g o  t o  101  

i f ( ( v O . I t . 0 ) . a n d . ( v d o t . g t . 0 ) )  g o  t o  101

101 p h i2 0  = 2 * p i  -  p h i2 0

p h i3 0  = 2 * p i  -  p h i3 0

100 do 10 i = l , 10001

t = ( i - l ) * t a u p / 1 0 0 0 0

p h i l = e l * a l o g ( ( t a u m + t ) * ( t a u p / t a u m ) / ( t a u p - t ) ) 

p h i l = p h i l+ b l * ( a t a n ( g a m m a l* t + d e l t a l ) - a t a n  ( d e l t a l ) ) + p h i l 0  

t e l 2 3 = e l 2 3 * s q r t ( l + t / t a u m ) * s q r t ( 1 - t / t a u p )  

t h l = a c o s ( l +  a m 2 * a m 3 * te l2 3 * * 2 /(2 * a m l* s ig m a ) )

p h i 2 = e 2 * a l o g ( ( t a u m + t ) * ( t a u p / t a u m ) / ( t a u p - t ) ) 

p h i2 = p h i2 + b 2 *  (a ta n (g a m m a 2 * t+ d e lta 2 ) - a t a n ( d e l t a 2 ) ) + p h i2 0  

t e l 3 l = e l 3 l * s q r t ( 1 + t / t a u m ) * s q r t ( 1 - t / t a u p )  

t h 2 = a c o s ( l +  a m 3 * a m l* te l3 1 * * 2 /(2 * a m 2 * s ig m a ))

p h i3 = e 3 * a lo g ( ( t a u m + t ) * ( t a u p / t a u i i i )  / ( t a u p - t ) ) 

p h i3 = p h i3 + b 3 *  (a ta n (g a m m a 3 * t+ d e lta 3 )  - a t a n  ( d e l t a 3 ) )  + p h i3 0
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t e l  1 2 = e l l 2 * s q r t  ( 1 + t/ta u m ) * s q r t  ( 1 - t / t a u p )  

t h 3 = a c o s ( l +  a m l* a m 2 * t e l l2 * * 2 /( 2 * a m 3 * s ig m a ) )

x l  = s i n ( t h l ) * c o s ( p h i l )  

y l  =  s i n ( t h . l ) * s i n ( p h i l )  

z l  = c o s ( t h l )  

x 2  = s i n ( t h 2 ) * c o s ( p h i 2 )  

y 2  =  s i n ( t h 2 ) * s i n ( p h i 2 )  

z 2  =  c o s ( t h 2 )  

x 3  = s i n ( t h 3 ) * c o s ( p h i 3 )  

y 3  = s i n ( t h 3 ) * s i n ( p h i 3 )  

z 3  = c o s ( t h 3 )

w r i t e ( 6 0 , * ) x l , y l , z l  

w r i t e ( 6 1 , * ) x 2 , y 2 , z2  

w r i t e ( 6 2 , * ) x 3 , y 3 , z3

10 c o n t in u e

s t o p  

en d

contour.m

T his package plots contours of a function on any  two-dim ensional surface. It is usually 
convenient to  w rite a  sh o rt M athem atica program  to  define the function. Two such program s, 
used to draw  figures 4.8(a) and 5.3(a), are presented la ter.

(*  : T i t l e  : C o n to u r P lo tO n S u r f  a c e * )  (*  : LAST CHANGE : 30  D ec 1 9 9 8 * ) (*

: A u th o r  : A l la n  H a y e s ,  h a y C h a y s ta c k .d e m o n .c o .u k * )  (*

: Summary :

C o n to u r L in e s3 D  h a s  tw o f u n c t io n s  :

\ n  P a r a m e tr ic P lo t3 D C o n to u r e d  and P lo t3 D C o n to u r e d ,  

t h a t  a l l o w  c o n t o u r  l i n e s  t o  be draw n on  3D p l o t s .

\ n  T h e r e  a r e  t h r e e  s p e c i a l  o p t io n s  : C o n t o u r L i f t ,

C o n to u r C o lo r F u n c t io n  an d  S u r fa c e .G r a p h ic s3 D C

G r a p h ic s 3 D C o n to u r e d [  . . . ] ]  g i v e s  a  G r a p h ic s3 D  o b j e c t . * )  (*

: C o n te x t  : h a y p a c k s ‘ G r a p h ic s ‘C o n to u r P lo tO n S u r fa c e  ' * ) ( *

: P a c k a g e  V e r s io n  : 1 . 2 * ) ( *  : C o p y r ig h t  : C o p y r ig h t  1 9 9 4 , 1 9 9 6 , 1 9 9 7 ,

1998  A l la n  H a y e s .* ) ( *  : H is to r y  : V e r s io n  1 . 4  b y  A l la n  H ayes,
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Nov 1998 D e f in e d  P lo t3 D C o n to u r e d  in  ter m s o f  P a r a m e tr ic P lo t3 D C o n to u r e d  \  

i n s t e a d  o f  c o d in g  s e p a r a t e l y  (may s lo w  c o m p u ta tio n  a  b i t  b u t  s i m p l i f i e s  \  

c o d e ) .A l lo w e d  f o r  em p ty  l i s t  o f  c o n to u r  l i n e s  ( c a u s e d  b y  t h e  c o n to u r  v a lu e s  

\
b e in g  o u t s i d e  t h e  h e i g h t  r a n g e ) .V e r s i o n  1 .3  b y  A l la n  H a y e s ,

March 1997 C o n to u r  l i n e s  o f  f u n c t io n  f C s ,  t ]  on  s u r f a c e  { x [ s ,  t ]  , y C s, t ]  , 

z C s, t ] >  a d d e d .V e r s io n  1 .2  by A lla n  H a y e s ,

Nov 1994 C o n to u r L in e s3 D I n fo  ad d ed  V e r s io n  1 .2  b y  A l la n  H a y e s ,

May 1 9 9 4 . V e r s io n  1 . 1  b y  A l la n  H a y e s , March 1 9 9 4 . * ) ( *

: W arning :

Show i s  e x t e n d e d  t o  d e a l  w it h  t h e  o b j e c t  t h a t  i s  r e t u r n e d  by t h e  \  

f u n c t i o n  P lo t C o n t o u r e d .C o lo r  d i r e c t i v e s  g iv e n  i n  C o n t o u r S t y le s  a r e  u s u a l l y  \  

n o t  o p e r a t iv e ;

t h e y  m ust u s u a l l y  b e  g i v e n  s e p a r a t e l y  b y  t h e  o p t i o n  C o n to u r C o lo r F u n c tio n  \  

( b u t  s e e  t h e  e n t r y  f o r  C o n to u r C o lo r F u n c t io n ) . * ) ( *  : K eyw ord s : C o n to u r * ) (*

: M ath em a tica  V e r s io n  : 2 . 2 * ) ( *

: L im it a t io n  :

The G r a p h ic s3 D C o n to u r e d  o b j e c t  t h a t  i s  o u tp u t  i s  n o t  y e t  co m b in in g

w it h  \

o t h e r  g r a p h ic s  and d o e s  n o t  r e s p o n d  t o  F u l lO p t io n s  an d  F u l lG r a p h ic s * )  

B e g in P a c k a g e [" h a y p a c k s ‘G r a p h ic s ‘C o n to u r L in e s3 D ‘ " ,

" U t i l i t i e s ' F i l t e r O p t i o n s ‘ " ] ;

U n p r o t e c t [ " ‘ *"] ; C le a r A l l  [" ‘ * " ] ;

(* * U sa g e  m e s s a g e s * * )

C o n to u r L in e s 3 D I n fo : : u s a g e  =

" C on tou rL in es3D  i s  a  p a c k a g e  w ith  tw o f u n c t i o n s , \ n  

P lo t 3 D C o n to u r e d .g iv e s  a  P lo t3 D  s u r f a c e  w it h  c o n to u r  l i n e s  a d d e d , \n  

P a r a m e tr ic P lo t3 D C o n to u r e d , g i v e s  a  P a r a m e tr ic P lo t3 D  s u r f a c e  w it h  c o n to u r \n  

l i n e s  o f  a f u n c t i o n  o f  t h e  p a r a m e te r s  a d d e d ; \n  

e x t e n s i v e  o p t io n s  a l l o w  v a r i a t i o n s  t o  b e m a d e A n

\ n P l e a s e  s e e  t h e  s e p a r a t e  e n t r i e s  f o r  m ore in f o r m a t io n  an d  e x a m p le s .
II .>
P a r a m e tr ic P lo t3 D C o n to u r e d : :u s a g e  =

" P a r a m e tr ic P lo t3 D C o n to u r e d  DCx, y , z , w>, -Cu, u m in , u m a x }, { v , v m in , vm ax}, o p t s ]  , 

f o r  e x p r e s s io n s  x , y , z , w  i n  u , v ,  g i v e s  t h e  c o n to u r  l i n e s  o f  w on  t h e  s u r f a c e  

\
g iv e n  by P a r a m e tr ic P lo t3 D D C x ,y ,z } ,{ u ,u m in ,u m a x } ,-C v ,v m in ,v m a x } , o p t s ]  A n  

P a r a m e tr ic P lo t3 D C o n to u r e d  C { x , y , z } , { u ,  u m in , u m a x } ,{ v ,  v m in , v m a x }, o p t s ]  g i v e s  \
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t h e  sam e a s

P a r a m e tr ic P lo t3 D  [ { x , y , z , z } , -(u, u m in , u m ax}, -Cv, v m in , vm ax}, o p t s ]  . \ n  

The c o n t o u r  s t y l e s  a r e  c o n t r o l l e d  by t h e  o p t i o n s  C o n t o u r S t y le s  ( a s  f o r  \  

C o n to u r P lo t )  an d  a  new o p t io n ,  C o n to u r C o lo r F u n c t io n  e x c e p t  t h a t  c o l o r  \  

d i r e c t i v e s  m u st u s u a l l y  b e g iv e n  s e p a r a t e l y  b y  t h e  o p t io n  \  

C o n to u r C o lo r F u n c t io n  (b u t  s e e  t h e  e n t r y  f o r  C o n t o u r C o lo r F u n c t io n ) . The 

am ount \

by w h ich  c o n t o u r s  aure m oved to w a r d s  t h e  v ie w p o in t  t o  a v o id  p a r t s  o f  th em  \  

b e in g  h id d e n  b y  t h e  s u r f a c e  i s  c o n t r o l l e d  b y  t h e  o p t io n  C o n t o u r L i f t .

- \ n \ n

O p t io n s : \n

P a r a m e tr ic P lo t3 D C o n .to u r e d  h a s  t h e  u n io n  o f  t h e  o p t io n s  o f  P a r a m e t r ic P lo t 3 D ,

\
and C o n to u r P lo t  a s  o p t i o n s ,  t o g e t h e r  w it h  t h r e e  new o p t io n s  C o n t o u r L i f t ,  \  

C o n to u r C o lo r F u n c t io n  and S u r f  a c e .  \ n \ n

E x a m p le s: \n

P a r a m e tr ic P lo t3 D C o n .to u r e d [{ t  S in C s] C o s C t] ,  t  C o s t s ]  C o s [ t ] ,  S i n C t ] } ,  

{ s , 0 , 2 P i } , - C t , - P i / 2 ,  P i /2 >

] \ n \ n

P a ra m etr icP lo t3 D C o n .to u red [-C t S in C s] C o s C t] ,  t  C o s t s ]  C o s t t ] ,  S i n t t ]  , s + t > ,  

{ s , 0 , 2 P i > , { t , - P i / 2 ,  P i /2 >

] \ n \ n

F or m ore e x a m p le s  p l e a s e  e n t e r  ? P a r a m e tr ic P lo t3 D C o n to u r e d E x a m p le s .
M .

P lo t3 D C o n to u r e d : :u s  a g e  =

" P lo t3 D C o n to u r e d  [ { z , w } , { u ,  um in, u m ax}, { v ,v m in ,v m a x } ,  o p t s ]  , f o r  \  

e x p r e s s io n s  z ,  w i n  u , v ,  g i v e s  t h e  c o n t o u r  l i n e s  o f  w on t h e  s u r f a c e  g iv e n  

by \

P lo t3 D  t z , { u , u m in , u m a x } , { v , v m in , vm ax}, o p t  s ]  . \ n

P lo t3 D C o n to u r e d tz ,{ -u ,u m in ,u m a x } ,- (v ,v m in ,v m a x } , o p t s ]  g i v e s  t h e  sam e a s  \  

P lo t3 D C o n to u r e d  [ { z , z } , { u , u m in , um ax}, { v , v m in , v m a x } , o p t s ]  . \n

O p t io n s : \n

P lo t3 D C o n to u r e d  h a s  t h e  u n io n  o f  t h e  o p t i o n s  o f  P lo t3 D  and C o n t o u r P lo t  a s  \  

o p t i o n s ,  t o g e t h e r  w i t h  t h r e e  new o p t io n s  C o n t o u r L i f t ,  C o n to u r C o lo r F u n c tio n
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\
and S u r f a c e . \ n

The c o n t o u r  s t y l e s  a x e  c o n t r o l l e d  by t h e  o p t i o n s  C o n t o u r S t y le s  ( a s  f o r  \  

C o n to u r P lo t )  e x c e p t  t h a t  c o l o r  d i r e c t i v e s  m ust u s u a l l y  b e  g iv e n  s e p a x a t e l y  

b y \

t h e  new o p t i o n  C o n to u r C o lo r F u n c t io n  (b u t  s e e  t h e  e n t r y  f o r  \  

C o n t o u r C o lo r F u n c t io n ) . The am ount by w h ich  c o n t o u r s  a x e  m oved to w a r d s  t h e  \  

v ie w p o in t  t o  a v o id  p a r t s  o f  th em  b e in g  h id d e n  b y  t h e  s u r f a c e  i s  c o n t r o l l e d  

by \

t h e  o p t io n  C o n t o u r L i f t . \ n \ n  

E x a m p le s : \n

P lo t3 D C o n to u re d C 2 x ~ 4  -  y ~ 4 ,  £ x , - l , l > , - C y , - l ,  l } , A x e s  - >  T r u e ] \ n \n  

P lo t3 D C o n to u r e d C {2 x ~ 4  -  y ~ 4 ,  x  y > , { x . - l ,  1 > ,-C y ,-1 ,  l> ,A x e s  - >  T r u e ] \n \n

F or m ore e x a m p le s  p l e a s e  e n t e r  ? P lo t3 D C o n to u r e d E x a m p le s .
11 .

I

C o n t o u r L i f t : : u s a g e  =

" C o n to u r L if t  i s  an  o p t io n  f o r  P lo t3 D C o n to u r e d , P a r a m e tr ic P lo t3 D C o n to u r e d

\
and G r a p h ic s 3 D C o n to u r e d .\n

F or a  num ber r ,  C o n t o u r L i f t  - > r ,  c a u s e s  e a c h  c o n t o u r  t o  b e  m oved to w a r d s  t h e  

\
v ie w p o in t  b y  r  t im e s  t h e  l e n g t h  o f  t h e  b o u n d in g  b o x  i n  t h e  d i r e c t i o n  o f  t h e  

\
v ie w  p o i n t .  T h is  i s  u s e d  t o  a v o id  some p a r t s  b e in g  c o v e r e d  b y  t h e  s u r f a c e . \ n  

The d e f a u l t  i s  C o n t o u r L i f t  -> A u to m a t ic .

>

C o n t o u r C o lo r F u n c t io n : :u s a g e  =

" C o n to u r C o lo r F u n c t io n  i s  an  o p t io n  f o r  P lo t3 D C o n to u r e d , \  

P a r a m e tr ic P lo t3 D C o n to u r e d  an d  G r a p h ic s3 D C o n to u r e d . \ n  

C o n to u r C o lo r F u n c tio n  - > c f , c a u s e s  e a c h  c o n t o u r  t o  a s s i g n e d  t h e  c o l o r  \  

c f C s c a le d z ]  w h e re  s c a l e d z  r u n s  fro m  0 a t  t h e  lo w e r  en d  o f  t h e  r a n g e  o f  \  

p l o t t e d  v a lu e s  o f  z  up  t o  1 a t  t h e  t o p  o f  t h e  r a n g e . \ n  

The d e f a u l t  i s  C o n to u r C o lo r F u n c t io n  - > H u e . \n \n  

NOTE: \ n

D i r e c t i v e s  s e t  b y  C o n to u r C o lo r F u n c t io n  w i l l  sh ad ow  a n y  c o r e s p o n d in g  o n e s  s e t  

\
by C o n t o u r S t y le s ,  b u t  C o n to u r C o lo r F u n c tio n  - >  ( O f t )  w i l l  a l l o w  a l l  \
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C o n t o u r S t y le s  s e t  d i r e c t i v e s  t o  f u n c t i o n .

C o n to u r C o lo r F u n c t io n  can  b e  u s e d  t o  m o d ify  m ore th a n  t h e  c o l o r  o f  t h e  

c o n t o u r  \

l i n e s .  C o n to u r C o lo r F u n c t io n  - >  ( T h ic k n e s s E # /1 0 0 ]& )  w i l l  s e t  t h e  t h i c k n e s s ;  

C o n to u r C o lo r F u n c t io n  ->  ((SequenceCO -CH ueE#] , T h ic k n e s s C # /1 0 0 ] } ) & )  w i l l  s e t  \  

b o th  c o l o r  an d  t h i c k n e s s  i n . \ n

C o lo r F u n c t io n  - >  T r a n s p a r e n t  g i v e s  a  w ir e  fra m e  p i c t u r e .
II ,

>

S u r f a c e : : u s a g e  =

" S u r f a c e  i s  an o p t io n  f o r  P lo t3 D C o n to u r e d , P a r a m e tr ic P lo t3 D C o n to u r e d  and

\
G r a p h ic s 3 D C o n to u r e d . \n

W ith  S u r f a c e  - >  T r u e , t h e  s u r f a c e  on  w h ich  t h e  c o n t o u r s  a r e  t o  b e  

draw n i s  d i s p l a y e d ;  w ith  S u r f a c e  - >  F a l s e  t h e  s u r f a c e  i s  n o t  d i s p l a y e d  ( t h e  

\
e d g e s  o f  t h e  s u r f a c e  p a t c h e s  a r e  n o t  show n) ;

w it h  S u r f a c e  - >  T r a n s p a r e n t  a  w ir e  fra m e v e r s i o n  i s  d i s p l a y e d  ( t h e  s t y l e  o f  

\
t h e  m esh  i s  t h e n  c o n t r o l l e d  by t h e  o p t io n  C o lo r F u n c t io n ) . \ n  

The d e f a u l t  i s  S u r f a c e  ->  T r u e .
It .

»

G r a p h ic s 3 D C o n to u r e d : :u sa g e  =

" G r a p h ic s 3 D C o n to u r e d C p r im it iv e s  l i s t ,  o p t io n s ]  i s  t h e  k in d  o f  g r a p h ic  \  

o b j e c t  r e t u r n e d  b y  P a r a m e tr ic P lo t3 D C o n to u r e d  and P lo t 3 D C o n to u r e d \n \n  

O p t i o n s : \n

G r a p h ic s3 D C o n to u r e d  h a s t h e  u n io n  o f  t h e  o p t io n s  o f  C o n to u r G r a p h ic s , \

S u r fa c e G r a p h ic s  and G rap h ics3D  a s  o p t i o n s ,  t o g e t h e r  w it h  t h r e e  new o p t io n s  

\
C o n t o u r L i f t ,  C o n to u r C o lo r F u n c t io n  an d  S u r f a c e .
I I  .

>

T r a n s p a r e n t : :  u s a g e  = " T r a n sp a r e n t  i s  a  s e t t i n g  f o r  t h e  o p t io n  S u r f a c e  in  

C o n to u r L in e s3 D  w h ic h  s p e c i f i e s  t h a t  a  w ir e  fra m e  v e r s io n  b e  d i s p l a y e d ." ;  

P a r a m e tr ic P lo t3 D C o n to u r e d E x a m p le s : :  u s a g e  =  "

P a r a m e t r ic P lo t 3 D C o n to u r e d [ { t  S i n [ s ]  C o s C t] ,  t  C o s [ s ]  C o s [ t ] ,  S i n [ t ] > ,  

{ s , 0 , 2 P i } , - C t , - P i / 2 ,  P i / 2 } ] ; \ n \ n

p p c =
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P a r a m e tr ic P lo t3 D C o n to u r e d C { t  S in C s] C o s C t] , t  C osC s] C o s C t] , S in C t]  , s + t } ,

■Cs, 0 ,  2 P i> , -Ct, - P i / 2 , P i / 2 } ]  ; \ n \ n  

ShowCppc,

P lo tR a n g e  - >  { A l l ,  { - . 2 , 1 . 1 } , A l l } ,

V ie w P o in t-> -C l.3 9 3 , - 2 . 9 8 8 ,  - 0 .7 6 4 }

] ; \ n \ n

ShowCppc, L i g h t in g  ->  F a l s e ,  C o lo r F u n c t io n  ->  G r a y L e v e l] ; \ n \ n  

ShowCppc,

S u r fa c e  ->  F a l s e ,

C o n to u r s  ->  3 6 ,

C o n to u r C o lo r F u n c tio n  - >  (H u eC l-# ]& )

] ; \ n \ n

ShowCppc,

S u r f  a c e - > T r a n s p a r e n t ,

C o lo r F u n c t io n  - >  H ue,

( ♦ c o n t r o l s  m esh  c o l o r  when S u r fa c e -> T r a n s p a r e n t  i s  s e t * )

Boxed - >  F a l s e ,

A xes - >  F a l s e  

] ; \ n \ n  

ShowCppc,

C o n to u r S ty le  - >  T h ic k n e s s  [ .0 0 7 ]  ,

C o n to u r C o lo r F u n c t io n -> (G r a y L e v e l[0 ]& ) ,

H esh ->  T r u e ,

M e sh S ty le  - >  G r a y L e v e l C. 5 ] ,

S h a d in g  - >  F a l s e  

] ; \ n \ n

t r a n s p a r e n t b a l l  =

P a r a m e tr ic P lo t3 D C o n to u r e d  C

■CSinCs] C o s C t] ,  C osC s] C o s C t] ,  S in C t ] } ,

{ s , 0 , 2 P i } , { t , - P i / 2 ,  P i / 2 } ,

C o n to u r L if t  - >  . 7 ,

A m b ie n tL ig h t - >  G r a y L e v e lC • 2 ] ,

Boxed - >  F a l s e ,

A xes - >  F a l s e  

] ; \ n \ n

( ♦ t h i s  sh ow s how t h e  i l l u s i o n  i s  c r e a t e d * ) \ n

S h o w C G r a p h ic s 3 D C tr a n s p a r e n tb a ll] , V ie w P o in t-> -C 3 .2 6 5 , 0 .8 8 8 ,  0 . 0 4 2 } ] ;
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P lo t3 D C o n to u r e d E x a m p le s : : u s a g e  =  "

( * * * \n

You ca n  e v a l u a t e  t h e s e  e x a m p le s  b y  c o n v e r t in g  t h e  c e l l  in  w h ic h  t h e y  a r e

g e n e r a t e d  t o  an in p u t  c e l l  and  t h e n  e v a l u a t i i n g  t h e  c e l l A n

* * * ) \n

P lo t3 D C o n to u re d C 2 x “4  -  y “4 ,  { x , - l ,  l } , { y , - l ,  I}- ,A x es  - >  T ru e] ; \ n \ n  

ShowCpc,

P lo tR a n g e  - >  { A l l ,  { - . 2 , 1 . 1 } ,A 1 1 } ,

V ie w P o in t - > { l .3 9 3 ,  - 2 . 9 8 8 ,  - 0 . 7 6 4 }

] ; \ n \ n  

p c  =

P lo t3 D C o n to u r e d [{ 2 x * 4  -  y ~ 4 ,  x  y > , { x , - 1 , 1 } , { y , - 1 , 1 } , A xes - >  T r u e ] ; \ n \ n  

ShowCpc,

P lo tR a n g e  - >  { A l l ,  { - . 2 , 1 . 1 } ,A 1 1 > ,

V ie w P o in t - > { l .3 9 3 ,  - 2 . 9 8 8 ,  - 0 . 7 6 4 }

] ; \ n \ n

ShowCpc, L ig h t in g  - >  F a l s e ,  C o lo r F u n c t io n  - >  G r a y L e v e l ] ; \ n \n  

Show C pc,

S u r fa c e  - >  F a l s e ,

C o n to u r C o lo r F u n c tio n  - >  (H u e C l-# ]& )

] ; \ n \ n  

Show Cpc,

S u r fa c e - > T r a n s p a r e n t ,

C o lo r F u n c t io n  ->  (G r a y L e v e lC -8 ]  St )  , \ a

( ♦ c o n t r o l s  m esh c o l o r  w hen S u r fa c e - > T r a n s p a r e n t  i s  s e t * )

C o n to u r S ty le  ->  T h ic k n e s s C - 0 1 5 ]  ,

B oxed  ->  F a l s e ,

A xes - >  F a l s e ,

P lo tR a n g e  ->  A l l \ n

( ♦ s t o p s  c l i p p i n g  o f  p o ly g o n s  —  com p are e a r l i e r  p i c t u r e s * )

] ; \ n \ n  

Show Cpc,

C o n to u r S ty le  - >  T h ic k n e s s C - 0 0 7 ] ,

C o n to u r C o lo r F u n c tio n ->  (G r a y L e v e l  CO] S t) ,

Mesh ->  T r u e ,

M e sh S ty le  - >  G r a y L e v e lC - 5 ]  ,

S h a d in g  ->  F a ls e
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( * * P r iv a t e  C od e**)

B e g in C " 'P r i v a t e '" ] ;

C le a r [ " '* " ] ;

F o r m a t[G r a p h ic s3 D C o n to u r e d [x  ] ]  :=  " -G r a p h ic s 3 D C o n to u r e d -" ;

( * I n  d e f i n i n g  t h e  o p t i o n s  I h a v e  u s e d  U n ion  t o  a v o id  t h e  d u p l i c a t i o n  t h a t  \  

w ou ld  r e s u l t  i f  I  u s e d  J o i n .* )

O p tio n s [G r a p h ic s 3 D C o n to u r e d ]  =

U n ion  CO ( { O p t io n s [ C o n to u r G r a p h ic s ]  , O p t io n s [ S u r f a c e G r a p h ic s ] ,

O p t io n s [ G r a p h ic s 3 D ] ,

{ C o n t o u r L i f t  ->  A u t o m a t ic ,  C o n to u r C o lo r F u n c tio n  ->  H ue,

S u r f a c e  - >  True]-}- / .

{ ( A s p e c t R a t io  - >  _ )  - >  ( A s p e c t R a t io  - >  A u t o m a t ic ) ,

(A m b ie n tL ig h t  - >  _ )  - >  (A m b ie n tL ig h t  ->  G r a y L e v e l[ 0 . ] ) ,

(A x e s  - >  _ )  - >  (A x e s  - >  T r u e ) ,

( B o x R a t io s  - >  _ )  - >  ( B o x R a t io s  - >  A u t o m a t ic ) ,

( C o lo r F u n c t io n  - >  _ )  - >  ( C o lo r F u n c t io n  ->  A u t o m a t ic ) ,  

(C o n to u r S h a d in g  - >  _ )  - >  (C o n to u r S h a d in g  - >  F a l s e ) , 

(C o n to u r S m o o th in g  - >  _ )  - >  (C o n to u r S m o o th in g  - >  N o n e ) , 

( C o n t o u r S t y le  - >  _ )  - >  ( C o n t o u r S t y le  - >  { } ) ,

(M esh - >  _ )  - >  (M esh  ->  F a l s e ) ,

(M e s h S ty le  ->  _ )  - >  (M e s h S ty le  - >  G r a y L e v e l[ 0 ] ) } ) ;

O p t io n s [P a r a m e tr ic P lo t3 D C o n to u r e d ]  =

U n io n [{C o m p ile d  - >  T r u e , P l o t P o i n t s  - >  2 5 } ,

O p t io n s [ G r a p h ic s 3 D C o n to u r e d ] ] ;

O p t io n s [P lo t3 D C o n to u r e d ]  =

O p t io n s [P a r a m e tr ic P lo t3 D C o n to u r e d ]  / .

(B o x R a tio s  - >  _ )  - >  ( B o x R a t io s  - >  { 1 ,  1 ,  0 . 4 } ) ;

(*UVP, b e lo w , c o n v e r t s  t h e  v i e w p o i n t ,  v p ,

from  v ie w p o in t  c o o r d i n a t e s  t o  u s e r  c o o r d i n a t e s . VP c o n v e r t s  from  u s e r  \  

c o o r d i n a t e s  t o  v ie w p o in t  c o o r d i n a t e s * )

U V P[vp _, b r _ ,  p r _ ]  :=  p r . { l ,  l } / 2  +  p r . { - l ,  1 }  M a x [b r ] /b r  v p ;

V P [u v p _ , b r _ ,  p r _ ]  :=  (u v p  -  p r . { l ,  l } / 2 ) b r / M a x [ b r ] / p r . { - 1 ,  1 } ;  

z s c a l e r  = C o m p i le [ { n l ,  n 2 ,  n 3 ,  n 4 ,  m, h } ,  ( ( n l  +  n2 + n3 + n 4 ) / 4  -  m ) / h ] ; 

P a r a m e tr ic P lo t 3 D C o n to u r e d [ { x _ ,  y _ , z _ } ,  { u _ ,  u m in _ , u m a x _ } ,

{ v _ ,  v m in _ , v m a x _ } , o p t s  ? 0 p tio n Q ]  :=

P a r a m e t r ic P lo t 3 D C o n to u r e d [ { x ,  y ,  z ,  z } ,  { u ,  u m in , u m ax}, { v ,  v m in ,
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vmax},

o p t s ] ;

( ♦ d e f i n e  P lo t3 D C o n to u r e d  in  t e r m s  o f  P a r a m e tr ic P lo t3 D C o n to u r e d * )  

P lo t 3 D C o n to u r e d [{ z _ ,  w _ } , { u _ ,  u m in _ , u m ax_}, { v _ ,  v m in _ , v m a x _ } ,

o p t s  ?O p tionQ ] :=

P a r a m e tr ic P lo t3 D C o n to u r e d [{ u , v ,  z ,  w } , { u ,  u m in , u m ax}, { v ,  v m in , v m a x ),  

o p t s ]

P a r a m e tr ic P lo t3 D C o n to u r e d [{ x _ , y _ , z _ ,  w _ } , { u _ ,  u m in _ , u m a x _ } ,

{ v _ ,  v m in _ , v m a x _ }, o p t s  ?O p tion Q ] :=

M o d u le [{p x , p y , p z ,  pw, d e f o p t s ,  p p t s ,  p o ly d a t ,  z d a t ,  m r, 

g r a p h i c s o b j e c t } , ( ♦ ♦

STEP1 : c o n s t r u c t  t h e  b a s i c  d a ta  t h a t  d e p e n d s  o n ly  o n  t h e  t h e  \  

p a r a m e t r ic  fo r m u la s  x ,  y ,  z ,

t h e  u  and v r a n g e s  an d  t h e  " p lo t"  o p t io n  P l o t P o i n t s . T h i s  w i l l  b e  \  

p a s s e d  on  u n ch a n g ed  th r o u g h  a n y  u s e s  o f  S h o w .* * ) (* F in d  t h e  c u r r e n t  d e f a u l t  \  

o p t i o n s —  t o  a l lo w  c o n t r o l  b y  t h e  S e t O p t io n s  f u n c t i o n . * ) d e f o p t s  =

S eq u e n c e  00  O p tio n s (P a r a m e tr ic P lo t3 D C o n to u r e d ]  ;

p p t s  = P l o t P o i n t s  / .  -Copts]- / .  { d e f o p t s } ;

(♦Make c o m p ile d  o r  p u r e  f u n c t i o n s  { p x , p y , p z ,  pw} o u t  o f  { x ,  y ,  z ,  w}

: t h e s e  a r e  c o n v e n ie n t  f o r  p a s s i n g .♦ ) { p x ,  p y ,  p z ,  pw } =

I f [C o m p ile d  / .  { o p t s ,  d e f o p t s } ,

T h r e a d [c o m p [{u , v } ,  { x ,  y ,  z ,  w } ] , L i s t ,  - 1 ]  / .  comp - >  C o m p ile ,  

F u n c t io n  /C

( { x ,  y ,  z ,  w} / .  { u  :>  # 1 ,  v  :> # 2 } ) ] ;  ( ♦ F in d  t h e  p o ly g o n s ,  

p o l y d a t ,

f o r  s u r f a c e  on  w h ich  t h e  c o n t o u r s  w i l l  b e d ra w n .T h e  e x t r a  b r a c k e t s  \  

a r e  t o  co n fo rm  t o  t h e  p a t t e r n  w hen d i r e c t i v e s  a r e  a d d e d .♦ ) p o ly d a t  =

{ L i s t  /C

( P a r a m e t r ic P lo t 3 D [ { x ,  y ,  z } ,  { u ,  u m in , u m a x }, { v ,  v m in , vm ax}, 

D is p la y F u n c t io n  - >  I d e n t i t y ,  P l o t P o i n t s  - >  p p t s ] [ [ 1 ] ] ) } ;

(♦ F in d  m a tr ix  o f  h e i g h t s ,  w d a t ,  a s  a  f u n c t io n  o f  u ,  v —  t h e  x ,

y c o o r d in a t e s  w i l l  b e  a d j u s t e d  la t e r .W e  a l s o  n e e d  t h e  m esh ra n g e  mr

s o  \

t h a t  t h e  o r i g i n a l  v a lu e s  o f  u  a n d  v  ca n  b e  r e c o n s t r u c t e d . ♦ ) w dat =

P lo t3 D [w , { u ,  u m in , u m a x }, { v ,  vm in , vm ax},

D is p la y F u n c t io n  - >  I d e n t i t y ,  P lo t P o in t s  - >  p p t s ]  [ [ 1 ] ]  ;

z d a t  =
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P lo t 3 D [ z ,  -Cu, u m in , u m ax}, { v ,  v m in , vm ax},

D is p la y F u n c t io n  - >  I d e n t i t y ,  P lo t P o in t s  ->  p p t s ] [ C l ] ]  ; 

mr = { { u m in , um ax}, {v m in , v m a x }};

(♦ P a s s  d a t a  on t o  m a k e g r a p h ic s  t o  make a  G r a p h ics3 D C o n to u re d  o b j e c t

The \

{ } ’ s  h o ld s  p la c e s  d a ta  t h a t  d e p e n d s  o n  G ra p h ics3 D C o n to u red  o p t i o n s  t o  b e \  

ad d ed  m e td a t  w i l l  be t h e  v a lu e  o f  { B o x r a t i o s ,

P lo tR a n g e }  t h a t  h a v e  a c t u a l l y  b e e n  u se d  in  a  p l o t . T h e s e  w i l l  be

\
o b t a in e d  u s in g  t h e  f u n c t i o n  F u l lO p t io n s  and n e e d  n o t  b e  t h e  v a l u e s  a s s i g n e d  

\
b y t h e  o p t io n s  ( b e c a u s e ,  f o r  e x a m p le ,

P lo tR a n g e  ->

A u to m a tic  i s  a  d e f a u l t  s e t t i n g )  . c d a t  w i l l  b e  t h e  d a t a  fro m  \  

w h ic h  t h e  c o n to u r  l i n e s  w i l l  b e  c o n s t r u c t e d  o n c e  t h e i r  num ber an d  o t h e r  \  

p r o p e r t i e s  h a v e  b e e n  s p e c i f  i e d . * )  (**ST E P2 : U se  t h e  f u n c t i o n  m a k e g r a p h ic s ,  

d e f in e d  s e p a r a t e l y ,

t o  c o n s t r u c t  a  g r a p h ic s  o b j e c t  w i t h  new head  

G r a p h ic s3 D C o n to u r e d .T h is  \

c o n t a in s  a l l  t h e  d a t a ,  i n c lu d in g  a l l  t h e  o p t io n s  g iv e n ,

from  w h ich  t o  d i s p l a y  t h e  r e s u l t  b y  m eans o f  a  s u i t a b l y  e x p e n d e d  \  

v e r s i o n  o f  t h e  f u n c t io n  S h o w .* * ) g r a p h ic s o b j e c t  = 

m a k e g r a p h ic s [

{ { p x ,  p y , p z ,  p w }, z d a t ,  w d a t ,  p o ly d a t ,  { } ( * f o r  m e t d a t * ) ,

{ } ( * f o r  c d a t * ) } ,

F i lt e r O p t io n s [G r a p h ic s 3 D C o n to u r e d , MeshRange ->  m r, o p t s ,  

d e f o p t s ] ] ;

(*Show  t h e  g r a p h ic s  j u s t  c o n s t r u c t e d .* )  (**

STEP3 : d i s p l a y  t h e  r e s u l t  b y  m eans o f  a  s u i t a b l y  e x t e n d e d  v e r s io n

\
o f  t h e  f u n c t io n  Show, d e f in e d  s e p a r a t e l y .* * ) S h o w [ g r a p h i c s o b j e c t ] ] ;

(* T h e f u n c t i o n  m a k e g r a p h ic s , d e f i n e d  b e lo w ,

g i v e s  a  C o n to u r e d S u r fa c e G r a p h ic s  o b j e c t .A  p r i n c i p l e  aim  i n  d e s i g n i n g  t h e  \  

c o d e  h a s  b een  t o  k e e p  r e c o m p u ta t io n  a s  c l o s e  a s  s e n s i b l e  t o  t h e  m inim um  \  

r e q u ir e d  by new o p t io n  s e t t i n g s  in t r o d u c e d  by when u s in g  S h o w .* )  

m a k e g r a p h ic s [

{ { p x _ ,  p y _ , p z _ ,  p w _ }, z d a t _ ,  w d a t_ ,  o ld p o ly d a t _ ,  o ld m e t d a t _ ,  

o l d c d a t _ ,

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



o l d o p t s  } ,  n e w o p ts  ]  : =

M o d u le { { o p t s s e t , o p t s ,  v p , b r ,  c l ,  c c f ,  p c f , c ln s Q , ed g fm , m sh , m s h s ,

c s ,

s u r ,  p p t s ,  I f t r a t ,  p r ,  c l n ,  c p l o t ,  c p lo t 2 D ,  u v p , c e n t e r ,  u c p ,  m a x s , 

t m in ,  t h b x ,  z p r ,  z m in , h b x , n e w c d a t , c l i n e s ,  u s ,  v s ,  z a v ,  x y z ,  v e c s ,  

u n i t v e c s ,  c y c l e s t y l e s ,  e s c ,  c l i p ,  n e a r p t ,  l i f t ,  l f t p t ,  d p r ,  d v p ,  

g r l } , ( * F i n d  t h e  l i s t  o f  o p t io n s  t h a t  a r e  s e t  in  n e w o p t s * ) o p t s s e t  = 

F i r s t  / 0  {n e w o p ts} -;  ( * J o in  n e w o p ts  and o ld o p t s  f o r  

c o n v e n ie n c e . * ) o p t s

= S e q u e n c e { n e w o p t s ,

o l d o p t s } ;  (* F in d  t h e  s e t t i n g s  o f  som e o f  t h e  o p t i o n s . * )

{ b r ,  c c f ,  c l ,  c ln s Q ,  c s ,  mshQ, m sh s, p c f ,  v p }  =

{ B o x R a t io s ,  C o n to u r C o lo r F u n c t io n , C o n t o u r L i f t ,  C o n t o u r L in e s ,

C o n t o u r S t y le ,  M esh , M e s h S ty le ,  C o lo r F u n c t io n ,  V ie w P o in t}  / .  

{ o p t s } ;  ed g fm  = I f [ !  mshQ, E d g eF o rm D , E d geF orm {m sh s]] ; 

n e w p o ly d a t  =

{ e d g fm , L a s tC

o l d p o l y d a t ] } ;  ( * I f  n ew o p ts  ch a n g e  p lo t r a n g e  o r  b ox  r a t i o s  f i n d  \  

t h e i r  new v a l u e s . * ) I f{M e m b e r Q C o p tsse t , B o x R a t io s  I P lo t R a n g e ] ,

{ n e w fb r ,  n e w fp r }  =

F u l lO p t io n s  {

G r a p h ic s 3 D { n e w p o ly d a t ,  F i l t e r O p t io n s { G r a p h ic s 3 D  , o p t s } ] ,  

{ B o x R a t io s ,  P lo t R a n g e } ] ,

{ n e w fb r ,  n e w fp r }  =  o ld m e t d a t ] ; (* F in d  t h e  t h i c k n e s s  o f  t h e  b o x ,  

t h b x ,  ( i n  u s e r  c o o r d i n a t e s )  a lo n g  t h e  l i n e  th r o u g h  t h e  c e n t e r  and

t h e  \

v i e w p o i n t . * )u v p  = UVPCvp, n e w fb r , n e w fp r ] ;  (* V ie w p o in t  in  u s e r  

c o o r d i n a t e s .* )

c e n t e r  =  n e w f p r . { 1 ,  l } / 2 ;  

u cp  = uvp -  c e n t e r ;  

m axs = Max /©  n e w fp r ;

O f f { P o w e r : : i n f y ] ; t m in  = M inC A bs{(m axs -  c e n t e r ) / u c p ] ] ;

O n { P o w e r : : in f y ] ;

th b x  = 2 tm in  S q r t { u c p . u cp ] / /

N; (* F in d  t h e  r a t i o  I f t r a t  o f  t h e  t h i c k n e s s  o f  t h e  b o x  i n  t h e  \  

d i r e c t i o n  o f  t h e  v ie w  p o i n t  b y  w h ic h  t h e  c o n t o u r s  w i l l  b e  l i f t e d * ) p p t s  =  

D im e n s io n s { w d a t ] ;

I f t r a t  :=  I f { c l  =  A u to m a t ic ,  0 . 5 / ( P l u s  00 p p t s ) ,  c l ] ;
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(♦ F in d  a  d i s p l a y  p lo t r a n g e ,  d p r ,

w hich, w i l l  in c lu d e  t h e  l i f t e d  c o n t o u r s .C a l c u l a t e  t h e  c o r r e s p o n d in g  \  

d i s p l a y  b ox  r a t i o  d b r  and d i s p l a y  V ie w p o in t ,  d v p ,

t h e  p o s i t i o n  o f  th e  l a t t e r  in  u s e r  c o o r d i n a t e s  r e l a t i v e  t o  b r  and

d p r \

i s  s t i l l  uvp  ( t h i s  w i l l  k eep  t h e  l i f t e d  c o n t o u r s  in  l i n e  w it h  t h e  u n l i f t e d  \  

o n es  a s  s e e n  fro m  t h e  v ie w  p o in t  u s e d  i n  t h e  d i s p l a y )  . ♦ ) c l i p [ x _ ,  { a _ ,  b _ } ]

W h ich [x  < a ,  a ,  x > b , b ,  T r u e , x ]  ; 

n e a r p t [ u v p _ , n e w fp r _ ] :=  T h r e a d ( c l i p ( u v p , n e w f p r ] ] ;  

l i f t [ u v p _ ,  p r _ ,  d _] :=  M oduleD C np}, np  = n e a r p t [ u v p ,  p r ]  ;

(n p  +■ d # / S q r t [ # . # ] )  & [uvp -  n p ] ]  ; 

l f t p t  =  l i f t [ u v p ,  n e w fp r , I f t r a t  t h b x ] ;

d p r  = { M i n [ # ] , M ax[#]>  & /C  M a p T h r e a d [L is t ,  { l f t p t ,  n e w f p r } ] ;  

d b r  = I f [ b r  =  A u to m a tic , d p r . { - l ,  1 } ,  b r ] ; d v p  = V P [u vp , d b r ,

d p r] ;

(♦ F in d  t h e  h e i g h t ,  h b x , o f  t h e  b o x  i n  u s e r  c o o r d i n a t e s ,  

n e e d e d  t o  f i n d  t h e  s c a l e d  h e ig h t  u s e d  f o r  

C o n to u r C o lo r F u n c t  i o n . ♦ ) wmin 

= M in [w d a t ] ; 

wmax = M a x [w d a t] ;

w ran ge = wmax -  wmin; z n e w fp r  = n e w f p r [ [ - 1 ] ] ; zm in  = M in [zn ew fp r ] ; 

zm ax = M a x [z n e w fp r ] ; 

hbx = zm ax -  zm in ;

(♦ F in d  t h e  2D c o n to u r  l i n e s  fro m  w d at b y  u s in g  C o n to u r G r a p h ic s  and \  

c o n v e r t in g  t o  a  G r a p h ic s  o b j e c t .T h e  h e i g h t s  w i l l  be a d d e d  l a t e r  and t h e  u ,  

v  c o o r d i n a t e s  w i l l  be m apped t o  t h e  c o r r e s p o n d in g  x ,  

y  v a J .u e s .T h e  s p l i t  i n t o  s t y l e s  an d  l i n e s  i s  f o r  e f f i c i e n c y  in  m ak in g

\
c h a n g e s  b y  o p t i o n s . ♦ ) { s t y l e s , l i n e s }  =

I f [ ( g r l  =

G r a p h ic s [

C o n to u r G r a p h ic s [w d a t , C o n to u r S h a d in g  - >  F a l s e ,  

F il t e r O p t io n s [ C o n t o u r G r a p h ic s ,

P lo tR a n g e  - >

{w m in , wmax} (♦ n e w f p r [ [ - 1 ] ] ♦ ) , (♦ N o t n e w fp r ,  

w h ich  i s  i n  t e r m s  o f  x ,  y  an d  z O o p t s ] ] ]  [ [ 1 ] ]  / .  

{ d i r s  , ln _ L in e }  - >  { { d i r s } ,  I n } )  =  { } ,  { { } ,  { } } ,
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T r a n s p o s e [ g r l ] ] ;

(*Do t h o s e  c a l c u l a t i o n s  f o r  l i f t i n g  t h e  c o n t o u r s  t h a t  d ep en d  on t h e  \  

" m e t r ic ” o p t io n s  B o x R a t io s ,  C o n to u r s ,  P lo tR a n g e , V ie w P o in t ,

C o n to u r S m o o th in g .S to r e  t h e  d a t a  a s  n e w c d a t .T h e  f u l l  co d e  f o r  t h e  \  

c o n to u r  l i n e s  i s  c o n s t r u c t e d  l a t e r  fro m  n ew cd a t and s t y l e s . * ) I f [  

c ln sQ  £&

M e m b e r Q [o p tsse t ,

B o x R a tio s  i V ie w P o in t  I P lo tR a n g e  I C o n to u r s  I 

C o n to u r S m o o th in g ] , 

n ew cd a t =

I f  [ l i n e s  =  { } ,  { } ,

l i n e s  / .  L in e [ p s _ ]  :>  ( { u s , vs}- = T r a n s p o s e  [p s ]  ;

wav = I n n e r [p w , u s ,  v s ] / L e n g t h [ p s ] ; (* a v  o f  w on

c o n to u r * )w s

= T a b le  [w av , { L e n g t h [ p s ]  }-] ; 

x y z  = {M a p T h re a d [p x , { u s ,  v s } ] , M ap T h read[p y, { u s ,  v s } ] ,  

M a p T h rea d [p z , { u s , v s } ] } ;  

v e c s  = T r a n s p o s e [u v p  -  x y z ]  ; 

u n i t v e c s  =

B lo c k [ { D o t } ,  

v e c s / S q r t [

T h read  [

D o t [ v e c s ,

v e c s ] ] ] ] ;  ( * u n i t  v e c s  in  d i r e c t i o n  o f

v ie w p o in t * )

{ ( * ( z a v  -  z m in ) / h b x , * ) (w av -  w m in )/w ra n g e ,

T r a n s p o s e [ x y z ] , th b x  u n i t v e c s } ) ] , ( * e l s e  -  

i f  no c h a n g e s  a r e  n e e d e d  t o  c d a t . * ) n ew cd a t =  o ld c d a t ]  ;

( ♦ I n s e r t  t h e  d i r e c t i v e s  f o r  t h e  p o l y g o n s * ) I f [

p c f  = !=  A u to m a tic  && M e m b e r Q [o p ts s e t , C o lo r F u n c t io n ] ,  

n e w p o ly d a t  = 

n e w p o ly d a t  / .

{ ____, p o ly  : P o l y g o n [ p t s _ ] }  :>

{ p c f [ z s c a l e r [ S e q u e n c e  CC ( L a s t  /C  p t s ) ,  z m in , h b x ] ] ,

p o l y } ] ; (* C o m p le te  t h e  co d e  f o r  t h e  c o n to u r  l i n e s  u s in g  \  

I f t r a t  ( d e r iv e d  from  t h e  o p t io n  C o n t o u r L i f t )  and c c f  (fr o m  \  

C o n to u r C o lo u r F u n c t io n ) . * ) c l i n e s  =

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



I f [ c l n s Q ,

A pp ly  [ { S e q u e n c e  0 0  F l a t t e n [ { # # 4 } ] ,  c c f [ # l ] ,  L in e [ # 2  + I f t r a t  # 3 ] }  

&, M a p T h re a d [J o in , { n e w c d a t ,  s t y l e s } ] ,  -C l} ] ,  { } ]  ;

(♦ R e tu r n  t h e  d a t a  an d  o p t io n s  a s  a  G r a p h ics3 D C o n to u re d  o b j e c t . * )  

G r a p h ic s3 D C o n to u r e d [

{ { p x ,  p y , p z ,  p w }, z d a t ,  w d a t , n e w p o ly d a t ,  -Cnewfbr, n e w fp r } ,

n e w c d a t ,

c l i n e s ,  { d p r ,  d v p } } ,  o p t s ] ] ;

(♦ E x te n d  Show t o  d e a l  w it h  G r a p h ics3 D C o n to u re d  o b j e c t s . * )  

G ra p h ics3 D C o n to u red  / :

S h o w (G ra p h ics3 D C o n to u red  {

{ f n _ ,  z d a t _ ,  w d a t_ , p o ly d a t _ ,  { f b r _ ,  f p r _ } ,  c d a t _ ,  c l i n e s _ ,

{ d p r _ , d v p _ } } ,  o l d o p t s  T O p tio n Q ], n e w o p ts  ? 0 p tio n Q ] :=

I f[M e m b e r Q [F ir s t  / 0  { n e w o p t s } ,

B o x R a tio s  | C o lo r F u n c t io n  I C o n to u r C o lo r F u n c tio n  I C o n t o u r L if t  | 

C o n to u r s  I C o n to u r L in e s  I C o n to u r S m o o th in g  I C o n t o u r S t y le  I Mesh I 

M e sh S ty le  I P lo tR a n g e  I S u r fa c e  I V ie w P o in t ] ,

S h o w [m a k e g r a p h ic s [ { fn ,  z d a t ,  w d a t, p o ly d a t ,  { f b r ,  f p r } ,  c d a t ,  

o l d o p t s } ,

n e w o p t s ] ] ,

S h o w [G ra p h ic s3D [

{ S w it c h [ S u r f a c e  / .  { n e w o p t s ,  o l d o p t s } ,  T r u e , p o l y d a t ,  T r a n s p a r e n t ,  

p o ly d a t  / .  P o ly g o n [ z _ ]  :> L in e [A p p e n d [z , F i r s t [ z ] ] ] ,  _ ,  { } ]  ,

I f [ C o n to u r L in e s  / .  { n e w o p ts ,  o l d o p t s } ,  c l i n e s ,  { } ] } ] ,

P lo tR a n g e  ->  d p r , V ie w P o in t  - >  d vp ,

F i l t e r O p t io n s [ G r a p h ic s 3 D ,  n e w o p ts , o l d o p t s ] ] ;

G r a p h ics3 D C o n to u re d [

{ f n ,  z d a t ,  w d a t, p o l y d a t ,  { f b r ,  f p r } ,  c d a t ,  c l i n e s ,  { d p r ,  d v p } } ,  

n e w o p ts , o l d o p t s ] ] ;

(♦ P r o v id e  f o r  c o n v e r s io n  o f  G r a p h ics3 D C o n to u re d  o b j e c t s  t o  G ra p h ics3 D  

o b j e c t s * )

G r a p h ics3 D C o n to u red  / :

G r a p h ic s3 D [

G r a p h ics3 D C o n to u re d [

{ f n _ ,  z d a t _ ,  w d a t_ ,( * w d a t _  ad ded  N o v l2  9 8 * ) p o l y d a t _ ,  { f b r _ ,  f p r _ } ,  

c d a t _ ,  c l i n e s _ ,  { d p r _ ,  d v p _ } } ,  o l d o p t s  ? 0 p t io n Q ] ,
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n e w o p ts  T O ptionQ ] :=

G r a p h ic s3 D  [

{ S w i t c h [ S u r f a c e  / .  { n e w o p ts ,  o l d o p t s } ,  T r u e ,  p o l y d a t ,  T r a n s p a r e n t ,  

p o l y d a t  / .  P o ly g o n { z _ ]  :> L in e [A p p e n d C z , F i r s t [ z ] ] ] ,  _ ,  { } ]  ,

I f [ C o n t o u r L in e s  / .  { n e w o p ts ,  o l d o p t s } ,  c l i n e s ,  { } ] } ,

P lo t R a n g e  —> d p r , V ie w P o in t  - >  d v p ,

F i l t e r O p t i o n s  [G r a p h ic s3 D , n e w o p ts ,  o l d o p t s ] ] ;

E ndD  ;

P r o t e c t [ " ' * " ] ;

E n d P ack age □

plotl.m
T his M ath em atica  program  was used to plot figure 4 .8 (a). For this, first contour.m  is inpu t 

into M ath em atica  followed by this program . A M ath em atica  session showing the sequence o f 
instructions is included a t the end.

g l  = .2 ;  g 2  =  .0 2 ;  g3  = - 1

t h l  = TO P i / 1 8 0 ;  p h i l  = 0 P i /1 8 0

th 2  = 3 0  P i / 1 8 0 ;  p h i2  =  180 P i /1 8 0

th 3  = 90  P i / 1 8 0 ;  p h i3  = 0 P i /1 8 0

x l  = S in  [ t h l ]  C os [ p h i l ]  

y l  = S in  [ t h l ]  S in  [ p h i l ]  

z l  = C o s [ t h l ]  

x2 = S i n [ t h 2 ]  C o s [ p h i2 ]  

y2 = S i n [ t h 2 ]  S i n [ p h i 2 ]  

z 2  = C o s [ t h 2 ]  

x3 = S i n [ t h 3 ]  C os [ p h i3 ]  

y3 = S i n [ t h 3 ]  S i n [ p h i 3 ]  

z 3  = C o s [ t h 3 ]  

x = S i n [ t h ]  C os [ p h i ]  

y =  S i n [ t h ]  S in  [ p h i ]  

z  = C o s [ t h ]

mu = 0
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t h e t l  =  7 8 .4 8 1 4  P i / 1 8 0 ; p h l  = 180 P i /1 8 0 ;  t h e t 2  = 3 6 .4 4 6 6  P i /1 8 0  ;

ph2 = 180 P i / 1 8 0 ; t h e t 3  = 6 4 .9 2 8 1  P i /1 8 0 ;  ph3 = 0 P i / 1 8 0

w = ( ( ( x - x l ) ‘ 2  +  ( y - y l ) - 2  + ( z - z l ) ‘ 2 ) ~  g l )  * ( ( ( x - x 2 ) “2 + ( y - y 2 ) ~ 2  + ( z - z 2 ) * 2 ) ~

g 2 )  * ( ( ( x - x 3 ) ~ 2  + C y -y 3 )“2  + ( z - z 3 ) ~ 2 ) “ g 3 )  * ExpCmu ( l + z ) / 2 ]

c l  = ( ( S i n C t h e t l ]  Cos [ p h i ]  - x l ) ~ 2  + ( S in C t h e t l ]  S in C p h l]  - y l ) “2 + ( C o s C th e t l]  

- z l ) ~ 2 ) ~  g l  * ( ( S i n C t h e t l ]  C o s C p h l] -x 2 )~ 2  + ( S i n C t h e t l ]  S in C p h l] - y 2 )  ~2 +

(C os C t h e t l ]  - z 2 )  ~ 2 )  ~ g 2  * ( ( S i n C t h e t l ]  Cos C phl] - x 3 )  *2  + ( S in C t h e t l ]  S in C p h l] -  

y 3 ) “2 + ( C o s C t h e t l ] - z 3 ) * 2 ) ~ g 3  * ExpCmu ( 1 + C o s C t h e t l ] ) /2 ]

c 2  = ( ( S in C t h e t 2 ]  C osC ph2] - x l ) ~ 2  + ( S in C th e t 2 ]  S in C p h 2 ] - y l ) “2  + (C o sC th e t2 ]  

- z l ) * 2 ) “ g l  * ( ( S in C t h e t 2 ]  C o s C p h 2 ]-x 2 )“2 + ( S in C t h e t 2 ]  S in C p h 2 ] -y 2 )~ 2  + 

( C o s C t h e t 2 ] - z 2 ) ~ 2 ) “ g 2  * ( ( S in C t h e t 2 ]  C o s C p h 2 ]-x 3 )"2 +  ( S in C t h e t 2 ]  S inC ph2] 

- y 3 ) ~ 2  + ( C o s C t h e t 2 ] - z 3 ) * 2 ) *  g 3  *  ExpCmu ( 1 + C o s C t h e t 2 ] ) /2 ]

c3  = ( ( S in C t h e t 3 ]  C osC ph3] - x l ) * 2  + ( S in C th e t 3 ]  S in C p h 3] - y l ) “2 + (C o sC th e t3 ]  

- z l ) ~ 2 ) ~  g l  * ( ( S in C t h e t 3 ]  C o s C p h 3 ]-x 2 )*2 + ( S in C t h e t 3 ]  S in C p h 3 ] -y 2 )~ 2  + (C os  

C t h e t 3 ] - z 2 ) ‘ 2 ) ' ‘ g 2  * ( ( S in C t h e t 3 ]  C o sC p h 3 ]-x 3 )~ 2  + ( S in C t h e t 3 ]  S in C p h 3 ]-y 3 )~ 2  

+ ( C o s C t h e t 3 ] - z 3 ) ~ 2 ) ~  g 3  * ExpCmu (1 +  C o s C t h e t 3 ] ) /2 ]

p p c = P a r a m e tr ic P lo t3 D C o n to u r e d C { x ,y ,z ,w > ,-C th ,0 ,  P i } , -Cphi, 0 ,  2 P i > , C ontours->-C  

c l , c 2 , c 3 > , P l o t P o i n t s - > 1 0 0 , C o n to u r S m o o th in g -> T r u e , C o n to u r S h a d in g -> F a ls e , 

C o n t o u r S t y le  - >  T h ic k n e s s  CO. 0 0 5 ] , C o n to u r C o lo r F u n c tio n -> (G r a y L e v e lC O ]& ), 

B o x e d - > F a ls e , A x e s - > F a ls e ]

s e c to r .m
This program , along w ith contour.m ,  was used to  draw  figure 5.3(a).

x = S in C th ]  C osC p h i]  

y = S in C th ]  S in C p h i]  

z  = C osC th ]

m = 2

thO = P i / 2  

phiO  = P i / 2
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th v  = P i / 4  

p h iv  = P i / 3

r v  = T a n [ t h v /2 ]  

r  = T a n [ t h /2 ]

p s ip  = ( r ~ ( 2  m) +  r v ~ ( 2  m) -  2 r 'm  r v 'm  C o s [ m ( p h i - p h iv ) ] ) ( r ' ( 2  m) r v ~ ( 2  m) + 

1 - 2  r 'm  r v 'm  C os [m (p h i+ p h iv ) ]  ) / (  ( r “ (2  m) + r v ~ (2  m) -  2 r 'm  rv 'm  Cos [m (phi 

+ p h i v ) ] ) ( r “ ( 2  m) r v ~ ( 2  m) + 1 -  2 r 'm  r v 'm  C o s [ m ( p h i - p h iv ) ] ) )

f  =

I f  [(0< = th < = th O )& & C 0< = p h i< = p h i0) , p s i p ,  1]

t h l  = P i / 4 ;  p h i l  = 0 ;  t h 2  = P i / 4 ;  p h i2  = P i / 6 ;  th 3  = P i / 3 ;  p h i3  = 80 P i /1 8 0  

th 4  = 80  P i / 1 8 0 ;  p h i4  = P i /1 8 ;  t h 5  = P i / 2 ;  p h i5  = P i / 2

r l  =  T a n [ t h l / 2 ]  ; r 2  = T a n [th 2 /2 ]  ; r3  =  T a n [ t h 3 /2 ]  ; r 4  = T a n [ t h 4 /2 ]  ; r 5  = T a n [  

t h 5 /2 ]

c l  = ( r l “ (2  m) + r v ~ ( 2  m) -  2 r l ‘ m r v “m Cos Q n ( p h i l - p h iv ) ] ) /  ( r l ~ ( 2  m) +

r v “ (2  m) -  2  r l ' m  r v 'm  C o s [ m ( p h i l+ p h iv ) ] )

c2  = ( r 2 “ ( 2  m) + r v ~ ( 2  m )  -  2  r 2 ~ m  r v 'm  Cos [ m ( p h i2 - p h iv ) ] ) /  ( r 2 “ (2  m) +

r v ~ (2  m) -  2  r2"m  rv 'm  Cos [ m ( p h i2 + p h iv ) ] )

c3  = ( r 3 ' ( 2  m) +  r v “ (2  m) -  2 r3 'm  r v 'm  Cos [ m ( p h i3 - p h iv ) ] ) /  ( r 3 ~ ( 2  m) +

r v ~ (2  m) -  2  r3"m  rv 'm  Cos [ m ( p h i3 + p h iv ) ] )

c 4  = ( r 4 ' ( 2  m) + r v ~ ( 2  m) -  2 r4~m r v 'm  Cos [ m (p h i4 - p h iv ) ]  ) /  ( r 4 “ (2  m) +

r v ~ (2  m) -  2 r4~m  rv 'm  C o s [m (p h i4 + p h iv ) ] )

c5  = ( r 5 " ( 2  m) + r v 'C 2  m) -  2 r5~m r v 'm  Cos [ m ( p h i5 - p h iv ) ] ) /  ( r 5 ~ ( 2  m) +

r v ' ( 2  m) -  2  r5~m  r v 'm  Cos Q n (p h i5 + p h iv ) ] )

ppc = P a r a m e t r ic P lo t3 D C o n to u r e d [ - C x ,y ,z ,f > ,- C th ,P i /7 2 0 ,  P i } , { p h i , 0 ,  2 P i } ,  

C o n t o u r s - > { c 2 , c 3 , c 4 } , P lo t P o in t  s - >  1 0 0 , C o n to u r S m o o th in g -> T r u e , C o n to u r S h a d in g ->
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F a l s e .C o n t o u r S t y l e  - >  T h ic k n e s s [ 0 .0 0 5 ] ,  C o n to u r C o lo r F u n c t io n -> (G r a y L e v e l[0 ]& )  , 

B o x e d - > F a ls e , A x e s - > F a l s e , V ie w P o in t- > { 3 . 5 , 2 . 5 , . 7 } ]

A typical M ath em atica  session, used in constructing th e  contours on a sphere, is presented 
below.

I n [ l ]  :=  « c o n t o u r .m

I n [2 ] :=  « p I o t l . m

O u t[ 2 ]=  -G r a p h ic s 3 D C o n to u r e d -

I n [ 3 ] :=  G ra p h ics3 D [J Q

O u t[ 3 ]=  - G r a p h ic s 3 D -

I n [ 4 ] :=  D i s p l a y [ " f  i l e l . e p s "EPS"]

O u t[ 4 ] =  -G r a p h ic s 3 D -

I n [5 ]  :=  « s e c t o r . m

O u t[ 5 ] =  -G r a p h ic s 3 D C o n to u r e d -

I n [6 ]  :=  G r a p h ic s 3 D [ ’/.]

Out [ 6 ]=  - G r a p h ic s 3 D -

I n [7 ]  :=  D i s p la y [ " f i l e 2 .e p s " ,y . ," E P S " ]

O u t[ 7 ] =  - G r a p h ic s 3 D -
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