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Abstract

ESA and NASA scientific missions to the Jupiter and Saturn systems will answer funda-
mental questions on the habitability of icy worlds. The missions include unprecedented
challenges, as the spacecraft will be placed in closed, stable orbits near the surface of
the moons. This thesis presents methods to design trajectories that tour the moons and
ultimately insert the spacecraft into orbits around them, while mitigating the mission
costs and/or risks.

A first technique is the endgame, a sequence of moon flyby preceding the orbit inser-
tion. Historically, the endgame is designed with two approaches with different results:
the vo-leveraging transfer (VILT) approach leads to high-Av (hundreds of m/s), short
time-of-flight (months) endgames, while the multi-body approach leads to low-Av (tens
of m/s), long time-of-flight (years) endgames. This work analyzes and develops both
approaches.

We introduce a fast design method to automatically compute VILT endgames, which
were previously designed in an ad-hoc manner. We also derive an important simple
quadrature formula for the minimum Awv attainable with this approach. This formula
is the first important result of this work, as it provides a lower bound for assessment
studies.

We explain and develop the complex multi-body approach introducing the Tisserand-
Poincaré (T-P) graph, which is the second important result of this work. It provides a link
between the two approaches, and shows the intersections between low-energy trajectories

around different moons. With the T-P graph we design a five-month transfer between

xXvi



low-altitude orbits at Europa and Ganymede, using almost half the Av of the Hohmann
transfer.

We then focus on missions to low-mass moons, like Enceladus. We show that non-
tangent VILT (an extension of the traditional VILT) significantly reduce the Av while
maintaining a satisfactory transfer time (< 4 years in the Saturn system). With a new
design method we compute a 52 gravity-assist trajectory from Titan to Enceladus. The
time of flight is 2.7 years, and the Awv is almost 10 times better then the Titan-Enceladus
Hohmann-like transfer. This trajectory and the design method are the third important
contribution of this work; they enable a new class of missions which were previously
considered unfeasible.

Finally we study the capture problem, which seeks chaotic trajectories with multiple
orbit insertion opportunities. We explore the solution space extending the design tech-
niques used by ESA for the BepiColombo mission capture to Mercury. Such problems
are better modeled in the spatial, elliptic, restricted three-body problem, which we ana-
lyze in detail. We define new regions of motions and to compute new families of periodic
orbits and their stability properties. This analysis is the fourth important contribution
of this work. Finally we show that capture trajectories shadow the manifolds of special
periodic and quasi periodic orbits. This is the last important contribution of this report,
as if both explains the complex dynamics of capture trajectories, and suggests new ways

to design them.
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Chapter 1

Introduction

1.1 Motivations

In recent years both NASA and ESA have studied a variety of mission options to the
Galilean moons at Jupiter and to the moons of Saturn including Enceladus and Titan.
These moons are very interesting for the scientific community; their exploration will help
understanding the habitability of icy worlds orbiting giant planets.

On February 2009, NASA and ESA announced their cooperation in the design of
the Europa Jupiter System Mission, to be launched around 2020. NASA will design
the Europa orbiter, while ESA will design the Ganymede orbiter. JAXA (Japan) and
Roscosmos (Russia) might also contribute with the Jupiter Magnetospheric Orbiter and
the Europa lander.

In the same year it was announced that the NASA /ESA Titan Saturn System Mission
will explore Titan and Enceladus, and is currently planned to be launched sometime in
the 2020s. In part as a result of the work presented in this thesis, JPL is also studying
mission scenarios for an Enceladus orbiter.

Both missions are very challenging. The long distance from the Sun and the Earth
affect all the subsystems, starting with power, thermal and telecommunications. Differ-
ently from the spacecraft Voyager 1 and 2, Galileo, and Cassini-Huygens, which success-
fully explored the outer solar system, the new planned missions include moon orbiters,
with an additional set of challenges. The orbit insertion, which place the spacecraft in
orbit around the moon, becomes one of the most critical and expensive part of the mis-

sions. With the exception of the Titan orbiter, which can use aerobraking techniques,



all the other orbiters need to carry large amount of propellant to provide the change in
energy (or speed, Av) for the orbit insertion maneuver.

To mitigate the costs and risks of orbit insertion maneuver, and to enhance the
exploration of moon systems, the spacecraft must perform complicated sequences of
flyby and impulsive maneuvers. A few of such trajectories were computed in an ad-hoc
manner; however, the astrodynamic community is seeking new design methods and new
techniques for the computation of more and diverse solutions. By reducing costs and/or
risks, these solutions can save the missions from future cancellations.

This thesis study, compare, extend old, and create anew astrodynamic techniques
for moon system explorations. The techniques exploit the fast dynamics of the moon
systems, where the time scale is on the order of days, rather then of years as in the
planet explorations. The results presented in this report are published in conference

proceedings and peer-reviewed journals|[CR10a, CR10b, CSR10, SCR09, CL08, CLNOS|.

1.2 Background

In this section we introduce the astrodynamic techniques currently in use to design the

mission to the moons.

1.2.1 Endgames and begin-games

The endgame [JD99] is the last part of a trajectory before the insertion maneuver into
the science orbit. An example of endgame is the last part of the trajectory to Mercury
of the NASA Messenger Mission (see Fig. 1.1). The endgame aims at a low-Awv orbit
insertion maneuver. The “begin-game” is the symmetric problem and starts with a low
Aw escape from an initial orbit around a minor body. Both strategies have been studied,

designed and implemented in space missions with two distinct approaches.



The first approach uses the vy — leveraging transfer (VILT) technique, where the
combined effect of gravity assists and impulsive maneuvers (at the almost opposite apsi-
dal point of the spacecraft orbit) changes the spacecraft velocity relative to the minor
body[Hol75, SLS97]. Typically the transfer is first computed in the linked-conic model
(i.e. the zero-sphere-of-influence, patched-conic model), and then optimized in a real
ephemeris model and patched together to the rest of the trajectory. The VILT approach
is very intuitive and quickly provides solutions. NASA and ESA use the VILT approach
for the design of the endgame trajectories to Europa [JD99, RS07], Ganymede [BAPC]
and Titan. The VILT originates and is used frequently with interplanetary trajectories
[Hol75, SLS97]. The Messenger mission to Mercury implements a VILT sequence for
the endgame at Mercury [MDF06]; the BepiColombo mission to Mercury implements
a low-thrust version of the VILT at Earth and at Mercury [Lan00], followed by a grav-
itational capture at Mercury [JCGKO04]. A The Cassini spacecraft performed a VILT
at Venus before the last Earth gravity assist [GGH98]. The Juno mission, targeted to
launch in 2011, implements a VILT at Earth to reach Jupiter [KJTO08].

The second approach uses the multi-body technique[RL03, SPC99], where small Avs
(if any) are applied when the spacecraft is far from the minor body, typically to target
high altitude flyby passages which produce the desired effects (e.g. behind or in front
of the minor body to increase or decrease the spacecraft energy). The trajectory is
computed directly in the real ephemeris model, or in the restricted three, four, or five
body model. This approach cannot be explained with the linked-conics model, where
ballistic transfers cannot change the arrival conditions at the minor body. Trajectories
are typically found with some heuristic method. Recently, nonlinear dynamical system
theory has been used to help the design of endgames or multi-moon orbiters [RS07, GR09]
(See Fig 1.2). Usually the multi-body technique results in low-cost trajectories with long
times of flight. The Smartl mission successfully implemented this strategy to get the

spacecraft gravitationally captured around the Moon [SPC99].
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Figure 1.1: Endgame trajectory in the Messenger mission to Mercury (picture from

NASA).

1.2.2 Capture trajectories

Capture trajectories allow the spacecraft to approach a moon and to be temporarily
captured around it without any insertion maneuver. This feature can be used to explore
moons at no additional cost before transferring into another minor body, or to increase
the robustness of the orbit insertion maneuver by providing back-up orbit insertion
opportunities. An example of capture trajectory is the gravitational capture at Mercury
of the ESA BepiColombo mission to Mercury to be launched in 2014 (see Fig. 1.3).
There are two different approaches to the design of capture trajectories. The first
approach is a systematic search of the solution space by varying the orbital parameters
before the orbit insertion maneuver. This approach was partly implemented at the
European Space agency for the design of the nominal trajectory of the BepiColombo

Mission to Mercury[JCGKO04].
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Figure 1.2: Multi-moon Orbiter (From [RLO03])

The second approach consists of computing suitable unstable periodic and their man-
ifolds. The periodic orbits are computed in the circular, restricted three-body problem

(CR3BP) [RLO7, vKZA*05].

1.3 Dissertation overview

Chapter 2 introduces the main mathematical models used in this work. In particular
we recall the 2-body problem (2BP), the patched-2BP model, the circular, restricted,
3-body problem (CR3BP) and the patched-CR3BP model.

Chapter 3 and 4 analyze the endgame problems with the two approaches (VILT and

multi-body techniques) and draw connections between them. In particular, in chapter
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Figure 1.3: Capture trajectory for the BepiColombo mission to Mercury (approved ESA
mission to be launched in 2014)

3 we derive new formulae for the VILT and build the leveraging graph to be used as a
reference guide for designing endgame tours. We prove that the cost of a VILT sequence
decreases when using high altitude flybys (as done in the multi-body technique). Finally
we find a simple quadrature formula to compute the minimum Awv transfer between
moons using VILTs, which is the main result of the chapter. The leveraging graphs and
associated formulae are derived in canonical units and therefore apply to any celestial
system with a smaller body in a circular orbit around a primary. Specifically we demon-
strate the new method to provide rapid calculations of the theoretical boundary values
for Av requirements for moon tours in the Saturn and Jupiter systems using the VILT

model.



In chapter 4 we focus on the multi-body approach using a new graphical tool, the
Tisserand-Poincaré (T-P) graph. The T-P graph shows that ballistic endgames are
energetically possible and it explains why they require resonant orbits patched with high
altitude flybys, whereas in the VILT approach flybys alone are not effective without
impulsive maneuvers in between them. We then use the T-P graph to design quasi-
ballistic transfers. Unlike previous methods, the T-P graph provides a valuable, energy-
based, target point for the design of the endgame and begin-game, and a simple way to
patch them. We finally present two transfers. The first transfer is between low-altitude
orbits at Europa and Ganymede using almost half the Av of the Hohmann transfer; the
second transfer is a 300-day quasi-ballistic transfer between halo orbits of the Jupiter-
Ganymede and Jupiter-Europa. With approximately 50 m/s the transfer can be reduced
by two months.

In chapter 5 we focus on tour of low-mass moons. In such systems the strategies
presented in the previous chapter lead to too long transfers. For this reason, we had to
extend the theory of chapter 3 and study non-tangent (or generalized) VILTs. We start
studying the solution space of the generalized VILT and to derive a linear approximation
which greatly simplifies the computation of the transfers. Using this approximation,
Tisserand graphs, and a heuristic optimization procedure we introduce a fast design
method for multiple-VILT tours. We use this method to design a trajectory from a highly
eccentric orbit around Saturn to a 200 km science orbit at Enceladus. The trajectory is
then recomputed removing the linear approximation, showing a Av change of less than
4%. The trajectory is 2.7 years long and comprises 52 gravity assists at Titan, Rhea,
Dione, Tethys, and Enceladus, and several deterministic maneuvers. Total Av is only
445 m/s , including the Enceladus orbit insertion, almost 10 times better then the 3.9
km/s of the Enceladus orbit insertion from the Titan-Enceladus Hohmann transfer. The
new method and demonstrated results in this chapter enable a new class of missions that
tour and ultimately orbit small mass moons. Such missions were previously considered

infeasible due to flight time and Av constraints.



In chapters 6 and 7 we study the capture problem. The capture problem is more
affected by the science orbit constraints, and less by the time scale. Because the sci-
ence orbit constraints for the mission to the Jupiter and Saturn systems are currently
under definition, we consider the capture problem for a mission to Mercury, where the
constrains on the science orbit are given. In chapter 6 we define regions of motion and
periodic orbits in the ER3BP. A deep understanding of the ER3BP is required for the
design of capture trajectories at Mercury presented in the next chapter. We replace the
Hill’s zero-velocity surfaces in the CR3BP by the low-velocity regions, which divides the
subregions of motion from the forbidden subregions. We compute periodic trajectories
using a continuation method, starting with orbits in the CR3BP with period synchronous
to the period of the primaries. We show that different branches of periodic orbits bifur-
cates in the ER3BP and that the new branches have different linear stability properties.

In Chapter 7 we present two approaches to the design of capture trajectories. We first
develop and use the dedicated software tool GraCE to explore the solution space. Then
we reproduce the BepiColombo trajectory in the model of the elliptic restricted three
body problem, showing that it follows the stable and unstable manifolds of quasi-periodic
orbits. In particular, we show that the manifolds of a symmetric quasi-periodic orbit
around Mercury play a key role as their symmetry properties provide several recovery

opportunities to the mission.



Chapter 2

Models

In this chapter we recall the mathematical models. Throughout this work we use the

tilde for dimensional variables.

2.1 The 2-body problem and the linked-conics model

2.1.1 The 2-body problem

The 2-body problems studies the motion of two bodies moving under their gravitational
attraction. The position of the second body ms9 relative to the first body m; is defined
by the equations of motion

G (m1 + ma2) _

:7:12 == rio (2'1)
T12

where T2 is the position of the second body with respect to the first body, and G is
the universal gravitational constant.
The restricted problem assumes that the one of the two body (M) has much smaller

mass then the other (P), so that Eq. 2.1 can be written as

i Il (2.2)

where jip = Gmp is the gravitational constant of the body P, and t is the position
of M in the inertial reference frame centered in P. The energy per unit mass of the

second body is
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The momentum is

h=7%xv
The eccentricity vector is
[¥°F  E-9)v  E
e = = — = - =
fip fip I

The motion in the orbital reference plane, with the z-axis aligned with the momentum
and the x axis aligned with the eccentricity vector, is defined in polar coordinates by

h2/fip

T:1+ecosf

where f is the true anomaly. We also recall the definition of pericenter and apocenter

for elliptical orbits

and, for hyperbolic orbits, the velocity at infinity and deviation angle

T = V2F

0 = 2arcsin <~HP> (2.3)

fp + 0%
Figure 2.1 shows the orbital plane and the associated orbital parameters: the inclina-
tion 7, the right ascension of the ascending node RAAN, and the argument of pericenter
w . Figure 2.2 on the left shows the pericenter, apocenter and semi-major axis of the

elliptic orbit; on the right, the semi-major axis, pericenter, deviation angle and v, of a

hyperbolic orbit.

10
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Figure 2.1: The orbital parameters solution of the 2-body problem

2.1.2 Sphere of influence, gravity assists and linked-conics model

The sphere of influence of a minor body M orbiting a major body P is the region in
space where the gravitational attraction due to M dominates the gravitational attraction

due to P. This regions is called sphere of influence and has a radius

2/5
_ _ (mu
rsor = apm ()

mp
The flyby is a technique by which a spacecraft orbiting P can change its orbital
parameter with respect to a major body by using the gravitation attraction of a minor
body M. Figure 2.3 shows the flyby of a spacecraft and the sphere of influence.
The gravity assist is similar in definition to a flyby, except that usually the spacecraft
closest approach to the minor body is well within the sphere of influence.
Gravity assists can be modeled as an instantaneous change in the velocity of the

spacecraft, as shown in Figure 2.4 ;| satisfying the equations
el = [[vee]| = vee (2.4)

11
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Figure 2.2: On the left, the semi-major axis, pericenter and apocenter of an elliptic orbit.
On the right, the semi-major axis, v, and deviation angle of a hyperbolic orbit.

Figure 2.3: Flyby and the sphere of influence (from [LPS98])

< v vt =2 cosé (2.5)

where 0 is defined in Eq. 2.3.

The linked-conics model is a commonly used model in the design of interplanetary
trajectories. The idea is to represent a trajectory as a sequence of conic sections, which
are solution of the equation 2.2. Conic arcs are patched by instantaneous changes of
velocities, provided by gravity assists or impulsive maneuvers performed with on-board

thrusters.

12
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Figure 2.4: Gravity assist modeled as instantaneous change of the spacecraft velocity.

2.2 The circular, restricted 3-body problem and the
patched-CR3BP model

2.2.1 The circular, restricted 3-body problem

In this section we briefly recall some key features of the circular restricted three body
problem[Sze67a]. In the general restricted three-body problem, an infinitesimal mass
moves under the gravitational attraction of two primaries P and M (mar < mp), with-
out affecting them. The motion of the infinitesimal mass is usually described in a nondi-
mensional, rotating reference frame, where the position of the primaries is fixed along
the X — axis (also called the syzygy axis) and their mutual distance is normalized to 1;
the Z-axis is perpendicular to the primary orbit, and we call the X Z plane the normal
plane.

In the circular restricted three body problem (CR3BP), the primaries move on cir-
cular orbits. Using the scale factors

_ *

l*:aM, t* = m" =mpy + mp

the equation of motion for the spacecraft in the rotating frame are [Sze67a)

13
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where Ry = \/(X+M)2+Y2+Z2 and Ry = \/(X—F,u—l)z%—Y?—i-Z2 are the

distances to the primaries, and pu = pup = m]:?ﬁ%@ — s the mass parameter. It is well
known [Jac36, Sze67b] that the system of Eq. (2.6) has one integral of motion, the Jacobi
constant!

1

—H H 2
— +2— 1-— -V 2.8
T RQ+( 1) (2.8)

J=20-V?=(X?+Y?) +2

where V? = <X2 +Y2+ ZQ) is the velocity in the rotating frame. The Jacobi

constant is used to define regions of motion. The system of Eq. (2.6) has five fixed

points, the Lagrangian points L;,7 = 1,...,5. The positions of the Lagrangian points
depend on the parameter p.

Transfer trajectories are possible only if Jo < Jp1, where Jpq(u) is the Jacobi con-

stant associated to the first libration point.

2.2.2 Zero velocity surfaces

Hill used Eq. (2.8) to define zero-velocity surfaces which separate regions of motion from
the forbidden regions[Hil78]. Given a set of initial condition (¢, Xg), Hill’s zero-velocity

surfaces are level sets of 2Q¢:

2Qc = Jo(Xo)

'The Hamiltonian H, which is time-independent and is therefore an integral of motion, is related to
the Jacobi constant: 2H = —Jo + p (1 — p).

14



If the initial conditions are such that Jo < 3, the motion of the third body in the zy
plane is unbounded. If the initial conditions are such that Jo > Jr1, the motion of the
third body is bounded around either of the primary, or far away from both. Figure 2.5

shows the zero-velocity surfaces for the Pluto-Charon system.

z [km]

y [km]

x Tkml

Figure 2.5: Level sets of the function 22 in the Pluto-Charon system (u ~ 0.123). In the
circular restricted three-body problem, the level sets are the Hill’s zero-velocity surfaces,
and separate regions of motion from the forbidden regions.

2.2.3 Periodic orbits

A fundamental step in understanding any dynamical system is to identify its periodic
orbits and classify their linear and nonlinear stability [Poi92]. For a fixed value of the
mass parameter u, the CR3BP possesses families of periodic orbits parametrized by the

Jacobi constant Jo , as implied by the Cylinder Theorem[Mey99]:

An elementary periodic orbit of a system with an integral I lies in a

smooth cylinder of solutions parametrized by I.

Several authors computed families of periodic orbits in the CR3BP [Con68, BBT79,
DRP107, G6m79, How84]. In this work we use orbits of the halo orbit families. Their

linear stability is determined by computing the linear map

15



we - 5X(to) — 5X(T + to) = M(;X(to)

between consecutive crossings through a Poincar section. Here 6X(%() is an arbitrary
initial perturbation of the state X = [X,Y, Z, U, V, W], M is the monodromy matrix and
T is the principal period of the orbit. The stability of the map ¢, and hence of the orbit,
is related to the eigenvalues A of the monodromy matrix M: eigenvalues inside the unit
circle (A < 1) are associated to the stable manifold W ; eigenvalues outside the unit
circle are associated to the unstable manifold W, ; and pure imaginary eigenvalues are
associated with tori of quasi periodic orbits.

In the restricted three-body problem, the eigenvalues A of the monodromy matrix
come in reciprocal pairs, so that the periodic orbit is linearly stable if and only if all the
eigenvalues are on the unit circle. Also, in the CR3BP two eigenvalues are real unitary,
and are associated to eigenvectors §Xg tangent to the trajectory: because the system is

autonomous, such perturbation corresponds to a small phase change along the orbit.

2.2.4 The patched, CR3BP model

The patched CR3BP model is an approximation of an n-body problem, where the mass
of the spacecraft is negligible, and where at any time only two gravitational body are
affecting its motion. The spacecraft trajectory is approximated by a sequence of trajecto-
ries, each one solution of the system of Eq. 2.6 for a choice of the major and minor body.
For instance, a trajectory flying by Europa and Ganymede can be split in two parts: the
first is well approximated by a solution of the Jupiter-Europa-spacecraft CR3BP, the

second is well approximated by a solution of the Jupiter-Ganymede-spacecraft CR3BP.
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Chapter 3

The endgame problem using the
Voo-leveraging technique and the

leveraging graph

In this Chapter and in the next one we study the endgame transfers and show the con-
nections between two different approaches: the vy.-leveraging transfer (VILT) approach,
which uses a patched 2-body problem model, and the multi-body approach which uses
multibody dynamics. This chapter studies the anatomy of the VILT.

In the first section we derive formulae to show that VILTs are efficient only for ve,
greater than a minimum value. In the second section we use the formulae to introduce
the leveraging graph, which has broad endgame design applications. Based on the graph
we demonstrate a branch and bound search to globally explore the flight time vs. Awv
solution space. The canonical form of the leveraging graphs and formulae are applicable
to any planet system or moon system modeled as a smaller body in a circular orbit
around a primary. A simple scaling transforms the problem to any dimensioned system
of interest. In the third section we define and study the efficiency of the VILT. We prove
that the cost of a sequence of VILTs decreases when using high altitude gravity assists
(as done when using the multi-body technique). Finally we find the theoretical minimum
Avw for transfer between moons computed using the VILT approach. This new design
capability is the main result of this chapter.

In the next chapter, we will focus on the multi-body technique and will explain the

connection to the VILT approach.
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Nomenclature

ap

A/B

P/M

rA
M

(%

Semi-major axis of the minor body (=1 in nondimensional units).

Point in the spacecraft trajectory where the impulsive maneuver takes place. The
point A belongs to the orbit ending / starting at L, the point B belongs to the

orbit ending/starting at H.
Superscript indicates the quantity is referred to an exterior/interior VILT.
Altitude of the spacecraft’s closest approach to the minor body.

Points of the vy —leveraging transfer where the spacecraft orbit crosses the minor-
body orbit. There are two possible crossings: H™ corresponds to the longer trans-
fer and H~ corresponds to the shorter transfer. Subscripts indicate a quantity

evaluated at the corresponding point.

Point of the vy —leveraging transfer (VILT) where the spacecraft orbit is tangent
to the minor body orbit with a low relative velocity vsor. Subscript indicates a

quantity evaluated at this point.

Uso—leveraging transfer classification. n is the number of moon revolutions, m is
the number of spacecraft revolutions, K is the number of full revolutions in the arc

H B, =+ refers to the long/short transfer.

Subscript indicates the quantity is referred to the major body (P) or minor body
(M).

Distance from the point A, B to the major body.
Radius of the minor body.

Velocity of the spacecraft at a circular orbit with altitude h, around a moon with

gravitational constant ppy.

18



vpr Velocity of the minor body with respect to the major body (=1 in nondimensional

units).
Uso Relative velocity of the spacecraft at the minor body.
Uso Velocity of the minor body relative to the major body at the point H.
UsoL, Velocity of the minor body relative to the major body at the point L.

vr Velocity of the spacecraft with respect to the minor body at the pericenter of the

hyperbola.

Avap Impulsive transfer at the point A, B.
1 Gravitational constant.

z Tilde indicates dimensional variable.

4 In the formulae, the plus sign is used for exterior VILTs and the minus is used for

the interior VILT. If superscript of H, it refers to the long/short transfer.

3.1 wv—leveraging

A vy —leveraging transfer (VILT) is a technique by which a spacecraft orbiting around
a major body (P) can change its speed relative to a minor body (M) [Hol75, SLS97].
The technique consists of a gravity assist and a small impulsive maneuver (Av4p) that
occurs at opposite apses in the spacecraft orbit around the major body (see Figure 3.1)

VILTSs are typically modeled in the linked-conic model (or zero-sphere-of-influence,
patched-conic model) where the minor body is considered massless and is on a circular
orbit around the major body. The spacecraft trajectory is coplanar and starts and ends
at the minor body. The gravity assist is modeled as an instantaneous change in the

direction of vy vector by angle §.
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Figure 3.1: Example of a vo—leveraging transfer (VILT) to reduce the relative velocity
at a minor body: The spacecraft approaches the minor body tangentially and the gravity
assist at H rotates the relative velocity voor of an angle §. At the apocenter of the new
orbit (point B), the impulsive maneuver Av4p changes the shape of the spacecraft orbit
so that it becomes tangent again to the minor body orbit at the point L. Although the
maneuver actually increases the spacecraft energy, at the point L the spacecraft has a
new relative velocity vaor, < VooH-

3.1.1 Nondimensional variables

Throughout this chapter we will use nondimensional variables, so that the results are
general and can be applied to any endgame problem. To obtain the nondimensional
variables we divide the dimensional variable (denoted with the tilde) by the time and

length scale factors

iy
lscale = OaM tscale = =
HpP

Then the velocity scale factor becomes the velocity of the minor body ¥y, and the
nondimensional velocity, the semi-major axis of the minor body, and the gravitational
constant of the major body are one.

We also define v, as the nondimensional velocity of the circular orbit of radius 7, =

v+ Bﬂ around the minor body
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This nondimensional parameter groups the problem dependency on the minor
body gravity constant, minor body radius and altitude of the final/initial orbit inser-
tion/escape.

In nondimensional units, the gravity assist deflection angle is

0 = 2arcsin (1/ (1 + (voo/vc)2)) (3.1)

and the spacecraft velocity at the closest approach to the minor body, v, is

Ur (Voos hrr) = /02, + 202 (3.2)

3.1.2 VILT model and classification

In this section we refer to Figures 3.2 and 3.3 to define the general variations and associ-
ated relevant variables of the VILT. We assume that the impulsive maneuver is tangential
and is performed exactly at the apses. This assumption is typically included when study-
ing VILTs because the Jacobi constant in the rotating frame is maximally changed by
performing the maneuver when the rotating velocity is the greatest - this occurs at apses
[Swe93]. We also assume that the spacecraft departs/arrives at point L tangent to the
minor body orbit. This condition guarantees the lowest vy, [VC09] and greatly sim-
plifies the tour problem because we can decouple each VILT as opposed to having to
optimize a large sequence of VILT's altogether.

We divide the trajectory into two legs (A — L and B — H) joining four different
states of the spacecraft (L,A,B,H). At the point L the spacecraft is at an apse with
a relative velocity vsor, with respect to the minor body. At the point A the spacecraft
is at the opposite apsidal point, at a distance r4 from the major body and with a
velocity va. In between states A and B the spacecraft performs the impulsive maneuver
Avap = |va —vpg|. At the point H' or H™ the spacecraft intersects the minor body

orbit with a relative velocity veog > Voor -
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We recall from the literature [SLS97] that there are four types of v —leveraging

transfers, depending on the following features:

e forward (backward) if the Av4p is in the same (opposite) direction of the spacecraft

velocity.

o exterior (interior) if the Avap occurs at apocenter (pericenter) , thus if rg4 > apr

(T‘A < aM).

From these definitions it follows that the forward-exterior v, —leveraging and backward-
interior v, —leveraging decrease the v, while the forward-interior v,,—leveraging and
backward-exterior v, —leveraging increase the v.

From our definitions it also follows that

oD =1+ wer (3.3)

UQE’I) =wvp £+ Avan (3.4)

where the upper sign refers to the exterior VILT and the lower sign refers to the
interior VILT. Note that from these definitions and from Figure 3.2 we find boundary
values for vs. In particular, 0 < vser, < V2 — 1 for the exterior VILT for r4 to be
bounded, and 0 < vsoy, < 1 for the interior VILT for v, to be positive.

For each type of VILT we also specify:

e the resonant ratio: n : m, where n (m) is the approximate number of the minor

body (spacecraft) revolutions during the VILT.
e K, the number of full revolutions in the arc H — B 1.

e the point H or H* where the spacecraft encounters the minor body, resulting in

a long-transfer VILT or short-transfer VILT respectively. Exterior, long-transfer

n literature we can find a different choice of letters: K : L(M)* where K =n, L=m, and M = K
for exterior VILT
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Figure 3.2: Four variations of the vo,—leveraging transfer (VILT).

VILTs and interior, short-transfer VILTs are linked by prograde gravity assists.
Exterior, short-transfer VILTs and interior, long-transfer VILTs are linked by ret-

rograde gravity assists.

As an example, Figure 3.3 shows the schematic of a 5 : 47 and of a 5 : 4~ VILT. In the
rest of the chapter we refer to “backward/forward, interior/exterior n : mf(” VILTs. For
example the Europa endgame when approached from Ganymede is a sequence of forward

exterior VILTSs.

3.1.3 Phase-free formulae

In this section we present a general formulation that is valid for all the four types of VILT.
We start by considering the phase-free problem that does not require the spacecraft and
the minor body to be at the points L and H* at the same time. The formulae presented
in this section are new and allow us to perform many useful, fast, preliminary and global
analyses which we present in the next sections. The details of the following calculations
are in appendix A.

We first define the function
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Figure 3.3: Schematic of two different 5 : 4 VILTs. In one case the Avap occurs after
two full revolutions of the spacecraft on the leg H* — B. Also, the transfer lasts a bit
more than 5 revolutions of the minor body; hence the notation 5 : 4; In the other case
the Avap occurs after one full revolution of the spacecraft on the leg H~ — B. Also, the
transfer lasts a bit less than 5 revolutions of the minor body; hence the notation 5 : 4 .

3 2

+ 3v — VooL F 7
F(E»I) =4+ _ _ Voo oL
(UOOL) (TA UA) v ngoL + 3UC2OL + VooL F 1

where T'®) is computed for the exterior VILT , and I'D) for the interior VILT. If no
distinction is necessary we simply refer to I'. We can show that I is a positive strictly
monotonic function of vy,. Later, we will see that I' is convenient because it provides a
minimum bound on vs, values where VILTSs are useful.

With this notation we can explicitly state the high relative velocity vooz as a function

of the low relative velocity vsr, and of the Avap

VooH (Voor, Avap) = \/(UOOL)2+(AUAB)2+2AUABF (3.5)

Equivalently , we can explicitly state the Avap as a function of the high and low

relative velocity

Avap (VooL; Voorr) = —I' + \/F2 + (V3on = Vaor) (3.6)
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Finally we define the phase-free efficiency of the VILT. The phase-free efficiency of
backward-interior or forward-exterior VILT eg;_pg is the increase of the final relative

velocity veom due to a change in cost Avapg, for a fixed initial relative velocity veor,

OVooHr Avap +7T
= DovVeon = 3.7
0Avap ool VooH (VooL, AVAB) (3.7)

€EBI-FE =

where D; is the derivative with respect to the ¢ — th argument. The phase-free
efficiency of a backward-exterior or forward-interior VILTs eggp_pr is the decrease of
the final relative velocity ve.or due to a change in cost Avap, for a fixed initial relative

velocity veor
_ 8UooL
aA’UAB

€EBE-FI =

We derive an expression for egg_py by first taking the partial derivative of vz with

respect to vUoor,

ar
ooy VooL + AvaB

D = = ool 3.8

Yool = et Voont (VooL, AvaB) (3:8)

We then use the Implicit Function Theorem[AMRSS]| to compute

Vool

—1 Avap +T
€EBE—-FI = — = Dyvooh © [D1Veon] =
0Avap VooL + Avap ——
ool VAB 7~

3.1.4 Phase-fixed solutions

In this section we restore the phasing constraint and introduce the concept of leveraging
graphs. A numerical solution to this constrained problem can be computed using an

algorithm described by Sims et al. [SLS97]. In general, given veop:

e We assume the minor body and the spacecraft are both at the point H at time tp;

We guess the flight-path angle v at H (see Figure 3.1), and find the orbital param-
eters of the leg H — B.

We compute the orbital parameters of the leg L — A with apses at L and 4.

e We compute the transfer time and the time ¢; when the spacecraft is at L
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Figure 3.4: (vooL, — Usorr) leveraging graph for the exterior (a) and interior (b) VILT. for

each resonance n : m we only plot the VILT n : m:rn_l, which we show to be the most

efficient. The domain of feasible vy, is discussed in the previous section.
e We compute the distance from the point L to the position of the minor body at

time ¢, and differentially correct the flight-path angle v until the distance vanishes.

The numerical solutions to the VILT problem are one set of vo 7 (veor,) curves for exterior
n: mf{ VILTs, and one set of v (vsor,) curves for the interior n : m;c( VILTs. We plot
these solutions on a special graph , which we call (voor, — Voorr) leveraging graph. We
can also plot these solutions using other variables related to v, thus defining different
leveraging graphs. In the next section we build and use the Tisserand leveraging graph.
Following this definition, the graphs in literature can be referred as (7aphetion — VooEarth)
leveraging graph or (Taphetion — Avror) leveraging graph etc.([Hol75, SLS97]).

Figure 3.4 shows the (voor, — Voomr) leveraging graphs for the exterior (a) and interior
(b) VILT (The domain of feasible v, is discussed in the previous section). In these
graphs, for simplicity and clarity, we plot only one VILT (the most efficient) for each
n : m case. We emphasize that the leveraging transfers and graphs are computed only
once in nondimensional units, so that they can be applied to any endgame problem

using the scale factors. Note that all of the numerical solutions presented in Figure
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Figure 3.5: (Voo — Voomr) leveraging graph for the exterior (a) and interior (b) VILT. In
these close-ups,we plot 2m curves for each n : m resonance. The dash curves are the
short-transfer VILTs (one dash curve for each K ,0 < K < m —1). The solid curves are
the long-transfer VILTs (one solid curve for each K, 0 < K < m—1). The K parameter
is indicated in the box. We also plot contour lines representing constant-Avp.

5 are computed using a 200 line code written in Matlab. The computational time is
approximately 1 minute using a dual-core 1.83 GHz laptop processor.

Figure 3.5 shows a close-up of the exterior (a) and interior (b) VILT. In contrast
to Figure 3.4, all VILT solutions are plotted for each n : m case. As an example , we
show that the 3 : 2 exterior VILT reduces the vy, from veoyg = 0.131 to veor, = 0.1135.
By plotting the level sets of the phase free function Avgp(veor,Veorr) of Eq. (3.6) we
estimate the Avyp ~ 0.0022. For a VILT at Europa, we multiply these values by
the average velocity of Europa of approximately 13.7 km/s to find that we decrease
ooy = 1.8 km/s to ooz, = 1.56 km/s using approximately 30 m/s.

Finally we define the phase-fized efficiency E of the VILT as the ratio between the

variation of v, and the Avgp

_ UooH — UooL
Avap
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Figure 3.6: Efficiency of the exterior (a) and interior (b) VILT. The dash curves are the
short-transfer VILTs, while the solid curves are the long-transfer VILTs. The numbers
in the boxes represent the values of the parameter K. For any given resonance n : m,
the most efficient VILT is n : m’

m—1

Figure 3.6 shows the phase-fixed efficiency of the exterior (a) and interior (b) VILT.
The figure shows that the most efficient VILTs are the one with the largest possible value
of K (Kpest = m — 1) and longest transfer time. However, we avoid discarding the less
efficient solutions because the difference in efficiency can often be compensated when

computing the VILT in more accurate models.

3.1.5 Minimum v,

In the previous example we showed that a Avap of approximately 30 m/s reduces the
relative velocity by approximately 240 m/s. However it is not always true that the Avap
is smaller than the actual gain/loss in relative velocity magnitude at the flyby body. In
what follows we show that this occurs only if v, is larger than a given value, which
depends on v..

Let’s assume an endgame problem where the spacecraft initially approaches the minor

body with veorr . The spacecraft needs Av, = vz — v, to be captured in the target
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orbit. Alternatively, the spacecraft can perform a VILT which reduces the relative veloc-
ity to vsor, and the new orbit insertion maneuver requires Av,;, = v;;, — v.. Then the

VILT is efficient as long as the reduction of v, is greater than the VILT cost Awvap.
Proposition The VILT strategy is efficient iff voo;, > Too Where Ty = \/EZT — 202 and
Ur (ve) is the root of the function
fwr) =T 0 Voo (Ur;Ve) — Vg (3.10)

where v, is a parameter for f, and o denotes function composition.

PROOF From Eq. (3.2) we find

2 2 2 2 2 2
VieH = Ung — 2V; , Vsol = Unp — 2V, (3.11)

We square Eq. (3.5) and use Eq. (3.11) to find

(UwH)2 = (V=L + AUAB)2 + 2Avag (T' — vxL)

The VILT strategy is efficient if Avyp is less than the change in v, thus
if

Urr > (Var + Avap) — T — v >0

To solve the problem we need to study the function f(vrr) = T o
Voo (UrL; Ve) — UrL, Where v, is a parameter.

For vy, = V2v., we have voor, = I' = 0, thus f(v/2v.) = —v.. Also
df /dvy = dU/dveor, * VL /Vsor, — 1 > 0 2. Then f(vy) > 0 iff V > v, where
Ur (ve) is the only root of f(v:) = 0. Note that the root for the exterior
VILT is different from the root of the interior VILT, as T(#) £ (1),

To compute T, we find numerically the root of the function in Eq. (3.10).

Then we use Eq. (3.2) to find U. Us as function of the parameter v for

2 An expression for dI'/dveor, is given in appendix A
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the exterior and interior case can be approximated by the following cubic

splines:

7L = +(5.9561662273454e — 5) v? — (5.1344907043886€ — 2) v2 +
+ (2.0441849005940e — 1) v, — (7.2712278793706€ — 6)
Th = —(1.9176499488104e — 2) v + (5.1814140491440e — 2) v? +

+ (2.0377335047117e — 1) v + (8.7463066767540e — 6)

3.2 Leveraging graph and the Europa endgame

In this section we introduce the Tisserand leveraging graph which we use to design
endgame strategies.

The Tisserand graph is a graph representing the pericenter r, and period T of a
Keplerian coplanar orbit around a major body [LPS98, SL02]. Certain points (r,,7") on
the graph represent orbits that intersect the orbits of minor bodies of the system. For
these points we can compute the v.s with respect to the minor bodies that the given
orbits intersect. We can then populate the Tisserand graphs with a set of vo,—level sets
for each minor body. When a spacecraft performs a gravity assist at one minor body,
it changes its location on the graph while staying on the v, —level set. For this reason
the Tisserand graph is a useful graph of the planetary / moon systems, and it has been
used to design complicated multiple gravity assist trajectories [SS01, PLB00, VC09].

The Tisserand leveraging graph is an extension of the Tisserand graph which includes
the numerical solutions of the VILT. Because we use nondimensional units we need only
compute the graph once, and then scale it for the different minor bodies we want to
include. To build the graph we begin by computing the Tisserand graph[LPS98, SL02]
and representing it with the apocenter on the x—axis and the pericenter on the y—axis.
This choice of the axes results in rectangular, semi-infinite sub domains of the minor

bodies, and in period level sets which are straight diagonal lines with a slope of -1.
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Starting with a (r4,7p) orbit, the new (rq,7p) following a VILT is aligned horizontally

or vertically with the initial state. In particular:

e The Avygp of the interior VILT changes the apocenter but not the pericenter of
the initial orbit. We represent the interior VILT with a horizontal shift from/to

the line r, = 1.

e The Avap of the exterior VILT changes the pericenter but not the apocenter of
the spacecraft orbit. We represent the exterior VILT with a vertical shift from/to

the line r, = 1.

In Figure 3.7 we show a schematic Tisserand graph. We use the apocenter-pericenter
representation, and show the effect of an interior and exterior VILT. We also plot the
period level sets and the vy, level sets, and the effect of a gravity assist. We clearly see
how the Avsp changes the vo.

We proceed by including the numerical solutions of the VILT. We plot the curves
in Figure 3.4 onto the Tisserand graph, and we obtain the Tisserand leveraging graph.
Figure 3.8 shows the Tisserand leveraging graph in nondimensional units. We only
include the VILTs with K = m — 1, as we showed in the previous section they are the
most efficient. The solid thick lines are the long transfer VILTSs, and the dotted thick

lines are the short transfer VILTS.

3.2.1 Endgame at Europa using the Tisserand leveraging graph

In this section we use the Tisserand leveraging graph to design Europa endgames starting
at UoorNITIAL = 1.8 kI /s 3. We assume the endgame consists of a series of forward-
exterior VILTs. We first design one single endgame and then apply the same design

strategy in a branch and bound search, storing the total time of flight (T0F') and the

31.8 km/s is slighty above the @oowhich can be achieved by multiple gravity assists only [KCCO04,
VC09].
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Figure 3.7: A schematic apocenter-pericenter Tisserand graph and the effect of an interior
and exterior VILT. We also plot the period level sets and the vy, level sets. A gravity
assist moves the spacecraft (r,,r,) along the vylevel set. The VILT Avgp moves the
spacecraft (rq,7p) horizonally or vertically, thus changing the v.

total Avror = ), (AVaB); + AUzpor, where Avypor is the Europa orbit insertion

maneuver

AVrpor = Ur (ﬁooFINAL, hﬂ) — U

We start designing one Europa endgame, which is a sequence of forward interior
VILTs. Figure 3.9 is a close-up of the Tisserand leveraging graph scaled to Europa by
multiplying the distances by the semi-major axis of the Europa orbit, and by multiplying
the velocities by the velocity of Europa. We also plot the level sets of the function
AVAB(VooL, Voorr) in Eq. (3.6). The starting point of the endgame is the point A on
the figure. The first VILT is composed of a gravity assist and a (Avap),;. During the
gravity assist, the spacecraft moves along the 0o, = 1.8 km/s level set until it intersects
, e.g., the 3 : 2] curve (point B). Then the Af4p at apocenter raises the pericenter
to apr (point C). Using the Atap level sets we estimate (A0ap); =~ 30 m/s. The
transfer time is approximately 3 Europa revolutions (around 10 days) and the new 7
is around 1.6 km/s. The second VILT consists again of a gravity assist and an impulsive

maneuver. The gravity assist moves the spacecraft (r,,rp,) left and down on the graph
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Figure 3.8: The Tisserand leveraging graph in nondimensional units obtained plotting
the numerical solutions of the VILTs onto the Tisserand graph. We only include the
VILTs with K = m — 1, as we showed in the previous section they are the most efficient.
The solid thick lines are the long transfer VILTs, and the dotted thick lines are the short
transfer VILTSs. The contour lines are the vy level sets.

until intersecting the 5 : 45 curve (point D). The second VILT takes some 5 Europa
revolutions, it costs some 60 m/s and it reduces the v to less than 1.2 km/s. We design
the third VILT in the same way and end up with a total transfer time of 6 +4 4+ 3 = 13
Europa revolutions and a total cost of approx 60 + 60 + 30 = 150 m/s, to which we can
add the orbit insertion Av, for soprnar, = 0.8 km/s and the desired .

This design strategy is well-suited for a “branch and bound” [LD60], a global mini-
mization algorithm composed of three steps. The first step (branching) split the solution
space in subsets (nodes) which are linked in a tree structure. The second step (bound-
ing) evaluates the upper and lower bounds of the merit function for a given node. The
third step (pruning) discards the nodes with lower bound greater then a chosen pruning
global variable (typically the minimum solution). Using a recursive function, the tree can
be explored efficiently because suboptimal solutions are pruned early in the search. In
our problem, starting from a fixed Uoorn1T7AL the algorithm recursively applies forward-
exterior VILTs and stores the ToF and total cost of the endgame, which are used to

prune the branches. The result of the branch and bound search is shown in Figure
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Endgame at Europa using the Tisserand Leveraging Map
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Figure 3.9: Simple endgame design using the Tisserand leveraging graph. Gravity assists
move the spacecraft along the vy, level sets. The VILTs movethe spacecraft up to the
rp = 1 line.
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Figure 3.10: The result of the branch and bound search for the Europa endgame problem
with initial velocity of 1.8km/s. The circles are the non-dominated solutions. Among
those, the square is the test case presented previously.

3.10, where we plot some of the solutions (the stars) and the non-dominated solutions
(circle). The test case explained previously is one of the non-dominated solutions (the
square). The branch and bound solutions from Figure 3.10 on the right agree qualita-
tively with those from [BRO09] that are found using an enumerative method based on

dynamic programming principles.

3.3 Minimum and maximum Av endgame using VILTSs

In this section we use the phase-free formula introduced previously to discuss the effi-
ciency of the endgame in terms of total Av. We first prove that the cost of a sequence

of VILTs decreases when favoring high altitude gravity assist. Then we use this result
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to compute the minimum and maximum cost of a multiple vy, -leveraging transfer, with
a focus on the Europa endgame. Future works will include minimum time estimates.
Finally we compute the minimum and maximum cost of a multiple v,.- leveraging trans-

fer between different moons, with focus on the Ganymede-Europa transfer.

3.3.1 Efficiency of the v.- leveraging

In this section we are interested in the efficiency of the VILTs in terms of Av.

Theorem - The total Av of a sequence of VILTs decreases if one low altitude gravity-
assist VILT is replaced with two or more high altitude gravity-assist VILTs. That
is, the total Av of a sequence of VILTs decreases when favoring VILTs with high

altitude gravity assists.

PROOF: We recall the definition of the phase-free efficiencies of Eq. (3.7)
and Eq. (3.9)
_ Auvuap+T Avap+T

€EBI-FE = — €EBE-FI =
Voo H Voor, + Avap 72

d’U(x,L

We recall that I' > 0. Thus for Avap — 0, egr_rr > 0 and egp_p; > 0.

Now compute the variation of the efficiency due to a variation of Avap

VooH — (A’UAB + F) (DQ’UOOH) _

aAUAB ’UZOH
vl — (Avap + I)? R ) <0
- 3 - 2
VooH VooH
dr
JepE—FI (Avap) = — Uavr — VooL <0
8AUAB 2

dr
(UooL + Avap g, )

where we used I' > w1 > wvor for the first equation , and T’ diFOL > VUsoL

(proved in appendix A) for the second equation. Thus both ep;_pp and
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eBE_F1 are positive at Avap = 0 and strictly decreasing with Avapg: The
efficiencies are at their maximum when Avag — 0, i.e. for small impulsive
maneuvers that - when multiple VILTs are patched together - requires high
altitude gravity assist. Because this is true for any initial relative velocity,
the cost of a sequence of VILTs decreases if we use more VILTs with low-
Avap as opposed to fewer VILTs with large Avap. In practice, flight time

consideration will limit the number of feasible VILTSs.

The previous theorem is more intuitive when looking at the level sets of voo i (VooL, AvAB)
in Eq. (3.5), as explained in the following.

Figure 3.11 shows the curves voop (Voor, Avap) for the Europa endgame case. At
each gravity assist the spacecraft moves along a vsp level set. The VILT moves the
spacecraft coordinates vertically from top to bottom.

The endgame discussed in the previous section and shown in Figure 3.11(a) is com-
posed of three VILTSs for a total transfer time of 46 days and a total Av of 154 m/s
to reduce the 0o from 1.8 km/s to 0.77 km/s. Figure 3.11(b) shows a hypothetical
endgame composed of fourteen VILTSs, each using 10 m/s for a total of 140 m/s. The
second strategy is cheaper in terms of Awv (it certainly has a much larger transfer time),

because the slope of the curves Av(veor) is larger for higher Av. Note in fact that

8AUAB
aUOOL

= —(epp—r1) " (3.12)

Thus the cheapest way to move from an initial to a final vy, is by zigzagging “low” on
the z — axis. This suggests a simple strategy to compute the the minimum Awv of the
VILT, which we explain in the next section. Conversely the more expensive way to move

from an initial to a final v, is to perform one large VILT.
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Figure 3.11: In this figure we compare the endgame at Europa computed in the previous
section (a), with a hypothetical endgame composed of 14 VILTs (b). The countour lines
are level sets of voop. The hypothetical endgame (b) is composed of several low-Awap,
high altitude gravity assist. The cost of the hypothetical endgame is lower because of
the slope of the level sets, which is also related to the phase-free efficiency.

3.3.2 Theoretical minimum and maximum Av for VILT with v, bound-

ary conditions

In this section we compute the minimum and maximum Awv cost to transfer from a veofs
t0 Voo, through a sequence of VILTs. We also compute the minimum and maximum cost
for a transfer between two minor bodies M1 and M2 (with a1y < G(are)) , where the
boundary conditions are expressed as relative velocity at the first minor body v (as1)
and at the second minor body v (ar2) (We assume both velocities are larger than the
respective Tn).

In the previous section we showed that the minimum Aw is achieved for infinite
transfer times , and infinite altitude gravity assists. We recall that the linked-conics
model is less and less accurate for high altitude gravity assist, thus we do not exclude
the existence of cheaper transfers computed in more accurate models. The interested

reader is referred to [RL03, RS07, GR09, GMCMO09]. In fact, in the next chapter we
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Figure 3.12: The slope of the vsopg level sets at Avap = 0 can be used to estimate the
Awvyp for a sequence of VILTs between infinitesimally close vs’s .

explain how the patched three-body problem allows for cheaper (even ballistic) transfers
even when the VILT sequence requires a minimum Awv of several hundred meters per
second. However, cheaper transfers are at the expense of larger times of flight - and larger
radiation doses for missions to Europa; thus the VILT approach and fast transfers are still
used by ESA and NASA to compute the nominal trajectories to Europa and Ganymede.
In this context, the theoretical minimum Aw is a valuable piece of information during
the design of resonant transfers as it sets the limit of the VILT approach. Further, as the
non-dominated front in Figure 3.10 on the right shows, the variation in Av across the
full flight time spectrum is generally not more than 10% . The minimum Aw calculation
is the main result of this chapter as it provides a simple, fast, and accurate estimate for
a preliminary total Av cost for any moon tour.

From the previously discussed theorem , and also looking at Figures 3.11 and 3.12, it
follows that the minimum Awv needed to transfer from two different v..’s is the integral
of the slope of the level sets Voo (Voor, Avap) at Av= 0.

From Eq. (3.12) and Eq. (3.9) we find

OAvap Voo

8UOOL VoL = Voo
A'UAB = 0
where we recall that for Voo, = Voo = Voo When Avgpg = 0. Then the minimum cost

problem between v, and vy is reduced to simple quadrature
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Voo H Voo
AED (vaor, voor) = / W(v)de (3.13)

oo L

Using the definition of I' in Eq. (9), we rewrite Eq. (3.13) as

B Voo 93+ 302 + v F 1
Avfnin) (VooL, Voorr) = / V3. + 302, — Voo F 7dt (3.14)
v, oo oo o0

oo L

where the integral can be solved numerically with quadrature or with partial fractions.

We recall that 0 < vy < V2 — 1 for the exterior VILT, and 0 < vy < 1 for the interior
VILT.

The maximum Awv is obtained by performing one unique VILT connecting vo.g and

VooL, and the formula is given by Eq. (3.6):

AV (voor, vootr) = —T 4 /T2 4 (02, — 02, ) (3.15)

Note that Avmar = Voor if Voo, = 0. Using Eq(3.14) and Eq.(3.15) we can compute
the minimum and maximum Awv to increase or reduce the vy using a sequence of exterior
or interior VILTSs.

Now we compute the minimum Awv for transfers between two minor bodies M1 and
M2 ( with @y < @ar2)). Uso(arz) 18 the initial velocity relative to the outer minor

body M2, while U (pr1) is the final velocity relative to the inner minor body M1 . We

(h) (h

= )
define Voo (M1 so(M2

) and ) as the (dimensional) relative velocities at M1 and M2 of the
Hohmann transfer between the two minor bodies. We can use the scale factors associated

with M1 and M2 respectively to compute:

(h) . 2am2 (h) . 2an1
VooM) T\ T anrs —+ Vel 1A g (3.16)

The Tisserand graph in Figure 3.13(a) shows that the transfer is free if the initial and

final relative velocities (Uoo(ar2) and Uo(ar1), respectively) are greater than the Hohmann

(h) (h)

transfer relative velocities (1700( M1 so(M2)?

) and ¥ respectively). Figure 3.13(a) also sug-

gests that the logical strategy for the minimum Awv transfer consists of a sequence of
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Figure 3.13: Minimum VILT moon-to-moon transfer (a) and multi-moon transfer (b).

interior VILTs at M2, followed by the Hohmann transfer, and finally a sequence of exte-
rior VILT at M1. Then Awv;, is computed by applying Eq. (3.14) twice, first from
VooH = Vso(M2) 10 Vool = U$2M2)’ and then from vooyg = Ufﬁle) 0 VooL = Vso(M1)- The
Avpqy s then computed using Eq. (3.15) instead of Eq. (3.14).

Figure 3.13(b) shows that other minor bodies can be used to decrease the total Ad.
In the case of a transfer from Callisto to Europa using Ganymede, for example, we only

need to increase the initial U (cq) until ﬁggzca) to reach the free-transfer zone. Then

(h)

gravity assists at Ganymede, Europa and Callisto can move the spacecraft to 1700( Fu)’

where we start using VILTs at Europa until reaching the desired U (py)-
Using this notion, together with Eq. (3.14), Eq. (3.15), and Eq. (3.16), we can
compute the minimum and maximum A for any VILT. We apply these formulae for a

transfer between Europa and Ganymede, and plot the results in Figure 3.14.

3.3.3 Theoretical minimum and maximum A? for transfers with A,

boundary conditions

In this section we compute the Av for a sequence of VILTSs connecting a circular orbit
at M1 with a circular orbit at M2. Pushing the VILT model to its limit, we start
considering r, — oo. In this case v¢, Voo, Ux, Voo, — 0 and the maximum Awv given by
the formula Eq. (3.15), which also corresponds to the cost of a Hohmann transfer Av
when no VILT is implemented. In general, we consider the Hohmann transfer as the

AvUpqs to transfer from given circular orbits.
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Figure 3.14: Minimum and Maximum cost for VILTs between Ganymede and Europa
with v boundary conditions. The contour lines are the total Av level sets in km/s.

The minimum cost is computed using Eq. (3.14). In particular, the cost to reach the

@ggz M1) and f;c()zz M2) in the M1 and M2 nondimensional units are

(n)
oM Y% oo i=1,2 (3.17)

Too (i) (Ve(ri)) r

v

Av(ariy (Ve(ars)) = Tn(ariy (Ve(ari)) — Ve(ma) +

The first two terms on the right-hand side of Eq. (3.17) represent a propulsive
maneuver at pericenter of the escape or insertion hyperbola. This maneuver is the
escape or capture orbit insertion maneuver(Avescape; Avcapture) required to reach the Tog
( the minimum vs, where it becomes efficient to start using VILT). The integral term
represents the minimum endgame or begin-game (Avendgame, AUbegingame) t0 reach the

Hohmann transfer conditions. Note that the total cost is a function of v., i.e. of the

altitudes h .

The total minimum cost in dimensional units is:

AD = AvyTmt + Av(arz) Uz

Table 3.1 and 3.2 show the minimum and maximum A% [km/s] for transfers between

moons in the Jupiter System and in the Saturn System. The minimum A% is the cost of
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the escape, begin-game, endgame, and capture. All the initial and final circular orbits
are at 100 km altitude, except for the orbits at Titan, which are at 1500 km altitude.

Table 3.2 shows the same results for transfers with intermoon gravity assists. In this
case the cost of the transfer is significantly reduced because the spacecraft only need to
reach the closest moons where it can start performing several gravity assists at different
moons, as explained previously and suggested in Figure 3.13(b).

Table 3.3 shows the semi-major axis and physical data* used in the computation of
the minimum A% . We also show the radius of the circular orbits, and the corresponding
Tso in case of exterior and interior VILTs. The velocity of the moon @y is the scale

factor for all the velocities.

“http://ssd.jpl.nasa.gov/
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Table 3.1: Minimum and maximum A7 for transfers between moons using VILTs.
The transfers start and end at two circular orbits with high or low altitude.
The minimum A? is computed assuming infinite transfer time, and consists of a
ADescapesAlbegingame »AVendgame ,AUcapture- The maximum Ao is the cost of the Hohmann
transfer without VILTs. In the estimated transfer time NalN indicates a flight time >
25 years. Note that using multi-body dynamics it can be possible to find long transfers
which require lower Avs than the one in this table. Also, in transfers involving low-mass
flyby bodies or large separation distances, shorter flight time solutions are possible if
considering the non-tangent class of VILTs.

Transfer Avypin Avpmax Avyin (km/s) - details
(km/s) (km/s) Avege Avpeg Aveng Aveap
Callisto-Ganymede 1.81 2.13 0.73 0.13 0.13 0.81
Callisto-Europa 1.94 3.75 0.73 0.3 0.31 0.59
Callisto-Io 2.43 6.00 0.73 0.46 0.48 0.75
Ganymede-Europa 1.71 2.18 0.82 0.14 0.16 0.59
Ganymede-Io 2.3 4.38 0.82 0.36 0.37 0.75
Europa-Io 1.76 2.54 0.6 0.21 0.2 0.75
Titan-Rhea 1.15 2.19 0.64 0.15 0.18 0.18
Titan-Dione 1.28 3.33 0.64 0.23 0.27 0.14
Titan-Tethys 1.37 4.31 0.64 0.29 0.33 0.11
Titan-Enceladus 1.43 5.27 0.64 0.33 0.4 0.06
Rhea-Dione 0.52 1.12 0.18 0.10 0.10 0.14
Rhea-Tethys 0.66 2.3 0.18 0.19 0.19 0.11
Rhea-Enceladus 0.78 3.53 0.18 0.27 0.27 0.06
Dione-Tethys 0.42 0.97 0.14 0.08 0.09 0.11
Dione-Enceladus 0.55 2.19 0.14 0.17 0.18 0.06
Tethys-Enceladus 0.34 1.00 0.11 0.08 0.09 0.06
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Table 3.2: Minimum A% for transfers between moons using VILTs and gravity assists.
The minimum A% is computed assuming infinite transfer time. The maximum A®v is
the cost of the Hohmann transfers to the closest inner/outer moons. Using multi-body
dynamics it might be possible to find long transfers which require lower A¢s than the
one in this table.

Transfer Avpin Avmaz Avpin (km/s) - details

(km/s) | (km/s) || Avesc  Avpeyg  Avepd  Aveap

Callisto-G-Europa 1.61 2.07 0.73 0.13 0.16 0.59
Callisto-G-E-Io 1.81 2.35 0.73 0.13 0.2 0.75
Ganymede-E-Io 1.91 2.45 0.82 0.14 0.2 0.75
Titan-R-Dione 1.03 1.55 0.64 0.15 0.099 0.14
Titan-R-D-Tethys 0.98 1.47 0.64 0.15 0.086 0.11
Titan-R-D-T-Enceladus 0.93 1.5 0.64 0.15 0.086 0.061
Rhea-D-Tethys 0.47 1.04 0.18 0.097 0.086 0.11
Rhea-D-T-Enceladus 0.43 1.07 0.18 0.097 0.086 0.061
Dione-T-Enceladus 0.37 1 0.14 0.084 0.086 0.061

Table 3.3: Moon data used for the computation of the Avs and transfer times.

Moon fing (km®/s?) | ang(km) | oap(km/s) | Fr(km) | Too (Fr) E/T (km/s)
TIo 5960 421800 17.330 1922 0.351 / 0.368
Europa 3203 671100 13.739 1661 0.277 / 0.290
Ganymede 9888 1070400 10.879 2731 0.372 / 0.404
Callisto 7179 1882700 8.203 2510 0.328 / 0.361
Enceladus 7 238040 12.624 352 0.029 / 0.029
Tethys 41 294670 11.346 633 0.052 / 0.052
Dione 73 377420 10.025 662 0.067 / 0.068
Rhea 154 527070 8.484 864 0.085 / 0.087
Titan 8978 1221870 5.572 4076 0.283 / 0.321
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Chapter 4

The endgame problem using the
multi-body technique and the
T-P graph

In this chapter we continue studying the endgame problem, focusing on the multi-body
technique.

In the first section we show how to transform the linked-conic gravity assist parameter
in a state vector to be used in the CR3BP. We then consider two VILT endgames at
Europa which were presented in Part A and use them as first guesses for the design
of endgames in the CR3BP. The results show that although some VILT solutions cost
almost the same, their total Av might differ by as much as 10% when computed in a more
accurate model. In general, the VILT approach should be used for fast preliminary design
only if lower-cost longer-transfer solutions are not an option. Quasi-ballistic endgames
and transfers cannot be designed either using the VILT approach or starting from VILT
solutions, hence the need for a more accurate model and design strategy.

In the second section we introduce a Poincaré section in the negative x-axis of the
rotating reference frame of the CR3BP. Far from the minor body the spacecraft trajectory
is very similar to a Keplerian orbit; thus we can compute the osculating orbital elements
of the spacecraft as it crosses the section, and plot them in a pericenter vs apocenter
graph. On the same graph we plot Tisserand parameter level sets: the Tisserand param-
eter T' is an approximation of the Jacobi constant, and it is very accurate when far from

the minor body and for small mass parameters. The result is the Tisserand-Poincaré
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(T-P) graph, which is a natural extension of the Tisserand graph, as the vy, level sets
are synonymous to Tisserand level sets noting that T = 3 — v%, (see appendix B). Yet
the Tisserand level sets extend beyond the vo,curves well into the regions where v is
not feasible in the linked-conic models (v, < 0 if 7' > 3). Therefore when considering
the conservation of the Tisserand parameter, the T-P graph demonstrates that ballis-
tic transfers between moons are energetically possible despite the contrary conclusion
derived from linked-conics theory. This is the first important result of the T-P graph.

In the third section we analyze the T-P graph in more detail. We use it to explain
the multi-moon orbiter[RLO03] and to explain in general the anatomy of multi-body tech-
niques. We focus on ballistic endgames and question the need for multiple flybys and
resonant orbits, noting that ballistic transfers do not change the Jacobi constant and
hence do not change the arrival speed at the minor body (the ballistic endgame para-
dozx). Then we use the T-P graph to solve the paradox, showing that at low energy
levels, high altitude flybys of the minor body are the only ballistic mechanism to move
along the Tisserand curves and to reach the target altitude at the minor body.

In the last section we design transfers between Europa and Ganymede. Using the
considerations from the previous section, we find trajectories that move through the
graph in the shortest time and reach a prespecified target point on the T-P graph, which
is the intersection of the Tisserand level sets of the endgame at Europa and begin-game
at Ganymede. In particular we compute a transfer from a circular orbit at Ganymede to
a circular orbit at Europa for comparison with the VILTs solutions. We also compute a
transfer between a halo orbit at Ganymede and a halo orbit at Callisto; in both cases the
T-P graph provides an estimate of Av. We argue that, while the total cost might increase
in the full ephemeris model due to the fourth-body perturbations, non-circular orbits, and
change-of-plane maneuvers. We also argue however that a robust optimization algorithm
should reduce the conservatively estimated costs with the introduction of several small
mid-course maneuvers. Finally we recall that in the Jupiter system long time-of-flight

trajectories are prohibited the radiation exposure.
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Nomenclature

a, e,

Ta,Tp

Tﬂ'a UTK'

4.1

Semi-major axis, eccentricity, inclination with respect to the major body.
Jacobi constant.

Subscript indicates the quantity is referred to the minor body.

Subscript indicates the quantity is referred to the major body.
Pericenter, apocenter with respect to the major body.

Position and velocity of the spacecraft with respect to the minor body at the closest

approach.
Tisserand Parameter.
Relative velocity of the spacecraft at the minor body.

Upper case for variables in the rotating frame, lower case for variables in the inertial

frame.
Gravitational constant.

Tilde indicates dimensional variables.

Endgames from linked-2BP to CR3BP

The conventional method for designing endgame trajectories is by patching v,.-leveraging

maneuvers (VILTs) in the linked-conic model [BAPC, JD99, CR10a].Yet near ballistic

endgames have been designed only in more accurate models, like the restricted 5-body

problem[RLO03] or the full ephemeris model[SPC99]. In this work, we use the circular

restricted three-body problem (CR3BP) model to design ballistic endgames, and patched

CR3BP models to design transfers between moons.
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RETROGRADE

Before the gravity assist ~r T

Figure 4.1: Direct and retrograde gravity assists.

In this section we show how to reproduce a linked-conics gravity assist in the planar
CR3BP. We then consider two very similar Europa endgames in the linked-conics model
(designed using the leveraging graphs, from the previous chapter) and optimize them in
the CR3BP model. The results give insight into the difference between the two models,
and into the limitations of the lower fidelity VILT approach when designing long flight
time, low-cost endgame trajectories.

In this chapter, variables without the tilde have been normalized using the usual

space, time, and mass scale factors
C~L3
" =an, =y —M— m* =y +mp
wp +

In this section we reproduce a linked-conic gravity assist in the CR3BP. In particular we

4.1.1 Flyby

use the parameters of the linked-conic gravity assist to generate the vector state of the
spacecraft at rr, the closet approach to the minor body. We focus on the planar case,
because we will use the results to reproduce VILTs in the CR3BP. Figure 4.1 shows the
schematic of the direct and retrograde gravity assists.

From the velocity v(;) and flight-path angle v of the spacecraft just before the

encounter we find
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V(;) COS
Voo = \/1 + U(Qi) —2vycosy , Py = arcsin ()T.OV (4.1)
The gravity assist parameters r, and o (0 = 1 for direct gravity assists and o = —1

for retrograde gravity assists) provide the deviation angle with Eq. (3.1), but also the
norm and direction of the velocity at pericenter v, as shown in Figure 4.1 and in the

following equations

Ve = VU +2u/rr , a =Py —00/2 (4.2)

Now we can write the state s = (x,y, &, y) of the spacecraft at the closest approach
in the inertial reference frame centered in the minor body. Always referring to figure 4.1,

we find

0=—-a+(1—-0o)n/2 , s=(rrcosb,rysinf, —ov,sinb, ocv, cosb) (4.3)

Finally we apply the transformation of coordinate (see appendix B) to find the state
vector in the rotating reference frame

S=(1-p)+rrcosb,rysinf,— (ovy —ry)sinb, (v, — ry)cosf) (4.4)

We now consider the special case ;) = 0 (the case when the v, vector is aligned
with the body velocity vector), which we use in the next section. From Eq. (4.2) and

Eq. (4.3) we find

92—%—1—0(%4—5) (4.5)

4.1.2 Endgame optimization in the CR3BP

In this section we compute two endgames in the CR3BP. We take two VILT endgames
at Europa rom the previous chapter, reproduce them in the CR3BP and use them as

first guesses for an optimization algorithm which minimize the total Awv.
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The first endgame is a sequence of long-transfer VILTs: 3 : 2?, 4 3(4{ D 63, where
the plus sign refers to a long-transfer VILT. The second endgame is a sequence of short-
transfer VILTs: 3 : 27,4 : 3;,5 : 6, where the minus sign in refers to a short-transfer
VILT. Both endgames require some 150m/s to decrease the v, from 1.8 km/s to approx.
0.8 km/s, and both endgames are composed by VILTs in which 3(;) = 0. However the
long-transfer VILTs are linked by direct gravity assists (¢ = 1) while the short transfer
VILTs are linked by retrograde gravity assists (o = —1).

As a consequence, Eq. (4.5) shows that the closest approaches of the first endgame
occur on the L2 side (—7/2 < 0 < m/2), while the closest approaches of the second
endgame occur on the L1 side (7/2 < 6 < 3w/2). Although the two endgames have
similar costs, sequence of resonances and transfer time, they are significantly different in
the region around the minor body, and they belong to two different basins of attraction for
the optimization problem in the CR3BP. This subtlety justifies the choice of optimizing
both of them.

The trajectory optimization problem in the CR3BP is formulated as a nonlinear
parameter optimization problem, where the dynamics constraints (equations of motion)
are solved implicitly. The control variables are the times, altitudes r, — 7z, speeds V;
and angles 0 of all the closest approaches and the times of the mid-course maneuvers.

The optimizer first propagates the states of every close approach backward and for-
ward in time until the mid-course maneuvers time. The position of the last point of the
forward propagation is then constrained to match the position of the last point of the
backward propagation from the next closest approach!. The corresponding velocities are

free but their difference, in norm, is added to the merit function.

!Because the problem is formulated in the rotating reference frame, the approach is robust despite the
several revolutions (in the inertial frame) which occur between the flybys and the mid-course maneuvers.
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Figure 4.2: Long-transfer (direct) and short-transfer (retrograde) endgames at Europa
optimized in the CR3BP (solid lines). Initially the VILT solutions are used to find the
times of the midcourse and the states and times of the spacecraft at the close approaches.
Those states are then propagated backward and forward in time in the CR3BP generating
the first guess solutions (dash lines) for the optimization problem.

As we are ultimately interested to compare the VILT solutions to the CR3BP
endgame, we add constraints to fix the boundary conditions. In particular, we con-
strain the first closest approach to keep the first guess 5(;) and v, and we constrain the
last closest approach to a given altitude and vo.

The first guess is generated using the VILT approach. The VILT solutions provide
the times of the mid-course maneuvers and the flyby times, altitudes, and v.. Eq.
(4.2), Eq. (4.5) , and Eq. (4.4) are used to compute the angles § and the velocities V.
Finally the parameter optimization problem is fed into the Matlab solver fmincon, which
implements a sequential quadratic programming (SQP) method. For both endgames,
Figure 4.2 shows the initial guesses (dash lines) and the optimized solutions (solid lines).

The total cost of the optimized long-transfer endgame is 147 m/s (the VILT solution
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costs 154 m/s) with a time of flight of 47.0 days, while the cost of the optimized short-
transfer endgame is 165 m/s (the VILT solution costs 155 m/s) with a time of flight of

45.4 days.

4.1.3 Limitations of the VILT approach

The VILT approach is very fast and intuitive, and we envision using it for preliminary
design of endgame and begin-game trajectories whenever long- transfer time low-cost
solutions are not an option. However the previous section showed that the VILT approach
has some important limitations that deserve attention.

First, the cost of the VILT endgames can be off up to £5% when compared to the
more accurate CR3BP solutions?. We expect this error to increase as more resonances
and high-altitude gravity assists are added.

Second, while the VILT approach estimates approximately the same Awv for the short-
transfer solution and the long-transfer solution, the CR3BP shows that one kind of
transfer is preferable (the long-transfer in the case shown in the previous section).

Finally, and most importantly , quasi-ballistic endgames cannot be found by simply
designing a VILT endgame and optimizing it in the CR3BP. The linked-conic approach
cannot explain the existence of ballistic endgames - not even in the limit of infinite
transfer time where a minimum Av # 0 can be computed (ee prevous chapter). In
addition, the last chapter showed that the VILT solutions do not converge to quasi-
ballistic endgames in the CR3BP. In fact the multi-resonant transfers are chaotic in
nature where the design space is plagued by multiple local minima[RS07] that can easily
trap gradient based optimizers. Clearly local minima exist in the CR3BP when using
the VILT as an initial guess, but it’s unrealistic for the optimizer to climb out of that
basin en route to quasi ballistic solutions. Instead we should seek solutions that start in

the correct basin!

2These values are consistent with the £10% difference observed during the design of the Cassini tour
when comparing Av costs in the linked conics model with more accurate models (personal communication
from Nathan Strange).
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For the above reasons we seek to further our understanding of the dynamics of near
ballistic endgame transfers. Ultimately, we seek systematic methods and tools to design
such transfers. While the patched CR3BP is the first step towards solutions in a fully
perturbed n-body model, the CR3BP indeed captures the dominant dynamics. Further,
the system is Hamiltonian, allows for rapid computations, and preserves the Jacobi

constant (or equivalently, in the case of this study, the Tisserand Parameter).

4.2 The Tisserand parameter and the T-P graph

In this section we introduce the T-P graph (named after Tisserand and Poincaré ). The
graph is a fundamental tool that provides dynamical justification for the multi-body
technique and can be used to design quasi-ballistic transfers between moons. The T-
P graph is built plotting Poincaré sections of different CR3BP models in one unique
Ta,Tp graph. In the same graph the level sets of the respective Tisserand parameters are
also plotted. The result is the T-P graph, which can be interpreted as an extension of
the Tisserand graph [LPS98, SL02| from the linked-conic model to the patched CR3BP

model.

4.2.1 Poincaré section

The first step in building the T-P graph is the introduction of a Poincaré section in
the negative x-axis of the rotating reference frame of each CR3BP. When the space-
craft crosses the Poincaré section, far from the minor body, its trajectory is very well
approximated by a Keplerian orbit around the major body. From the state vector at
the crossing point we compute the osculating pericenter and apocenter relative to the
main body, which we plot in a r, —r}, graph, similar to the one described in the previous
chapter. Figure 4.3 shows a schematic of the Poincaré section and the corresponding

Tq — Tp graph.
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Figure 4.4: Tisserand parameter level sets on the T-P graph and corresponding regions
of motion in the CR3BP (schematic).

4.2.2 The Tisserand parameter

On the same graph we plot the level sets of constant Tisserand parameter . The Tisserand
parameter T' is a function of the semi-major axis a (in normalized units: a = a/anr),

inclination i and eccentricity e of a spacecraft orbiting a major body[Tis96]

T (a,e,1) = %+2\/a(1—62)cosi (4.6)

In this work we consider the planar problem and rewrite Eq. (4.6) as a function of

the pericenter and apocenter only

2 2r,
T (rayrp) = —— +2, | — 22 (4.7)
Ta +Tp e +7Tp
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The Tisserand parameter remains approximately constant even after a close
encounter with a minor body. This is known as the Tisserand criterion [Tis96]. It
is well-known in fact that the Tisserand parameter is an approximation of the Jacobi
constant J of the CR3BP, .ie T ~ J.

The approximation is increasingly accurate for smaller mass parameters . and when
the spacecraft is far from the minor body (e.g. when it crosses the Poincaré section
defined previously). In appendix B we show how to derive the Tisserand parameter from

the Jacobi constant; similar derivations are found in literature [Tis96, MW].

4.2.3 The T-P graph

Now we are ready to plot the level sets of the Tisserand parameter onto the r, —r, graph.
We start plotting the four level sets T' = Jr; ,i = 1,...,4, where Jp; is the value of the
Jacobi constant associated to the i*" Lagrangian points (note that Jr4 = Jps = 3). The
level sets divide the r, — 7, graph into regions of motion, as shown in Figure 4.4.

As the spacecraft crosses the Poincaré section, the osculating orbital elements are
represented with a point on the T-P graph. If the point is in the region I?, the spacecraft
position is bounded in a region close to the major body and no transfer to the minor
body is possible. Similarly, if the spacecraft is in the region I¢, the spacecraft is bounded
in a region far from the major body and no transfer to the minor body is possible.

Transfers to the minor body are possible only when the spacecraft is in the regions
II* I1¢,I11. In particular, we expect low-energy transfer and capture trajectories to
occur in the region I1° (if coming from the inner moons) or I7¢(if coming from the outer
moons).

Note that inside the box 7, < 1, rq > 1 (within region III) we can also plot the
constant v, level sets, as done in the Tisserand graph [SL02]. The vy-infinity level
sets overlap with the constant Tisserand level sets?. In fact it can be proved that (see

appendix B)

3Then we can think of the Tisserand level sets as J level set or C3=v2, level sets
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T=3-vi~J

In the r, — 7, graph we can plot curves at constant resonance n : m (where n is the
number of body revolutions and m is the number of spacecraft revolutions), which are

lines with slope —1

a= <£>2/3 —Tp=—Tq+2 (2)2/3

m m

In order to study transfers between minor bodies, we plot on the same graph several
Tisserand level sets, each in the dimensioned coordinates of the corresponding minor
body. The Tisserand parameter with respect to the minor body M is

20 27 Tp

T :ﬁ+2 s =N =
M Ta + Tp (Ta + Tp) an

(4.8)

Finally we include a grid which shows the Aw required to change the pericen-
ter/apocenter using an impulsive maneuver.

The result is the T-P graph , which we show in Figure 4.5(b). In Figure 4.5(a) we
plot the r, — r, Tisserand graph . We see how the extension from a linked-conics model
(for the Tisserand graph) to patched CR3BP model ( T-P graph) results in level sets
which extend over the feasible domain of the Tisserand graph. As a consequence, even
low-energy (low v) level sets reach very high apocenters.

Figure 4.6 shows the T-P graph for the Saturn system. We can see that the low-
energy level sets (region I1¢ and I1%) of any two moons cross, in contrast to the linked
conics model where ballistic intermoon transfers are only possible for vy, greater than
that of the corresponding Hohmann transfer. From an energetic point of view, then,
a ballistic transfer between any two moons in the patched CR3BP is always possible.
This does not guarantee that such transfers can be found, especially within a practical

transfer time. Some recent works demonstrate that such transfers can exist[RJJ09].
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Figure 4.5: Tisserand Graph (a) and T-P graph (b).

The intersection point between the Tisserand level sets of two different moons is the

solution of the system:

Thr1

T2

2a

Ta+Tp

2an2 27qTp

[ 2r.r
L 2 (Fa+7p)anra (4.9)

Fatrp

(Fat+7p)ane
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Figure 4.6: The T-P graph of the Saturn System.

where we solve for r,,7, giving the desired Th/; and T2 along with the ap/; and
apre for the systems of interest. We emphasize that the T-P graph provides a reliable
energetic based strategy to patch the two CRTBP systems. The patch point target

provides a significant advantage over prior multi-body design methodologies.

4.2.4 Three-dimensional T-P graph

In this section we consider the 3D case, where the Tisserand parameter is function of

the apocenter, the pericenter, and the inclination:

2a 2r,T )
Typ= —M_ g [ =Talp oo (4.10)
To + Tp (Fa +Tp)am

The 3D T-P graph can be used to visualize families of asteroids in the solar

system[Geh09], or to analyze missions like the Solar Orbiter which uses resonant gravity
assists at Venus to reach high inclinations over the ecliptic [JBCO05]. Figure 4.7 shows
the Earth and Jupiter Tisserand level sets, and the main-belt asteroids. Most of the
main-belt asteroids are outside the surfaces Trorin = Jri1Eartn and Tiypiter = J11 Jupiter-
We also can see the Kirkwood gaps at the resonances[]MD00] 1:4,3:1,2:5, and 1: 2.

Figure 4.8 shows the Near Earth Asteroids and, among those, the Potentially Hazardous
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Figure 4.8: Examples of a 3D T-P graph: the Near Earth Asteroids and, among those,
the Potentially Hazardous Asteroids.

Asteroids. We can see the Potentially Hazardous Asteroids are all within the level set

TEarth = JL1Earth-

4.3 The anatomy of the multi-body technique

In this section we use the T-P graph to explain how the multi-body techniques are used
to design endgame trajectories.

The multi-body techniques propagate the state of the spacecraft in multi-body
dynamics, targeting high altitude encounters with a minor body to achieve the most
suitable effect (typically a reduction or an increase of the one of the apses). Trajectories
designed with multi-body techniques include the Smart1 mission to the Moon [SPC99],

and the multi-moon orbiter by Ross and Lo [RLO3].
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4.3.1 The multi-moon orbiter

The multi-moon orbiter is a trajectory designed by Ross and Lo [RLO3] for a mission
to the Jovian moons. The trajectory was computed in the planar, restricted 5 body

problem.
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Figure 4.9: The multi-moon orbiter [RL03|. (a) The trajectory osculating parameters
are plotted in the (ra,rp) conventional Tisserand graph. (b) The same trajectory is
represented with the T-P graph. The T-P graphs shows that the trajectory jumps
between resonances and is mostly ballistic. We can see the no-transfer zones (light gray)

and the capture zones. At the end of the trajectory, the spacecraft is inside the Europa
capture zone.

Figure 4.9(a) shows the Tisserand graph of the trajectory in the Jupiter system. The
orbital elements vary mostly during short time intervals when the spacecraft approaches
a moon, making the Tisserand graph not easy to read. Also, the osculating pericenter
and apocenter are often outside the boundaries (7, > a7, 7, < Tar) imposed by the

linked-conic model.
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We now represent the same trajectory with the T-P graph. We first split the tra-
jectory in three parts, depending on the dominating perturbing body. The first part
is dominated by Callisto, the second by Ganymede and the third by Europa. For each
part we place a Poincaré section on the negative x-axis of the corresponding rotating
reference frame, and build the T-P graph of the transfer. The result is shown in Figure
4.9(b). We see that the spacecraft jumps between resonant orbits using flybys at the
moons. Although Ross and Lo’s trajectory was computed in the restricted 5 body prob-
lem, Figure 4.9(b) shows that the patched CR3BP model is a good approximation and
that the T-P graph captures the main dynamics; in fact the spacecraft first shadows the
T level sets of Callisto, then of Ganymede, and finally of Europa. The T-P graph also

shows that the trajectory is quasi-ballistic?.

4.3.2 The ballistic endgame paradox

Endgame or transfer trajectories designed with the linked-conic model always require
some impulsive maneuver (Av). The Awv is needed to increase/decrease the vy, from
the escape/capture condition because in general the departure/arrival low-energy (low
Voo) level sets do not intersect, as shown in Figure 4.5 (a) . To decrease the required
Av, a VILT strategy can be implemented using a sequence of almost resonant orbits
and small maneuvers (i.e. a zig-zag path in the r, — r, leveraging graph). For very
long transfer times a theoretical minimum Aw can be computed, as we explained in the
previous chapter.

In the patched CR3BP model the T-P graph shows that the same low-energy ( high
Tisserand) level sets do indeed intersect. Then there might be endgames and transfers
between moons which require little or no Awv, and which consist of resonant orbits only;
in fact, the multi-moon orbiter trajectory[RLO03] is one example of such a transfer.

Yet an interesting paradox arises when considering planar ballistic endgames:

4 Another ballistic transfer is explained with the T-P graph in the Saturn-Titan system in [GMCMO09]
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Figure 4.10: Possible orbit insertion locations at the end of an endgame strategy.

Given a fixed Tisserand energy and arrival circular orbit altitude, the inser-
tion maneuver costs remain essentially fixed for all possible arrival geome-

tries.

The paradox seems to questions the utility of resonant orbits, and of quasi-ballistic
endgames in general. In what follows we first prove the paradox, and then we explain
why resonant orbits are still necessary for the design of low-energy endgames.

Assume a ballistic endgame begins at Europa with a very high apocenter (for example
in the region 17¢), and ultimately targets a low altitude circular orbit (e.g. 100 km) at
Europa. In the planar case, the orbit insertion location is somewhere on a circle of
radius Ro = 7, around Europa. Figure 4.10 shows the possible orbit insertion locations
as function of the angle #. In particular, in Figure 4.10(a) the arrival conditions are
represented in the rotating reference frame; in Figure 4.10(b) the arrival conditions
and the orbit insertion maneuvers Aw, are represented in the inertial, moon-centered
reference frame.

We now compute the orbit insertion maneuver as a function of the angle 6, for a

given Jacobi constant and altitude at the moon. From simple geometric considerations:

Ry = /14724 2rcosf (4.11)

RP=(1—-p)?+r24+2(1—p)rycosf (4.12)

Substituting Eq.(4.11) and Eq.(4.12) in Eq.(2.8) we find that the velocity in the

rotating frame is:
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Moon Avaiax/Avyvrn (km/s)

Jr1@100km | Jr4@100km | Jr1@1000km | Jrs@1000km

Europa | 421.1/420.1 | 606.5/605.5 | 276.7/273.7 | 513.7/511.1
Titan 668.6/668.5 | 766.5/776.4 553.7/553.5 667.6/667.5

Table 4.1: The maximum and minimum orbit insertion maneuver (m/s) for given alti-
tudes and Jacobi constant at Europa and at Titan.

Vi=(1—p)+r2+2(1 —p)rycosf+2

1—
~ N L R E)
V1472 +2r; cosf T

The velocity in the inertial frame is (see appendix B):
vy =V +org) (4.14)
The orbit insertion/escape Awv is:

Avy =0 —v. =V +0orp — v, (4.15)

where v, = /p/rz. Then the orbit insertion cost depends on V. It is easy to

prove that V2 (#) has a global maximum at # = 0 and a global minimum at § = #* =

arccos (—rx/2). Also, (V2),, 1 — (V) 1w = 72 (1 — 1) i’i;:, and because 72 is small
compared to other terms in Eq. (4.13) we infer that Vayax =~ Vasrn, i.e. the velocity and
thus the orbit insertion maneuver doesn’t depend significantly on the angle .° Table
(4.1) shows (Avx)yrax and (Avg) sy, computed for 6 =0 and 6 = 6* respectively, for
several cases of interest. We see that in all cases the difference in the orbit insertion

maneuver is just a few meters per seconds or less, thus given a fixed energy a ballistic

endgame (which can only change 6) cannot reduce the cost significantly®.

Tt would be interesting to know if the paradox extends to the 3D case, where R?> =1+ r2 cos® a +
2r.cosfcosa, Ry =+/1+ 12+ 2r, cosfcosa and « is the elevation angle on the zy plane. The velocity
in the inertial frame has two components, i.e. V and w X r, which are not aligned in general.

5Non-ballistic endgame can reduce the orbit insertion maneuver by applying impulsive Av which
results in the highest change in the Jacobi constant. The VILT strategy can be justified with this
argument also [Swe93]
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The paradox seems to question the utility of the ballistic endgame, at least in the
planar case, because no matter how we design a sequence of resonant orbits, the orbit
insertion Awv is fixed by the Jacobi constant and cannot change. We wonder then why
we need resonant transfers in the first place.

The T-P graph clarifies this point, and enables strategies for the design of low-cost,
quasi-ballistic endgames and transfers. A low-cost , quasi-ballistic endgame at Europa,
e.g., must end with a low Av orbit insertion. Referring to Figure 4.4, the corresponding
T level sets will probably lie within region I7¢. Because the endgame is quasi-ballistic,
the initial conditions also lie in the region I71¢ and according to the boundaries of the
region I1¢ in Figure 4.5, an initial high apocenter requires an initial high pericenter,
beyond Europa’s orbit. How can the spacecraft, then, ever reach a 100 km altitude to
Europa, an impossible scenario based on the conventional wisdom of linked-conics? The
T-P graph shows, however, that if the spacecraft has the right phasing, it can use Europa
perturbing force to slightly lower its apocenter AND pericenter, thus moving to the left
in the T-P graph, along the level set.

Such maneuver is in fact a high altitude flyby performed close to the pericenter of
the spacecraft orbit. When several high altitude flybys are linked together by free-return
orbits, the pericenter can be lowered to the point where a 100 km approach at Europa is
possible. Thus the high altitude flybys are necessary to reduce the pericenter and to reach
the required altitude at Europa, while the resonant orbits simply provide a mechanism
to achieve multiple flybys. We note that energy levels of the endgame scenario require
non intersecting spacecraft and minor body orbits (in the exterior problem the spacecraft
orbit engulfs completely the orbit of the minor body for all time while the interior problem
is reversed). Therefore, the point of closest approach for the two orbits occurs only at a
single point in the nonrotating frame: the apse of the spacecraft orbit. Accordingly, the
low-cost endgame return orbit must be approximately resonant; whereas a non-resonant
returns would necessarily have two intersection points between the spacecraft and minor

body orbits.
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An alternative way to explain the ballistic endgame is the following: of all the tra-
jectories arriving at 100 km altitude at Europa with a fixed velocity defined by Eq.(3.2),
the only one which starts at a very high apocenter must have performed several high
altitude flybys and resonant orbits. In the next section we use this concept to design

ballistic transfers.

4.4 The design of multi-body transfers with the T-P graph

The previous section showed that even for low energy levels (i.e. Tisserand parameter
between Jr; and 3) there can be trajectories which reach a low altitude at a moon,
starting at a very high apocenter, through a sequence of flybys and resonant orbits. In
this section we implement a simple search to find such trajectories and design low-cost
transfers between Ganymede and Europa. A similar search was implemented in the
design of the BepiColombo capture trajectory at Mercury[JCGKO4]; in fact at these
energy levels many ballistic capture or escape trajectories can be designed[CL08, PS06,
VS03], as we will show in the last chapter of this work.

We first design a transfer between a 100 km altitude orbit at Ganymede and a 100 km
altitude orbit at Europa. With this set of boundary conditions we can compare the Avs
of a Hohmann transfer to the Av of the begin-game and endgame trajectories, designed
using either the multi-body technique or the VILT technique. However, we recall that
longer time-of-flights yield to higher exposures to the radiation environment at Jupiter,
so in practice longer time-of flight transfers are penalized by need of heavier shielding.

A direct Hohmann transfer from a 100 km altitude orbit at Ganymede to a 100 km
altitude orbit at Europa requires only a few days, but costs 2.18 km/s. A VILT strategy
can reduce this Av up to a theoretical minimum of 1.71 km/s (see previous chapter).
Using the T-P graph and the higher fidelity CR3BP, we demonstrate how a low-cost

transfer can require significantly less propellant.
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Figure 4.11: Schematic of a transfer between Europa and Ganymede designed using the
T-P graph.

The basic scheme for the design is shown in Figure 4.11. We start by fixing an energy
value for the escape and for the capture such that the spacecraft starts in the “escape

region” I7¢ and ends in the “capture region” II*. In particular, we choose

T%J:(JLQ—i-JLg)/Q (416)

From the Jacobi constants we find the velocities at pericenter using Eq. (3.2)", and
calculate the cost to insert into/escape from a circular orbit at 100 km altitude from
Eq.(4.15) : Avgscape = 0.72 km/s and a Avcgprure = 0.51 km/s. Immediately we see
that the floor for a potentially ballistic transfer Av is Avgscape + AVcapture- We then
scan the angles 0, , propagate the initial conditions and store the transfers that decrease
the pericenter the most in the shortest time. We also scan the angles 0g,, propagate
backwards the initial conditions and store the transfers that increase the apocenter the
most in the shortest time. In both the forward and backward propagations we have a
precalculated target value for r, and r, respectively - from the intersection point in the
TP graph - found from the solution to Eq. (4.9).

We plot the results in the T-P graph. A close up is shown in Figure 4.12. In the
graph we plot the level sets corresponding to the value of the Tisserand parameter in
Eq. (4.16). One of the most important features of the T-P graph is the availability of a

target pericenter-apocenter for both endgame and begin-game strategies, which is at the

"In this example we do not consider the retrograde solution.
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Figure 4.12: Zoom of the T-P graph showing the Ganymede escape options and the
Europa capture options.
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Figure 4.13: Quasi-ballistic transfer in the inertial reference frame.

intersection of the level sets. For clarity we do not plot all the Poincaré crossings from all
the trajectories; we only plot the set of Pareto-optimum points (shortest time, highest
apocenter) reached by all the solutions. Note that the final points of the begin-game
and the initial points of the endgame do not coincide in general. Thus some impulsive
maneuvers are needed to patch the two parts of the transfer; the grid in the T-P graph
provides a means to estimate a brute force patching cost of a Hohmann-like transfer to
connect the points in the graph. For instance we can estimate a Av of some 70 m/s to
patch the 82 day begin-game with a