




 
 
 
 
 
 
 
 

ADAPT 5 User’s Guide: 
Pharmacokinetic/Pharmacodynamic 

Systems Analysis Software 
 

by 
 

David Z. D'Argenio 
Alan Schumitzky 
Xiaoning Wang 

 
 
 

 ii



 
 
 
 
 
 
 
 
 
 
 
 
The ADAPT software described in this document is furnished by the Biomedical 
Simulations Resource under the terms of a release agreement. ADAPT may be used only 
under the terms of the release agreement. 
 
ADAPT User’s Guide Series 
©Copyright 1988-2009 Biomedical Simulations Resource, University of Southern 

California 
 
 
Citation for ADAPT 5 User’s Guide 
 

D’Argenio, D.Z., A. Schumitzky and X. Wang. ADAPT 5 User’s Guide: 
Pharmacokinetic/Pharmacodynamic Systems Analysis Software. Biomedical 
Simulations Resource, Los Angeles, 2009. 

 

 iii



Preface to ADAPT 5 
 
 
 

ADAPT 5 represents a major new version of ADAPT and includes the addition of 
population modeling capabilities. In accomplishing these additions and enhancements we 
have worked to maintain the programs generality, flexibility and computational 
robustness. 

 
We would like to thank some current and former graduate students and 

postdoctoral fellows who have contributed to the testing and evaluation of ADAPT 5: 
Phyllis Chan, Joy Hsu, Ritesh Jain, Dongwoo Kang, Brittany Kay, Tong Lu, Gabriela 
Mallen-Ornelas, Kyung-Soo Park, Min-Hyung Park, Nathalie Poupin, Linh Van, Jian 
Wang, Xiaoning Wang, Lu Xu, Zexun Zhou, and Rui Zhu. We also acknowledge 
Ashutosh Gandhi for programming the ADAPT 5 interface, Amy Joe for help with the 
ADAPT Library, and Andrew Bae and Christine Lee for their work on this User’s Guide 
and the BMSR web site. We gratefully express our appreciation to BMSR collaborators 
and other colleagues for their suggestions and for providing stimulating applications: 
Edward Acosta, Michael Amentea, Kyun-Seop Bae, Robert Bauer, Stacey Berg, Paul 
Berringer, Jan Beumer, Richard Brundage, Jurgen Bulitta, George Drusano, Murray 
Ducharme, Laszlo Endrenyi, Merrill Egorin, Julie Eiseman, Courtney Fletcher, Alan 
Forrest, Iztok Grabnar, Mathew Hsu, Shasha Jumbe, William Jusko, Wojciech 
Krzyzanski, Jean Lavigne, Jian-Feng Lu, Donald Mager, Daniel Maneval, Giovanni 
Pacini, Carl Panetta, Mark Ratain, Mary Relling, Keith Rodvold, Gary Rosner, Thomas 
Sun, Jurgen Venitz, Davide Verotta, Paolo Vicini, Jon Wakefield, and Michael Weiss. 

 
The feedback and advice we continue to receive from many users (far too many to 

list here) have served as an important impetus for the significant enhancements included 
in ADAPT 5; we greatly appreciate your contributions. As always, please contact us with 
any questions, suggestions and comments about ADAPT, as well as corrections and 
suggestions for this User’s Guide.  

 
ADAPT has been developed by the Biomedical Simulations Resource at the 

University of Southern California, under support from the National Institute for 
Biomedical Imaging and Bioengineering (NIBIB) at the National Institutes of Health. 
(P41-RR01861). We gratefully acknowledge the advice and support of Dr. Grace Peng, 
Program Director at NIBIB over the past years. Over the past 10 years the BMSR has 
been the fortunate beneficiary of the expert administrative skills of Marcos Briano – 
thank you Marcos! 

 
It is with great pleasure and immense gratitude that we dedicate this User’s Guide 

to Roger W. Jelliffe and to the memory of John Rodman. 
 
Los Angeles David Z. D’Argenio
July 2009  Alan Schumitzky
 Xiaoning Wang
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Preface to the Fourth Release 
 
 
 
 
 
 
 
 

Release 4 of ADAPT is a continuation of our efforts to develop, distribute and 
support computational software for use in pharmacokinetic/pharmacodynamic systems 
analysis. A number of enhancements to ADAPT are incorporated in Release 4, including 
expanded capabilities for modeling pharmacokinetic/pharmacodynamic processes, an 
extensive library of models and an expanded User’s Guide. Chapter 1 of the User’s Guide 
reviews these and other new features included in Release 4. Versions of Release 4 of  
ADAPT are available for several computing environments as listed in Chapter 1. 

 
ADAPT is developed as part of the Service function of the Biomedical 

Simulations Resource at the University of Southern California, with support from the 
Biomedical Technology Program of the National Center for Research Resources at the 
National Institutes of Health (P41-RR01861). We are also grateful to our colleagues Alan 
Forrest, Darryl Katz and John Rodman for their continued contributions to the 
development of ADAPT. In addition we would like to acknowledge the programming 
efforts of Jun Chen, Dilip Jain and Qiuyan Zhang. We would also like to thank Jocelyn 
De Guzman for her expert help in preparing the User’s Guide, and Lisa Bartoli and 
Nicole Smith for their assistance in preparing the examples illustrated in the User’s 
Guide.  

 
The feedback we have received from many users has contributed significantly to 

Release 4 of ADAPT. We would like to especially thank the following people who have 
generously shared with us their suggestions and ideas: William Bachman, Robert Bauer, 
Alan Boddy, Richard Brundage, George Drusano, William Ebling, Merrill Egorin, Tom 
Hennessy, Paul Hutson, Paul Laub, Daniel Maneval, Soren Rasmussen, Gerard Sirois, 
Lloyd Whitfield, Yuri Yanishevski. We appreciate receiving questions, suggestions and 
comments from ADAPT users and will do our best to respond to your requests.  
 
 
 
Los Angeles David Z. D’Argenio
March 1997  Alan Schumitzky
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Preface to the Third Release 
 
 
 
 
 
 
 
 

ADAPT II is now available for the following three computing environments: 
VAX/VMS; DOS; SUN/UNIX. Appendices A, B, and C of this manual provide 
information concerning installation, system requirements and program execution of the 
VAX/VMS, DOS and SUN/UNIX versions of ADAPT II, respectively. Before installing 
Release 3 of ADAPT II please consult the relevant appendix for specific instructions. All 
ADAPT Model Files and Data Files created with previous releases of ADAPT II are 
compatible with Release 3. The examples included in this revision of the User’s Guide 
have been obtained using the DOS version of the program. 

 
Release 3 of ADAPT II includes a SUN/UNIX version of the package (new with 

this release), and incorporates significant enhancements to the graphics capabilities of the 
DOS version (see Appendix B), as well as a number of corrections, modifications and 
additions to the programs (see Chapters 4.5.3 and 4.5.4 of the User’s Guide). The 
ADAPT Driver for the DOS version of the programs has also been redesigned and 
rewritten as a DOS batch program (see Chapters 1.2, 1.3 and Appendix B.4 of the User’s 
Guide). The UNIX version of the package is supported for Sun Microsystems hardware 
and requires the Sun Fortran Compiler version 1.3 or higher. It can be run from Sun 
Workstations via SunView or X Windows, or from a terminal capable of VT100 and 
Tektronix emulation. While the UNIX version of ADAPT II is only supported for the Sun 
Fortran Compiler, we expect that it can be readily ported to other UNIX environments. 
User’s interested in installing ADAPT II on other UNIX machines are welcome to 
contact us for advice.  

 
As always, we appreciate receiving questions, suggestions and comments from 

ADAPT II users and will do our best to respond to your requests. We would ask that the 
use of ADAPT II be acknowledged in research publications, as appropriate, by citing this 
user’s guide: D. Z. D’Argenio and A. Schumitzky. ADAPT II User’s Guide. Biomedical 
Simulations Resource, University of Southern California, Los Angeles, 1992. The 
contributions of the following people to the programming effort for Release 3 of ADAPT 
II are gratefully acknowledged: Nicolas Rouquette, Tarun Jain, Qiuyan Zhang. 
 
 
 
Los Angeles David Z. D’Argenio
February 1992 Alan Schumitzky
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Preface to the Second Release 
 
 
 
 
 
 
 
 

The Second Release of ADAPT II includes implementations for the DOS as well 
as the VAX/VMS environments. Specific details concerning installation, system 
requirements and program execution are provided in Appendix A (VAX/VMS version) 
and Appendix B (DOS version). Both of these versions have identical capabilities, with 
the exception of some differences in the graphics options. In response to suggestions and 
comments from current users of ADAPT II, several revisions and enhancements have 
also been made to this new release. These include: improved capability for analysis of 
population simulation results; additional error analysis for statistical estimators; file 
storage option for program results. This User’s Guide has also been expanded with more 
discussion of model specification, and with additional examples illustrating various 
features of the programs. All model and data files created with the previous release of 
ADAPT II are compatible with Release 2.  

 
Users of ADAPT II are most welcome to communicate to us any questions, 

suggestions or comments they may have concerning the package. We also ask that the 
use of ADAPT II be acknowledged in research publications, as appropriate, by citing this 
user’s guide. (D.Z. D’Argenio and A. Schumitzky. ADAPT II User’s Guide. Biomedical 
Simulations Resource, University of Southern California, Los Angeles, 1990.) Finally, 
we gratefully acknowledge Kamesh Kothuri of the BMSR scientific programming staff 
for his significant contributions in the development of the DOS version of ADAPT II. 
 
 
 
Los Angeles David Z. D’Argenio
April 1990 Alan Schumitzky
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Preface to the First Release 
 
 
 
 
 
 
 
 

ADAPT II is distributed as part of the Biomedical Simulations Resource’s effort 
to develop, disseminate and support software designed for the advanced modeling and 
data analysis applications of the biomedical research community. The programs in 
ADAPT II have been developed mainly for pharmacokinetic and pharmacodynamic 
modeling applications. This user’s guide describes the capabilities and illustrates the use 
of ADAPT II. We encourage users of ADAPT II to communicate to us any questions, 
comments or suggestions concerning the package. We also ask that the use of ADAPT II 
be acknowledged in research publications, as appropriate, by citing this user’s guide. 
(D.Z. D’Argenio and A. Schumitzky. ADAPT II User’s Guide. Biomedical Simulations 
Resource, University of Southern California, Los Angeles, 1988.)  

 
An early version of ADAPT II was tested and evaluated by J.H. Rodman and his 

colleagues at the Biomedical Modeling Laboratory, Center for Pediatric 
Pharmacokinetics and Therapeutics, University of Tennessee. D.C. Maneval of the 
Department of Biomedical Engineering at the University of Southern California has also 
tested early versions of these programs. We are especially grateful for their efforts which 
have contributed significantly to the development of ADAPT II. 

 
We would like to acknowledge the contributions of the BMSR scientific 

programmers who have been involved with the development of ADAPT II (C.S. Lam, 
C.C. Tong, A.W. Yueh and V. Krishnan). Some of the numerical analysis software used 
in ADAPT II was developed by others and is generally available (e.g. LINPACK, 
EISPACK, LSODA); we would like to thank the developers of these high quality 
numerical software packages. We would also like to thank T.J. Pearsons of the California 
Institute of Technology for allowing us to use and distribute the graphics software 
contained in ADAPT II. Finally, we gratefully acknowledge the contributions of R.W. 
Jelliffe and W. Wolf in the development of the original version of ADAPT. 
 
 
 
Los Angeles David Z. D’Argenio
September, 1988 Alan Schumitzky
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CHAPTER 1 
 
 
IInnttrroodduuccttiioonn  
 
 
 
 
 
 
 
 
1.1 Overview 
 

The ADAPT software has been developed for pharmacokinetic and pharmacodynamic 
modeling and data analysis applications and includes tools for individual analysis (simulation - 
SIM, parameter estimation – ID, sample schedule design - SAMPLE) and for population analysis 
(parametric maximum likelihood via the EM algorithm - MLEM, iterated two stage - ITS, 
standard two stage – STS, and naïve pooled data - NPD). It is intended for basic and clinical 
research scientists and is designed to facilitate the discovery, exploration and application of the 
underlying pharmacokinetic and pharmacodynamic properties of drugs. ADAPT is also suitable 
for use in introductory and advanced courses in pharmacokinetics and pharmacodynamics, and 
includes a library of fundamental models used in teaching drug kinetic and dynamic concepts.  
 

Three principles continue to guide our development of ADAPT. First, the dynamic systems 
modeling, estimation and control framework of engineering systems theory used widely for 
physical system applications continues to inform our development efforts. Second, ADAPT is 
designed to be general and flexible, so that only minimal restrictions are placed on the type of 
pharmacokinetic/pharmacodynamic model that the user can implement. Third, the software 
incorporates numerically robust and proven algorithms to perform the program’s computations. 
The generality of ADAPT also makes it a useful tool for dynamic system modeling applications 
involving sparse data systems that arise in other biomedical research areas such as systems 
biology, metabolism, endocrinology, biochemistry, toxicology, pharmacology and others.  
 

Since 1985, ADAPT has been developed and supported by the Biomedical Simulations 
Resource (BMSR) in the Department of Biomedical Engineering at the University of Southern 
California, under support from the National Institute for Biomedical Imaging and Bioengineering 
(P41-EB001978) and the National Center for Research Resources (P41-RR01861) of the 
National Institutes of Health. It is distributed by the BMSR at no charge to the user, under the 
terms of a Release Agreement.  
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1.2 Comments on the Benefits of Source Code Distribution 
 

ADAPT was developed initially as an in-house modeling tool for the challenging clinical 
pharmacokinetic applications of Drs. Roger Jelliffe and John Rodman in the Laboratory of 
Applied Pharmacokinetics at the University of Southern California. Since that time, we have 
made the source code for ADAPT freely available to interested researchers [1]. This open-source 
policy has allowed numerous users to customize the software for use at their own institutions and 
companies. We appreciate the many users that have informed us of their efforts. 
 

In addition, others have used ADAPT as a platform to implement and test various PK/PD 
modeling and analysis methods. For example, Dr. Alan Forrest and J. Hawtoff, working in the 
laboratory of Dr. Merrill Egorin, implemented a general iterated two stage population estimation 
algorithm based on ADAPT. Dr. Robert Bauer at XOMA (US) wrote a script-based interface for 
ADAPT (for use within XOMA) and subsequently incorporated population parametric maximum 
likelihood and Bayesian analysis into this program (currently distributed by the BMSR as S-
ADAPT). The experiences derived from the work of Drs. Forrest and Bauer, with their 
modifications and extensions of ADAPT, have in-turn contributed to the further development of 
ADAPT as reflected in this current version. Also, methods and algorithms evaluated using the 
ADAPT platform have then been incorporated into other software (e.g., PDx-MCPEM developed 
by Dr. Surge Guzy and distributed by ICON Development Solutions), thereby providing an 
expanded array of tools for use by PK/PD researchers. At this writing, Dr. Bauer is also 
incorporating the EM and Bayesian parametric population methods, initially implemented and 
evaluated in the ADAPT platform, into NONMEM for release by ICON Development Solutions. 
 

Thus, beyond the contribution that ADAPT has made to the research of its users, the 
availability of the source code for the ADAPT platform has benefited other method and software 
developers, thereby further amplifying its impact on the PK/PD scientific enterprise.  
 
 
1.3 New Features in ADAPT 5 
 

ADAPT 5 represents a major new version of ADAPT with expanded capabilities and other 
enhancements, including:  
 

 Parametric population PK/PD modeling using maximum likelihood estimation via the 
EM algorithm with sampling, as introduced by Schumitzky (1995) and Walker (1996). 
The program allows for general user defined second stage covariate models and first 
stage error variance models. 

 

 Iterated two-stage (ITS) analysis as proposed by Prevost (1977) and Steimer, Mallet and 
colleagues (1984), with general covariate and error variance models. 

 

 Convenient standard two-stage (STS) and naive pooled data (NPD) modeling, each with 
WLS, ML and MAP estimators. 

 

 ADAPT library of common PK/PD models, each of which is also available as a stand-
alone executable program (no compiler required) via the BMSR web site. 
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With this release we are adopting the now conventional software version numbering scheme 
(ADAPT 5 is the successor version to ADAPT II, Release 4).  

 
It is with great pleasure that we also welcome Dr. Xiaoning Wang to the ADAPT 

development effort. Her work on EM methods and population modeling has contributed 
significantly to ADAPT 5. 
 
 
1.4 System Requirements 
 

ADAPT 5 is supported for the following platforms:  
 
HARDWARE COMPILER OPERATING SYSTEM 

PC Intel Visual Fortran 11.1 
(distribution includes version with MVS1 
2008 Shell and Libraries integrated and 
the version for MVS 2008/2005 installed 
separately) 

Windows XP/ Server 2003/Vista 

PC Intel Visual Fortran 11.0 
(distribution includes version with MVS2 
2005 integrated and the version for MVS 
2008/2005 installed separately) 

Windows XP/ Server 2003/Vista 

PC Intel Visual Fortran 10.1 
(distribution includes version with MVS2 
2005 integrated and the version for MVS 
2008/2005 installed separately) 

Windows XP/ Server 2003/Vista 

PC Intel Visual Fortran 10.0  
(distribution includes version with MVS2 
2005 integrated and the version for MVS 
2005 or MVS .NET 2003 installed 
separately) 

Windows XP/ Server 2003/Vista 

PC Intel Visual Fortran 9.1 
(MVS 2005 or MVS .NET 2003 must be 
installed separately) 

Windows 2000/XP/ Server 2003 

PC Compaq 6.6c Windows 2000/XP/Vista 
1Microsoft Visual Studio.  
 
 

Alas, the issue of compatible Fortran compilers has been rather confused as the above table 
reflects - not to mention past migrations from Microsoft to Digital Equipment Corporation to 
Compaq to Hewlett Packard. Perhaps more stable development and support will result now that 
Intel has fully transitioned the Fortran compiler into its compiler development efforts. The 
platforms listed in the above table are the only environments on which ADAPT 5 has been tested 
and validated. 
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1.5 Installing ADAPT and Validating the Installation 
 

ADAPT 5 can be downloaded from the BMSR the web site http://bmsr.usc.edu and installed 
by clicking on the installation icon (one of the above listed compilers must be installed first). The 
installation can be validated by running the Validation program in the ADAPT Program Group. 
The pdf file for this User’s Guide is accessed via the ADAPT Program Group after installation. 
The default path for installation of ADAPT is C:\Program Files\BMSR\ADAPT 5. The 
installation folder also includes the subfolder, \Validation, that contains all the model, data, 
parameter and control input files used to validate the ADAPT 5 installation, as well as a 
subfolder, \Example, that includes the files used for the examples in this User’s Guide. Another 
subfolder, \Library, contains all the model files that are available in the ADAPT Library. 
 
 
1.6 About this User’s Guide 
 

This User’s Guide is intended as the complete reference to ADAPT. It includes chapters on:  
 

How to run ADAPT for new users.  
Chapter 2 is a tutorial introduction to ADAPT for those who have had no prior experience 
with program. It provides a step-by-step introduction illustrating how to write model 
equations and prepare data for use with ADAPT, and how to construct new models, enter 
data and run some of the programs. Detailed examples are presented illustrating the basic 
features ADAPT.  
 

All the details.  
Chapters 3-5 document the mathematical and computational methods incorporated in 
ADAPT for individual and population analysis. Chapter 6 provides specifics on model 
implementation and program output.  
 

Examples, examples and more examples.  
Chapters 7-10 provide examples illustrating almost all of the options in ADAPT. These 
chapters present pharmacokinetic examples, pharmacokinetic/pharmacodynamic 
examples, and include examples illustrating individual and population analyses.  

 

Library of models.  
Chapter 11 is a library of over 30 different models that are provided with the ADAPT 
distribution. The Model Files include some common pharmacokinetic and 
pharmacokinetic/pharmacodynamic models that can be customized for user applications.  

 
 
1.7 Using and Contributing Library Model Files 
 

All the library models are also available as standalone, executable programs bundled with 
each of the ADAPT high-level programs. Interested users can download any of these executable 
programs, together with a sample run, from the BMSR web site. Do you have a model file that 
can be shared with other ADAPT users? If so, we strongly encourage you to contact the BMSR 
and we will work with you to publish your model on our web site for others to download. 
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1.8 Citing ADAPT in Publications  
 

Our ability to further develop and support ADAPT depends on the degree to which it is used 
by the research community. This is measured in part by the number of scientific publications that 
use and reference ADAPT. Accordingly, we ask that you acknowledge use of ADAPT in your 
research publications, as appropriate, by citing this user’s guide:  
 

D’Argenio, D.Z., A. Schumitzky and X. Wang. ADAPT 5 User’s Guide: Pharmacokinetic/ 
Pharmacodynamic Systems Analysis Software. Biomedical Simulations Resource, Los 
Angeles, 2009.  

 
 
1.9 Learning About the Research Contributions of other ADAPT Users  
 

How do other researchers use ADAPT? The BMSR web site includes a chronological 
compilation of citations of published journal articles that have referenced ADAPT. If we have 
missed any of your publications please let us know and we will add them to the list. 
 
 
1.10 Getting Help and Staying Current  
 

If you have problems installing or using ADAPT you can contact the BMSR:  
 

  E-mail: marcos@bmsr.usc.edu  
  Phone: (213) 740-0342  
  Fax: (213) 740-0343  
 

Also, from the BMSR Web site (http://bmsr.usc.edu) you can:  
 

  Download ADAPT updates  
  Download the complete User’s Guide 
  Submit questions or suspected program bugs. 
  Download stand alone library models  
  Get a current list of ADAPT Users’ publications 
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CHAPTER 2 
 
 
TTuuttoorriiaall  IInnttrroodduuccttiioonn  wwiitthh  EExxaammpplleess  
 
 
 
 
 
 
 
 
 

This chapter provides a brief introductory tutorial on the use of ADAPT, including: how to 
write pharmacokinetic/pharmacodynamic model equations for use with ADAPT; how to code the 
model equations in a Model File; how to prepare data to be used in ADAPT; how to run ADAPT, 
with examples illustrating the simulation program SIM and the individual estimation program ID. 
Experienced ADAPT users often recommend this chapter to other PK/PD researchers and students 
as a quick introductory overview of ADAPT. Numerous additional examples illustrating the range 
of PK/PD models that can be implemented in ADAPT, as well as the capabilities of all the ADAPT 
programs (for individual and population analysis) are given later in the User’s Guide. The 
complete mathematical and computational details for all the methods used in ADAPT as well as 
the details on the use of the programs are presented in Chapters 3-6 and of this User’s Guide. (We 
gratefully acknowledge the contributions of Brittany Kay and Rui Zhu in preparing this chapter.) 
 
 
2.1 Installing ADAPT 
 

One of the Fortran compilers described in Chapter 1.4 must first be fully installed on your 
system (see Chapter 1.4). The Intel Visual Fortran compilers 10.x -11.x are distributed with and 
without Microsoft Visual Studio components included, and you will need to install the correct 
version for your system. 
 

After downloading ADAPT 5 from the BMSR the web site click on the ADAPT installation 
icon. If a previous version of ADAPT 5 has been installed you will be prompted to remove it. The 
default path for installation of ADAPT is C:\Program Files\BMSR\ADAPT 5, which also 
contains several subfolders including user’s guide examples and library models as noted in 
Chapter 1.5. After successful installation, the installation can be validated by running the 
Validation program in the ADAPT 5 Program Group as indicated shown below. (On Vista 
machines it may be necessary to first change the Properties of the ValidateADAPT.exe program in 
the ADAPT 5 folder as follows: Compatibility Mode – Windows XP (Service Pack 2); Privilege 
Level – Administrator.) 
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This process will run over 25 examples invoking various features of all of the ADAPT programs, 
and will compare the results obtain from the user’s installation to the set of results distributed with 
ADAPT. If these two sets of results are in agreement the window shown below will be displayed. 
The full set of results from the validation (all files created by ADAPT) are archived in the 
validation folder. ADAPT 5 has been validated for all of the platforms listed in Chapter 1.4. 
 

 
 
 
If ADAPT is uninstalled, all the files in the installation director will be removed, including those in 
the \Validation, \Example and \Library folders and any files created by the user. Thus the 
user should not place his or her project files in the ADAPT installation folder. The globals.inc 
file, however, with any changes made by the user will be retained and used on reinstallation of 
ADAPT 5 (see Appendix A). 
 
 
2.2 The ADAPT Interface 
 

When ADAPT is launched (via the ADAPT 5 shortcut in the in the ADAPT 5 Program Group) 
the window shown below in Figure 2.1 will open. Through its five menus, this interface is used to 
perform the following tasks: Program – select one of the ADAPT programs (SIM, ID, SAMPLE or 
MLEM, ITS, STS, NPD); Model – define a model (new, previously created, select one form the 
library); Data – specify all problem data (new, edit an existing data file, open an existing data file); 
Parameter – specify parameter values or initial guesses (new, edit an existing parameter file, open 
an existing parameter file); Batch – specify a command input file (used in program run). These 
steps are illustrated in the tutorial examples presented below.  

 
Also in the interface window, the Link bottom will compile the model file and link it to the 

selected ADAPT program. The Run button will then execute the task (program plus model) using 
the specified data and parameter files.  
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Figure 2.1 ADAPT interface. 
 

 
2.3 Formulating the Model  
 
2.3.1 Model Equations  

 
Models to be used with ADAPT are written as sets of first-order differential equations, sets of 

algebraic equations, or both (as described in detail in Chapter 3). This is best illustrated by 
considering the simplest of pharmacokinetic models, a one compartment model with first-order 
elimination and bolus injection.  
 

�

���
�

 
 

 
If we let x(t) represent the amount of drug in the compartment at time t, then the following 
differential equation describes the rate of change of the amount of drug with respect to time: 
 

( ) ( )el

dx t
K x t

dt
= −         (2.1) 
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The associated concentration of drug at time t , denoted by ( )y t , is given by the following output 
equation: 
 

( ) ( )y t x t V=          (2.2) 
 
Note that the bolus input b is not included in either the differential (Eq. (2.1)) or the output (Eq. 
(2.2)) equations. It is instead specified in an ADAPT Data File, including the dose times at which 
the bolus is given and the corresponding values for the bolus doses. In the above model equations 
there are two parameters, Kel and V ; these are referred to as the system parameters in ADAPT.  
 

How do the above model equations change if, instead of a bolus administration, the drug is 
administered as an intravenous infusion?  
 

�

���
��	


 
 
In the case of an infusion input, the variable r(t) appears explicitly in the differential equation, 
resulting in the following model equations:  
 

( ) ( ) ( )el

dx t
K x t r t

dt
= − +        (2.3) 

( ) ( )y t x t V=          (2.4) 
 
The particular details of the infusion regimen are supplied in an ADAPT Data File. The symbol 
r(t) is referred to as a model input and, in addition to representing infusion of a drug into a 
compartment, it can also be used to represent a measured covariate.  
 

Instead of a one-compartment model, suppose the kinetics of the drug under study are to be 
described by the following linear two-compartment model with intravenous drug infusion:  
 

 
 

 
If we let ( )1x t  and ( )2x t  represent the amount of drug in compartments 1 and 2, respectively, and 
let y(t) represent drug concentration in compartment 1, the following differential and output 
equations describe the model depicted above:  
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( ) ( ) ( ) ( ) ( )1
1 2el cp pc

dx t
K K x t K x t r t

dt
= − + + +        (2.5) 

( ) ( ) ( )2
1cp pc

dx t
K x t K x t

dt
= − 2           (2.6) 

    ( ) ( )1y t x t V=            (2.7) 
 
When using differential equation models, it is necessary to specify the initial condition for each of 
the differential equation variables. For example ( )1 0x t =  (IC(1)) and  (IC(2)) in the 
above two-compartment model. These values, along with values (or initial guesses) for the other 
model parameters, are provided in an ADAPT Parameter File.  

(2 0x t = )

 
The use of both differential and output equations is the most general way to define a model 

for use with ADAPT. The differential equation variables ( )1x t , ··· ( )nx t , can be used to represent: 
compartment amounts (as in the examples above); tissue concentrations; cellular concentrations; 
effect site concentrations; physiological variables; ligand concentrations; biomarkers; disease 
states; etc. The output variables , ···,( )1y t ( )ly t , can represent any quantities to be measured or 
predicted including: plasma concentrations; drug exposure; drug effects; etc. The model inputs, 

, can represent: drug infusion (of one or more compounds); covariates (e.g., body 
weight, creatinine clearance, etc.). Chapter 11 describes a number of models supplied with 
ADAPT, and illustrates how to write the model equations for a broad class of pharmacokinetic 
and pharmacokinetic/pharmacodynamic models. After reading the current chapter, you should 
look through the models presented in Chapter 11 as they will provide you with a better 
understanding of how ADAPT can be used to model a variety of pharmacokinetic and 
pharmacodynamic processes.  

( ) ( )1 , , kr t r t…

 
2.3.2 Measurement Model 
 

For some of the options in ADAPT, it is necessary to specify a model for the additive error 
variance associated with observed data (i.e., error variance model). Observations are collected at 
discrete times, , and assumed to include additive error as follows:  jt
 

( ) ( ) ( ) ,  1,...,j j jz t y t e t j m= + =        (2.8) 
 
In this equation,  represents the observed value of the model output ( )jz t ( )jy t  at time , and 

 is the associated error. A portion of 
jt

( )je t ( )je t  is attributable to errors in the measurement 
process.  
 

In ADAPT, ( )e t  is assumed to be normally distributed, with zero mean and variance given by 
the user defined variance model. A commonly used error variance model relates the variance of 

 ( )e t ( ){ }(var e t )  to the model output ( )jy t  as follows:  
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( ){ } ( )( )2

var inter slopee t y tσ σ= +        (2.9) 
 
As an example assume 0.0interσ =  and 0.1slopeσ = in Eq. (2.9). Then the variance model 
represents an error process with a standard deviation of 10% of the measured quantity (i.e., 10% 
coefficient of variation). Another error variance model is the power model, which can be written:  
 

( ){ } ( )2
0var e t y t γσ=         (2.10) 

 
The parameters appearing in the variance models ( interσ  and slopeσ in Eq. (2.9) and 0σ  and γ  in 
Eq. (2.10)) are referred to as the variance model parameters. For models with multiple responses, 
each output can be defined by a unique error variance model. 
 
2.3.3 Secondary Parameters  
 

ADAPT allows for the definition of secondary parameters that can be written as functions of 
the model system parameters. As an example, the following secondary parameters can be defined 
for the two-compartment model shown above (Eqs. (2.5)-(2.7)).  
 

t elCL K V= ⋅      (2.11) 

d cpCL K V= ⋅       (2.12) 

P C cp pV V K K c= ⋅        (2.13) 
 
In this example the model is parameterized using rate constants with the secondary parameters 
used to provide the corresponding clearance parameterization. 
 
 
2.4 Implementing the Model  
 

The equations for the two compartment model (for example) given above are entered into an 
ADAPT Model File as follows: 1) from the ADAPT interface, select the Model menu and the New 
entry in the menu; 2) provide a Model File name and indicate the location for the file that will be 
created, as illustrated in the screen shot shown in Figure 2.2 below. After saving the Model File, 
the installed Fortran compiler’s development environment will open allowing the user to enter the 
model equations. 
 

The Model File contains several Fortran subroutines into which you must enter the Fortran 
code for the parameter symbols, model differential equations, output equations, any error variance 
model equations, as well as any secondary model parameters and equations. To do this you must 
follow the syntax rules of the Fortran language and of ADAPT. As shown in the remainder of this 
section, it is relatively straight forward to translate model equations into Fortran code. (See 
Chapter for some additional discussion regarding Fortran syntax.) 

 12



Biomedical Simulations Resource 
 

 
 

Figure 2.2 Selecting new file from the Model File menu. 
 

To illustrate how to create an ADAPT Model File, consider the two-compartment model 
presented above as an example. The first step is to relate the algebraic symbols used to define the 
model differential and output equations in Eqs. (2.5)-(2.7), the variance model equation in Eq. 
(2.9), and the secondary parameter equations in Eqs. (2.11)-(2.13), to the appropriate Fortran 
symbols as indicated in the Tables 2.1 and 2.2 below.  
 

Table 2.1 Model Equation Variables 
 
 

Model  Model Code Code Variable Variable 
 ( )1dx t dt 

1( )x t   X(1) XP(1) 
 
 

 2 ( )x t 2 ( ) /dx t dt  X(2) XP(2)

( )y t  
 
 

Table 2.2 
      System Parameters       Error Variance Model        Secondary Parameters 

 
 
 
 
 
 
 

 Y(1) ( )r t  R(1) 

Model  Model  Model Code Code Code Variable Variable Variable 
( ){ }var e t  

tCLelK   P(1) V(1) PS(1) 
  

dCLinterσP(2) PV(1) PS(2)V    

  cpK  pV slopeσP(3) PV(2) PS(3) 

  
pcK  P(4)     
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Figure 2.3 shows the initial portion of the new Model File as it appears in the edit window of 

the Fortran compiler’s development environment. The figure indicates user entries made in 
Subroutine SYMBOL for: the number of differential equations; the number of system parameters; 
the number of error variance parameters; the number of secondary parameters; the equation solver 
method; and a text description of the model. 
 
 

 
 
Figure 2.3 A portion of Subroutine SYMBOL from Model File example.for. The entries made 

by the user are indicated.  
 

 
The remaining user entries in Subroutine SYMBOL include the symbols for the system 
parameters, as well as symbols for any error variance model and secondary model parameters. 
This is illustrated in Figure 2.4 for the example defined above. 
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Figure 2.4 The second part of Subroutine SYMBOL from Model File example.for. 
 

Figure 2.5 shows a portion of Subroutine DIFFEQ showing the coded model differential 
equations. Each equation is entered on a separate line, beginning in column 7 or after, and 
extending no further than column 72. (To continue an equation on a second line see the examples 
in Chapter 7.) The Fortran symbols can be entered as either upper case or lower case characters. 
Figure 2.6 shows a portion of Subroutine OUTPUT illustrating the coded model output equations.  
 

 
 
Figure 2.5 Excerpt from Subroutine DIFFEQ illustrating how to code the model differential 

equations from the Mode File example.for.  
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Figure 2.6 m Subroutine OUTPUT illustrating how to code model output 
equations.  

 

.7. Figure 2.8 shows an excerpt from 
ubroutine SPARAM defining the secondary parameters. 

 

Figure 2.7 Excerpt from Subroutine VARMOD illustrating how to code the variance model 

 

Figure 2.8 de e seco dary 
parameter equations. Note the code that skips the evaluation of 

 
 

Excerpt fro

 

Using the above Fortran symbol correspondence, the error variance model given in Eq. (2.9) is 
coded in Subroutine VARMOD as illustrated in Figure 2
S
 

 
 

 

 
 

Excerpt from Subroutine SPARAM illustrating how to co  th n
PV  if 0pcK = . 

 

 16



Biomedical Simulations Resource 
 

2.5 Preparing Data to be used with ADAPT  

.5.1 Model Input Information  
 

 
2

To illustrate how to arrange dose regimen information for use with ADAPT, assume a drug is 
administered as an intravenous infusion and also as an intravenous bolus, with the dose regimen 
shown in Figure 2.9. To enter the dose regimen in ADAPT it must be supplied as a spreadsheet as 
illustrated in Table 2.3. In this example, there are five input events. An input event is defined as 
any time at which one of the model inputs or bolus inputs changes. For each input event, you must 
supply the associated input event time and the values for any of the model and bolus inputs. (For 

rther details on defining model input information see the examples later in the User’s Guide.) 

 

fu
 

 
 

Diagram showing the dose regimen for both the intravenous and bolus 
adminis

Figure 2.9 
tration of the drug. In this example there is one model input and one bolus 

input.  

 
T del Inp ation 

 

Input Event Input Event 

 

able 2.3 Mo ut Inform

Infusion Bolus  
Nu Tim ) Rat r) Amo g) mber  e (hr e (mg/h unt(m

1  0.0  1000  0.0  
2  1.0  0.0  0.0  
3  6.0  0.0  500  
4  12.0  500  250  
5  13.0  0.0  0.0  

 
 
2.5.2 Model Output Information  
 

partment model defined above consider as an example the output information given in 
able 2.4.  

 

Model output information includes the number of output equations, the number of 
observations, the observation times and the measured data (when appropriate) for each output. For 
the two com
T
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Table 2.4 t I
 

Ob O Mea ur  

 Model Outpu nformation 

servation  bservation s ements
Nu er  Tim r) mb e (h (μ g/ml) 

1  1.0 70. 
3.0 20. 2  
6.0 5.0 3  
6.1 50. 4  
7.0 30. 5  
12.0 5.0 6  
13.0 50. 7  
15.0 15. 8  
17.0 10. 9  
20.0 5.0 10  
24.0 3.0 11  

12  36.0 1.0 
 
2.5.3 Creating an ADAPT Data File 
 
Given this model input information, a new ADAPT Data File can be created via the ADAPT 
interface by selecting the Data menu and the New entry in the menu. The entries are made in the 
appropriate locations as illustrated in Figure 2.10. For the SIM and SAMPLE programs, the entries 
 

 
 

Figure 2.9 Screen shot illustrating how to create an ADAPT Data File. 
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in the measurement column would be left blank. Finally, name and save the Data File to the same 
directory that contains the Model File. In this example, the Data File is named “example1.dat” and 
it will be used below to illustrate the ID program. A Data File without the measurements has been 

ved in a file named “example.dat” and it will be used below to illustrate the SIM program. 

.6 Creating an ADAPT Parameter File 
 

sa
 
 
2

The ADAPT Parameters File includes values (or initial guesses) for all system parameters 
including any initial conditions for differential equations, as well as any error variance model 
parameters. Figure 2.10 illustrate the construction of a Parameter File using the values given in 

able 2.5 (a file example.prm is created). 

 
 Parameter values for the two compartment model 

 Pa eters 

T
 

Table 2.5 example. 
 

System ram
Kel 0.5 
V 10 
Kcp 0.2 
Kpc 0.1 
 
 
 

 
 

Figure 2.10 Screen shot illustrating how to create an ADAPT Parameter File. 

ial Co tions 
Va nce P eters ria aram

Init ndi 0.5   interσ
IC(1) 0 

0.1 slopeσ  IC(2) 0 
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2.7 Sample Run of SIM  
 

To illustrate the SIM program, consider the two-compartment model defined by Eqs. 
(2.5)-(2.7) above and coded in the Model File example.for. After selecting the program SIM and 
creating model, data and parameter files through the ADAPT interface, the program and model file 
can be linked and saved as an executable file and then run as indicated in Figure 2.11. Figure 2.12 
shows an overview of the resulting run of the SIM program, with the detailed SIM command, 
results and plot windows shown in Figures 2.13-2.15. 
 

 
 

Figure 2.11 Linking (including compiling) and running via the ADAPT interface. 
 
 

 
 

Figure 2.12 Overview of program run via the ADAPT interface, showing the command window 
(left, background), plot window (right) and results window (center, foreground). 
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Figure 2.13  SIM program command window with the user’s input indicated. 
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Figure 2.14  A section of the SIM program results window. After exiting the program the 

complete record of the program dialogue and the results are saved in the named run 
file (example.run). During the run these results are contained in a temporary file. 
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Figure 2.14  (Continue) 
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Figure 2.14  (Continue) 
 
 
 

 
 

Figure 2.15  A SIM program plot window. After exiting the graph shown in the plot window is 
also stored as an eps file (example.eps). 
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2.8 Sample Runs of ID  
 

The two-compartment model defined above and encoded in the Model File example.for is used 
to illustrate the use of the individual subject estimation program, ID. The measured data stored in 
the file example1.dat (see Table 2.4 above) is used along with the initial guesses for model 
parameters stored in file example.prm. Examples are presented illustrating both the weighted least 
squares (WLS) and the maximum likelihood (ML) estimation options of ID. The program, model, 
data and parameter files are selected via the ADAPT interface (screen shot not shown) as 
illustrated previously. 
 

Figure 2.16 shows the ID program command window for the WLS run, with sections of the 
corresponding ID results and plot windows shown in Figures 217 and 2.18. For the WLS 
estimation example, ordinary least squares is selected (General weighting option). See Chapter 3 
for a discussion of the WLS weighting options. 
 

i i ii i i
 

 

Figure 2.16  ID program command window for the WLS example. 
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Figure 2.17  The ID program results window (and run file) for the WLS example. 
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Figure 2.17  (continued) 
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Figure 2.17  (continued) 
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Figure 2.17  (continued) 
 

 
 

Figure 2.18  Screen shot of ID program plot windows (3 of 4) for the WLS example. 
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Figure 2.19 shows the ID program command window for the ML run, with sections of the 
corresponding ID results and plot windows shown in Figures 2.20 and 2.21. In Figure 2.19, the 
four PK parameters are selected to be estimated as is the SDslope parameter of the error variance 
model, while the SDinter parameter is fixed at a value of 0.5.  
 
 

i i i

 
 

Figure 2.19  Sections of ID program command window for the ML example. 
 
 

 
 

Figure 2.20  The ID program results window for the ML example. 
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Figure 2.20  (continued) 
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Figure 2.20  (continued) 
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Figure 2.20  (continued) 

 33



ADAPT 5 User’s Guide 

 
 

Figure 2.20  (continued) 
 
 
 

 
 

Figure 2.21  Screen shot of ID program plot windows (2 of 4) for the WLS example. All plots 
also stored in the file exampleML.eps 
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CHAPTER 3 
 
 
Modeling Framework and SSttaattiissttiiccaall  MMeetthhooddss::  
IInnddiivviidduuaall  AAnnaallyyssiiss  
 
 
 
 
 
 
 
 
 
3.1 System Model 
 

It is assumed that the process under study (i.e. the system) is described by the following set 
of differential and/or output equations: 

 

( ) ( ) ( )( ) ( ), , , ,   0
dx t

f x t r t t x c
dt

α= =                   (3.1) 

( ) ( ) ( )( ), , ,y t h x t r t tα=          (3.2) 
 

Equations (3.1) and (3.2) are referred to as the state and output equations. The symbols 
introduced in the above equations are defined in Table 3.1. The vector θ  will be used to 
represent the collection of model parameters α  and initial conditions . To emphasize the 
dependence of the model output on the parameters 

c
θ , the solution of Eqs. (3.1) and (3.2) will be 

represented by . ( ),y tθ
 
3.2 Model Inputs, Bolus Inputs and Others 
 

The elements of the vector  represent inputs to the model that are explicitly included in 

the model equations. For example, 
( )r t

( )r t  is used to represent a drug infusion regimen in which 

the rates of infusion remain constant between input times  (i.e., piece-wise constant inputs):  it
 

( ) 1 1,  ,  2,..., 1j i i ir t r dt t dt i nd− −= < ≤ = +        (3.3) 
 

Each element of the vector  (i.e.,( )r t ( )jr t ) is used to represent the dose regimen of a specific 
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compound. The elements are also used to represent measured covariates that are included in the 
model differential and output equations, as well as in covariate model equations (see Chapter 4). 
These covariates are also assumed to be piece-wise constant as defined in Eq. (3.3).  
 
 

Table 3.1 Model Equation Definitions 
 

Symbol Definition Dimension 
x  state vector, ( ) ( ) ( )1

T
nx t x t x t= ⎡ ⎤⎣ ⎦…  n  

α  model parameter vector mp  
r  input vector, ( ) ( ) ( )1

T
kr t r t r t= ⎡ ⎤⎣ ⎦"  k  

c  initial condition vector n  
y  output vector, ( ) ( ) ( )1

T
ly t y t y t= ⎡ ⎤⎣ ⎦"  l  

t  time scalar 
( ) dttdx

 
derivative of state vector n  

b  bolus vector, ( ) ( ) ( )1
T

nb t b t b t= ⎡ ⎤⎣ ⎦…  n  

θ  system parameter vector, [ ]| Tcθ α=  mp p n= +  
 
 

A second class of inputs used in ADAPT is bolus inputs. These inputs do not appear 
explicitly in the model equations, but are defined when the programs are run. Bolus-type inputs 
are simulated as producing instantaneous changes in model states in the following manner:  

 

( ) ( ) ( ) ,   1,...,i i ix dt x dt b dt i nd+ −= + =                   (3.4) 
 

where  is the bolus input vector ( )b t ( ) ( ) ( )1( ... )
T

nb t b t b t= ⎡ ⎤⎣ ⎦  and the −  and  indicate times 

immediately before and after bolus administration. The input event times, , appearing in Eqs. 
(3.3) and (3.4), are defined as any time at which any element of the input vectors r(t) or b(t) 
changes value (e.g., administration of a new bolus or changing of an infusion rate or covariate 
value - see below). 

+

idt

 
Finally, input functions that are not piece-wise constant or boluses are entered explicitly in 

the model equations. This includes inputs represented by sums of exponentials, trigonometric 
functions, piece-wise linear functions and others. See the ADAPT Model Library in Chapter 11 
for examples that illustrate the definition of such model inputs. 
 
3.3 Measurement Model 
 

Data to be used in parameter estimation are generally collected at discrete times and subject 
to additive output error as follows: 
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( ) ( ) ( ), ,  1,...,j j jz t y t e t j mθ= + =                    (3.5) 
 

where ( ), jy tθ  represents the model output vector at time jt  (from Eqs. (3.1) and (3.2)) and 

( )je t  is the vector of additive output error terms. A portion of the output error is generally 

attributed to errors in the measurement process. In Eq. (3.5) ( )je t  represents all sources of 
uncertainty (including measurement error) that can be modeled as a random process added 
(directly or by transformation) to the true model output. 
 

In Eq. (3.5) it is assumed that ( ){ } 0jE e t = ,  1,...,j m= , ( )je t  and ( )ke t  are independent for 

, and j k≠ ( )je t and  are independent for( )ke t j k≠ . Under these assumptions, ADAPT allows 

the user to supply a model for the variance of the additive error ( )e t  in the following form: 
 

( ){ } ( )( )var , , , ,   1,..., ,    1,...,i j i j je t g x t t j m i lθ β= = =       (3.6) 
 

The vector β  represents additional parameters that are unique to the error variance model. See 
Table 3.2 for Definitions of all symbols. As a convenience, the function g  in Eq. (3.6) may also 
be defined directly in terms of the model outputs. 

 

( ){ } ( )( )var , , ,   1,..., ,    1,...,i j i i je t g y t j m i lθ β= = =                  (3.7) 
 
 

Table 3.2 Observation and Error Variance Model Symbols 
 

Symbol Definition Dimension 
( )jz t  observation vector at time jt  

( ) ( ) ( )1 ...
T

j j l jz t z t z t⎡ ⎤= ⎣ ⎦  

l  

( )je t  error vector at time jt  

( ) ( ) ( )1 ...
T

j j l je t e t e t⎡ ⎤= ⎣ ⎦  

l  

( )jg t  error variance model vector at time jt  

( ) ( )( ) ( )( )1 1 , , ... , ,
T

j j l l jg t g y t g y tθ β θ β⎡ ⎤= ⎣ ⎦

l  

β  error variance parameter vector q  
 
 
3.4 Parameter Model 
 

ADAPT allows for two types of system parameters θ : θ  constant, either known or 
unknown; θ  random vector, with density function ( )p θ . Depending on the particular program 
and option selected, the following density functions for θ  can be defined: 
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( ) ( ),p Nθ μ= Σ  (multivariate Normal - SIM, ID, NPD, STS, ITS, MLEM) 

( ) ( ),p LNθ μ= Σ  (multivariate lognormal - SIM, ID NPD, STS, ITS, MLEM) 

( ) ( max0,p Uθ θ= )  (independent uniform - SIM) 

( )p NIθ =   (noninformative, θ  > 0 -ID, NPD, STS)              (3.8) 
 

where μ  (dimension ) and  (dimension1p× Σ p p× ) represent the prior mean vector and 
covariance matrix, respectively, of the model parameters θ .  
 
 

Table 3.3 Parameter Model Symbols 
 

Symbol Definition Dimension 
μ  mean of ( )p θ  p  

Σ  covariance of ( )p θ  p p×  
 
 

The system parameter vector θ  can also be partitioned into two independent components 1θ  

and 2θ  (i.e., 1 2

TT Tθ θ θ⎡= ⎣ ⎤⎦ ). In this case, 1θ  is assumed to be either multivariate Normal or 

lognormal with mean 1μ  and covariance 1Σ  ( ( )1 1,Nθ μ 1Σ∼  or  ( )1 1,LNθ μ Σ∼ 1 ). The elements 

of 2θ  are assumed to be independent uniform random variables in SIM ( ) or to 

come from a noninformative prior distribution in ID, NPD and STS (
( max

2 0,Uθ θ∼ )
2 NIθ ∼  with 2 0θ > ). 

 
3.5 Secondary Parameters 
 

The user can also specify a collection of secondary parameters, represented by the vector γ , 
that are defined as functions of the parameters θ  as follows: 

 

( )wγ θ=                      (3.9) 
 

Any variable written as an algebraic function of θ  can be defined as a secondary parameter. 
 
3.6 The Simulation Program – SIM 

 
Four simulation options are available through the program SIM. Option 1 constructs the 

model output vector (  in Eq. (3.2)) for an individual given values for all system 
parameters 

( ,y tθ )
θ  (including initial conditions). With option 2, the error corrupted output vector at 

each observation time ( ( )jz t  in Eq. (3.5)) is simulated for a given value of the model 
parameters. This is repeated a specified number of times by repeated generation of random 
deviates to construct the output error. With this option the equation for the variance of the output 
error must be coded in subroutine VARMOD of the Model File. Option 3 provides the capability 
for performing a population simulation. SIM performs a specified number of simulations of the 
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model, with values for the system parameters randomly selected from either a Normal or 
lognormal distribution with mean vector and covariance matrix as given in subroutine PRIOR of 
the Model File. As discussed in Chapter 3.4, θ  can be partitioned into a Normal or lognormal 
component, 1θ , and a component, 2θ , consisting of parameters assumed to come from 
independent uniform distributions. In this case, the upper limits of the uniform distributions for 
each element of 2θ  are requested by the program. Finally, option 4 allows for a population 
simulation with output error. 
 

When either option 2, 3 or 4 is selected, the summary of the simulation results is generated 
that includes the mean, standard deviation and minimum and maximum values for each output at 
each observation time. For the case of options 3 and 4 (population simulations) a summary of the 
parameters is also provided with the same statistical analysis. The plots displayed with options 2, 
3 and 4 show for each observation time, the average output with standard deviation bars. A 
continuous curve is also displayed for each model output, that is obtained using the entered 
parameter values (option 2) or the population mean parameter values (options 3 and 4). 
 
3.7 The Estimation Program – ID 
 

This section defines the four statistical estimation options available in ID; it is not intended 
as an introduction to the general problem of nonlinear parameter estimation in 
pharmacokinetic/pharmacodynamic data analysis. For background on the analysis of 
kinetic/dynamic data using parametric methods and nonlinear regression in general, the user is 
referred to references ([3]-[9]).  
 
3.7.1 Weighted Least Squares (WLS) 
 

The WLS objective function is 
 

( ) ( ) ( )( 2

1 1

,
l m

WLS ij i j i j
i j

O w z t yθ
= =

= −∑∑ )tθ      (3.20) 

 

The weighted least squares estimate (denoted θ̂ ) is the value of θ  that minimizes ( )WLSO θ . In 

Eq. (3.20), ( ),i jy tθ  represents the solution of the  model equation at time thi jt  (from Eqs. (3.1) 

and (3.2)). The weights for each observation, , are specified by the user. This is done by 
entering the weights to be attached to each model output (

ijw

io , 1,...,i l= ), and the weights for each 
of the observations ( ijw′ , ) of each output (1,...,j = m ij i ijw o w′= ). Three options are available in 
ID for specifying the observation weights ijw′ . In option 1, the weights are all set initially to 1, 
and the user specifies which if any are non unity and the value for the weight for that observation 
(i.e.  entered directly). In ijw′ options 2 and 3, the observation weights are set equal to the inverse 

of the variance of the output error ( 21ij ijw σ′ = ). In option 2, ijσ  is approximated as a linear 

function of the measured data ( ( )ij i jaz t bσ = + ). To define this function, the user enters two 
points on this standard deviation – measurement line. All the values of ijσ  must be entered by the 
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user when option 3 is selected. 
 
Included in the WLS estimation summary are approximate values for the standard errors (as 

coefficients of variation) of the parameter estimates (θ̂ ), which are obtained from the asymptotic 
covariance matrix of the estimated parameters (m ( )ˆcov θ ). The asymptotic covariance matrix of 

the estimates, which can also be listed in the WLS estimation summary, is calculated as follows: 
 

m ( ) ( ) ( )( )1ˆcov T T TP WP P WGWP P WPθ
1− −

=     (3.21)  
 

where  is the  Jacobian matrix obtained from P m l p⋅ ×
 

( )ˆy
P

θ

θ

∂
=

∂
,  ( ) ( ) ( ) ( )( )1 1 1 2, , ,

T
l my y t y t y tθ θ θ θ= "    (3.22) 

 

and W  is the  matrix of weights used in Eq. (3.21), m l m l⋅ × ⋅
 

{ }11 12 lmW diag w w w= "       (3.23)  
 

For weighting option 1, the  matrix m l m l⋅ × ⋅ R  contains estimates of the error variance for each 
output: 
 

{ }2 2 2
1 1 2 lG diag 2σ σ σ σ= " "      (3.24)  

 
where 
 

( ) ( )( )2
2

1

1 ˆ,
m

i ij i j i
ji

w z t y t
df

σ
=

= −∑ jθ      (3.25)  

 
and 
 

( )i idf m p l= − , 1,...,i l=       (3.26)  
 

In this last equation defining the degrees of freedom for the  output,  represents the number 
of non-missing, non-zero weight observations for the  output. For observation weighting 
options 2 and 3, 

thi im
thi

 

{ }2 2
11 1mG diag 2

lmσ σ σ= " "      (3.27)  
 
When different weighting options are selected for the different model outputs, the corresponding 
blocks in the matrix G  are constructed using the appropriate error variance ( 2

iσ  or 2
ijσ ) from 

above. The approximate standard errors of the estimated parameters, 
iθ

σ ,  are obtained 
from the covariance matrix in Eq. (3.21). The corresponding coefficients of variation are 
calculated as 

1,...,i = p

ˆ
ˆ100

ii
iCV θθ

σ θ= .  
 

 40



Biomedical Simulations Resource 
 

The WLS estimation summary provides, for each model output, values of the final sum of 
squares ( ), weighted sum of squares ( ) and coefficient of determinations (iSS iWSS 2

iR ) as 
defined below:  
 

( ) ( )( )2

1

ˆ,
m

i i j i j
j

SS z t y tθ
=

= −∑           (3.28) 

( ) ( )( )2

1

ˆ,
m

i ij i j i j
j

WSS w z t y tθ
=

= −∑         (3.29) 

( ) ( )( ) ( )( )( )
( ) ( )( ) ( )( )

2

12
2 2

1 1

ˆ ˆ,

ˆ ˆ,

m
i j i i j ij

i m m
i j i i j ij j

y t y z t z
R

y t y z t z

θ θ

θ θ

=

= =

− −
=

− −

∑

∑ ∑
,       (3.30) 1,...,i l=

 

where ( )ˆiy θ  and iz  represent the average values of the model predictions and observations for 

each output. For each estimated parameter, îθ , a 95% confidence interval is calculated as 
follows: 
 

( ) ( )0.975
ˆ ˆˆcovi ii

t dfθ θ±                  (3.31) 
 

where m ( )ˆcov
ii

θ ,  are the diagonal elements from Eq. (3.21), and the total degrees of 

freedom used to determine the appropriate value of the Student’s  distribution is . 

1,...,i = p

t ml p−
 

The resulting estimates of the secondary parameters are calculated by evaluating Eq. (3.9) at 
the least squares estimates for θ̂ . The approximate covariance matrix of the estimates for the 
secondary parameters, ( )ˆ ˆcov γ ) ( dim s s× ), is calculated as follows:  
 

m ( )
( ) m ( ) ( )ˆ ˆ

ˆˆcov cov

T
w wθ θ

γ θ
θ θ

⎛ ⎞ ⎛ ⎞∂ ∂
⎜ ⎟ ⎜=
⎜ ⎟ ⎜ ⎟∂ ∂
⎝ ⎠ ⎝ ⎠

⎟       (3.32) 

 
The standard errors of the secondary parameters and the corresponding 95% confidence intervals 
are calculated as described above. 
 
3.7.2 Maximum Likelihood (ML) 
 

When the additive error is normally distributed, and given the independence assumptions in 
Section 3.3, the ML estimates for both the system and variance model parameters (θ  and β ) can 
be estimated by maximizing the likelihood function: 
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( ) ( )( ) ( ) ( )
( ) ( )( )
( )

2

1 1

,1
2 ( , ),1

22

1 1

, , | 2 ,

l m
i j i j

i i ji j

z t y t
l m g y tl m

i j
i j

L z t G e
θ

θ β
θ β θ β π θ β

= =

⎛ ⎞−⎜ ⎟− ⎜ ⎟
⋅ ⎜−− ⎝

= =

∑∑
= =∏ ∏ A

⎟
⎠  (3.33) 

 

This is done by minimizing, over θ  and β , the negative of the log of the likelihood:  
 

( ) ( )
( ) ( )( )
( ) (

2

1 1

,1, ln 2 2 ln ( , ),
2 ( , ),

l m i j i j
NLL i i j

i j i i j

z t y t
O l m g y t

g y t

θ
)θ β π θ

θ β= =

⎛ ⎞−⎜ ⎟= ⋅ ⋅ + +⎜ ⎟⎜ ⎟
⎝ ⎠

∑∑ β  (3.34) 

 

The resulting ML estimates are denoted θ̂  and β̂ . For the ML estimation option, it is not 
required to estimate variance model parameters. (The case when observations exceed 
quantitation limits is described below.) 
 

The approximate covariance matrix for the ML parameter estimates θ̂  and β̂  is calculated as 
detailed below. 
 

m ( ) ( ) 1

,
ˆ ˆcov , Mθ βθ β

−
=          (3.35) 

 

The elements of the matrix { }, jkM mθ β = , 1,...,j p q+ 1,...,k p q, = = + , are defined in the 

following equations and evaluated at ( )ˆ ˆ,θ β . 
 

2
1 1

1 1 1
2

r rn n
i i i i

jk
i ii j k i j k

y y g gm
g gθ θ θ= =

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛∂ ∂ ∂ ∂
= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝⎝ ⎠ ⎝ ⎠
∑ ∑ θ

⎞
⎟
⎠

      (3.36) 

1,...,j p= ; 1,...,k p=  

2
1

1 1
2

rn
i i

jk
i i j k

g gm
g β β= ′ ′

⎛ ⎞⎛ ⎞∂ ∂
= ⎜ ⎟⎜⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠
∑ ⎟          (3.37) 

   ; 1,...,j p p q= + + 1,...,k p p q= + + ; j j p′ − k k p; ′ = −  =

2
1

1 1
2

rn
i i

jk
i i j k

g gm
g θ β= ′

⎛ ⎞⎛ ⎞∂ ∂
= ⎜ ⎟⎜⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠
∑ ⎟           (3.38) 

1,...,j p= ; 1,...,k p p q= + + ; k k p′ = −  

jkm m= kj   1,...,j p p q= + + ; 1,...,k p=       (3.39) 
 

where iy  are the elements of the vector ( )y θ  (see Eq. (3.22)),  are the elements of the vector ig

( ) ( ) ( )1 1 1, ( , ), ( , )l l mg g y t g y t ,θ β θ β θ≡ ⎡⎣ " β ⎤⎦ , and  is the number of non missing 
observations. When no variance parameters are estimated, Eq. (3.36) defines the covariance 
matrix and is denoted 

rn

m ( )ˆcov θ . We also define the matrix ( ),G θ β  (dim ) for latter use: xr rn n

( ) ( ) ( ){ }1 1 1, ( , ), ( ,l l mG diag g y t g y t ),θ β θ β θ= " β  
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The standard errors and the confidence intervals for the parameter estimates are calculated as 
described for the case of the least square parameter estimates. Also the secondary parameters and 
their statistics can be calculated by applying Eqs. (3.9) and (3.32) using the ML estimates of the 
parameters and the associated covariance matrix (upper p p×  block of m ( ˆ ˆcov , )θ β  from Eq. 

(3.35)). 
 
If any of the observations are below the quantitation limit (BQL) or above the of quantitation 

limit (AQL), then those observations are treated as censored and their likelihoods are defined as 
follows: 
 

( )( ) ( )( )
( )

,
, |

( , ),

i i j
i j

i i j

LLQ y t
l z t

g y t

θ
θ β

θ β

⎛ ⎞−⎜ ⎟= Φ
⎜ ⎟⎜ ⎟
⎝ ⎠

   or   ( )( ) ( )( )
( )

,
, | 1

( , ),

i i j
i j

i i j

ULQ y t
l z t

g y t

θ
θ β

θ β

⎛ ⎞−⎜ ⎟= −Φ
⎜ ⎟⎜ ⎟
⎝ ⎠

 

 

where  and  denote the values of the lower limit of quantitiation and upper limit of 
quantitation, respectively, for the ith output. In these equations, 

iLLQ iULQ

( )Φ ⋅  denotes the cumulative 
Normal distribution function. The negative of the log of the likelihood in Eq. (3.34) is adjusted 
accordingly. This is method M3 as suggested by Beal [10]. 
 
 
3.7.3 Generalized Least Squares (GLS) 
 

The GLS method implemented in ID uses the following algorithm to estimate θ  and β : 
 
 
 
 
 
 
 

            (3.40) 

i) { }ˆ arg min LSO
θ

θ =   

ii) { }ˆ arg min ,NLLO
β

β =  given θ̂  

iii) { }ˆ arg min ,WLSO
θ

θ =  given β̂  

iv) go to ii or stop.  
 
The three objective functions introduced in this algorithm are given below. 
 

( ) ( ) ( )( 2

1 1

,
l m

LS i j i j
i j

O z t yθ
= =

= −∑∑ )tθ     (3.41) 

 

( ) ( )
( ) ( )( )
( ) (

2

1 1

ˆ,1 ˆln 2 2 ln ( , ),
ˆ2 ( , ),

l m i j i j

NLL i i j
i j i i j

z t y t
O l m g y t

g y t

θ
)β π θ

θ β= =

⎛ ⎞−⎜ ⎟= ⋅ ⋅ + +⎜ ⎟
⎜ ⎟
⎝ ⎠

∑∑ β

)t

 (3.42) 

 

( ) ( ) ( )( 2

1 1

,
l m

WLS ij i j i j
i j

O w z t yθ θ
= =

= −∑∑ , where 
( )

1
ˆ ˆ( , ),

ij

i i j

w
g y tθ β

=   (3.43)  
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In defining  in Eq. (3.43), ijw θ̂  and β̂  are set at their values at the start and end of step ii, 
respectively. The asymptotic error analysis defined above for the WLS estimator is also provided 
when the GLS estimation option is selected. For this case, the elements of W in Eq. (3.23) are 
defined by the  in Eq. (3.42). The diagonal elements of the matrix G in Eq. (3.24) are defined 

by the output error variance model 
ijw

( )ˆ( , ),i i jg y tθ β . The m ( )ˆcov θ  in Eq. (3.21), therefore, reduces 

to ( . The secondary parameters and their statistics are calculated as described above. )

)

11TP G P
−−

 
3.7.4 Bayesian (MAP) 
 

Incorporating prior information about unknown system parameters can be useful in certain 
pharmacokinetic/pharmacodynamic estimation problems. One Bayesian point estimator which 
can be calculated in a computationally straightforward manner (given certain distributional 
assumptions) is the mode of the posterior parameter density (i.e. the maximum a posteriori 
probability (MAP) estimator). For Normally distributed output error (as defined in Chapter 3.3) 
and with ), the MAP estimates of the system and error variance parameters, 
assuming a noninformative prior for the latter, are obtained by maximizing the posterior 
distribution:  

( ,Nθ μ Σ∼

 
( ) ( ) ( ), | , | , /p z L pθ β θ β θ μ= cΣ      (3.44) 

 
where  denotes the vector of all the observations z ( ) ( )1 1 l mz t z t⎡ ⎤⎣ ⎦… , ( ),L θ β  is the likelihood 

function defined in Eq. (3.33), ( )| ,p θ μ Σ  is the Normal density, and  is constant. The MAP 

estimates that maximize 

c

( , | )p zθ β  can be obtained by minimizing the negative of Eq. (3.44), 
which is equivalent to minimizing the following objective function: 
 

( )
( ) ( )( )
( ) ( ) ( ) (

2

1

1 1

,
, ln ( , ),

( , ),

l m i j i j T
MAP i i j

i j i i j

z t y t
O g y t

g y t

θ
)θ β θ β

θ β
−

= =

⎛ ⎞−⎜ ⎟= + + −⎜ ⎟⎜ ⎟
⎝ ⎠

∑∑ θ μ θ μΣ −     (3.45)  

 

If θ  is partitioned into informative and non-informative parts (i.e. 1 2

TT Tθ θ θ⎡= ⎣ ⎤⎦
)1

, with 

), then (1 1,Nθ μ Σ∼ 1θ , 1μ  and  replace 1Σ θ , μ  and Σ  in Eq. (3.45). 
 

For the case when , the objective function becomes: ( ,LNθ μ Σ∼ )
 

( )
( ) ( )( )
( ) ( )

2

1 1

,
, ln

( , ),

l m i j i j
MAP i i j

i j i i j

z t y t
O g

g y t

θ
( , ),y tθ β θ

θ β= =

⎛ ⎞−⎜ ⎟= +⎜ ⎟⎜ ⎟
⎝ ⎠

∑∑ β  
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   [ ] [ ]1

1

ln ln 2 ln
p

T
i

i

θ ν θ ν−

=

+ − Φ − + ∑ θ       (3.46) 

 

where { }iν ν= ,  and 1,...,i p= { }ijφΦ = , i , 1,...,j p= . The elements of ν  and  are defined in 
terms of the elements of 

Φ

μ  and Σ  as follows: 
 

ln 2i i iiν μ φ= − , 1,...,i p=         (3.47) 
 

ln 1ij
ij

i j

σ
φ

μ μ
⎛ ⎞

= +⎜ ⎟⎜ ⎟
⎝ ⎠

, , 1,...,i j p=       (3.48) 

 

Approximate statistics are also provided for the MAP estimates (θ̂  and β̂ ), when the prior 
distribution for θ  is either Normally or lognormally distributed. The approximation used to 
calculate the standard errors of θ̂  and β̂  are given in Eq. (3.49) for the case of ( ,Nθ μ )Σ∼  and 

in Eq. (3.50) for the case of ( ),LNθ μ Σ∼ . 
 

    m ( )
11

,
0ˆ ˆcov ,

0 0
Mθ βθ β

−
−⎛ ⎞⎡ ⎤Σ

= +⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠
      (3.49) 

 

  m ( ) ( )
1

1

,

0ˆ ˆcov ,
0 0

E D I E
Mθ βθ β

−
−⎛ ⎞⎡ ⎤Φ − −

⎜= + ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
     (3.50) 

 

where { }1
ˆ ˆ1 1 pE diag θ θ= "  and I  is the p p×  identity matrix. The matrix  is defined 

as follows: 

D

{ }1 pD diag d d= " , where 1
1

ˆln
T

pd d d θ ν− ⎡ ⎤⎡ ⎤= = Φ −⎣ ⎦ ⎣ ⎦"  (Σ  and ν  given 

above).  
 

The standard errors and the confidence intervals for the parameter estimates are calculated as 
described for the case of the least square parameter estimates. Also the secondary parameters and 
their statistics can be calculated by applying Eqs. (3.9) and (3.32) using the MAP estimates of the 
parameters and the associated covariance matrix (upper p p×  block of m ( ˆ ˆcov , )θ β  from Eqs. 

(3.49) or (3.50). 
 
If any of the observations are below the quantitation limit (BQL) or above the of quantitation 

limit (AQL), then those observations are treated as censored and their likelihoods are defined as 
described above for the ML estimates. The objective function in Eq. (3.45) or (3.46) is then 
adjusted accordingly. 
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3.7.5 Prediction Variance and Residual Analysis 
 

The Prediction and Data Summary Table printed for each of the estimators lists the predicted 
values of the model outputs and their corresponding standard errors, along with the standardized 
residuals for each output at each observation time. The standard errors of the predictions are 
calculated from 
 

m ( ) ( )m ( ) ( )ˆ ˆ, ,
ˆ ˆvar , cov

T

i j i j

i j

y t y t
y t

θ θ
θ θ

θ θ

⎛ ⎞∂ ∂
⎜ ⎟=
⎜ ⎟∂ ∂
⎝ ⎠

, 1,...,j m= ,     (3.51) 1,..,i l=

 

where m ( )ˆcov θ  is given above for each of the four estimators. For the case of the ML and MAP 

estimates m ( )ˆcov θ  represents the upper p p×  block of the complete covariance matrix 

m ( ˆ ˆcov , )θ β  as given in Eqs. (3.35) and (3.49 or 3.50). The data summary table also lists the 

standardized residual calculated as indicated below for each of the estimators. For the WLS 
estimators the standardized residuals are 
 

( ) ( )ˆ,i j i j

ij

z t y tθ

σ

−
, 1,...,j m= , 1,..,i l=       (3.52) 

 
For the ML, GLS and MAP estimators the standardized residuals are given by 
 

( ) ( )
( )

ˆ,

ˆ ˆ( , ),

i j i j

i i j

z t y t

g y t

θ

θ β

−
, 1,...,j m= , 1,..,i l=       (3.53) 

 
3.7.6 Model Selection Criteria 
 
For each of the estimators, model selection information criteria are evaluated (see [11]). For the 
WLS and GLS estimators, the Akiake Information Criterion (AIC) and the Bayesian Information 
Criterion due to Schwarz are calculated as follows: 
 

ln 2WLSAIC l m O p= ⋅ ⋅ +        (3.54) 
 

( )ln lnWLSBIC l m O l m p= ⋅ ⋅ + ⋅       (3.55) 
 

The objective function,  given in Eq. (3.20) and evaluated at the least squares estimates, WLSO θ̂ . 
 

For the ML estimator, AIC and BIC are: 
 

( )2 2NLLAIC O p q= + +        (3.56) 
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( )( )2 lnNLLBIC O l m p q= + ⋅ +       (3.57) 
 

The objective function, , is given in Eq. (3.34) and evaluated at the maximum likelihood 

estimates, 
NLLO

θ̂  and β̂ . 
 

For the MAP estimator, the generalized information criterion is calculated: 
 

( )2
MAP

p q
GEN IC O

l m
+

− = +
⋅

       (3.58) 
 
In this equation, the MAP objective function given in Eq. (3.45) or Eq. (3.46) is evaluated at the 
MAP estimates θ̂  and β̂ . 
 
3.8 The Sample Schedule Design Program – SAMPLE 
 
3.8.1 D- and C-Optimality 
 

The sample schedule design program (see [12]) calculates the vector of sampling times 
[ ]1 2 md t t t= " , based on one of the following design criteria:  

 

D – optimality: ( ){ }* arg min
d

d Mθ= − d       (3.59) 

C – optimality: ( )*
*2

1
arg min

p
ii

d i i

m d
d

θ=

⎧ ⎫
= ⎨ ⎬

⎩ ⎭
∑
�

      (3.60) 

 

The matrix ( )M dθ  above (Fisher information matrix) has dimension p p×  and the elements of 

the matrix ( ) { }jkM d mθ = , , 1,...,j p= 1,...,k p= , are as follows: 
 

2
1 1

1 1 1
2

r rn n
i i i i

jk
i ii j k i j k

y y g gm
g gθ θ θ= =

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛∂ ∂ ∂ ∂
= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝⎝ ⎠ ⎝ ⎠
∑ ∑ θ

⎞
⎟
⎠

     (3.61) 

 

where iy  and  are defined in Section 3.7.2 and are functions of ig [ ]1 2 md t t t= "  ); they are 
evaluated at the nominal values for the model parameters ( *θ ) and variance model parameters 
( *β ) provided by the user. In Eq. (3.60), ( )iim d�  is the  diagonal element of thi 1Mθ

− .The 

sampling interval, [ ]1, mt t , can be constrained to [ ],L Ut t . 
 
3.8.2 Partially Optimized Designs 
 

The user is given the option in SAMPLE to fix selected design times while optimizing the 
remaining times using either the D-optimality or C-optimality criteria.  
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CHAPTER 4 
 
 
Modeling Framework and SSttaattiissttiiccaall  MMeetthhooddss::  
PPooppuullaattiioonn  AAnnaallyyssiiss  
 
 
 
 
 
 
 
4.1 A Brief Perspective 

One of the significant contributions of modeling to pharmaceutical research and clinical 
pharmacology is the work of Sheiner, Rosenberg and Melmon reported in 1972 [13], proposing 
the nonlinear mixed effects (NLME) modeling framework for quantifying both within and 
between individual variability in pharmacokinetic data analysis (population pharmacokinetics). 
This idea has had a conceptually profound impact on how pharmacokinetic (and 
pharmacodynamic) variability is quantified and studied, and on the identification of important 
pathophysiological and other factors associated with kinetic/dynamic variability in patients. The 
implementation of this framework in the versatile software package NONMEM developed by 
Beal and Sheiner [14], has provided researchers with a widely available tool for population 
PK/PD data analysis that has become an integral component of most drug development efforts. 
Under the expert direction of Thomas Ludden of ICON Development Solutions, enhancements 
are continually added to the NOMEM software. 
 

The past 30 years has witnessed rigorous statistical contributions to the solution of the 
nonlinear mixed effects problem, as well as important extensions to this framework. A few 
notable advances include: the work of Lindstrom and Bates in 1990 on a first-order conditional 
(FOCE) approximation to the parametric NLME problem [15]; the creative 1986 contributions of 
Mallet in defining and solving the nonparametric maximum likelihood problem [16]; the smooth 
nonparameteric maximum likelihood method developed by Davidian and Gallant [17]; the 
Bayesian formulation of the NLME problem and its computational solution by Wakefield, Smith, 
Racine-Poon and Gelfand [18]-[19]. A review of these and other significant contributions is 
beyond the scope of this User’s Guide - although we will return to a few more later in this 
chapter. The interested reader is referred to the indispensable 1995 monograph of Davidian and 
Giltinan [20] for or a more detailed, unified exposition of methods for population PK/PD, as well 
as to the 2003 update by these authors [21]. In addition, Pillai, Mentre and Steimer provide an 
informative historical account (through 2005) of the developments in population PK/PD [22]. 
Finally, for the serious user of these methods the monograph by Bonate [] is essential reading. 
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In the following sections of this chapter, the parametric population problem is defined and its 

maximum likelihood solution is presented as implemented in the MLEM program of ADAPT 5. 
In addition, the iterated two-stage (ITS), standard two-stage (STS) and naïve pooled data (NPD) 
programs are presented. 
 
 
4.2 The Population Model and Estimation Problem 
 

The dynamic systems model framework for the individual presented in Chapter 3 is extended 
to the case of a population of N individuals. For simplicity, the system and measurement models 
given in Eqs. (3.1), (3.2) and (3.5) are combined as follows:  
 

( ) ,    1,...,i i i iY h e i Nθ= + =      (4.1) 
 

where iθ  represents the vector of system parameters for the  individual (dim thi p ), ( )i ih θ  is the 
vector of model outputs for the  individual (constructed from the solution of Eqs. (3.1) and 
(3.2), dim ),  is the vector of associated output errors, and  is the vector of all 
measurements for the  individual. Following the assumptions noted in Section 3.3 regarding 
the independence of the output error, it is further assumed that 

thi
im m l= ⋅ ie iY

thi
( )~ (0, ( ),i i i ie N G h )θ β , whereβ  

represents the vector of parameters (dim ) that are unique to the error variance model (assumed 
common across individuals) and 

q
( )( ),i i iG h θ β  is a positive definite covariance matrix whose 

structure was discussed earlier. For convenience ( ) ( ), (i i i i iG G h ),θ β θ≡ β . 
 

To account for the differences between individuals, the system parameters iθ  are assumed to 
be independent, identically distributed random vectors as follows:  
 

. . .~ ( , ) or ( , )i i i d N LNθ μ μΣ Σ     (4.2) 
 
This basic parametric population model can be extended to incorporate subject specific measured 
covariates to explain some of the inter-individual variability as follows: 
 

. . .~ ( , ) or ( , ) where ( , )i i i d i i i iN LN v c rθ μ μ μΣ Σ =   (4.3) 
 

In Eq. (4.3),  is a general (linear or nonlinear in ) user defined covariate model relating 
any measured covariates from the  individual  to the population mean for the  individual 

( , )iv c r ir
thi thi

( )iμ . The vector  is the collection of known, time-invariant covariates for the  individual. 
The vector  (dim 

ir
thi

c cp ) represents the covariate model parameters (assumed common across 
individuals). 
 

The population model can be summarized as follows using the hierarchical modeling 
framework:  
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 Stage 1 - PK/PD system and observation model (intra-individual variation): 
 

( ) ,    1,...,i i i iY h e i Nθ= + =         

( )( )~ 0, ,i i ie N G θ β         
 
 Stage 2 - Parameter model (inter-individual variation): 
 

. . .~ ( , ) or ( , )i i i d N LNθ μ μΣ Σ    without covariates     

. . .~ ( ( , ), ) or ( ( , ), )i i i d i iN v c r LN v c rθ Σ Σ    with covariates    
 

The population estimation problem involves estimating the parameters ( ) ( ), , or , , ,cμ β βΣ Σ  

as well as , given all the population data .  ( , 1,...,i iθ = )N 1{ , , }NY Y…
 

In the next section, the maximum likelihood solution to this population estimation problem 
(via the EM algorithm) is presented as implemented in the MLEM program. The last three 
sections of this chapter present the details of the ITS, STS and NPD programs. 
 
 
4.3 Maximum Likelihood Solution via the EM Algorithm (MLEM)  
 

The expectation-maximization (EM) algorithm introduced in 1977 by Dempster, Laird and 
Rubin [24] to solve an important class of maximum likelihood problems, has been applied 
widely to solve linear mixed effects models. In 1995, Schumitzky applied the EM algorithm to 
solve the nonlinear mixed effects maximum likelihood estimation problem and suggested the use 
of sampling-based methods (including importance sampling) to calculate the required integrals 
[25]. In a seminal 1996 paper, Walker also applied the EM algorithm to this problem and 
extended it to including the case of linear covariate models. In addition he provided an error 
analysis for the maximum likelihood estimates and illustrated its application [26]. More recently, 
Bauer et al. [27] extended the EM solution to include general error variance models, arbitrary 
nonlinear covariance models (stationary covariate case) and inter-occasion variability. He also 
tackled the problem of calculating the conditional mean and covariance required in the EM 
algorithm (see below), and showed that the importance sampling algorithm represents a practical 
solution to this computationally challenging step in the algorithm even for complex PK/PD 
population modeling problems (see Ng, et al., [28]). Most recently, the EM solution to the 
nonlinear mixed effects maximum likelihood problem with the population modeled as mixtures 
of Normals has been derived by Wang et al. [29]. 

 
The EM algorithm with importance sampling has now been tested extensively through its 

implementation by Bauer in S-ADAPT [30]. The EM with sampling algorithm is also contained 
in the commercial PK/PD modeling software PDx-MCPEM developed by Guzy and distributed 
by GloboMax, LLC. A stochastic approximation EM implementation using Markov chain Monte 
Carlo sampling has been applied to the nonlinear mixed effects maximum likelihood modeling 
problem by Kuhn and Lavielle [31]-[32], and a general purpose PK/PD population modeling 
program implementing this method is freely available in the MATLAB-based MONOLIX 
program (developed and distributed by the MONOLIX group, chaired by M. Lavielle and F. 
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Mentre). 
 

The use of the EM algorithm with sampling-based methods now provides a powerful and 
computationally practicable method for solving the parametric maximum likelihood population 
PK/PD modeling problem, without recourse to model linearization or analytic likelihood 
approximation (and thus without the resulting estimator bias). This is the approach implemented 
in the MLEM program of ADAPT 5 as detailed below.  
 

Following the definition of the population PK/PD maximum likelihood estimation problem, 
the sections below present the MLEM program implementation details including: the EM 
algorithm; importance-sampling calculations; covariate models; standard error analysis; 
lognormal parameter model; model selection criteria.  
 
4.3.1 The Likelihood Function and the Estimation Problem 
 

Given the problem statement above define:  
 

( ) ( ) ( )( )| , , ,i i i i i ip Y N h Gθ β θ θ= β       

( ) ( )| , ,ip Nθ μ μΣ = Σ

id

       
 
The case when the systems parameters are distributed log normally is handled by transformation 
internally within the MLEM program as described below. If any of the observations exceed the 
quantitation limits, then those observations are treated as censored and their likelihoods are 
defined as described for the individual ML estimation in Chapter 3.7.2. 
 

From the independence of the , the overall data likelihood function is then given 
by:  

1{ , , }NY Y…

 

( ) ( ) ( )
1

, , | , | ,
N

i i i
i

L p Y pμ β θ β θ μ
=

Σ = Σ∏∫ θ    (4.4) 

 

Defining ( ), ,φ μ β= Σ , the maximum likelihood estimator of φ  is then: arg max ( )ML Lφ φ= . 
 
4.3.2 The EM Algorithm Solution 
 

As shown by Schumitzky [25] and also by Walker [26], the EM algorithm given below 
solves (locally) the maximum likelihood estimation problem defined above.  
 

Given initial guesses for the population, error variance and individual subject parameters 
( ), the EM algorithm proceeds in two steps. In Step 1 (estimation or E step) 
the conditional mean and covariance for each individual’s parameters are estimated, while Step 2 
(Maximization-M step) updates the population mean, covariance and error variance parameters. 
These two steps, defined below for the  iteration, are then iterated until convergence.  

(0) (0) (0) (0)
iμ β θΣ

thk
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Step 1 
 

( ) ( )| ,k
i i iE Yθ θ φ⎡= ⎣

k ⎤⎦        (4.5)  

( )( )( ) ( ) ( ) ( )| ,
Tk k k

i i i i i iE θ θ θ θ φ⎡Ω = − −⎢⎣
kY ⎤
⎥⎦

N

    (4.6)  

1, ,i = …         
 

Step 2 
 

( 1) ( )

1

1 N
k

i
iN

kμ θ+

=

= ∑        (4.7) 

( ) ( ){ }( 1) ( ) ( 1) ( ) ( 1) ( )

1

1 N Tk k k k k
i i

iN
θ μ θ μ+ + +

=

Σ = − − + Ω∑ k
i    (4.8) 

( ) ( )( )( )
1( 1) ( ) ( )

log k
k k k

L
H

φ
β β φ

β
−+
∂ −

= −
∂

    (4.9) 

 

Letting { }( )
1, 2( ) , 1, 2 1, ,k

j jH h j jφ = = … q  and ( )( ) { }1

( )log / , 1 1, ,
j

kL L jβφ β∂ − ∂ = = … q  and 

also defining { } ( ) ( ){ } ( ) ( ){ }, and , , , 1, i,i ij i i ij i i i ij ih h G diag g j mθ θ θ β θ β= = = = … iY y  ( m  is 

the total number of observations for the  subject), then terms in Eq. (4.9) are constructed from: thi
 

( )
( ) ( ) ( )

1, 2 2
1 1 1 2

, ,1 1 | ,
2 ,

imN
ij i ij i k

j j i
i j ij i j j

g g
h E Y

g
θ β θ β

φ
θ β β β= =

⎡ ⎤⎛ ⎞⎛ ⎞∂ ∂
= ⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦
∑ ∑  

 

( )
( ) ( ) ( )( )( )1

2 ( )
2

1 1 1

,1 1 , |
2 ,

i

j

mN
ij i k

ij i ij ij i i
i j ij i j

g
L E g y h Y

gβ

θ β
θ β θ φ

θ β β= =

⎡ ⎤⎛ ⎞∂
= −⎢ ⎥⎜ ⎟⎜ ⎟∂⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑ ,−

)k

 

 
The required partial derivatives are calculated by finite difference approximation as described in 
Chapter 3.5. (See also Bauer [26].)  
 

An argument similar to the one given in Dempster et al. [24] shows that the resulting 
sequence  has the likelihood improving property ( ){ }, 1,k kφ = … 1( ) (kL Lφ φ+ ≥ . Wu [33] and 
Tseng [34] give sufficient conditions for the convergence of kφ  to a local maximum of the 
likelihood function in Eq. (4.4).  
 

When the user constrains some or all of the intersubject covariances to zero (structured 
covariance), then the corresponding elements of ( 1)k+Σ  are set to zero after their calculation in Eq. 
(4.8).  
 

The population mean (γ ) and population covariance ( γΣ ) of any secondary parameters 

( ( )wγ θ= ) are approximated as follows:  
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( )wγ μ≈   and   ( ) ( ) T
w w

γ

μ μ
θ θ

∂ ∂⎛ ⎞ ⎛ ⎞
Σ ≈ Σ⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 

 
with the partial derivatives are calculated by finite difference approximation. Model predictions 
based on the population mean are approximated as ( ),  1,...,ih i Nμ = . 
 

Individual Estimates. At the maximum likelihood solution, the conditional means in Eq. (4.5) 
serve as estimates for each individual’s parameter values, while the conditional covariances in 
Eq. (4.6) provide the standard errors of these estimates. Also for each individual, the conditional 
means and covariances for the model predictions, the conditional residuals, the conditional error 
variances, the conditional standardized residuals, as wells as the conditional means and 
covariances for any secondary parameters are calculated and denoted (in turn) as follows: 
 

( ) | ,i i i ih E h Yθ φ= ⎡ ⎤⎣ ⎦  
 

( ) ( )( ) ( )( )cov | | ,
T

i i i i i i ih E h h h h Yiφ θ θ φ⎡ ⎤= − −⎢ ⎥⎣ ⎦
 

 

( ) | ,i i i i ie Y E h Yθ φ= − ⎡ ⎤⎣ ⎦  
 

( ), | , , 1, ,ij ij i ML i ig E g Y j mθ β φ⎡ ⎤= =⎣ ⎦ …  
 

( )
( )

| , , 1, ,
,

ij ij i
ij i i

ij i ML

y h
stdres E Y j m

g

θ
φ

θ β

⎡ ⎤−
⎢ ⎥= =
⎢ ⎥⎣ ⎦

…  

 

( ) | ,i i iE w Yγ θ φ= ⎡ ⎤⎣ ⎦  
 

( ) ( )( ) ( )( )cov | | ,
T

i i i i iE w w Yiγ φ θ γ θ γ φ⎡ ⎤= − −⎢ ⎥⎣ ⎦
 

 

During the EM iterations these quantities are evaluated at ( )kφ φ= and for the maximum 
likelihood solution at MLφ φ= . 
 
4.3.3 The Conditional Mean and Covariance  
 

The conditional mean and covariance in Eq. (4.5) and (4.6), as well as all of the other 
expectations required above, are defined by the conditional distribution for iθ :  
 

( ) ( ) ( )
( ) ( )

| , | ,
| , , , , 1, ,

| , | ,
i i i

i i
i i i i

p Y p
p Y i

p Y p d
θ β θ μ

θ μ β
θ β θ μ θ

Σ
Σ = =

Σ∫
… N   (4.12) 
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We note that all of the expectations required in the EM algorithm outlined above have the form 
( ) ( ) ( )| , , ,i i i iE f f p Y d iθ θ θ μ β=⎡ ⎤⎣ ⎦ ∫ θΣ

C r

. Numerical approximation of these p-dimensional 
integrals is accomplished in ADAPT using sampling based methods as discussed in Chapter 5.  
 
4.3.4 The EM Algorithm with Covariates 
 

The solution to the nonlinear random effects modeling problem via the EM algorithm for the 
case of a linear stage 2 covariate model ( iiμ = ⋅

i

) was presented in Walker [26]. Bauer gives 
the solution for the general nonlinear covariate model case defined above ( ( , )i v c rμ = ) [27]. 
 

Defining  and ( ) (| , , ( , ),i i ip c r N v c rθ Σ = Σ) ( ), ,cφ β= Σ , the maximum likelihood 
estimator of φ  maximizes the function 
 

( ) ( ) ( )
1

, , | , | , ,
N

i i i i
i

L c p Y p c r d iβ θ β θ θ
=

Σ = Σ∏∫    (4.13) 

 
The EM solution to this problem follows the algorithm defined above, with Step 1 identical to 
that given in Eqs. (4.5) and (4.6) while the Step 2 update for the population mean in Eq. (4.7) is 
replaced by the following: 
 

( ) ( ) ( ){ }1( 1) ( ) ( ) ( )

1
arg min ( , ) ( , )

N Tk k k k
i i i ic i

c v c rθ θ
−+

=

= − Σ −∑ v c r

)

   (4.14) 

( 1) ( 1)( ,k k
i iv c rμ + +=  

 

No constraints are placed on the covariate model parameters c  (i.e., they can any real number). 
In the implementation, only those parameters modeled via covariates are used in Eq. (4.14), 
while the remaining parameter means are updated using Eq. (4.7). The updating formula for Σ  is 
identical to that given in Eq. (4.8), but with iμ  replacing μ . All the other calculations in Section 
4.2.2 (the individual estimates section) proceed as indicated above. The relatively straight-
forward numerical solution to the nonlinear function minimization in Eq. (4.14) is solved in 
ADAPT using the Nelder-Mead simplex algorithm (see Chapter 5).  
 
4.3.5 Standard Errors of the Estimates 
 

This section presents an asymptotic analysis of the EM estimates. Given the regularity 
conditions from Philppou and Roussas [35] for the maximum likelihood estimate of independent 
but not identically distributed random variables, it can be shown that asymptotically as ,  N →∞
 

( ) ( )
1

1
ML ML

N

i
i

Cov Vφ φ
−

=

⎛
≈ ⎜
⎝ ⎠
∑ ⎞

⎟     (4.15) 

where 

( ) ( ) ( )log | log |
T

i iV p Y p Yφ φ
φ φ

⎛ ⎞⎛ ⎞∂ ∂
= ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

i φ  
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and ( ) ( ) ( )| | , | , ,i i i i i ip Y p Y p c r dφ θ β θ θ= Σ∫  (c.f., Eq. (4.13)). 
 

The components of ( )log | /ip Y φ φ∂ ∂  (for the case where ( ), ,cφ β= Σ ) are constructed as 

outlined below for each individual using the following notation: ( )log | /i isc p Y cφ= ∂ ∂ , 

 and ( )log | /i is p Y φΣ = ∂ ∂Σ ( )log | /i is p Yβ φ β= ∂ ∂ . 
 

( ) ( )(1,
,

T
i

i i

v c r
sc v c r

c
θ−∂⎛ ⎞

= Σ −⎜ ⎟∂⎝ ⎠
)i     (4.16) 

 

( )( )( )( )1 11
2

T

i i i i is θ μ θ μ i
− −Σ = − Σ Σ − − − + Ω Σ   (4.17) 

 

{ }, 1,
iis L iββ = − = …q      (4.18) 

 
where the elements of Eq. (4.18) are defined in the EM algorithm (see Section 4.3.2). All 
quantities are evaluated at their converged values from the EM algorithm. Also, since Σ  is 
symmetric, we only need the gradient with respect to the lower triangular part of Σ , which is 
constructed as follows: let 
 

( )( )* 2 diag (1,1) ( , )i i i is s s s p pΣ = Σ − Σ Σ"  
 
j { }*( , ) , 1, , , 1, ,i is s j k j k iΣ = Σ = =… … p

2 i

 
 

The  vector , together with the vectors ( 1) /p p + j isΣ andisc sβ  defined above, can then be 

used to form the vector j( , , )ii i is sc s sβ= Σ  for each individual. Equation (4.15) becomes: 
 

( )
1

1
ML

N
T

i i
i

Cov s sφ
−

=

⎛
≈ ⎜
⎝ ⎠
∑ ⎞

⎟     (4.19) 

 
We note that the components in Eqs. (4.16)-(4.18) are already calculated during the course of the 
EM algorithm computations, with the exception of ( ), /iv c r c∂ ∂  in Eq. (4.16) which is determine 
easily via a finite difference approximation. 
 

The square roots of the diagonal elements of Eq. (4.19) are then the standard errors 
 for the maximum likelihood estimates ( , , )cse se seβ Σ ( , , )ML ML MLc β Σ . The standard errors seΣ  

are displayed in the program output for the corresponding (lower diagonal) elements of the 
population covariance MLΣ , while the standard errors andcse seβ  are shown as a percent of their 
correspond maximum likelihood estimates (%RSE). In addition, the standard errors are also 
listed for the maximum likelihood estimates of the population standard deviations (i.e, 

( ), , 1, ,ML i i i pΣ = … ), also as a %RSE (i.e., ( )( 1) / 2)100 ( ) / 2 ( , ) , 1, ,MLi ise i i i pΣ + Σ = … ). 
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Notes: 1) The standard error calculations include the case when the population mean model 
for some of the parameters does not depend on covariates. For these parameters, then 

( , )j i jv c r c jμ= = . 2) If there are no subject specific covariates, in the above error analysis 

c μ→  and isc s iμ→ , where 1(i is )μ θ μ−= Σ − . 3) In the case of a structured covariance, the 
matrix  above only includes those elements of j isΣ *

isΣ  that are estimated.  
 
4.3.6 Lognormal Parameter Model 
 

For the case when the Stage 2 parameter model is assumed to be lognormal, all Stage 1 
parameters iθ  (original parameterization) are replaced with ieθ  (transformed parameterization), 
and then the EM algorithm is implemented as presented in Sections 4.2.1 – 4.2.6 (this 
transformation occurs internally within the program).  

 
The following expressions are then used to convert the results obtained based on this 

transformed parameterization back to the original parameters. The conditional mean and 
conditional covariance for the  individual are (approximately): thi
 

ieθ    and   , 1, ,i i
T

ie e iθ θ⎡ ⎤ ⎡ ⎤Ω =⎣ ⎦ ⎣ ⎦ … N        (4.20) 
 
The population mean and population covariance (case with no covariates) are calculated as 
follows: 
 

eμ    and   ( ) ( ) ( )1 1diag diagp p
T

e e e eμ μμ μΣ… …    (4.21) 
 
In addition, the matrix  in the last expression is also displayed (i.e., population covariance for Σ
( )ln θ  of the original parameterization). For the case when Stage 2 parameters are modeled as 

functions of covariates, then only Σ  in expression (4.21) is presented. 
 
4.3.7 Model Selection and Hypothesis Testing 
 

The AIC and BIC criteria for use in model selection are calculated as follows:  
 

( ) ( )2log 2 *MLAIC L pφ= − +     (4.22)  
 

( ) ( ) ( )2log * ln *MLBIC L p mφ= − +     (4.23)  
 

where ( )MLL φ  is given in Eq. (4.4), *p  represents the total number of parameters estimated 
(population means, elements of the population covariance matrix, error variance parameters and 
covariate model parameters), and  is the total number of observations ( ).  *m

1
* N

ii
m m

=
= ∑

 
For hypothesis testing involving nested models, the program also displays the value of the 

quantity ( )2log MLL φ− .  
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4.4  Iterated Two-Stage (ITS) 
 

In 1977, motivated by the problem of estimating the dispersion of properties of a biomaterial, 
Guy Prevost reported algorithms for density estimation from noisy data [36]. (This work was 
done at the process engineering consulting company ADERSA located at the time in Velizy, 
France, which was founded by the applied mathematician/control systems engineer and 
originator of the field of model-based predictive control Jaques Richalet.) Recognizing the 
relevance of Prevost’s work to population PK, Jean-Louis Steimer, Alain Mallet and their 
colleagues formulated and presented the global two-stage (GLS) and iterated two-stage (ITS) 
methods for NLME modeling applications in 1984 [37].  

 
Despite the well-known limitations of the ITS algorithm, it remains an efficient approach for 

exploratory population PK/PD modeling and is included in ADAPT 5. We present below the 
details of the ITS implementation for the case with covariate models as defined in Section 4.2. 
The reader is also referred to the discussion in Schumitzky [25] on the relation between the ITS 
and MLEM algorithms. 
 

Given initial guesses for the population, error variance and individual subject parameters 
( (0) (0) (0) (0)

ic β θΣ ), the ITS algorithm proceeds in two steps. In Step 1, the MAP estimates are 
determined for each subject along with their approximate covariances (see also Chapter 3.7.4), 
while in Step 2 the covariate model, population covariance and error variance parameters are 
updated. These two steps, defined below for the  iteration, are then iterated until convergence.  thk

 
Step 1 

 

( )( )ˆ arg mink
i MO AP iθ θ=       (4.24) 

( )( ) 11( ) ( )ˆ
i

k k
i Mθ

−−
Ω = + Σ       (4.25) 

1, ,i N= …         
 

where  
 

( )
( )( )

( ) ( ) ( ) ( ) (
2

1( ) ( ) ( ) ( )
( )

1

ln , ( , ) ( , )
,

im Tij ij i k k k
MAP i ij i i i i ik

j ij i

y h
O g v c r

g

θ
θ θ β θ

θ β
−

=

⎛ ⎞−⎜ ⎟= + + − Σ −
⎜ ⎟
⎝ ⎠

∑ )kv c rθ  

 

and the elements of the matrix { }1, 2i j jM mθ = , 1, 2 1,...,j j p=  are 
 

( )
( ) ( )

( )
( ) ( )( ) ( )

1, 2 ( ) 2 ( )
1 11 2 1 2

ˆ ˆ ˆ ˆ, ,1 1 1
ˆ ˆ2, ,

i i
k km m

ij i ij i ij i ij i

j j k k
j jj j j jij i ij i

h h g g
m

g g

θ θ θ β θ β

θ θ θ θθ β θ β= =

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛∂ ∂ ∂ ∂
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜= +
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜∂ ∂ ∂ ∂
⎝ ⎠⎝ ⎠ ⎝ ⎠⎝

∑ ∑
⎞
⎟
⎟
⎠
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Step 2 
 

�( ) ( ) �( )( ) ( )1( 1) ( )

1

arg min ( , ) ( , )
TN k kk k

i ii ic i

c v c rθ θ
−+

=

v c r⎧ ⎫
= − Σ −⎨ ⎬

⎩ ⎭
∑  (4.26) 

 

� ( )( ) � ( )( ) l ( )( ) ( )( 1) ( 1) ( 1)

1

1 , ,
TN kk kk k k

ii ii i
i

v c r v c r
N

θ θ+ + +

=

⎧ ⎫
Σ = − − + Ω⎨ ⎬

⎩ ⎭
∑  (4.27) 

 

(( 1) ( )

1

ˆarg min log | ,
N

k
i i

i

p Y )kβ θ β+

=

= −∑     (4.28) 

 
The function minimizations in Eqs. (4.26) and (4.28) are performed using the Nelder-Mead 
simplex algorithm. 
 

Notes: 1) When the Stage 2 parameter model does not depend on covariates, then 

( , )iv c r μ→  and Eq. (4.26) is replaced by: � ( )( 1)
1

/
kNk

ii
Nμ θ+

=
=∑ .  2) For the case when the Stage 

2 parameter model is assumed to be lognormal, all Stage 1 parameters iθ  (original 
parameterization) are replaced with ieθ  (transformed parameterization), and then the ITS 
algorithm proceeds as given in Eqs. (4.24)-(4.28) (this transformation occurs internally within 
the program). The transformation back to the original parameterization follows Eqs. (4.20) and 
(4.21). 3) The individual subject model predictions, individual standard errors and residual 
analysis are calculated as given in Chapter 3.7.6. 4) For hypothesis testing and model selection 
the overall likelihood is approximated as ( ) ( )1

, |
i

N
ITS ITS i ITS ITSi

L p Yθ β θ β
=

= ,
i∏  and the criteria 

AIC and BIC are given by Eqs. (4.22) and (4.23) with the term ( )MLL φ  in those equations 

replaced by . The term ( ,
iITS ITSL θ β ) ( )2log ,

iITS ITSL θ β−  is also displayed. 
 
4.5 Standard Two Stage (STS) 
 

The calculations for each individual in the STS program proceed as presented in Chapter 3 
depending on the estimation option selected WLS, ML or MAP. The resulting individual subject 
estimates  are then used to approximate the population mean and covariance 

 as follows: 

ˆ , 1, ,i iθ = … N
)( ,μ Σ

 

�
1

1 N

i
iN

μ θ
=

= ∑       (4.29) 

 

�( ) �( )
1

1 N T
i i

iN
θ μ θ μ

=

Σ = − −∑     (4.30) 

 
Other sample statistics are also calculated (e.g., standard deviations, medians). The mean and 
standard deviation for the estimates of  are also calculated for the ML and MAP 
estimators.  

l , 1, ,i iβ = … N
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4.6 Naïve Pooled Data (NPD) 
 

Although not a population analysis approach, a program to conveniently calculate naïve 
pooled data estimates is included in ADAPT 5 because of its relevance to certain types of 
experiments. As with the MLEM, ITS and STS programs, data from each individual can arise 
from a different experiment design. The NPD program includes WLS, ML and MAP estimation 
options. The calculations are as defined in the sections of Chapter 3 describing each of these 
estimators (Eq. (3.20) for WLS, Eq. (3.34) for ML, Eqs. (3.45) and (3.46) for MAP), but now the 
respective objective functions include an additional summation over all individuals in the 
population data set. 
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CHAPTER 5 
 
 
CCoommppuuttaattiioonnaall  MMeetthhooddss  
 
 
 
 
 
 
 
 
 
5.1 Solving Model Equations 
 
5.1.1 General Differential Equation Solver 
 

When the model differential equations are defined by Eq. (3.1), ADAPT uses the differential 
equation solver LSODA (Livermore Solver for Ordinary Differential equations with Automatic 
method switching for stiff and nonstiff problems). This powerful general purpose differential 
equation solver was developed by Linda Petzold and Alan Hindmarsh ([38] and [39]), and uses 
variable order, variable step size formulations of Adam’s method and Gear’s method as the 
nonstiff and stiff equation solvers, respectively. The most recent (November 2003) version of 
LSODA is included in ADAPT. 
 

The most important computational component of any general purpose software system for 
PK/PD modeling is the ability to solve the model differential equations accurately, robustly and 
efficiently. We have discussed previously [1] some of the difficulties associated with the 
numerical solution of ordinary differential equations when imbedded in any iterative estimation 
algorithm. In past versions of this user’s guide we have emphasized the ability of LSODA to 
detect stiffness and switch between Adam’s and Gear’s methods, which together with its 
capability to control the step size and order of the selected method make this program the most 
robust and efficient software we know of to solve imbedded estimation applications. No other 
software that we have evaluated recently has caused us to change this view. While there are 
solvers that can handle either non-stiff or stiff systems efficiently (including the excellent 
SUNDIALS differential/algebraic equation solver suite [40] from Lawrence Livermore National 
Labs), it is not always evident when nonlinear differential equations are stiff versus non-stiff and, 
most importantly, the same system can exhibit either stiff or non-stiff behavior depending on the 
particular parameter values encountered in the course of the iterative estimation calculations. 
Thus the often cited recommendation to select either a stiff or non-stiff solver depending on the 
problem is at best inefficient for imbedded iterative estimation applications.  
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After installation of ADAPT, certain LSODA options can be set through parameters in the 
globals.inc file. The version of this file received with ADAPT has these options set to allow for 
the most general implementation of LSODA with the minimum user input. For example, the 
parameter which indicates how the Jacobian is to be determined when the stiff solver is used has 
been set so that the Jacobian is calculated internally by finite difference approximation. The other 
setting for this option requires the user to supply a subroutine to be used to compute this 
Jacobian matrix. In addition to these options, the relative and absolute error tolerances (RTOL, 
ATOL) used by LSODA to control the local solution error (i.e. at each observation time) are 
supplied as parameters via the globals.inc file. LSODA controls its estimate of the local errors 
( ) in the states (ie ( ) ,  1,...,i jx t i = n ), such that the maximum of ( )( )i i je RTOL x t ATOL+ , 

 is less than 1.0. The parameter RTOL has been set rather conservatively at 1,...,i = n 610−  

recognizing that the tolerance parameters control only the local error, that can accumulate into 
global error. The value of ATOL has also been set to 610− , which should be considered when 
selecting the scale for the state variables. 
 
5.1.2 Linear Differential Equations 
 

For systems that can be modeled as a set of linear homogeneous differential equations, the 
following state equation may be used in place of Eq. (3.1): 

 

( ) ( ) ( ) ( ),   0
dx t

A x t x
dt

α c= =        (5.1) 
 

The state matrix ( )A α  has dimensions n x n.  
 
If linear model differential equations are defined by their state matrix in Eq. (5.1), then the 

solution is obtained using the exponential of the matrix A (see [41]). This matrix exponential is 
approximated using an eigenvalue decomposition of A. The method computes ( )ix t  as 

 

( ) ( )( )0 0expj jx t t t= −V D y , 1,...,j m=                  (5.2) 
 

where  is the diagonal matrix of eigenvalues and  is the matrix of eigenvectors calculated 
from a QR  decomposition of the matrix following the suggestion in [42]. In the above equation, 

 is calculated as QR , and 

D V

V 0y  is computed by solving 
 

0 0
T=Ry Q x               (5.2) 

 

where ( )0 t=x x 0 . The eigenvalue-eigenvector decomposition approach, as we have implemented 
it, is restricted to the case where the matrix  is diagonalizable, as determined in our program 
from the condition number of . If  cannot be diagonalized, a message to this effect is 
printed. In such a case it would be necessary to re–code the model in DIFFEQ, using LSODA to 
solve the model equations. 

A
R A

 
We have reported previously [43] on the efficiency of this matrix exponential approach for 
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solving linear differential equations, relative to a second matrix exponential approximation 
algorithm and to LSODA. For the two examples considered, the approach summarized above 
reduced the CPU time required to solve a parameter estimation problem by a factor of 10 over 
that needed when the model equations were solved using LSODA. Also in [43], a state 
augmentation procedure is illustrated which allows one to convert a linear model with infusion 
inputs into the form shown in Eq. (3.10), thus allowing the matrix exponential solution algorithm 
in ADAPT to be used for this important class of problems. However, we have used this technique 
only infrequently in recent years, preferring instead the ease of use of the general differential 
equation solver LSODA. 

 
 

5.2 Function Minimization 
 

In the programs ID, SAMPLE, NPD, STS, ITS and MLEM it is necessary to minimize 
functions of several variables (used in MLEM to solve the covariate model optimization 
problems). Function minimization is accomplished in ADAPT using the Nelder-Mead Simplex 
algorithm as described originally in [44] (see also [1]). To initiate the Nelder-Mead search 
procedure for minimization a function of p parameters, it is necessary to define the vertices of 
the starting simplex (e.g., in ID this requires specifying 1p +  sets of parameters and in SAMPLE 

 sets of sample times are required). In ID (as well as NPD, STS and ITS), the starting 
simplex (

1m+
1 2 1, ,..., pθ θ θ + ) is constructed from the user-entered initial parameter vector 

1 ...o o o
pθ θ θ⎡= ⎣ ⎤⎦  as follows: 

 
 

   1 0 0 0
1 2

T

pθ θ θ θ⎡ ⎤= ⎣ ⎦"  

   2 0 0 0 0
1 1 20.2

T

pθ θ θ θ θ⎡ ⎤= −⎣ ⎦"  

   3 0 0 0 0
1 2 20.2

T

pθ θ θ θ θ⎡ ⎤= −⎣ ⎦"  

         #  
1 0 0 0 0

1 2 0.2
Tp

p pθ θ θ θ θ+ ⎡ ⎤= −⎣ ⎦"                        (5.3) 
 
The starting simplex for the sample schedule design vector is similarly constructed in SAMPLE 
and for covariate model parameters in MLEM. 
 

The stopping rule used to terminate the Nelder-Mead iterative procedure is 
 

Stop if : ( )( )
( )( )1

REQMIN
1

i

i

O

O

θ

θ −

≤
−

                   (5.4) 

 

where ( )iO θ  is the function to be minimized evaluated at the parameter vector for the ith 

iteration, ( )iθ . The value of the stopping tolerance in the above equation REQMIN, is specified in 

the file globals.inc and. The default value of REQMIN is set at 610− . 
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In the function minimizations in ID, NPD and STS, model parameters are constrained to be 
positive as are measurement times in SAMPLE. This is accomplished using a square 
transformation within ADAPT.  
 
 
5.3 Finite Difference Approximations 
 

The error analyses provided in ID, NPD, STS, ITS and MLEM and the design criteria 
implemented in SAMPLE, all require calculations of the derivation of a function with respect to 
model parameters. This is accomplished in ADAPT using a central difference approximation as 
illustrated below for the case of a function f of a single parameter θ  

 

    ( ) ( ) ( )
2

df f h f h
d h
θ θ θ
θ

+ − −
≈                  (5.5)  

 
In this approximation, h is determined as 

 

( )max ,h RTOL ATOLθ= ⋅                     (5.6) 
 

for the case when the model is defined using differential equations. When the model equations 
are solved using the matrix exponential algorithm or when the analytic solution is given, RTOL, 
ATOL in the previous equation are both replaced by the machine epsilon. The error in the central 
difference approximation is of the order . 2h
 
 
5.4 Calculating Conditional Means and other Expectations in MLEM  
 

As noted in the discussion of the EM algorithm in Chapter 4, the conditional mean and 
covariance in Eq. (4.5) and (4.6), as well as all of the other expectations, are defined by the 
conditional distribution for iθ  given in Eq. (4.12) and repeated below: 
 

( ) ( ) ( )
( ) ( )

| , | ,
| , , , , 1, ,

| , | ,
i i i

i i
i i i i

p Y p
p Y i

p Y p d
θ β θ μ

θ μ β
θ β θ μ θ

Σ
Σ = =

Σ∫
… N

i

 

 
All the expectations required in the EM algorithm and indicated in Chapter 4.3 have the form 

( ) ( ) ( )| , , ,i i i iE f f p Y dθ θ θ μ β=⎡ ⎤⎣ ⎦ ∫ θΣ . Numerical approximation of these p-dimensional 
integrals is accomplished in ADAPT using importance sampling, as introduced by Kloeck and 
Van Dijk in 1978 for econometric applications [45] and following the suggestions in Geweke 
[46]. 
 

Let ( )iI θ  denote a p-dimensional importance function and let (1) ( ),..., M
i iθ θ  represent M 

independent, identically distributed samples (importance sample) generated from ( )iI θ . The 

importance sampling approximation to ( )iE f θ⎡ ⎤⎣ ⎦  is given by: 
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( ) ( )( ) ( )

1

M
j j

i i
j

iE f fθ θ
=

≈⎡ ⎤⎣ ⎦ ∑ w           (5.7) 

where 
 

( ) ( ) ( )
( ) ( ) (( ))

( ) ( ) ( )
( )

( ) ( ) ( )
1

| , | , /

| , | , /

j j j
i i i ij

i M k k
i i i ik

p Y p I
w

p Y p I

θ β θ μ θ

θ β θ μ θ
=

Σ
=

Σ∑ k
       (5.8) 

 
Thus the conditional mean and covariance for a subject for the  iteration in Step 1 of the EM 
algorithm (Eqs. 4.5 and 4.6 in Chapter 4) are approximated as follows: 

thk

 

( ) ( ) ( )

1

M
k j

i i
j

wθ θ
=

=∑ j
i  

 

( )( )( ) ( ) ( ) ( ) ( ) ( )

1

M Tk j k j k
i i i i i

j

wθ θ θ θ
=

Ω = − −∑ j
i  

 

While the numerical approximation in Eq. (5.7) improves as M →∞ , the precision of this 
approximation depends critically on the choice of the sampling function ( )iI θ  which in turn is 
dictated by model complexity and data informativeness (see Geweke [46] for the seminal 
discussion of these issues). In the MLEM algorithm in ADAPT, an importance function based 

the multivariate Normal density � l( ), iiN θ γΩ  is used, where � iθ  and l iΩ  are the mode of the 

posterior distribution its approximate covariance calculated using MAP estimation (see Chapter 
3.7) with the prior distribution defined based on the population mean and covariance from the 
previous EM iteration ( ( ) ( )1 ,k kμ − Σ 1− ) (also 1.2γ = ). This importance function was first suggested 
by Geweke (section 4 of [45]) and adopted in a modified form by Bauer [30] for use in S-
ADAPT. The user must supply the value of M  (see population modeling examples in Chapter 
10 for further discussion).  
 

This importance sampling calculation is the most computationally intensive component of 
the MLEM algorithm in ADAPT, requiring M evaluations of the likelihood ( ( )| ,i ip Y θ β ) for 
each individual. Once calculated to determine the conditional means and covariances, however, 
these same likelihood values are used to evaluate all the other expectations listed above, as well 
as those associated with standard error calculations presented below.  In addition, they are used 
to approximate the overall data likelihood function in Eq. (4.4) as follows: 
 

( ) ( ) ( ) (( )( ) ( ) ( )

11

1 | , | , /
N M

j j j
i i i i

ji M
L p Y p Iφ θ β θ μ

==

⎛ ⎞
≈ Σ⎜ ⎟

⎝ ⎠
∑∏ )θ    (5.9) 

 
The overall data likelihood is used in model selection and hypothesis testing. 
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5.5 Random Number Generation 
 

To implement the importance sampler in the MLEM program, and for several options in the 
program SIM, it is necessary to generate random samples from a multivariate density, which 
requires generation of pseudorandom random samples from a univariate uniform density on the 
interval [0, 1] ( ). This is accomplished in ADAPT 5 using the Mersenne Twister as 
proposed by Matsumoto and Nishimura [47] (Fortran implementation by Tsuyoshi Tada [48]). 
The Mersenne Twister was designed for use in Monte Carol simulations and among its desirable 
properties is negligible serial correlation between successive values in the output sequence (in 
contrast to linear congruential generators). It passes numerous tests for statistical randomness 
and is the default option in programs such as MATLAB, Maple and R. To produce 

(0,1U )

( )0,1N  

pseudorandom deviates from the ( )0,1U  pseudorandom random numbers generated from the 
Mersenne Twister, the Box-Muller method is used.  

 
To generate random samples from a multivariate Normal distribution (e.g., ( ,Nθ μ )Σ∼ ) as 

needed in SIM and MLEM, the covariance matrix Σ  (dim p x p) is factored:  (TLL = Σ L  is 
lower triangular). The elements of a vector  (dimension z p ) are then filled with ( )0,1N  
random deviates. A sample vector from the specified multivariate Normal distribution is then 
generated as follows: 

 

Lzθ μ= +         (5.10) 
 

Only random vectors whose elements are greater than zero are used in the population simulation.  
 

If θ  is assumed to come from a lognormal distribution (i.e. ( ),LNθ μ Σ∼ ), then a random 

vector λ  (dim ) is generated, where p ( ),Nλ ν Φ∼ . The elements of the desired random vector 

θ  are obtained from the elements of the random vector λ  as j
j eλθ = , . The 

elements of the mean vector 
1,  . . . ,  j p=

ν  and covariance matrix Φ  are defined in terms of the elements of 
μ  and . as indicated below:  Σ
 

ln 2,   1,...,i i ii i pν μ φ= − =                   (5.11) 

ln 1 ,     , 1,...,ij
ij

i j

i j p
σ

φ
μ μ

⎛ ⎞
= + =⎜ ⎟⎜ ⎟

⎝ ⎠
                 (5.12) 

 
In the program SIM, the user enters the seed for the random number generator. For the 

MLEM program the seed is fixed in the program, except for continuation runs (using previously 
created *IND.csv and *IT.csv files) where a seed is then selected based on the system clock.  
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CHAPTER 6 
 
 
MMooddeell  IImmpplleemmeennttaattiioonn  aanndd  PPrrooggrraamm  RReessuullttss  
 
 
 
 
 
 
 
 

The tutorial introduction in Chapter 2 provides the basic information needed to implement a 
model in ADAPT and to prepare the required data and parameter files. This chapter gives 
complete details on model implementation and data preparation, as well as on the results 
generated by the ADAPT programs following the methods presented in Chapters 3-5. (Raise 
your hand if you skipped Chapters 3 through 5.) 
 
 
6.1 Implementing the Model Equations 
 

All model equations and associated model information are entered into an ADAPT Model 
File (*.for), including model constants and symbols (in SYMBOL), model differential equations 
(in DIFFEQ), model output equations (in OUTPUT), error variance models (in VARMOD), 
covariate models and initial values for population analysis (in COVMOD and in POPINIT), prior 
parameter values (in PRIOR), and secondary parameter equations (in SPARAM). Entries into the 
Model File must follow the rules of the Fortran language. For most model specifications this 
involves a direct specification of the user’s PK/PD model equations. (See below for a discussion 
of some basic Fortran syntax that may be of use for some problems.) 
 
6.1.1 Model Constants and Symbols (in SYMBOL) 
 

The values for certain model constants are entered in subroutine SYMBOL using the code 
indicated in Table 5.1. In addition, the variable Ieqsol is also set in subroutine SYMBOL to 
either 1, 2 or 3 depending on how the model is defined: 1 - differential equations in DIFFEQ; 2 - 
matrix equation formulation in AMAT; 3 - algebraic equations only in OUTPUT. (Several library 
models use built-in analytic solutions to the model differential equations; this is indicated by a 
different unique value for Ieqsol in that library model file that should not be changed.) The 
code symbol Descr can be assigned a text string (60 characters or less) and is used to describe 
the model in program results. Finally, symbols (10 characters or less) can be provided to 
represent model parameters (Psym(1), …), error variance model parameters (PVsym(1), …), 
and any secondary model parameters (PSsym(1), …). 
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Table 6.1 Model Constants and Symbols 
 

Code Definition 
NDEqs number of differential equations 
NSParam number of system parameters 
NVParam number of error variance model parameters 
NSecPar number of secondary parameters 
Ieqsol model definition (1, 2 or 3) 
Descr model description text string 
Psym(1)  … Psym(NSParam) symbol for each system parameter  
PVsym(1) … PVsym(NVParam) symbol for each error variance parameter 
PSsym(1) … PSsym(NSecPar) symbol for each secondary parameter 

 
 
6.1.2 Model Differential (in DIFFEQ) and Output (in OUTPUT) Equations 
 

Any model differential equations defined by Eq. (3.1) are entered in the subroutine DIFFEQ 
of the Model File, while the model output equations of Eq. (3.2) are entered in the subroutine 
OUTPUT. The symbols that are used in these two subroutines to represent the variables in these 
equations are given in Table 6.2. The model inputs, represented by ( )r t  in Eqs. (3.1) and (3.2), 
are entered directly in the code for the model differential and output equations, using the symbols 
R(1), …, R(NRI) to represent each of the different inputs  The number of model output 
equations (NOEqs), the number of model inputs (NRI), along with the number of bolus inputs 
(NBI) are all specified in the subject specific ADAPT data file as indicated below. The particular 
differential equations that are subject to each bolus input are indicated when running ADAPT. 
Thus symbols representing the bolus inputs ( ( )b t  in Eq (3.4)) do not appear explicitly in the 
differential equations.  
 
 

Table 6.2 Model Differential and Output Equation Symbols for DIFFEQ and OUTPUT 
 

Code Definition 
X(1)  …  X(NDEqs) model state variables ( ) ( )1 nx t x t…  
P(1)  …  P(NSParam) model system parameters  
R(1)  …  R(NRI) model inputs ( ) ( )1 kr t r t"  
IC(1) …  IC(NDEqs) initial conditions for state variables 
Y(1)  …  Y(NOEqs) model outputs ( ) ( )1 ly t y t"  
T time 
XP(1) …  XP(NDEqs) derivatives of the state variables ( ) ( )1 ndx t dt dx t dt…  

 
 

When the model differential equations are defined using the linear homogenous differential 
equation formulation given in Eq. (3.10), then each element of the state matrix is entered in 
subroutine AMAT using the code variable A(I,J) (e.g., A(1,1)=-(P(1)+P(2)). Only the 
non-zero elements of the state matrix are entered.  
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6.1.3 Error Variance Model (in VARMOD) 
 

The functions used to model the error variance for each output or response, as indicated in 
Eq. (3.7), are entered in subroutine VARMOD. The symbols used to represent the equation 
variables are listed in Table 6.3. Any limits of quantitation are also specified in VARMOD. 
 
 

Table 6.3 Error Variance Model Symbols for VARMOD 
 

Code Definition 
V(1)  …  V(NOEqs) error variance for each model output 
PV(1) …  PV(NVParam) variance model parameters 
Y(1)  …  Y(NOEqs) model outputs ( ) ( )1 ly t y t"  
LLQ(1)  …  LLQ(NOEqs) model outputs 1 lLLQ LLQ"  
ULQ(1)  …  ULQ(NOEqs) model outputs 1 lULQ ULQ"  

 
 
6.1.4 Stage 2 Covariate Model (in COVMOD) 
 

User defined models relating parameter population mean values and subject specific 
measured covariates (as defined Eq. (4.3)) are entered in subroutine COVMOD, along with 
covariate model parameter symbols as listed in Table 5.3. This information is used in the MLEM 
and ITS programs.  
 
 

Table 6.4 Covariate Model Symbols for COVMOD 
 

Code Definition 
NCparam number of covariate model parameters 
PCsym(1)  …  PCsym(NCparam) symbol for each covariate parameter 
Pmean(1)  …  Pmean(NSparam) covariate model equation for system parameters 
ICmean(1) …  ICmean(NDEqs) covariate model equation for initial conditions 
R(1) … R(NRI) model inputs used to represent measured covariates 

 
 
6.1.5 Initial Guesses for Population Parameters (in POPINIT) 
 

Initial guesses for the population mean and covariance are provided in subroutine POPINIT 
along with initial guesses for any covariate model parameters using the symbols listed in Table 
6.5. Values are needed only for parameters to be estimated. The selection of Normal or 
lognormal distribution option is made during the program run (MLEM or ITS), and all initial 
guesses entered in POPINIT are in the original units of the problem (i.e., not ln(parameter) ). 
(Initial guesses for individual subject parameters values are obtained from the *.prm file.) 

 
For the initial guess of the covariance matrix, only the lower triangular elements are entered 

(PcovI(I,J), ICcovI(I,J) for I J≥ ). The initial guesses of the diagonal elements of the 
covariance matrix (PcovI(I,I), ICcovI(I,I)) must be entered as non-zero values. For the 
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off-diagonal elements of the covariance matrix (PcovI(I,J), ICcovI(I,J)), the initial guess 
is taken to be zero unless an explicit value is entered. If a covariate model is provided for a 
parameter in subroutine COVMOD, then no initial guess is needed for that parameter’s 
population mean (PmeanI(I), ICmeanI(I)). 

 
All off-diagonal elements of the covariance matrix can be constrained to zero in the 

population estimation when the program is run (MLEM or ITS) by selecting the “diagonal 
covariance matrix option”. Individual covariance elements can be constrained to zero by entering 
an initial guess in POPINIT equal to the ADAPT missing data number (defaults -1) for that 
element of the covariance matrix (PcovI(I,J)=-1), then selecting the “full covariance matrix 
option” during the program run. 
 
 

Table 6.5 Initial Guesses for Population Parameters in POPINIT 
 

Code Definition 
PmeanI(1)  … PmeanI(NSparam) population mean - system parameters 
ICmeanI(1) … ICmeanI(NDEqs) population mean - initial conditions 
PcovI(1,1) … PcovI(NSparam,NSparam) population covariance - system parameters 
ICcovI(1,1) … ICcovI(NDEqs,NDEqs) population covariance - initial conditions 
PCI(1) … PCI(NCparam) covariate model parameters 

 
 
6.1.6 Prior Parameter Model (in PRIOR) 
 

For MAP estimation in ID, STS, NPD and for population simulation in SIM, the mean μ  and 
the covariance Σ  defining the prior density are entered in subroutine PRIOR. Table 6.5 provides 
the code symbols used to represent the mean and covariance of the prior densities. 
 
 

Table 6.5 Prior Distribution Parameters in PRIOR 
 

Code Definition 
Pmean(1)   … Pmean(NSparam) prior mean for system parameters 
ICmean(1)  … ICmean(NDEqs) prior mean for initial conditions 
Pcov(1,1)  … Pcov(NSparam,NSparam) prior covariance for system parameters 
ICcov(1,1) … ICcov(NDEqs,NDEqs) prior covariance for initial conditions 

 
 
When entering the elements of the covariance matrices in subroutine PRIOR, only the lower 
triangular elements of the matrices are entered (i.e., the diagonal elements and below - 
Pcov(I,J), ICcov(I,J) for I J≥ ).  
 

When θ  is partitioned to include either uniformally distributed elements or elements subject 
to a noninformative prior, those elements are so indicated by assigning to either Pmean or 
ICmean the ADAPT missing data number (default -1). Finally, the maxθ  values are provided 
when SIM is run.  
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6.1.7 Secondary Parameter Model (in SPARAM) 
 

The definitions of any secondary parameters are entered in subroutine SPARAM in the 
Model File. The symbols used in defining the secondary parameters are given in Table 6.6. 
 
 

Table 6.6 Secondary Parameters in SPARAM 
 

Code Definition 
PS(1) …  PS(NSecPar) secondary parameters 
P(1)  …  P(NSParam) system parameters 
IC(1) …  IC(NDEqs) initial conditions 

 
 
6.1.8 Other Variables Available in the Model File 
 

In addition to the variables given in Tables 6.1 through 6.3, a number of additional variables 
are available in subroutines DIFFEQ, OUTPUT and VARMOD to use in defining the model. 
These are listed and defined in Table 6.7. 
 
 

Table 6.7 Additional Variables Available to Define the Model 
 

Code Definition 
NRI # of model inputs 
NBI # of bolus inputs 
NDos # of input event times 
dostim(I) value for each input event time (I=1,…,NDos) 
rates(I,J) values for model inputs (I=1,…,NDos,  J=1,…,NRI) 
bolus(I,J) values for bolus inputs (I=1,…,NDos,  J=1,…,NBI) 
NOEqs # of output equations 
NObs # of composite observations per output 
obstim(I) value for each observation time (I=1,…,NObs) 
obsdat(I,J) values for observations (I=1,…,NObs,  J=1,…,NOEqs) 
bolusc(I) compartment (state) # for each bolus (I=1,…,NBI) 
curDN input event # at current time T in the model solution 
curON measurement # at current time T in the model solution 
simdat(I,J) values for model predictions (I=1,…,NObs,  J=1,…,NOEqs) 
xstore(I,J) values for states (I=1,…,NObs,  J=1,…,NDEqs) 
SubjID identifier for the current individual 
SubjInd # of current individual (1, 2, … ) 

 
 
6.1.9 A Note on Model Definition for Population Analysis 
 

For population modeling, the first stage PK/PD system and observation model may be 
different depending on the individual. For example: in a bioavailability study (non crossover) 
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some individuals may receive intravenous drug administration while others may receive the drug 
via extravascular administration; in a two drug interaction modeling study some individuals may 
receive only one of the two compounds while others may receive both; in a simultaneous PK/PD 
modeling effort only PK or PD data may be available in some individuals, while both PK and PD 
data may be available for other individuals.  
 

To model data from such population studies in ADAPT, the user must specify a single 
composite model in the ADAPT Model File. Thus, in an oral bioavailability study with 
intravenous and oral administration, the complete model with the absorption portion should be 
specified in the model file and all subject data files would include both a bolus input for the oral 
dose and a model input representing the intravenous dose. For any subject receiving the oral 
administration, the model input representing the intravenous dose would be zero at all input 
times for that subject, while the bolus dose would be zero for any subject receiving the drug 
intravenously. For a two drug interaction study, the composite model should reduce to the 
appropriate single drug dose response model form when only one of the two compounds is 
present. In the case the simultaneous PK/PD model, the composite model must include all model 
outputs, but the PD data will be indicated as missing in the data files for those individuals with 
only PK data while the PK data will be denoted as missing for those individuals with only PD 
data.  
 
6.2 Data and Parameter File Formats 
 
6.2.1 Data File for Single Individual 
 

The ADAPT Data File (*.dat)contains the number of model and bolus inputs, the number of 
input events, the input event times, and values for all model and bolus inputs at each input event 
time. It also includes the number of model outputs and observations, and the observation times 
and values for measured outputs or responses at each observation time. As illustrated in Chapter 
2.4.3, the ADAPT Interface provides for the creation of a single individual data file. The general 
format for individual data file in ADAPT is shown in Table 6.8.  
 

The user can also create an ADAPT Data File directly (e.g., via a text editor, spread sheet, 
data base or other special purpose software) by following the format in Table 6.8. When creating 
a data file outside of ADAPT save the file as a comma, space or tab delimited text file. 
 
 

Table 6.8 ADAPT Data File Format - Individual 
 

# model inputs       
# bolus inputs        
# input events        
event time 1 rates(1,1) ... rates(1,NRI) bolus(1,1) ... bolus(1,NBI) 

event time 2 rates(2,1) ... rates(2,NRI) bolus(2,1) ... bolus(2,NBI) 

    i     i      i     i      i 
    i     i      i     i      i 
    i     i      i     i      i 
event time NDos rates(NDos,1) ... rates(NDos,NRI) bolus(NDos,1) ... bolus(NDos,NBI)

# output eqs.        
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# observations        

obs. time 1 obsdat(1,1) ... obsdat(1,NOEqs)    

obs. time 2 obsdat(2,1)  obsdat(2,NOEqs)    

    i     i      i    

    i     i      i    

    i     i      i    

obs. time NObs obsdat(NObs,1) ... obsdat(NObs,NOEqs)    

 
 

When entering the data via the ADAPT Interface for the case of multiple outputs, the user 
enters the times and observed data, either separately for each output or as a composite 
spreadsheet with all the unique observation times for all outputs representing the rows and the 
different outputs representing the columns. In the later case, if a particular output is not available 
at a given observation time, then the missing data number is entered as the value for the 
observation (default missing data number -1). Any measurements that are BQL are denoted by L 
and those AQL are indicated by H (see example pd3 in Chapter 8). 
 
6.2.2 Population Data File 
 

The data associated with each individual in a population data file follows the format 
presented above for individual data files. To construct a population data file, individual data files 
are simple concatenated, with each separated by a line containing a text string (20 characters or 
less) used to identify the individual. The overall format is illustrated in Table 6.9.  
 
 

Table 6.9 ADAPT Data File Format - Population 
 

individ. #1 ident.       
# model inputs       
# bolus inputs        
# input events        
event time 1 rates(1,1) ... rates(1,NRI) bolus(1,1) ... bolus(1,NBI) 

    i     i      i     i      i 
    i     i      i     i      i 
    i     i      i     i      i 
obs. time NObs obsdat(NObs,1) ... obsdat(NObs,NOEqs)    

individ. #2 ident.       
# model inputs       
# bolus inputs        
# input events        
event time 1 rates(1,1) ... rates(1,NRI) bolus(1,1) ... bolus(1,NBI) 

    i     i      i     i      i 
    i     i      i     i      i 
    i     i      i     i      i 
obs. time NObs obsdat(NObs,1) ... obsdat(NObs,NOEqs)    

individ. #3 ident.       
    i     i      i     i      i 
    i     i      i     i      i 
    i     i      i     i      i 
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The ADAPT interface does not create population data files. For larger population data sets, 
these files are generally created via database programs or other specialized software that create a 
text file with comma, space or tab delimiters (formatted as per Table 6.9).  
 
6.2.3 Parameter Files 
 

ADAPT Parameter Files (*.prm) are created via the ADAPT interface and contain values for 
model parameters that are used in all of the programs. When ADAPT reads a specified Parameter 
File, it checks that the number of differential equations, number of system parameters, number of 
variance parameters and number of covariate model parameters (as appropriate) is consistent 
with the corresponding numbers specified in subroutines SYMBOL and COVMOD of the 
selected Model File. The Parameter Files follow the format given in Table 5.10. The user can 
also create an ADAPT Parameter File directly (e.g., via a text editor or spread sheet program 
saved as a comma, space or tab delimited text file) by following the format in Table 6.10. 
 

Table 6.10 ADAPT Parameter File 
 

# differential eqs. # system params # error variance params # covariate params 
P(1)    
P(2)    
    i    
    i    
    i    
P(NSParam)    
IC(1)    
    i    
    i    
    i    
IC(NDEqs)    
PV(1)    
    i    
    i    
    i    
PV(NVParam)    

 
The STS, MLEM and ITS programs also can use other files (*IND.csv and *FIX.csv) that 

contain model parameter values, as described below.  
 
 
6.3 Results Generated by the ADAPT Programs 
 

All programs produce a *.run file (file name prefix supplied by the user) that contains a 
complete record of the program run as displayed during the program execution. The file name 
prefix supplied by the user for the run file is also used as the prefix for all other files created by 
ADAPT. The run file and all other files created by ADAPT (with the exception of graphics files) 
are text files (space delimited) that can be read by text editors and imported into spread sheet and 
graphing programs.  
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6.3.1 Files created by SIM 
 

All plots displayed by SIM are saved as a single, multi-page encapsulated postscript file 
(name, *.eps). This file can be viewed or incorporated into documents using any program that 
can manipulate multi-page postscript files (e.g., Adobe Professional™, Ghostview) . 
 

The raw data used to construct the plots displayed by the program SIM are also saved in a 
text file (name, *PLT.csv). This “comma separated variable” text file can then be imported into a 
spreadsheet or graphics program, allowing the user to construct customized plots. The format of 
the *PLT.csv file for Option 1 of the SIM program (individual simulation) is shown in Table 
6.11. The second column contains the plot times used to construct the smooth graphs for the 
model outputs displayed during the program run and in the *.eps file; the corresponding 
simulated model output values are given in columns three through NOEqs+2 of the *PLT.csv file. 
The remainder of the columns list the observations times specified in the *.dat file, followed by 
the corresponding simulated values for each model output (SIM Option 1) or the mean simulated 
output and their standard deviations (SIM Options 2-4). 

 
 

Table 6.11 ADAPT Plot File (*PLT.csv). Format for SIM Option 1 
 

Num Plot-Time Y(1) ... Y(NOEqs) i i i
1 0.0 

1(0)y  ... (0)NOEqsy   

2 
2t  1 2( )y t  ...

2( )NOEqsy t   

    i     i     i      i  
    i     i     i      i  
    i     i     i      i  
MaxPLT 

MaxPLTt  1( )MaxPLTy t ... ( )NOEqs MaxPLTy t  

 
i i i Observ.-Time Y(1) ... Y(NOEqs) 
 obs. time 1 simdat(1,1) ... simdat(1,NOEqs) 
     i     i      i 
     i     i      i 
     i     i      i 
 obs. time NObs simdat(NOBs,1) ... simdat(NOBs,NOEqs)

 
 

Table 6.12 ADAPT Plot File (*PLT.csv). Format for SIM Options 2-4 
 

Num Plot-Time Y(1) ... Y(NOEqs) i i i
1 0.0 

1(0)y  ... (0)NOEqsy   

2 
2t  1 2( )y t  ...

2( )NOEqsy t   

    i     i i      i  
    i     i i      i  
    i     i i      i  
MaxPLT 

MaxPLTt  1( )MaxPLTy t ... ( )NOEqs MaxPLTy t  
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i i i Observ.-
Time 

Y(1)-mean Y(1)-SD ... Y(NOEqs)-mean Y(NOEqs)-SD 

 obs. time 1 simdat(1,1) 
1 1( )y sd t  ... simdat(1,NOEqs) 

1( )NOEqsy sd t  

     i     i     i      i     i 
     i     i     i      i     i 
     i     i     i      i     i 
 obs. time 

NObs 
simdat(NOBs,1) 

1 ( )NOBsy sd t ... simdat(NOBs,NOEqs) ( )NOEqs NOBsy sd t  

 
 

Options 2, 3, and 4 in SIM perform populations simulations for a specified number of 
simulated subjects (see Section 3.8). The simulation results for each of these subjects can be 
stored in a population simulation file (name, *POP.csv). This  “comma separated variable” text 
file can be imported into a statistical analysis program for more detailed analysis of simulation 
results than is provided by ADAPT. Each row of the file presents the results for one simulated 
subject and the entire file is formatted as shown in Table 6.13 
 
 

Table 6.13 ADAPT Population File (*POP.csv). Format for SIM. 
 

Indiv.# Psym(1) ... Psym(NSparam) IC(1) ... IC(NDEqs) i i i 
1 

1θ  ... 
pmθ  (1)IC  ... ( )IC n   

2 
1θ  ... 

pmθ  (1)IC  ... ( )IC n   

    i     i      i     i      i  
    i     i      i     i      i  
    i     i      i     i      i  
MaxSIM 

1θ  ... 
pmθ  (1)IC  ... ( )IC n   

 
i i i Y1(1) ... Y1(NOBs) Y2(1) ... Y2(NOBs) i i i 
 

1 1( )y t  ... 
1( )NOBsy t  2 1( )y t  ...

2 ( )NOBsy t   

     i      i     i      i  
     i      i     i      i  
     i      i     i      i  
 

1 1( )y t  ... 
1( )NOBsy t  2 1( )y t  ...

2 ( )NOBsy t   

 
 

The simulations results can also be stored in an ADAPT data file (name, *.dat). For the 
Simulation Option 1 the file format is as given above in Table 6.8, while for Option 2-4 the 
created data file follows the format given in Table 6.9. 
 
6.3.2 Files created by ID 
 

All plots displayed by the program ID are saved as a single, multi-page encapsulated 
postscript file (name, *.eps). This file can be viewed or incorporated into documents using any 
program that can manipulate multi-page postscript files (e.g., Adobe Professional™, Ghostview). 
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The raw data used to construct the plots displayed by the ID program are also saved in a text 
file (name, *PLT.csv). This “comma separated variable” text file can then be imported into a 
spreadsheet or graphics program, allowing the user to construct customized plots. The format of 
the *PLT.csv file for the ID program is shown in Table 6.14. The second column contains the plot 
times used to construct the smooth graphs for the model outputs displayed during the program 
run and in the *.eps file; the corresponding simulated model output values are given in columns 
three through NOEqs+2 of the *PLT.csv file. The remaining columns contain the observations 
times, and for each output the model prediction, observed data, standard error of the prediction, 
residual and standardized residual. 
 
 

Table 6.14 ADAPT Plot File (*PLT.csv). Format for ID. 
 

Num Plot-Time Y(1) ... Y(NOEqs) i i i
1 0.0 

1(0)y  ... (0)NOEqsy   

2 
2t  1 2( )y t  ...

2( )NOEqsy t   

    i     i     i      i  
    i     i     i      i  
    i     i     i      i  
MaxPLT 

MaxPLTt  1( )MaxPLTy t ... ( )NOEqs MaxPLTy t  

 
i i i Observ.-Time Z(1) Y(1) Y(1)-SE Residual Stand.Res. i i i 
 obs. time 1 obsdat(1,1) 

1 1( )y t  1 1( )y sd t  1 1( )y res t  1 1( )y stdres t   
     i     i     i     i     i     i  
     i     i     i     i     i     i  
     i     i     i     i     i     i  
 obs. time NObs obsdat(NOBs,1) 

1( )NOBsy t  1 ( )NOBsy sd t  1 ( )NOBsy res t  1 ( )NOBsy stdres t   
 
 

The ID program also creates a separate file that includes the same information contain in the 
second part of the Table 6.14 but formatted differently. The format of this file (name, *RSD.csv) 
is described below in the discussion of the STS program output.  
 

Finally the ID program creates an ADAPT Command Input file (name, *.aci) that can be 
edited and selected when ADAPT is run using the Batch run option via the ADAPT interface. It 
is also used when an executable ADAPT program is run via another program (see Section 6.4 
below). The *.aci file contains the replies entered by the user during the run of ID. 
 
6.3.3 Files created by SAMPLE 
 

All plots displayed by SAMPLE are saved as a single, multi-page encapsulated postscript file 
(name, *.eps). This file can be viewed or incorporated into documents using any program that 
can manipulate multi-page postscript files (e.g., Adobe Professional™, Ghostview) . 
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The raw data used to construct the plots displayed by the program SIM are also saved in a 
text file (name, *PLT.csv). This space delimited text file can then be imported into a spreadsheet 
or graphics program, allowing the user to construct customized plots. The format of the *PLT.csv 
file for created by SAMPLE is the same as that created by Option 1 of the SIM program and 
shown in Table 6.11.  
 
6.3.4 Files created by STS 
 

All plots displayed by the program STS are saved as a single, multi-page encapsulated 
postscript file (name, *.eps). In addition, the file includes plots of the predicted model outputs 
shown with observed data for each individual that are not displayed during the run of STS. This 
file can be viewed or incorporated into documents using any program that can manipulate multi-
page postscript files (e.g., Adobe Professional™, Ghostview). 
 

The raw data used to construct all the predicted model output with data plots for each subject, 
as displayed in the *.eps file, are also saved in a text file (name, *PLT.csv). This file can then be 
imported into a spreadsheet or graphics program, allowing the user to construct customized plots. 
The format of this *PLT.csv file for the first individual is shown in Table 6.15, which is followed 
in subsequent rows by the plot data for each of the individuals in blocks as shown for the first 
subject in Table 6.15. 
 
 

Table 6.15 ADAPT Plot File (*PLT.csv). Format for ID. 
 

Individ# IndividualID Obser.# Plot-Time Y(1) ... i i i
1 individ. #1 ident. 1 0.0 

1(0)y  ...  

1 individ. #1 ident. 2 
2t  1 2( )y t  ...  

    i     i     i     i     i     i  
    i     i  i     i     i     i  
    i     i  i     i     i     i  
1 individ. #1 ident. MaxPLT 

MaxPLTt  1( )MaxPLTy t  ...  

  
i i i Y(NOEqs) Observ.-Time Z(1) ... Z(NOEQs) 
 (0)NOEqsy  obs. time 1 obsdat(1,1) ... obsdat(1,1) 

 
2( )NOEqsy t      i     i     i     i 

     i     i     i     i     i 
     i     i     i     i     i 
     i obs. time NObs obsdat(NOBs,1) ... obsdat(NOBs,1) 
 ( )NOEqs MaxPLTy t      

 



Biomedical Simulations Resource 
 

ADAPT 5 User’s Guide 79

The data used to create the various residuals plots displayed by STS (also contained in the 
*.eps file) are stored in the residual file (name, *RSD.csv) following the format shown in Table 
6.16.  
 
 

Table 6.16 ADAPT Residual File (*RSD.csv). Format for STS. 
 
Individ# Individ.ID Output# Obser.# Observ.Time Data i i i
1 individ.#1 ident. 1 1 obs. time 1 obsdat(1,1)  
1 individ. #1 

ident. 
1 2 obs. time 2 obsdat(2,1)  

    i     i     i     i     i     i  
    i     i     i     i     i     i  
    i     i     i     i     i     i  
1 individ. #1 

ident. 
1 NOBs obs. time NOBS obsdat(NOBs,1)  

1 individ. #1 
ident. 

2 1 obs. time 1 obsdat(1,2)  

1 individ. #1 
ident. 

2 2 obs. time 2 obsdat(2,2)  

    i     i     i     i     i     i  
    i     i     i     i     i     i  
    i     i     i     i     i     i  
1 individ. #1 

ident. 
2 NOBs obs. time NOBS obsdat(NOBs,2)  

    i     i     i     i     i     i  
    i     i     i     i     i     i  
    i     i     i     i     i     i  

 
i i i ModelPred. SE-ModelPred. Residual Std.Resid. 
 

1 1( )y t  1 1( )y sd t  1 1( )y res t  1 1( )y stdres t  

 
1 2( )y t  1 2( )y sd t  1 2( )y res t  1 2( )y stdres t  

     i     i     i     i 
     i     i     i     i 
     i     i     i     i 
 

1( )NOBsy t  1 ( )NOBsy sd t  1 ( )NOBsy res t 1 ( )NOBsy stdres t  

 
2 1( )y t  2 1( )y sd t  2 1( )y res t  2 1( )y stdres t  

 
2 2( )y t  2 2( )y sd t  2 2( )y res t  2 2( )y stdres t  

     i     i     i     i 
     i     i     i     i 
     i     i     i     i 
 

2 ( )NOBsy t  2 ( )NOBsy sd t  2 ( )NOBsy res t 2 ( )NOBsy stdres t  

     i     i     i     i 
     i     i     i     i 
     i     i     i     i 
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The parameter estimates obtained by STS for each individual are stored in the individual 
subject estimate file (name, *IND.csv) following the format shown in Table 5.17. The file also 
contains for each individual, values for any secondary parameters, the value for the weighted 
sum of squares, negative loglikelihood or MAP objective function (depending on the estimator 
selected), and the covariance matrix (lower triangular form) for the standard errors of the 
parameter estimates.  
 

This *IND.csv file can also be used in place of an ADAPT parameter file (*.prm file) to 
provide the initial guesses for estimated model parameters. By supplying the name of the 
appropriate individual subject estimate file (*IND.csv) under the parameter menu in the ADAPT 
interface, the values stored in the *IND.csv for each individual will be used as the initial guesses 
for the estimated parameters for that individual. Those parameters not estimated will also be 
taken from the *IND.csv file. Thus a subsequent run of the STS program can use parameter 
values read from a previously created *IND.csv as the initial guesses for the model parameters to 
be estimated. 
 
 

Table 6.17 ADAPT Individual Subject Estimate File (*IND.csv). Format for STS. 
 
Created by: STS   
Model Descript: Descr   
Num of Diff. Eqs Num Sys. Param. Num Var. Param.  
NDEqs NSParam NVParam  
Number IndividID Psym(1) ... IC(NDEqs) i i i
 ParamEstimated? YorN ... YorN  
1 individ.#1 ident. 

1θ  ... ( )IC n   

2 individ.#2 ident. 
1θ  ... ( )IC n   

    i       i      i  
    i      i      i  
    i      i      i  

 
i i i PVsym(1) ... PSsym(1) ... Est.Obj.Value i i i  
 YorN ...  ...    
 

1β  ... 
1γ  ... WLS/-LL/MAP   

 
1β  ... 

1γ  ... WLS/-LL/MAP   

     i      i      i   
     i      i      i   
     i      i      i   

 
i i i Psym(1)/Psym(1) Psym(2)/Psym(1) Psym(2)/Psym(2) i i i 
     
 Cov(1,1) Cov(2,1) Cov(2,2)  
 Cov(1,1) Cov(2,1) Cov(2,2)  
     i     i     i  
     i     i     i  
     i     i     i  
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Another parameter file, created by the user, can be used to provide individual specific values 

for all parameters that will not be estimated (name, *FIX.csv). The format of this file containing 
the values for the parameters to be fixed for each subject is given in Table 6.18. (When the 
estimated model parameters are the same for each subject, then the *.prm file can be used to 
provide the values for each non estimated parameter.) 

 
 

Table 6.18 ADAPT Fixed Parameter File (*FIX.csv). Format for STS. 
 

Title of File     
# Fixed Params.     
Individ.# Individ.ID Psym(1) … IC(NDEqs) 
1 individ.#1 ident.

1θ   ( )IC n  

2 individ.#2 ident.
1θ   ( )IC n  

    i     i     i      i 
    i     i     i      i 
    i     i     i      i 

 
 
Finally the STS program also creates an ADAPT Command Input file (name, *.aci) that can 

be edited and selected when ADAPT is run using the Batch run option via the ADAPT interface. 
It is also used when an executable ADAPT program is run via another program (see Section 6.4 
below). The *.aci file contains the replies entered by the user during the run of STS. 
 
6.3.5 Files created by NPD 
 

All plots displayed by the program NPD are saved as a single, multi-page encapsulated 
postscript file (name, *.eps). In addition, the file includes plots of the predicted model outputs 
shown with observed data for each individual that are not displayed during the run of NPD. This 
file can be viewed or incorporated into documents using any program that can manipulate multi-
page postscript files (e.g., Adobe Professional™, Ghostview). 
 

The NPD program also produces a plot data file (name, *PLT.csv) and residual file (name, 
*RSD.csv) with formats identical those shown in Tables 6.15 and 6.16. An ADAPT Command 
Input file (name, *.aci) is also created containing the user’s replies entered during the run of STS. 
 
6.3.6 Files created by MLEM 
 

All plots displayed by the program MLEM are saved as a single, multi-page encapsulated 
postscript file (name, *.eps). In addition, the file includes plots of the predicted model outputs 
shown with observed data for each individual that are not displayed during the run of MLEM. 
This file can be viewed or incorporated into documents using any program that can manipulate 
multi-page postscript files (e.g., Adobe Professional™, Ghostview). 
 

The MLEM program produces a plot data file (name, *PLT.csv) and residual file (name, 
*RSD.csv) with formats identical to that produced by the STS program and shown Tables 6.15 
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and 6.16. For MLEM the *RSD.csv file also contains an additional column of the model 
predictions for each individual evaluated at the population mean. An ADAPT Command Input 
file (name, *.aci) is also created containing the replies entered by the user during the run of STS. 
 

An individual subject estimate file (name, *IND.csv) is also created similar to the format 
shown in Table 6.17. For the MLEM program, the individual subject estimates are the 
conditional mean and conditional covariance defined in Section 4.3 (Eq. (4.5)-(4.6)). The 
*IND.csv file created by the MLEM program, however, includes the following columns in 
addition to those given in Table 6.17: all the model inputs for each subject whether they are used 
as covariates or not; conditional mean values for each subject minus the population mean values 
(θ μ− ); the conditional mode for each subject as calculated from the samples from the 
conditional density. The format of the trailing columns of the *IND.csv is shown in Table 6.19.  
 
 

Table 6.19 ADAPT Individual Subject Estimate File (*IND.csv) Additional Columns for the 
Case of Covariate Model(s). Format for MLEM. 

 
i i i R(1) ... R(NRI) Psym(1)-mean ... IC(NDEqs)-mean i i i
  ...   ...   
 Rates(1,1) ... Rates(1,NRI)

1 1θ μ−  
...

( )IC nμ   

 Rates(1,1) ... Rates(1,NRI)
1 1θ μ−  

...
( )IC nμ   

     i      i     i      i  
     i      i     i      i  
     i      i     i      i  
 

i i i modePsym(1) ... modeIC(NDEqs)
 

1modeθ  ... mod e ( )IC n  

 
1modeθ   mod e ( )IC n  

     i      i 
     i      i 
     i ...     i 

 
 

The MLEM program can also read a parameter file with individual specific fixed values for 
model parameters via the *FIX.csv file (see Table 6.18). 
 

The MLEM program produces an iteration file (name, *IT.csv) that contains the estimated 
values for the population means and covariances, error variance parameters, as well as any 
covariate model parameters for each EM iteration (format as per Table 6.20). This *IT.csv file 
along with the corresponding *IND.csv file can also be used to continue an estimation, by 
selecting the individual subject estimate file (*IND.csv) from the ADAPT interface. 
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Table 6.20 ADAPT Iteration File (*IT.csv). Format for MLEM. 

 
Created by: MLEM  
ModelDescription: Descr  
N/LN Dist. Option   
Iteration Psym(1) ... IC(NDEqs) i i i
1 

1μ  ...
( )IC nμ   

2 
1μ  ...

( )IC nμ   

    i     i      i  
    i     i      i  
    i     i      i  

 
i i i Psym(1)/Psym(1) Psym(2)/Psym(1) Psym(2)/Psym(2) i i i 
 2

1σ  21σ  2
2σ   

 2
1σ  21σ  2

2σ   

     i     i     i  
     i     i     i  
     i     i     i  

 
i i i PVsym(1) ... PCsym(1) ... NegLogLikelihood
 

1β  ... 
1c  ... ( )L φ  

 
1β  ... 

1c  ... ( )L φ  

     i      i      i 
     i      i      i 
     i      i      i 

 
 
 
6.3.7 Files created by ITS 
 

All the files created by the ITS program are similar in format to those created by the MLEM 
program. (In the *IND.csv file, the individual parameter estimates displayed are the MAP 
estimates.) 
 
 
6.4 Running Previously Created ADAPT Executable Files 
 

Once an ADAPT executable file is created via the ADAPT Interface (ADAPT program 
complied with user model file), the resulting executable file (model.exe) can be run directly 
without using the ADAPT Interface in one of two ways. The user can double click on the 
model.exe file to launch the file. When an ADAPT model.exe file is run in this manner, the 
user’s interaction with the program is the same as if the program where run via the interface, 
except the program will query the user to supply the names of both the ADAPT Data and 
Parameter Files during the course of the program run. Alternately, the user can run the model.exe 
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file via the Windows Command Prompt or via some other program that allows Windows 
executable files to be launched, in which case the program is run in background or batch mode. 
Figure 6.1 shows an ADAPT executable file (pd1.exe, see Chapter 8) run from the Windows 
Command Prompt. As indicated in the figure, the names of a batch command input file (*.aci), a 
data file (*.dat) and a parameter file (*.prm) must be supplied as arguments.  
 
 

 
 

Figure 6.1  Windows command line run of an ADAPT executable file. 
 
 

ADAPT executable files can be distributed to others and run on machines in which ADAPT 
is not installed. In such cases two additional files need to be distributed with the executable 
program: grfont.dat and filedisp.exe. These two files are located in the ADAPT installation folder 
(default location: C:\Program Files\BMSR\ADAPT 5). When ADAPT is run through the 
Windows Commnad Prompt, even on machines in which ADAPT is installed, these two files 
must also reside in the folder containing the ADAPT executable file. 
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SSoommee  PPhhaarrmmaaccookkiinneettiicc  EExxaammpplleess  
 
 
 
 
 
 
 
 
 

The examples in this and subsequent chapters are intended to illustrate many of the capabilities 
of ADAPT for a variety of PK/PD modeling tasks. The examples show the resulting run files and 
plot files created by the program, but do not show the associated ADAPT interface (illustrating 
model, data and parameter file definitions) or the program command windows. These aspects are 
illustrated in Chapter 2. The files used for all the examples in this User’s Guide, as well as those 
created from the program runs, can be found in the \Example subfolder of the installation. 
 
 
7.1 Example pk1: SIM – Individual Simulation 
 

This example uses the analytic solution for the plasma concentration predicted by a 
one-compartment model with first-order absorption, following administration of a single bolus 
dose. The plasma concentration model equation is: 

 

( ) ( )( ) ( )/
e aK t K ta

a e

D Ky t e e
V F K K

− −⋅
=

−
−      (7.1) 

 
The code for this equation has been entered into subroutine OUTPUT of the Model File pk1.for. 
The variance model given below has also been coded and entered into subroutine VARMOD of the 
same Model File: 

 

( ){ } ( )( )2
var inter slopee t y tσ σ= +        (7.2) 

 
The appropriate entries have been made in subroutine SYMBOL of the Model File pk1.for. Figure 
7.1 shows the sections of code in pk1.for from the subroutines OUTPUT, SYMBOL, and 
VARMOD. 
 

For this example the model input consists of a single bolus dose of 500 mg in compartment 1 
given at a time 0.0 hr. with ten observation times in the interval 0.0 to 14.0 hrs. (information 
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entered in data file pk1.dat). Values for the model parameters have been entered in parameter file 
pk1.prm (rate constant units , volume units L ). The resulting run and plot files for this 
example are shown in Figures 7.2 and 7.3. A file named 

1hr−

pk1PLT.csv is also created as described in 
Chapter 6 and can be viewed in the \Example subfolder of the installation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.1  Excerpts from pk1.for showing the user entries for the model of example pk1.  
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     ADAPT 5      SIM -- MODEL SIMULATION    Sun Aug  5 12:49:04 2007 
 
 
 Data file name (*.dat): C:\Program Files\BMSR\ADAPT 5\Examples\pk1.dat 
 
      ----- MODEL INPUT INFORMATION ----- 
 
 Data file name (*.dat): pk1.dat 
 
 The number of model inputs:     0 
 
 The number of bolus inputs:    1 
 
 The number of input event times:     1 
 
     Input Event Information 
           Time    Value for all Inputs 
 Event     Units,       B(1) 
    1.     0.000          500.0     
 
      ----- MODEL OUTPUT INFORMATION ----- 
 
 The number of model output equations:   1 
 
 The number of observations:   10 
 
     Observation Information 
                 Time     Measured Value For Each Output 
 Observation     Units ,     Y(1) 
       1.        0.5000       -1     
       2.         1.000       -1     
       3.         2.000       -1     
       4.         3.000       -1     
       5.         4.000       -1     
       6.         5.000       -1     
       7.         7.000       -1     
       8.         9.000       -1     
       9.         11.00       -1     
      10.         14.00       -1     
 
      ----- SIMULATION SELECTION -----  
 
 The following simulation options are available: 
     1. Individual simulation 
     2. Individual simulation with output noise 
     3. Population simulation 
     4. Population simulation with output noise 
 
 Enter option number:  1 
 
 
Figure 7.2  Example pk1. Simulation of 1 compartment absorption model. Display of run file, 

pk1.run, with user entries indicated. 
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Figure 7.2  (continue) 
 
     ----- ENTER PARAMETER INFORMATION ----- 
 
 Parameter file name: pk1.prm 
 
 Enter values for indicated parameters:  
  Parameter      Old Value     New Value (<Enter> if no change) 
   KE            .2000 
   KA            1.000 
   V             30.00 
   F             .9000 
 
 Store inputs and simulated data in a new Adapt data file (Y/N)?  n 
 
      ----- RESULTS ----- 
 
      --- A. Parameter Summary ---   
 
 Sun Aug  5 12:49:04 2007 
 
 Data file name: pk1.dat 
 
 Model: pk1.for - Example pk1 in ADAPT Users Guide     
 
 Individual simulation 
 
 Parameter       Value    
  KE            0.2000     
  KA             1.000     
  V              30.00     
  F             0.9000     
  
 
      --- B. Simulation Summary ---   
 
 Sun Aug  5 12:49:04 2007 
 
Data file name: C:\Program Files\BMSR\ADAPT 5\Examples\pk1.dat 
 
 Model: pk1.for - Example pk1 in ADAPT Users Guide      
 
 Individual simulation 
 
  Obs.Num.    Time          Y(1) 
      1       0.5000        5.593     
      2        1.000        8.453     
      3        2.000        10.03     
      4        3.000        9.357     
      5        4.000        8.081     
      6        5.000        6.771     
      7        7.000        4.607     
      8        9.000        3.097     
      9        11.00        2.077     
     10        14.00        1.140     
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Figure 7.2  (continue) 
 
      ----- PLOTTING OPTIONS -----  
 
 Do you want to plot with options (Y/N)?  y 
 
 Options Menu for Output Y(  1) 
   1. Supply labels & title     5. Plot to screen 
   2. Log Y versus time         6. Save plots in a file 
   3. Y-axis scaling            7. EXIT options 
   4. Select symbols 
 * Enter option number :     1 
 
         * Enter title:  Example pk1:  ADAPT User's Guide    
         * Enter X-axis label:  Time   (hours)        
         * Enter Y-axis label:  Concentration   (\gmg/ml)       
 
 Options Menu for Output Y(  1) 
   1. Supply labels & title     5. Plot to screen 
   2. Log Y versus time         6. Save plots in a file 
   3. Y-axis scaling            7. EXIT options 
   4. Select symbols 
 * Enter option number :     6 
 
         * Enter file name (*.eps):  pk1label.eps 
 
 Options Menu for Output Y(  1) 
   1. Supply labels & title     5. Plot to screen 
   2. Log Y versus time         6. Save plots in a file 
   3. Y-axis scaling            7. EXIT options 
   4. Select symbols 
 * Enter option number :     7 
 
 Do you want to plot with options (Y/N)?  n 
 
      ________________________________________ 
 
      ________________________________________ 
 
      --- RE-SIMULATION OPTIONS ---  
 
     1. Change parameter values 
     2. Change simulation option 
     3. Exit SIM 
 
 Enter option number:  3 
 
      ________________________________________ 
 
 
     ADAPT 5      SIM -- MODEL SIMULATION    Sun Aug  5 12:49:04 2007 
 

 89



ADAPT 5 User’s Guide 

 
 

Figure 7.3  Example pk1. The resulting plot stored in file pk1.eps is similar to this graph but it 
will not include the open squares. This plot was created using a data file that 
included as observations the simulated model output values at each observation. 

 
While not shown here, this model was re-simulated using the same parameter values but under 

simulation option 2, in order to simulate noisy observations. The parameters of the variance model 
(Eq. (5.2)) were set at = 0.1 and interσ slopeσ = 0.1. This error model results in an error coefficient of 
variation (CV) of approximately 20% at a concentration of 1.0 µg/ml and a CV of approximately 
10% at a concentration of 10.0 µg/ml. The resulting simulated noisy data were stored in a data file 
and edited to round the observations to 2 significant figures (data file name 1compabs.dat). This 
data file is used in examples pk2, pk3, and pk4 to illustrate the WLS, ML and GLS estimation 
options in ID. 
 
 
7.2 Example pk2: ID – WLS Estimation 
 

Figure 7.4 shows an ID run file using the one compartment absorption model given in the 
previous example (recoded in file pk2) using the data in file 1compabs.dat. Initial guesses for the 
four model parameters are read from file pk2.prm. Weighted least squares estimation with 
weighting option 2 is selected. The parameter representing the fraction of the dose absorbed (F) 
fixed at 0.9 and not estimated. The resulting run and plot files are shown in Figures 7.5. Also, files 
named pk2PLT.csv, pk2RSD.csv and pk2.aci are created as described in Chapter 6 and can be 
viewed in the \Example subfolder of the installation. 
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    ADAPT 5    ID -- INDIVIDUAL ESTIMATION    Tue Feb 12 15:27:40 2007 
 
 
 Enter file name for storing session run (*.run): pk2.run 
 
      ----- MODEL INPUT INFORMATION ----- 
 
 Data file name (*.dat): C:\Program Files\BMSR\ADAPT 5\Examples\1compabs.dat 
 
 The number of model inputs:     0 
 
 The number of bolus inputs:    1 
 
 The number of input event times:     1 
 
     Input Event Information 
           Time    Value for all Inputs 
 Event     Units,       B(1) 
    1.     0.000          500.0     
 
      ----- MODEL OUTPUT INFORMATION ----- 
 
 The number of model output equations:   1 
 
 The number of observations:   10 
 
     Observation Information 
                 Time     Measured Value For Each Output 
 Observation     Units ,     Y(1) 
       1.        0.5000       5.700     
       2.         1.000       9.300     
       3.         2.000       8.500     
       4.         3.000       9.100     
       5.         4.000       8.200     
       6.         5.000       7.700     
       7.         7.000       5.200     
       8.         9.000       3.200     
       9.         11.00       1.900     
      10.         14.00       1.100     
 
      ----- ESTIMATOR SELECTION -----  
 
 The following estimation procedures are available: 
      1. Weighted least squares (WLS) 
      2. Maximum likelihood (ML) 
      3. Generalized least squares (GLS) 
      4. Maximum a posteriori probability (MAP) 
 
 Enter option number:  1 
 
 

 
 

Figure 7.4  Example pk2. WLS estimation with one-compartment absorption model. Display 
of run file, pk2.run, with user entries indicated. 
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Figure 7.4  (continue) 
 
 
      --- Supply Weighting Information For WLS Estimator --- 
 
 The following weighting options are available: 
  1.   General 
  2.   Inverse variance of the output error (linear) 
  3.   Inverse variance of the output error (nonlinear) 
 
      For Y(   1): 
 
 Enter the number of the desired weighting procedure:   2 
 
 Define the Linear Std. Dev. vs Output Curve: 
 
                   Y( 1) Value, Std. Dev. 
 Low Measurement                1.000      0.2000      
 High Measurement               10.00       1.000      
 
      ----- INITIALIZE ESTIMATION PROCEDURE ----- 
 
 Parameter file name: C:\Program Files\BMSR\ADAPT 5\Examples\pk2.prm 
 
 Enter initial values for parameters & specify those to be estimated:  
 
            Old Value    New Value      Estimate?  
                       (skip if same)    (Y/N) 
 KE         .6000            y        
 KA         2.500            y     
 V          20.00            y        
 F          .9000            n   
 
 Enter maximum number of iterations:       300 
 
 Do you want the iterations printed (Y/N)?  n 
 
             ----- RESULTS ----- 
 
             --- A. Iterations ---   
 
     Number of iterations      =     0 
     Number of function calls  =     1 
 
      Fitted Parameters 
       KE         =   0.6000     
       KA         =    2.500     
       V          =    20.00     
 
     Weighted Least Squares =  506.495     
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Figure 7.4  (continue) 
 
              ---B. Iteration Summary--- 
 
     Convergence has been achieved. 
 
     Number of iterations      =    26 
     Number of function calls  =   127 
 
      Fitted Parameters 
       KE         =   0.2027     
       KA         =   0.9496     
       V          =    29.47     
 
     Weighted Least Squares =  6.90219     
 
 
             --- C. WLS Estimation Summary--- 
 
 Tue Feb 12 15:27:40 2007 
 
 Data file name: C:\Program Files\BMSR\ADAPT 5\Examples\1compabs.dat 
 
 Model:  pk2.for - Example pk2 in ADAPT Users Guide   
 
 Weighting Information 
   Option for Y( 1):  2 with (1.000    ,.2000    ) and (10.00    ,1.000    ) 
 
 Convergence achieved 
   Number of iterations:          26 
   Number of function calls:     127 
 Weighted Least Squares:    6.90219     
 
 
                                Weighted 
  Output        R-squared    Sum of Squares   Sum of Squares 
  Y( 1)        0.950           6.90219          4.45241     
 
  Model Selection Criteria 
   AIC:          25.3184     
   BIC:          26.2261     
 
 
                Initial      Final 
  Parameter      Value      Estimate    SE (CV%)    Confidence interval (95%) 
 
  KE            0.6000      0.2027       8.641      [ 0.1613    ,  0.2441    ] 
  KA             2.500      0.9496       16.65      [ 0.5756    ,   1.323    ] 
  V              20.00       29.47       8.397      [  23.62    ,   35.32    ] 
  F             0.9000      Not estimated 
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Figure 7.4  (continue) 
 
  Correlation Matrix 
 
           KE        KA        V          
 KE          1.00 
 KA         -0.78      1.00 
 V          -0.90      0.78      1.00 
 
 
  Covariance Matrix 
 
           KE        KA        V          
 KE        0.307E-03 
 KA        -.217E-02 0.250E-01 
 V         -.388E-01 0.305      6.12     
 
            --- D. WLS Estimation Model Prediction and Data Summary --- 
 
 Tue Feb 12 15:27:40 2007 
 
 Data file name: C:\Program Files\BMSR\ADAPT 5\Examples\1compabs.dat 
 
 Model:  pk2.for - Example pk2 in ADAPT Users Guide     
 
 
 Y( 1) 
  Obs.Num.   Time         Data       Model Est.     Residual     Weight 
      1      0.5000        5.700        5.467        0.2330        2.620     
      2       1.000        9.300        8.341        0.9593        1.137     
      3       2.000        8.500        10.04        -1.537        1.331     
      4       3.000        9.100        9.444       -0.3444        1.181     
      5       4.000        8.200        8.195        0.5305E-02    1.417     
      6       5.000        7.700        6.878        0.8219        1.580     
      7       7.000        5.200        4.673        0.5273        3.042     
      8       9.000        3.200        3.128        0.7166E-01    6.391     
      9       11.00        1.900        2.088       -0.1876        12.76     
     10       14.00        1.100        1.137       -0.3674E-01    22.92     
 
 Y( 1) (Continued)                 Std. Err.   Standardized 
           Obs.Num.   Model Est.   Model Est.   Residual 
                1       5.467       0.4615       0.3771     
                2       8.341       0.5203        1.023     
                3       10.04       0.4391       -1.774     
                4       9.444       0.4486      -0.3744     
                5       8.195       0.4295       0.6315E-02 
                6       6.878       0.3661        1.033     
                7       4.673       0.2347       0.9197     
                8       3.128       0.1797       0.1812     
                9       2.088       0.1645      -0.6701     
               10       1.137       0.1397      -0.1759     
 
      ----- PLOTTING OPTIONS -----  
 
  ...{Dialogue for plotting options and program exit not shown}... 
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Figure 7.5  Example pk2. Resulting plots as stored in file pk2.eps.  
 
 
7.3 Example pk3: ID – ML Estimation 
 

Figure 7.6 shows an ID run file using the one compartment absorption model in Eq. (7.1) and 
the data in the file 1compabs.dat. The ML estimation option is selected with slopeσ  fixed at 0.1 (i.e., 
not estimated) and  given an initial value of 0.1 and estimated. The resulting plots are shown 
in Figure 7.7. Also, files named 

interσ
pk3PLT.csv, pk3RSD.csv and pk3.aci are created as described in 

Chapter 6 and can be viewed in the \Example subfolder of the installation. 
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    ADAPT 5    ID -- INDIVIDUAL ESTIMATION    Tue Feb 12 13:04:21 2007 
 
Enter file name for storing session run (*.run): pk3.run 
 
      ----- MODEL INPUT INFORMATION ----- 
 
 Data file name: C:\Program Files\BMSR\ADAPT 5\Examples\1compabs.dat 
 
 The number of model inputs:     0 
 
 The number of bolus inputs:    1 
 
 The number of input event times:     1 
 
     Input Event Information 
           Time    Value for all Inputs 
 Event     Units,       B(1) 
    1.     0.000          500.0     
 
      ----- MODEL OUTPUT INFORMATION ----- 
 
 The number of model output equations:   1 
 
 The number of observations:   10 
 
     Observation Information 
                 Time     Measured Value For Each Output 
 Observation     Units ,     Y(1) 
       1.        0.5000       5.700     
       2.         1.000       9.300     
       3.         2.000       8.500     
       4.         3.000       9.100     
       5.         4.000       8.200     
       6.         5.000       7.700     
       7.         7.000       5.200     
       8.         9.000       3.200     
       9.         11.00       1.900     
      10.         14.00       1.100     
 
      ----- ESTIMATOR SELECTION -----  
 
 The following estimation procedures are available: 
      1. Weighted least squares (WLS) 
      2. Maximum likelihood (ML) 
      3. Generalized least squares (GLS) 
      4. Maximum a posteriori probability (MAP) 
 
 Enter option number:  2 
 
      ----- INITIALIZE ESTIMATION PROCEDURE ----- 
 
 Parameter file name: C:\Program Files\BMSR\ADAPT 5\Examples\pk3.prm 

 
 

Figure 7.6  Example pk3. ML estimation with one-compartment absorption model. Display of 
run file, pk3.run, with user entries indicated. 
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Figure 7.6  (continue) 
 
 Enter initial values for parameters & specify those to be estimated:  
 
            Old Value    New Value      Estimate?  
                       (skip if same)    (Y/N) 
 KE         .6000            y             
 KA         2.500            y                 
 V          20.00            y         
 F          .9000            n              
 SDinter    .1000            n          
 SDslope    .1000            y              
 
 Enter maximum number of iterations:       300 
 
 Do you want the iterations printed (Y/N)?  n 
 
             ----- RESULTS ----- 
 
             --- A. Iterations ---   
 
     Number of iterations      =     0 
     Number of function calls  =     1 
 
      Fitted Parameters 
       KE         =   0.6000     
       KA         =    2.500     
       V          =    20.00     
       SDslope    =   0.1000     
 
     Negative Log Likelihood =  1598.94     
 
              ---B. Iteration Summary--- 
 
     Convergence has been achieved. 
 
     Number of iterations      =    53 
     Number of function calls  =   199 
 
      Fitted Parameters 
       KE         =   0.2061     
       KA         =   0.9376     
       V          =    28.66     
       SDslope    =   0.7289E-01 
 
     Negative Log Likelihood =  6.49368     
 
             --- C. ML Estimation Summary--- 
 
 Tue Feb 12 13:04:21 2007 
 
 Data file name: C:\Program Files\BMSR\ADAPT 5\Examples\1compabs.dat 
 
 Model:  pk3.for - Example pk3 in ADAPT Users Guide                
 
 Convergence achieved 
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Figure 7.6  (continue) 
 
   Number of iterations:          53 
   Number of function calls:     199 
 Negative Log Likelihood:    6.49368     
 
  Output        R-squared    Sum of Squares 
  Y( 1)          0.950          4.76651     
 
  Model Selection Criteria 
   AIC:          20.9874     
   BIC:          22.1977     
 
                Initial      Final 
  Parameter      Value      Estimate    SE (CV%)    Confidence interval (95%) 
 
  KE            0.6000      0.2061       7.364      [ 0.1690    ,  0.2433    ] 
  KA             2.500      0.9376       13.36      [ 0.6310    ,   1.244    ] 
  V              20.00       28.66       7.089      [  23.68    ,   33.63    ] 
  F             0.9000      Not estimated 
 
  SDslope       0.1000      0.7289E-01   28.98      [ 0.2120E-01,  0.1246    ] 
  SDinter       0.1000      Not estimated 
 
  Correlation Matrix 
 
           KE        KA        V          
 KE          1.00 
 KA         -0.79      1.00 
 V          -0.90      0.78      1.00 
 
  Covariance Matrix 
 
           KE        KA        V          
 KE        0.230E-03 
 KA        -.150E-02 0.157E-01 
 V         -.278E-01 0.200      4.13     
 
            --- D.  ML Estimation Model Prediction and Data Summary --- 
 
 Tue Feb 12 13:04:21 2007 
 
 Data file name: C:\Program Files\BMSR\ADAPT 5\Examples\1compabs.dat 
 
 Model:  pk3.for - Example pk3 in ADAPT Users Guide                
 
Y( 1) 
  Obs.Num.   Time         Data       Model Est.     Residual     Variance 
      1      0.5000        5.700        5.562        0.1382       0.2554     
      2       1.000        9.300        8.498        0.8025       0.5175     
      3       2.000        8.500        10.24        -1.742       0.7166     
      4       3.000        9.100        9.637       -0.5374       0.6439     
      5       4.000        8.200        8.352       -0.1525       0.5024     
      6       5.000        7.700        6.996        0.7035       0.3721     
      7       7.000        5.200        4.727        0.4729       0.1976     
      8       9.000        3.200        3.145        0.5542E-01   0.1084     
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Figure 7.6  (continue) 
 
      9       11.00        1.900        2.084       -0.1844       0.6347E-01 
     10       14.00        1.100        1.123       -0.2346E-01   0.3308E-01 
 
 Y( 1) (Continued)                 Std. Err.   Standardized 
           Obs.Num.   Model Est.   Model Est.   Residual 
                1       5.562       0.3716       0.2735     
                2       8.498       0.4253        1.116     
                3       10.24       0.3736       -2.058     
                4       9.637       0.3802      -0.6697     
                5       8.352       0.3592      -0.2151     
                6       6.996       0.3033        1.153     
                7       4.727       0.1942        1.064     
                8       3.145       0.1531       0.1684     
                9       2.084       0.1423      -0.7321     
               10       1.123       0.1205      -0.1290     
 
      ----- PLOTTING OPTIONS -----  
 
...{Dialogue for plotting options and program exit not shown}... 
 
 

 
 

Figure 7.7  Example pk3. Resulting plots as stored in file pk3.eps. 
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7.4 Example pk4: ID – GLS Estimation 
 

Figure 7.8 shows a run of ID using the one compartment absorption model in Eq. (7.1) and the 
data in the file 1compabs.dat. The GLS estimation option is selected with slopeσ  fixed at 0.1 (i.e., 
not estimated) and  given an initial value of 0.1 and estimated. The resulting plots are shown 
in Figure 7.9. Also, files named 

interσ
pk4PLT.csv, pk4RSD.csv and pk4.aci are created as described in 

Chapter 6 and can be viewed in the \Example subfolder of the installation. 
 

 
 
    ADAPT 5    ID -- INDIVIDUAL ESTIMATION    Tue Feb 12 13:04:23 2007 
 
 
 Enter file name for storing session run (*.run): pk4.run 
 
      ----- MODEL INPUT INFORMATION ----- 
 
Data file name (*.dat): C:\Program Files\BMSR\ADAPT 5\Examples\1compabs.dat 
 
 The number of model inputs:     0 
 
 The number of bolus inputs:    1 
 
 The number of input event times:     1 
 
     Input Event Information 
           Time    Value for all Inputs 
 Event     Units,       B(1) 
    1.     0.000          500.0     
 
      ----- MODEL OUTPUT INFORMATION ----- 
 
 The number of model output equations:   1 
 
 The number of observations:   10 
 
     Observation Information 
                 Time     Measured Value For Each Output 
 Observation     Units ,     Y(1) 
       1.        0.5000       5.700     
       2.         1.000       9.300     
       3.         2.000       8.500     
       4.         3.000       9.100     
       5.         4.000       8.200     
       6.         5.000       7.700     
       7.         7.000       5.200     
       8.         9.000       3.200     
       9.         11.00       1.900     
      10.         14.00       1.100     

 
 

Figure 7.8  Example pk4. ML estimation with one-compartment absorption model. Display of 
run file, pk4.run, with user entries indicated. 
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Figure 7.8  (continue) 
 
 
      ----- ESTIMATOR SELECTION -----  
 
 The following estimation procedures are available: 
      1. Weighted least squares (WLS) 
      2. Maximum likelihood (ML) 
      3. Generalized least squares (GLS) 
      4. Maximum a posteriori probability (MAP) 
 
 Enter option number:  3 
 
      ----- INITIALIZE ESTIMATION PROCEDURE ----- 
 
 Parameter file name: C:\Program Files\BMSR\ADAPT 5\Examples\pk4.prm 
 
 Enter initial values for parameters & specify those to be estimated:  
 
            Old Value    New Value      Estimate?  
                       (skip if same)    (Y/N) 
 KE         .6000            y          
 KA         2.500            y                
 V          20.00            y                  
 F          .9000            n                        
 SDinter    .1000            n            
 SDslope    .1000            y           
 
 Enter maximum number of iterations:       300 
 
 Do you want the iterations printed (Y/N)?  n 
 
 Enter number of stage II -III cycles (e.g., 3 or 4):   4 
 
             ----- RESULTS ----- 
 
   ----- STAGE I (OLS estimation of system parameters) ----- 
 
             --- A. Iterations ---   
 
     Number of iterations      =     0 
     Number of function calls  =     1 
 
      Fitted Parameters 
       KE         =   0.6000     
       KA         =    2.500     
       V          =    20.00     
 
     Ordinary Least Squares =  204.213     
 
              ---B. Iteration Summary--- 
 
     Convergence has been achieved. 
 
     Number of iterations      =    23 
     Number of function calls  =   104 
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Figure 7.8  (continue) 
 
      Fitted Parameters 
       KE         =   0.1732     
       KA         =    1.136     
       V          =    32.56     
 
     Ordinary Least Squares =  3.93079     
 
 
   ----- STAGE II (ML estimation of variance parameters) ----- 
 
             --- A. Iterations ---   
 
     Number of iterations      =     0 
     Number of function calls  =     1 
 
      Fitted Parameters 
       SDslope    =   0.1000     
 
     Negative Log Likelihood =  8.98018     
 
              ---B. Iteration Summary--- 
 
     Convergence has been achieved. 
 
     Number of iterations      =     5 
     Number of function calls  =    18 
 
      Fitted Parameters 
       SDslope    =   0.8672E-01 
 
     Negative Log Likelihood =  8.86644     
 
 
   ----- STAGE III (WLS estimation of system parameters) ----- 
 
             --- A. Iterations ---   
 
     Number of iterations      =     0 
     Number of function calls  =     1 
 
      Fitted Parameters 
       KE         =   0.1732     
       KA         =    1.136     
       V          =    32.56     
 
     Weighted Least Squares =  10.7476     
 
              ---B. Iteration Summary--- 
 
     Convergence has been achieved. 
 
     Number of iterations      =    23 
     Number of function calls  =    91 
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Figure 7.8  (continue) 
 
      Fitted Parameters 
       KE         =   0.2032     
       KA         =   0.9484     
       V          =    29.01     
 
     Weighted Least Squares =  6.81160     
 
 
   ----- STAGE II (ML estimation of variance parameters) ----- 
 
             --- A. Iterations ---   
 
     Number of iterations      =     0 
     Number of function calls  =     1 
 
      Fitted Parameters 
       SDslope    =   0.8672E-01 
 
     Negative Log Likelihood =  6.70834     
 
 
              ---B. Iteration Summary--- 
 
     Convergence has been achieved. 
 
     Number of iterations      =     5 
     Number of function calls  =    22 
 
      Fitted Parameters 
       SDslope    =   0.7264E-01 
 
     Negative Log Likelihood =  6.51530     
 
 
   ----- STAGE III (WLS estimation of system parameters) ----- 
 
             --- A. Iterations ---   
 
     Number of iterations      =     0 
     Number of function calls  =     1 
 
      Fitted Parameters 
       KE         =   0.2032     
       KA         =   0.9484     
       V          =    29.01     
 
     Weighted Least Squares =  9.18259     
 
              ---B. Iteration Summary--- 
 
     Convergence has been achieved. 
 
     Number of iterations      =    13 
     Number of function calls  =    91 
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Figure 7.8  (continue) 
 
      Fitted Parameters 
       KE         =   0.2042     
       KA         =   0.9459     
       V          =    28.87     
 
     Weighted Least Squares =  9.15041     
 
 
   ----- STAGE II (ML estimation of variance parameters) ----- 
 
             --- A. Iterations ---   
 
     Number of iterations      =     0 
     Number of function calls  =     1 
 
      Fitted Parameters 
       SDslope    =   0.7264E-01 
 
     Negative Log Likelihood =  6.50151     
 
              ---B. Iteration Summary--- 
 
     Convergence has been achieved. 
 
     Number of iterations      =     0 
     Number of function calls  =    20 
 
      Fitted Parameters 
       SDslope    =   0.7264E-01 
 
     Negative Log Likelihood =  6.50151     
 
 
   ----- STAGE III (WLS estimation of system parameters) ----- 
 
             --- A. Iterations ---   
 
     Number of iterations      =     0 
     Number of function calls  =     1 
 
      Fitted Parameters 
       KE         =   0.2042     
       KA         =   0.9459     
       V          =    28.87     
 
     Weighted Least Squares =  9.15041     
 
              ---B. Iteration Summary--- 
 
     Convergence has been achieved. 
 
     Number of iterations      =     3 
     Number of function calls  =    99 
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Figure 7.8  (continue) 
 
      Fitted Parameters 
       KE         =   0.2043     
       KA         =   0.9451     
       V          =    28.86     
 
     Weighted Least Squares =  9.14942     
 
 
   ----- STAGE II (ML estimation of variance parameters) ----- 
 
             --- A. Iterations ---   
 
     Number of iterations      =     0 
     Number of function calls  =     1 
 
      Fitted Parameters 
       SDslope    =   0.7264E-01 
 
     Negative Log Likelihood =  6.50099     
 
 
 
     Convergence has been achieved. 
 
     Number of iterations      =     0 
     Number of function calls  =    20 
 
      Fitted Parameters 
       SDslope    =   0.7264E-01 
 
     Negative Log Likelihood =  6.50099     
 
 
   ----- STAGE III (WLS estimation of system parameters) ----- 
 
             --- A. Iterations ---   
 
     Number of iterations      =     0 
     Number of function calls  =     1 
 
      Fitted Parameters 
       KE         =   0.2043     
       KA         =   0.9451     
       V          =    28.86     
 
     Weighted Least Squares =  9.14942     
 
 
              ---B. Iteration Summary--- 
 
     Convergence has been achieved. 
 
     Number of iterations      =     2 
     Number of function calls  =   102 
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Figure 7.8  (continue) 
 
      Fitted Parameters 
       KE         =   0.2043     
       KA         =   0.9452     
       V          =    28.86     
 
     Weighted Least Squares =  9.14746     
 
 
             --- C. GLS Estimation Summary--- 
 
 Tue Feb 12 13:04:23 2007 
 
 Data file name (*.dat): C:\Program Files\BMSR\ADAPT 5\Examples\1compabs.dat 
 
 Model:  pk4.for - Example pk4 in ADAPT Users Guide                
 
 Number of stage II - III cycles:       4 
 
                    Number of       Number of        Weighted 
                   Iterations    Function Calls    Least Squares 
 Last Stage  II:        0              20            6.50099     
 Last Stage III:        2             102            9.14746     
 
 
                                Weighted 
  Output        R-squared    Sum of Squares   Sum of Squares 
  Y( 1)        0.950           9.14746          4.67653     
 
  Model Selection Criteria 
   AIC:          28.1348     
   BIC:          29.0425     
 
 
                Initial      Final 
  Parameter     Value      Estimate     SE (CV%)       Confidence interval (95%) 
 
  KE            0.6000      0.2043       7.372      [ 0.1687    ,  0.2400    ] 
  KA             2.500      0.9452       13.40      [ 0.6457    ,   1.245    ] 
  V              20.00       28.86       7.067      [  24.03    ,   33.68    ] 
  F             0.9000      Not estimated 
 
 
  SDslope       0.1000      0.7264E-01 
  SDinter       0.1000      Not estimated 
 
 
  Correlation Matrix 
 
           KE        KA        V          
 KE          1.00 
 KA         -0.79      1.00 
 V          -0.90      0.78      1.00 
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Figure 7.8  (continue) 
 
  Covariance Matrix 
 
           KE        KA        V          
 KE        0.227E-03 
 KA        -.150E-02 0.160E-01 
 V         -.277E-01 0.202      4.16     
 
            --- D. GLS Estimation Model Prediction and Data Summary --- 
 
 Tue Feb 12 13:04:23 2008 
 
 Data file name (*.dat): C:\Program Files\BMSR\ADAPT 5\Examples\1compabs.dat 
 
 Model:  pk4.for - Example pk4 in ADAPT II Users Guide                
 
Y( 1) 
  Obs.Num.   Time         Data       Model Est.     Residual     Weight 
      1      0.5000        5.700        5.561        0.1394        3.938     
      2       1.000        9.300        8.487        0.8131        1.948     
      3       2.000        8.500        10.22        -1.716        1.410     
      4       3.000        9.100        9.610       -0.5097        1.570     
      5       4.000        8.200        8.332       -0.1317        2.011     
      6       5.000        7.700        6.985        0.7147        2.710     
      7       7.000        5.200        4.732        0.4676        5.078     
      8       9.000        3.200        3.158        0.4161E-01    9.214     
      9       11.00        1.900        2.101       -0.2009        15.67     
     10       14.00        1.100        1.138       -0.3832E-01    29.96     
 
 Y( 1) (Continued)                 Std. Err.   Standardized 
           Obs.Num.   Model Est.   Model Est.   Residual 
                1       5.561       0.3728       0.2765     
                2       8.487       0.4250        1.135     
                3       10.22       0.3724       -2.038     
                4       9.610       0.3797      -0.6387     
                5       8.332       0.3585      -0.1867     
                6       6.985       0.3023        1.177     
                7       4.732       0.1938        1.054     
                8       3.158       0.1535       0.1263     
                9       2.101       0.1432      -0.7951     
               10       1.138       0.1217      -0.2098     
 
      ----- PLOTTING OPTIONS -----  
 
...{Dialogue for plotting options and program exit not shown}... 
      ________________________________________ 
 
    ADAPT 5    ID -- INDIVIDUAL ESTIMATION    Tue Feb 12 13:04:23 2007 
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Figure 7.9  Example pk4. Resulting plots as stored in file pk4.eps. 
 
 
7.5 Example pk5: SIM – Population Simulation 
 

This example illustrates the use of SIM to perform a population simulation with output error 
for a one-compartment model with intravenous infusion. The library Model File 1compk.for (see 
Figure 7.10) is modified for this example to include the prior mean and covariance values for the 
model parameters V  and  ( = 0.0 since an intravenous administration is used). The 
parameters V  and e  are assumed to come from a bivariate lognormal distribution with mean and 
covariance as listed in the caption of Figure 7.10. The variance model for the output error is given 
above in Eq. (7.2), with 

eK aK
K

slopeσ = 0.0 and = 1.0 (corresponds to constant output error variance). 
The dosage regimen is given in Table 7.1 and consists of a loading infusion followed by a 
maintenance dose designed to “achieve and maintain” a serum concentration of 10µg/ml for the 
mean parameters. After 24 hrs a steady-state infusion is given to achieve a concentration of 15 
µg/ml given the mean parameters. Five observation times are considered, at 1.5, 10, 24, 48 and 72 

interσ
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hr. A total of 100 simulations will be preformed (i.e., 100 sets of model parameters selected 
randomly from the specified population distribution). 
 

The complete run of SIM for this example is given in Figure 7.11. The population simulation 
option is selected (option 4). A statistical summary of the 100 sets of parameter values is displayed 
as well as a summary of the resulting simulated output. The plot (Figure 7.12) shows the response 
for the population mean parameter values (continuous curve), as well as the mean simulated output 
(indicated by X) and standard deviation bars at each observation time. Also, files named 
pk5PLT.csv, pk5POP.csv and pk5.aci are created as described in Chapter 5 and can be viewed in 
the \Example subfolder of the installation. 
 
 

 
 

Figure 7.10  One compartment model used in Example pk5. Parameter means and variance as 
follows (see pk5.for): 35 10.5V = ± (L); 0.08 0.04Kel = ± (hr-1); 0.21V Kelσ − = − . 

 
 

Table 7.1 Dosage Regimen for Example 7.5 
 

Dose Event Time Infusion Rate 
dt  (hr)  (mg/hr) 

0 700 
0.5 28 
24 42 

 
 
    ADAPT 5      SIM -- MODEL SIMULATION      Tue Feb 12 13:04:24 2007 
 
Enter file name for storing session run (*.run): pk5.run 
 
      ----- MODEL INPUT INFORMATION ----- 
 
Data file name (*.dat): C:\Program Files\BMSR\ADAPT 5\Examples\pk5.dat 
 
The number of model inputs:     1 
 
The number of bolus inputs:    0 
 
 

Figure 7.11  Example pk5. Population simulation of one-compartment infusion model. Display 
of run file, pk5.run, with user entries indicated. 
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Figure 7.11  (continue) 
 
The number of input event times:     3 
 
     Input Event Information 
           Time    Value for all Inputs 
 Event     Units,       R(1) 
    1.     0.000          700.0     
    2.    0.5000          28.00     
    3.     24.00          42.00     
 
      ----- MODEL OUTPUT INFORMATION ----- 
 
 The number of model output equations:   1 
 
 The number of observations:    5 
 
     Observation Information 
                 Time     Measured Value For Each Output 
 Observation     Units ,     Y(1) 
       1.         1.500      -1.000     
       2.         10.00      -1.000     
       3.         24.00      -1.000     
       4.         48.00      -1.000     
       5.         72.00      -1.000     
 
      ----- SIMULATION SELECTION -----  
 
 The following simulation options are available: 
     1. Individual simulation 
     2. Individual simulation with output error 
     3. Population simulation 
     4. Population simulation with output error 
 
 Enter option number:  4 
 
      ----- ENTER PARAMETER INFORMATION ----- 
 
 Select distribution model (1-Normal, 2-Lognormal):  2 
 
 Indicate if any system parameters are to be fixed: 
                  Population     Fix?  If "Y" Enter 
  Parameter          Mean       (Y/N)  Fixed Value (e.g. Y,7) 
   Ke               0.8000E-01     n          
   V                 35.00         n        
 
 Enter Non-Random Initial Conditions: 
  Parameter      Value 
   IC(   1)        0.000     
   IC(   2)        0.000     
 
 Enter values for variance model parameters:  
  Parameter      Value              
   SDinter         1.000     
   SDslope         0.000     
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Figure 7.11  (continue) 
 
 Enter number of simulations:         100 
 
 Enter seed (positive integer) for random number generator:      123456 
 
 Store inputs and simulated data in a new Adapt data file (Y/N)?  n 
 
 Store individual subject simulation results in a file (Y/N)?  y 
 
      ----- RESULTS ----- 
 
      --- A. Parameter Summary ---   
 
 Tue Feb 12 13:04:24 2007 
 
 Data file name (*.dat): C:\Program Files\BMSR\ADAPT 5\Examples\pk5.dat 
 
 Model: pk5.for - Example pk5 in ADAPT Users Guide                
 
 Population simulation with error:   100 simulations.  Seed =     123456 
 
                       Population              Parameter Summary 
 Parameter               Mean          Mean     Std.Dev.     Min        Max 
  Ke          (LN)     0.8000E-01    0.8563E-01 0.4216E-01 0.2826E-01 0.2344     
  V           (LN)      35.00         34.99      11.73      17.86      84.32     
 
   Fixed 
 Parameter               Value 
  Ka                    0.000     
  IC(   1)              0.000     
  IC(   2)              0.000     
  SDinter               1.000     
  SDslope               0.000     
 
 Secondary             Population     Sample 
 Parameter               Mean          Mean 
  CL                    2.800         2.997     
  LAM1                 0.8000E-01    0.8563E-01 
  t1/2-LAM1             8.664         8.094     
 
 Parameter Correlation Matrix: 
 
           Ke        V          
 Ke          1.00 
 V          -0.52      1.00 
 
 Parameter Covariance Matrix: 
 
           Ke        V          
Ke        0.178E-02 
 V         -.255      138.     
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Figure 7.11  (continue) 
 
      --- B. Simulation Summary ---   
 
 Tue Feb 12 13:04:24 2007 
 
 Data file name (*.dat): C:\Program Files\BMSR\ADAPT 5\Examples\pk5.dat 
 
 Model: pk5.for - Example pk5 in ADAPT Users Guide                
 
 Population simulation with error:   100 simulations.  Seed =     123456 
 
 Y(   1)             Output for          Summary of Simulation Results 
  Obs.Num.  Time     Popul. Mean       Mean     Std.Dev.     Min        Max      
      1      1.500       9.818         10.69      2.939      3.637      18.20     
      2      10.00       9.908         10.40      2.812      3.487      18.07     
      3      24.00       9.970         10.86      3.613      3.597      21.82     
      4      48.00       14.26         15.97      5.162      6.711      30.67     
      5      72.00       14.89         17.09      5.829      6.791      35.64     
 
      ----- PLOTTING OPTIONS -----  
 
...{Dialogue for plotting options and program exit not shown}... 
 
 
 

 
 

Figure 7.12  Example pk5. Resulting plot as stored in file pk5.eps. 
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7.6 Example pk6: ID – MAP Estimation 
 

The one-compartment model from Example pk5 is also used in this example to illustrate the 
MAP estimation option in the ID program. A single simulated noisy data set was generated from 
the kinetic model, infusion input and variance model used in Example pk6, with three observations 
simulated at 1.5, 10 and 24 hours. Also, in this example, the distribution for the model parameters 
is assumed to be multivariate Normal with moments given in Figure 6.10. An ADAPT Data File 
was created (pk6.dat) from a run of SIM for this example (not shown, simulation option 4, 1 
simulated subject), and used as input to the ID program. The resulting parameters values for the 
simulated subject are L and 38.7V = 0.037eK = hr-1. The complete run of ID is given in Figure 
6.13 and the plots shown in Figure 6.14. Also, files named pk6PLT.csv, pk6RSD.csv and pk6.aci 
are created as described in Chapter 5 and can be viewed in the Validation folder in the ADAPT 
Directory. 
 
 
    ADAPT 5    ID -- INDIVIDUAL ESTIMATION    Tue Feb 12 13:04:26 2007 
 
 Enter file name for storing session run (*.run): pk6.run 
 
      ----- MODEL INPUT INFORMATION ----- 
 
 Data file name (*.dat): C:\Program Files\BMSR\ADAPT 5\Examples\pk6.dat 
 
 The number of model inputs:     1 
 
 The number of bolus inputs:    0 
 
 The number of input event times:     2 
 
     Input Event Information 
           Time    Value for all Inputs 
 Event     Units,       R(1) 
    1.     0.000          700.0     
    2.    0.5000          28.00     
 
      ----- MODEL OUTPUT INFORMATION ----- 
 
 The number of model output equations:   1 
 
 The number of observations:    3 
 
     Observation Information 
                 Time     Measured Value For Each Output 
 Observation     Units ,     Y(1) 
       1.         1.500       9.500     
       2.         10.00       11.00     
       3.         24.00       17.00     
 
      ----- ESTIMATOR SELECTION -----  
 
 

Figure 7.13  Example pk6. MAP estimation with one-compartment of model. Display of run 
file, pk6.run, with user entries indicated. 
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Figure 7.13  (continue) 
 
The following estimation procedures are available: 
      1. Weighted least squares (WLS) 
      2. Maximum likelihood (ML) 
      3. Generalized least squares (GLS) 
      4. Maximum a posteriori probability (MAP) 
 
 Enter option number:  4 
 
      ----- INITIALIZE ESTIMATION PROCEDURE ----- 
 
 Parameter file name: pk6.prm 
 
 Enter initial values for parameters & specify those to be estimated:  
 
            Old Value    New Value      Estimate?  
                       (skip if same)    (Y/N) 
 Ke         .8000E-01        y          
 V          35.00            y       
 Ka         0.000            n          
 IC(   1)   0.000            n        
 IC(   2)   0.000            n       
 SDinter    1.000            n         
 SDslope    0.000            n         
 
 Select prior distribution model (1 - Normal, 2 - Lognormal):  1 
 
 Enter maximum number of iterations:       300 
 
 Do you want the iterations printed (Y/N)?  n 
 
             ----- RESULTS ----- 
 
             --- A. Iterations ---   
 
     Number of iterations      =     0 
     Number of function calls  =     1 
 
      Fitted Parameters 
       Ke         =   0.8000E-01 
       V          =    35.00     
 
     MAP Objective Function =  50.7166     
 
              ---B. Iteration Summary--- 
 
     Convergence has been achieved. 
 
     Number of iterations      =    14 
     Number of function calls  =    54 
 
      Fitted Parameters 
       Ke         =   0.2628E-01 
       V          =    41.37     
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Figure 7.13  (continue) 
 
     MAP Objective Function =  4.11959     
 
             --- C. MAP Estimation Summary--- 
 
 Tue Feb 12 13:04:26 2007 
 
 Data file name (*.dat): C:\Program Files\BMSR\ADAPT 5\Examples\pk6.dat 
 
 Model:  pk6.for - Example pk6 in ADAPT Users Guide                
 
 Convergence achieved 
   Number of iterations:          14 
   Number of function calls:      54 
 MAP Objective Function:    4.11959     
 
  Output        R-squared    Sum of Squares 
  Y( 1)          0.927          2.31011     
 
  Model Selection Criteria 
   GEN-IC:       5.45292     
 
                 Initial      Final 
  Parameter      Value      Estimate    SE (CV%)    Confidence interval (95%) 
 
 Ke         (N)  0.8000E-01  0.2628E-01   32.81      [-0.8327E-01, 0.1358    ] 
 V          (N)   35.00       41.37       9.525      [ -8.697    ,  91.44    ] 
 Ka               0.000       Not estimated 
 IC(   1)         0.000       Not estimated 
 IC(   2)         0.000       Not estimated 
 
 SDinter          1.000       Not estimated 
 SDslope          0.000       Not estimated 
 
 CL               2.800       1.087       24.75      [ -2.332    ,  4.506    ] 
 LAM1            0.8000E-01  0.2628E-01   32.81      [-0.8327E-01, 0.1358    ] 
 t1/2-LAM1        8.664       26.38       32.81      [ -83.59    ,  136.3    ] 
 
  Correlation Matrix 
 
           Ke        V          
 Ke          1.00 
 V          -0.89      1.00 
 
  Covariance Matrix 
 
           Ke        V          
 Ke        0.743E-04 
 V         -.301E-01  15.5     
 
            --- D. MAP Estimation Model Prediction and Data Summary --- 
 
 Tue Feb 12 13:04:26 2007 
 
 Data file name (*.dat): C:\Program Files\BMSR\ADAPT 5\Examples\pk6.dat 
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Figure 7.13  (continue) 
 
Model:  pk6.for - Example pk6 in ADAPT Users Guide                
 
Y( 1) 
  Obs.Num.   Time         Data       Model Est.     Residual     Variance 
      1       1.500        9.500        8.855        0.6451        1.000     
      2       10.00        11.00        12.24        -1.238        1.000     
      3       24.00        17.00        16.40        0.6006        1.000     
 
 Y( 1) (Continued)                 Std. Err.   Standardized 
           Obs.Num.   Model Est.   Model Est.   Residual 
                1       8.855       0.7638       0.6451     
                2       12.24       0.5976       -1.238     
                3       16.40       0.9516       0.6006     
 
      ----- PLOTTING OPTIONS -----  {Dialogue for plotting not shown}... 
 

 
 

Figure 7.14  Example pk6. Resulting plot as stored in file pk6.eps. 
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7.7 Example pk7: Sample – D-Optimal Design 
 

In this example the three compartment model shown in Figure 7.15 is used to illustrate the 
sample schedule design program SAMPLE. The model differential and output equations are given 
below: 

 
( ) ( ) ( ) ( ) ( )1

10 12 13 1 21 2 31 3

dx t
K K K x t K x t K x t

dt
= − + + + +     

  ( ) ( ) ( )2
12 1 21 2

dx t
K x t K x t

dt
= −  

  ( ) ( ) ( )3
13 1 31 3

dx t
K x t K x t

dt
= −  

  ( ) ( )1y t x t V=             (7.3) 
 
Since the differential equations are linear and homogenous, the matrix exponential solution to the 
model equations can be used (see Chapter 5). This requires that the model differential equations be 
written as: 
 

( )

( )

( )

( )
( )
( )

1

2

3

10 12 13 21 31 1

12 21 2

13 31 3

0
0

dx t
dt

dx t
dt

dx t
dt

K K K K K x t
K K x
K K

⎡ ⎤
⎢ ⎥

+ +⎡ ⎤⎢ ⎥
⎢⎢ ⎥ = −⎢⎢ ⎥
⎢ ⎥⎢ ⎥ −⎣ ⎦⎢ ⎥

⎢ ⎥⎣ ⎦

( )
t

x t

⎡ ⎤
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦

   (7.4) 

 
Figure 7.16 is an excerpt for the Model File pk7.for showing subroutine AMAT in which the 

system matrix indicated in Eq. (7.4) is coded.  
 
 

 
 

Figure 7.15 Three compartment model used in Example 6.7. 
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Figure 7.16  Excerpt from Subroutine AMAT of Model File pk7.for. 
 
 

Figure 7.17 shows a complete run of SAMPLE for this example using the data file pk7.dat that 
includes the initial guesses for the sample times to be optimized. In the run, all six sample times are 
selected to be optimized (i.e., no fixed times). In addition, no time constraints are imposed on the 
sample times (selected by entering 0,0 as the lower and upper time limits). The error variance 
model for this example is 2

0var{ ( )}e t σ= . Nominal values for the model and variance parameters 
are stored in parameter file pk7.prm. A dose of 300 mg into compartment 1 is specified as an initial 
condition in file pk7.prm (i.e., IC(1)=300). The plot showing the optimal sample times on the 
concentration time profile is given in Figure 7.17. A file named pk6PLT.csv is created as described 
in Chapter 5 and can be viewed in the \Example subfolder of the installation. 
 
 
ADAPT 5    SAMPLE -- SAMPLE SCHEDULE DESIGN    Tue Feb 12 13:04:28 2007 
 
 Enter file name for storing session run (*.run): pk7.run 
 
      ----- MODEL INPUT INFORMATION ----- 
 
 Data file name (*.dat): C:\Program Files\BMSR\ADAPT 5\Examples\pk7.dat 
 
 The number of model inputs:     0 
 
 The number of bolus inputs:    0 
 
 The number of input event times:     0 
 
      ----- MODEL OUTPUT INFORMATION ----- 
 
 The number of model output equations:   1 
 
 The number of observations:    6 
 

Figure 7.17  Example pk7. Sample schedule design for three compartment model.  
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Figure 7.17  (continue) 
 
For each sample number enter as required: 
                 Sample 
 Sample Number   Time , Optimize (Y/N)? 
      1.        2.0000     y 
      2.        5.0000     y 
      3.        10.000     y 
      4.        20.000     y 
      5.        75.000     y 
      6.        240.00     y 
 
 Enter lower and upper time constraints. (Lower, Upper)      2.000       300.0    
 
      ----- ENTER PARAMETER INFORMATION ----- 
 
 Parameter file name: pk7.prm 
 
Enter nominal values for parameters & specify those to be estimated:  
                                        Estimated 
            Old Nominal  New Nominal    in Design?  
                       (skip if same)    (Y/N) 
 K10        .9000E-01                      y 
 K12        .3100                          y 
 K21        .1500                          y 
 K13        .2400                          y 
 K31        .2000E-01                      y 
 V          7.000                          y 
 IC(   1)   300.0                          n 
 IC(   2)   0.000                          n 
 IC(   3)   0.000                          n  
 
 Enter values for variance model parameters:  
          Old Value     New Value (<Enter> if no change) 
 Sigma0     .2000      
 
         ----- SELECT OPTIMALITY CRITERION ----- 
 
 D or C optimality?   d 
 
 Enter maximum number of iterations:       999 
 
 Do you want the iterations printed (Y/N)?  n 
 
 Store inputs, sample times & data in a new file (Y/N)?  n 
 
            ------ RESULTS ------ 
 
             --- A. Iterations ---   
 
  Number of iterations      =      0 
  Number of function calls  =      7 
 
    Time(   1) =   2.000     
    Time(   2) =   5.000     
    Time(   3) =   10.00     
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Figure 7.17  (continue) 
 
    Time(   4) =   20.00     
    Time(   5) =   75.00     
    Time(   6) =   240.0     
 
  Design criterion  = -0.958206E+18 
 
              ---B. Iteration Summary---  
 
  Convergence achieved 
 
  Number of iterations       =     46 
  Number of function calls   =   1631 
 
    Time(   1) =   2.000     
    Time(   2) =   3.204     
    Time(   3) =   7.077     
    Time(   4) =   19.93     
    Time(   5) =   63.73     
    Time(   6) =   279.2     
 
  Design criterion  = -0.444502E+19 
 
             --- C. Sample Schedule Design Summary --- 
 
 Tue Apr 14 09:36:52 2009 
 
 Data file name (*.dat): C:\Program Files\BMSR\ADAPT 5\Examples\pk7.dat 
 
 Model:  pk7.for - Example pk7 in ADAPT Users Guide 
 
Convergence achieved 
   Number of iterations:          46 
   Number of function calls:    1631 
 D-optimal criterion value: -0.444502E+19 
 
 
                  Initial      Final 
 Sample Time       Value       Value 
   Time(   1)     2.000       2.000     
   Time(   2)     5.000       3.204     
   Time(   3)     10.00       7.077     
   Time(   4)     20.00       19.93     
   Time(   5)     75.00       63.73     
   Time(   6)     240.0       279.2     
 
 
 Model Parameter Values used in the Design Calculations: 
 
  System                       "Expected" 
 Parameter       Value          SE (CV%) 
  K10           .9000E-01        27.17     
  K12           .3100            21.16     
  K21           .1500            29.98     
  K13           .2400            33.11     
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Figure 7.17  (continue) 
 
  K31           .2000E-01        43.35     
  V             7.000            12.91     
  IC(   1)      300.0            Not estimated 
  IC(   2)      0.000            Not estimated 
  IC(   3)      0.000            Not estimated 
 
 Variance 
 Parameter       Value 
  Sigma0        .2000     
 
            --- D. Simulation Summary --- 
 
 Tue Apr 14 09:36:52 2009 
 
 Data file name (*.dat): C:\Program Files\BMSR\ADAPT 5\Examples\pk7.dat 
 
 Model:  pk7.for - Example pk7 in ADAPT Users Guide                   
 
 Y( 1)  Obs.Num.    Time        Model Simul.     Error Var. 
            1       2.000         13.71           0.4000E-01 
            2       3.204         8.328           0.4000E-01 
            3       7.077         4.122           0.4000E-01 
            4       19.93         2.429           0.4000E-01 
            5       63.73         1.351           0.4000E-01 
            6       279.2        0.4743           0.4000E-01 
 
      ----- PLOTTING OPTIONS -----  {Dialogue for plotting not shown}... 
 

 
 

Figure 7.18  Example pk7. Resulting plot as stored in file pk7.eps. 
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7.8 Example pk8: ID – ML Estimation, Parent/Metabolite Model 
 

This example, modified from [1], involves a pharmacokinetic model of a compound with an 
active metabolite formed by a saturable process. The compartment structure for this model is given 
in Figure 7.19.  
 
 

 
 

Figure 7.19  The drug-metabolite model of Example pk8. 
 
 
The differential equations (representing compartment amounts) and the output equations 
(representing drug concentrations) for this model given below and have been used to create the 
model file pk8.for. (As noted below, the units used for are ,maxV mg hr while in [1] and in previous 
version of this guide units of mg L hr were used for .) maxV
 

( )
( )

( ) ( ) ( ) ( )1 1
10 12 1 21 2 51 5

1 1

max

m

dx t x tV K K x t K x K x r t
dt K x V V

⎛ ⎞⎛ ⎞
= − − + + + +⎜ ⎟⎜ ⎟+ ⎝ ⎠⎝ ⎠

 

( ) ( ) ( )2
12 1 21 2

dx t
K x t K x t

dt
= −  

( )
( )

( ) ( )3 1
30 34 3 43 4

1 1

max

m

dx t x tV K K x K x
dt K x V V

⎛ ⎞⎛ ⎞
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+  

( )4
34 3 43 4

dx t
K x K x

dt
= −  

( )5
51 5

dx t
K x

dt
= −  

( ) ( )1 1y t x t V= 1  

( ) ( )2 3y t x t V= 3          (7.6) 

 122



Biomedical Simulations Resource 
 

The parent compound is administered as two 1 hour intravenous infusions starting at time 0 
(rate = 1000 mg/hr) and again at 12 hrs. (rate = 250 mg/hr). The parent drug is also given orally at 
6 hrs. (amount = 500 mg) and at 12 hrs. (amount = 250 mg), and is assumed to be absorbed 
completely. A total of 14 blood samples are obtained, with both parent and metabolite serum 
concentrations determined at the following times: 0.5, 1, 2, 4, 6, 7, 8, 10, 12, 12.5, 13, 14, 16, 18, 
hrs. The parent drug concentration at t= 10 hrs is assuming missing.  

 
Table 7.2 gives a list of the model parameters along with the corresponding Fortran symbols 

used in coding the model equations. The dosage regimen information is arranged in a spread-sheet 
format in Table 7.3. Data to be used in the estimation were generated by first simulating the 
response of this model with the parameter values given in Table 7.2, and then adding Normally 
distributed error to the simulated output. The random error added to the simulated parent 
concentration results had a standard deviation of 1.14µg/ml and that added to the metabolite 
concentration had a standard deviation of .06µg/ml. SIM was used to generate these simulated data, 
with the results stored in a data file (pk8.dat).  
 
 

Table 7.2 Parameter Values for Example pk8 
 

  Parameter 
Parameter Symbol Value                    (unit) 

10K  P(1) 0.04                     (hr-1) 

12K  P(2) 0.6                     (hr-1) 

21K  P(3) 0.10                     (hr-1) 

mK  P(4) 10.                 ( /g ml)μ  

maxV  P(5) 1.00               ( )mg hr  

30K  P(6) 1.00                     (hr-1) 

34K  P(7) 0.90                     (hr-1) 

43K  P(8) 0.40                     (hr-1) 

51K  P(9) 2.00                     (hr-1) 

1V  P(10) 30.0                         (L) 

3V  P(11) 15.0                         (L) 
 
 

Table 7.3 Dose Regimen for Example pk8 
 

Dose Event Time
dt (hr) 

Infusion Rate
r (mg/hr) 

Bolus Amount (unit) 
b (mg) 

0 
1 
6 
12 
13 

1000 
0 
0 

250 
0 

0 
0 

500 
250 
0 
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Figure 7.20 shows the run of ID for this example using the ML estimation option. For each 
bolus input, the user must interactively enter the compartment (or more generally the differential 
equation or state number) to receive the bolus input. In this example, the one bolus is into 
compartment 5 (see below). Inspection of the observation information, indicates that the eighth 
observation for the first output (i.e. 1 8( )y t ) is missing (-1 is the missing data number). Also, files 
named pk8PLT.csv, pk8RSD.csv and pk8.aci are created as described in Chapter 6 and can be 
viewed in the \Example subfolder of the installation. 
 
 
    ADAPT 5    ID -- INDIVIDUAL ESTIMATION    Tue Feb 12 13:04:29 2007 
 
Enter file name for storing session run (*.run): pk8.run 
 
      ----- MODEL INPUT INFORMATION ----- 
 
 Data file name (*.dat): C:\Program Files\BMSR\ADAPT 5\Examples\pk8.dat 
 
 The number of model inputs:     1 
 
 The number of bolus inputs:    1 
 
 Enter the compartment number for each bolus input (e.g. 1,3,...):   5 
 
 The number of input event times:     5 
 
     Input Event Information 
           Time    Value for all Inputs 
 Event     Units,       R(1), B(1) 
    1.     0.000          1000.       0.000     
    2.     1.000          0.000       0.000     
    3.     6.000          0.000       500.0     
    4.     12.00          250.0       250.0     
    5.     13.00          0.000       0.000     
 
      ----- MODEL OUTPUT INFORMATION ----- 
 
 The number of model output equations:   2 
 
 The number of observations:   14 
 
     Observation Information 
                 Time     Measured Value For Each Output 
 Observation     Units ,     Y(1), ... ,Y(   2) 
       1.        0.5000       9.663      0.2038     
       2.         1.000       17.67      0.6202     
       3.         2.000       12.55      0.8137     
       4.         4.000       9.536      0.6881     
       5.         6.000       8.100      0.6293     
       6.         7.000       10.94      0.7987     
       7.         8.000       11.09      0.8339     
 
  Figure 7.20 Example pk8. ML estimation of parent-metabolite nonlinear model. 
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Figure 7.20  (continue) 
 
       8.         10.00      -1.000      0.7633     
       9.         12.00       4.611      0.6394     
      10.         12.50       11.66      0.7446     
      11.         13.00       13.16      0.8540     
      12.         14.00       13.67      0.9928     
      13.         16.00       8.353      0.9019     
      14.         18.00       8.716      0.8510     
      ----- ESTIMATOR SELECTION -----  
 
 The following estimation procedures are available: 
      1. Weighted least squares (WLS) 
      2. Maximum likelihood (ML) 
      3. Generalized least squares (GLS) 
      4. Maximum a posteriori probability (MAP) 
 
 Enter option number:  2 
 
      ----- INITIALIZE ESTIMATION PROCEDURE ----- 
 
 Parameter file name: pk8.prm 
 
 Enter initial values for parameters & specify those to be estimated:  
 
            Old Value    New Value      Estimate?  
                       (skip if same)    (Y/N) 
 K10        .4000E-01        n  
 K12        .6000            y  
 K21        .1000            n  
 Km         10.00            n  
 Vmax       30.00            y  
 K30        1.000            y  
 K34        .9000            n  
 K43        .4000            n  
 K51        2.000            n   
 V1         30.00            y   
 V3         15.00            n   
 IC(   1)   0.000            n   
 IC(   2)   0.000            n   
 IC(   3)   0.000            n  
 IC(   4)   0.000            n   
 IC(   5)   0.000            n  
 Sigma1     1.140            n   
 Sigma2     .6000E-01        n  
 
 Enter maximum number of iterations:       300 
 
 Do you want the iterations printed (Y/N)?  n 
 
             ----- RESULTS ----- 
 
             --- A. Iterations ---   
 
     Number of iterations      =     0 
     Number of function calls  =     1 

 125



ADAPT 5 User’s Guide 

Figure 7.20  (continue) 
 
      Fitted Parameters 
       K12        =   0.6000     
       Vmax       =    30.00     
       K30        =    1.000     
       V1         =    30.00     
 
     Negative Log Likelihood =  40.9242     
 
             ---B. Iteration Summary--- 
 
     Convergence has been achieved. 
 
     Number of iterations      =    39 
     Number of function calls  =   199 
 
      Fitted Parameters 
       K12        =   0.2150     
       Vmax       =    45.16     
       K30        =    1.730     
       V1         =    50.00     
 
     Negative Log Likelihood = -.909939     
 
             --- C. ML Estimation Summary--- 
 
 Tue Feb 12 13:04:29 2007 
 
 Data file name (*.dat): C:\Program Files\BMSR\ADAPT 5\Examples\pk8.dat 
 
 Model:  pk8.for - Example pk8 in ADAPT Users Guide                
 
Convergence achieved 
   Number of iterations:          39 
   Number of function calls:     199 
 Negative Log Likelihood:  -0.909939     
 
  Output        R-squared    Sum of Squares 
  Y( 1)          0.867          17.5046     
  Y( 2)          0.935         0.376452E-01 
 
  Model Selection Criteria 
   AIC:          6.18012     
   BIC:          11.3635     
 
                Initial      Final 
  Parameter      Value      Estimate    SE (CV%)    Confidence interval (95%) 
 
  K12           0.6000      0.2150       18.08      [ 0.1346    ,  0.2955    ] 
  Vmax           30.00       45.16       13.27      [  32.76    ,   57.56    ] 
  K30            1.000       1.730       15.27      [  1.183    ,   2.277    ] 
  V1             30.00       50.00       6.265      [  43.52    ,   56.48    ] 
  K10           0.4000E-01  Not estimated 
  K21           0.1000      Not estimated 
  KM             10.00      Not estimated 
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Figure 7.20  (continue) 
 
  K34           0.9000      Not estimated 
  K43           0.4000      Not estimated 
  K51            2.000      Not estimated 
  V3             15.00      Not estimated 
  IC(   1)       0.000      Not estimated 
  IC(   2)       0.000      Not estimated 
  IC(   3)       0.000      Not estimated 
  IC(   4)       0.000      Not estimated 
  IC(   5)       0.000      Not estimated 
Sigma1         1.140      Not estimated 
  Sigma2        0.6000E-01  Not estimated 
 
  Correlation Matrix 
 
           K12       VM        K30       V1         
 K12         1.00 
 Vmax       -0.62      1.00 
 K30        -0.67      0.98      1.00 
 V1         -0.86      0.39      0.40      1.00 
 
  Covariance Matrix 
 
           K12       VM        K30       V1         
 K12       0.151E-02 
 Vmax      -.144      35.9     
 K30       -.689E-02  1.55     0.698E-01 
 V1        -.104      7.35     0.332      9.81     
 
            --- D.  ML Estimation Model Prediction and Data Summary --- 
 
 Tue Feb 12 13:04:29 2007 
 
 Data file name (*.dat): C:\Program Files\BMSR\ADAPT 5\Examples\pk8.dat 
 
 Model:  pk8.for - Example pk8 in ADAPT Users Guide                
 
Y( 1) 
  Obs.Num.   Time         Data       Model Est.     Residual     Variance 
      1      0.5000        9.663        9.268        0.3951        1.300     
      2       1.000        17.67        17.36        0.3116        1.300     
      3       2.000        12.55        13.28       -0.7313        1.300     
      4       4.000        9.536        8.321         1.215        1.300     
      5       6.000        8.100        5.800         2.300        1.300     
      6       7.000        10.94        12.28        -1.343        1.300     
      7       8.000        11.09        11.08        0.1452E-01    1.300     
      8       10.00       -1.000        8.109       No Observation 
      9       12.00        4.611        6.431        -1.820        1.300     
     10       12.50        11.66        11.39        0.2657        1.300     
     11       13.00        13.16        13.90       -0.7361        1.300     
     12       14.00        13.67        12.18         1.493        1.300     
     13       16.00        8.353        9.281       -0.9285        1.300     
     14       18.00        8.716        7.652         1.064        1.300     
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Figure 7.20  (continue) 
 
Y( 1) (Continued)                 Std. Err.   Standardized 
           Obs.Num.   Model Est.   Model Est.   Residual 
                1       9.268       0.5093       0.3465     
                2       17.36       0.8391       0.2733     
                3       13.28       0.4010      -0.6415     
                4       8.321       0.4329        1.066     
                5       5.800       0.3985        2.017     
                6       12.28       0.3613       -1.178     
                7       11.08       0.3964       0.1274E-01 
                8       8.109       0.4221       No Observation 
                9       6.431       0.3437       -1.596     
               10       11.39       0.3273       0.2331     
               11       13.90       0.3996      -0.6457     
               12       12.18       0.3815        1.310     
               13       9.281       0.3968      -0.8145     
               14       7.652       0.3385       0.9332     
 
Y( 2) 
  Obs.Num.   Time         Data       Model Est.     Residual     Variance 
      1      0.5000       0.2038       0.2913       -0.8745E-01   0.3600E-02 
      2       1.000       0.6202       0.5840        0.3619E-01   0.3600E-02 
      3       2.000       0.8137       0.7451        0.6858E-01   0.3600E-02 
      4       4.000       0.6881       0.7169       -0.2881E-01   0.3600E-02 
      5       6.000       0.6293       0.6450       -0.1569E-01   0.3600E-02 
      6       7.000       0.7987       0.8169       -0.1821E-01   0.3600E-02 
      7       8.000       0.8339       0.8506       -0.1667E-01   0.3600E-02 
      8       10.00       0.7633       0.7917       -0.2836E-01   0.3600E-02 
      9       12.00       0.6394       0.7211       -0.8175E-01   0.3600E-02 
     10       12.50       0.7446       0.7949       -0.5026E-01   0.3600E-02 
     11       13.00       0.8540       0.8790       -0.2497E-01   0.3600E-02 
     12       14.00       0.9928       0.9140        0.7883E-01   0.3600E-02 
     13       16.00       0.9019       0.8560        0.4586E-01   0.3600E-02 
     14       18.00       0.8510       0.7932        0.5783E-01   0.3600E-02 
 
 Y( 2) (Continued)                 Std. Err.   Standardized 
           Obs.Num.   Model Est.   Model Est.   Residual 
                1      0.2913       0.2549E-01   -1.458     
                2      0.5840       0.3762E-01   0.6031     
                3      0.7451       0.2832E-01    1.143     
                4      0.7169       0.1827E-01  -0.4802     
                5      0.6450       0.1743E-01  -0.2615     
                6      0.8169       0.1883E-01  -0.3036     
                7      0.8506       0.1832E-01  -0.2778     
                8      0.7917       0.1884E-01  -0.4726     
                9      0.7211       0.2086E-01   -1.362     
               10      0.7949       0.1796E-01  -0.8377     
               11      0.8790       0.1903E-01  -0.4162     
               12      0.9140       0.2145E-01    1.314     
               13      0.8560       0.2316E-01   0.7643     
               14      0.7932       0.2529E-01   0.9639     
 
      ----- PLOTTING OPTIONS -----  {Dialogue for plotting not shown}... 
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Figure 7.21a  Example pk8. Resulting plot as stored in file pk8.eps. 
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Figure 7.21b  Example pk8. Resulting plot as stored in file pk8.eps. 
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CHAPTER 8 
 
 
SSoommee  PPhhaarrmmaaccookkiinneettiicc//PPhhaarrmmaaccooddyynnaammiicc  
EExxaammpplleess  
 
 
 
 
 
 
 
 
 

This chapter illustrates the use of ADAPT with simultaneous pharmacokinetic/pharmaco- 
dynamic models. The first two examples presented are direct response models. In the first of 
these, the response is driven by plasma concentration, while in the second an effect compartment 
links plasma concentration to drug response. The third example implements an indirect response 
model. Consult the Model Library in Chapter 11 for other pharmacokinetic/pharmacodynamic 
examples.  
 
 
8.1 Example pd1: ID – Direct Response Model 
 

In this direct response model (see Figure 8.1) the pharmacokinetics of the drug are described 
by a linear two-compartment model (clearance parameterization) with intravenous drug 
administration. In the pharmacodynamic portion of the model, the drug’s effect is related to its 
plasma concentration using a Hill-type model (Emax model). The following equations define the 
drug’s plasma concentration and response, where ( )1x t  and ( )2x t  are compartment amounts, 

 is plasma concentration and ( )1y t ( )2y t  is drug response.  
 

( ) ( ) ( )1
1 2

C C p

dx Clt Cld Cldx t x t r
dt V V V

⎛ ⎞
= − + + +⎜ ⎟

⎝ ⎠
t  

( ) ( ) ( )2
1 2

C p

dx t Cld Cldx t x
dt V V

= − t  

( ) ( )1 1 Cy t x t V=  

( ) ( )
( )

1
2

50 1

maxE y t
y t

EC y t
=

+
              (8.1) 
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These equations have been coded and entered in the Model File pd1.for along with linear 
variance models for each output and several secondary parameters. 
 

 
 

Figure 8.1 Model for Example pd1. 
 
 

The data file pd1.dat contains dose regimen information along with measured values for both 
plasma concentration and drug response. Figure 8.2 shows a run of ID with the Model File 
pd1.for in which the maximum likelihood estimator is selected. Initial parameter values are read 
from the file pd1.prm. Also, files named pd1PLT.csv, pd1RSD.csv and pd1.aci are created as 
described in Chapter 6 and can be viewed in the \Example subfolder of the installation. 

 
    ADAPT 5    ID -- INDIVIDUAL ESTIMATION    Tue Sep  2 12:07:32 2008 
 
 Data file name (*.dat): C:\Program Files\BMSR\ADAPT 5\Examples\pd1.dat 
 
      ----- MODEL INPUT INFORMATION ----- 
 
 Data file name (*.dat): pd1.dat 
 
 The number of model inputs:     1 
 
 The number of bolus inputs:    0 
 
 The number of input event times:     2 
 
     Input Event Information 
           Time    Value for all Inputs 
 Event     Units,       R(1) 
    1.     0.000          100.0     
    2.     1.000          0.000     
 
      ----- MODEL OUTPUT INFORMATION ----- 
 
 The number of model output equations:   2 
 
 The number of observations:   14 
 
Figure 8.2 Example pd1. ML estimation results for a direct response model. 
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Figure 8.2 (continued) 
     Observation Information 
                 Time     Measured Value For Each Output 
 Observation     Units ,     Y(1), ... ,Y(   2) 
       1.         1.000       2.916       39.16     
       2.         2.000       1.267       47.66     
       3.         3.000      0.9619       69.25     
       4.         4.000      0.9755       66.80     
       5.         5.000      0.7909       39.29     
       6.         6.000      0.5048       40.39     
       7.         8.000      0.2741       38.79     
       8.         10.00      0.3904       40.37     
       9.         12.00      0.5752       30.37     
      10.         16.00      0.2094       36.66     
      11.         24.00      0.1885       18.78     
      12.         30.00      0.1579       17.71     
      13.         36.00      0.1219       12.74     
      14.         48.00      0.4693E-01   8.041     
 
      ----- ESTIMATOR SELECTION -----  
 
 The following estimation procedures are available: 
      1. Weighted least squares (WLS) 
      2. Maximum likelihood (ML) 
      3. Generalized least squares (GLS) 
      4. Maximum a posteriori probability (MAP) 
 
 Enter option number:  2 
 
      ----- INITIALIZE ESTIMATION PROCEDURE ----- 
 
 Parameter file name: pd1.prm 
 
 Enter initial values for parameters & specify those to be estimated:  
 
            Old Value    New Value      Estimate?  
                       (skip if same)    (Y/N) 
 CLt        6.000            y 
 Vc         30.00            y 
 CLd        12.00            y 
 Vp         60.00            y 
 Emax       100.0            y 
 EC50       25.00            y 
 IC(   1)   0.000            n 
 IC(   2)   0.000            n 
 SDinter1   .5000E-01        n 
 SDslope1   .1000            n 
 SDinter2   2.500            n 
 SDslope2   .1000            n 
 
 Enter maximum number of iterations:       500 
 
 Do you want the iterations printed (Y/N)?  n 
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Figure 8.2 (continued) 
 

             ----- RESULTS ----- 
 
             --- A. Iterations ---   
 
     Number of iterations      =     0 
     Number of function calls  =     1 
 
      Fitted Parameters 
       CLt        =    6.000     
       Vc         =    30.00     
       CLd        =    12.00     
       Vp         =    60.00     
       Emax       =    100.0     
       EC50       =    25.00     
 
     Negative Log Likelihood =  1262.13     
 
 
              ---B. Iteration Summary--- 
 
     Convergence has been achieved. 
 
     Number of iterations      =   107 
     Number of function calls  =   483 
 
      Fitted Parameters 
       CLt        =    6.328     
       Vc         =    29.58     
       CLd        =    10.34     
       Vp         =    51.18     
       Emax       =    68.77     
       EC50       =   0.3415     
 
     Negative Log Likelihood =  39.5548     
 
 
             --- C. ML Estimation Summary--- 
 
 Tue Sep  2 12:07:32 2008 
 
 Data file name (*.dat): C:\Program Files\BMSR\ADAPT 5\Examples\pd1.dat 
 
 Model:  pd1.for - Example pd1 in ADAPT Users Guide                   
 
 Convergence achieved 
   Number of iterations:         107 
   Number of function calls:     483 
 Negative Log Likelihood:    39.5548     
 
  Output        R-squared    Sum of Squares 
  Y( 1)          0.950         0.366959     
  Y( 2)          0.700          1298.82     
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Figure 8.2 (continued) 
 
  Model Selection Criteria 
   AIC:          91.1096     
   BIC:          99.1028     
 
                Initial      Final 
  Parameter      Value      Estimate    SE (CV%)   Confidence interval (95%) 
 
  CLt            6.000       6.328       7.749     [  5.311    ,   7.344    ] 
  Vc             30.00       29.58       15.15     [  20.28    ,   38.87    ] 
  CLd            12.00       10.34       21.62     [  5.702    ,   14.97    ] 
  Vp             60.00       51.18       15.06     [  35.19    ,   67.17    ] 
  Emax           100.0       68.77       12.15     [  51.44    ,   86.11    ] 
  EC50           25.00      0.3415       33.86     [ 0.1017    ,  0.5812    ] 
  IC(   1)       0.000      Not estimated 
  IC(   2)       0.000      Not estimated 
 
  SDinter1      0.5000E-01  Not estimated 
  SDslope1      0.1000      Not estimated 
  SDinter2       2.500      Not estimated 
  SDslope2      0.1000      Not estimated 
 
  Kel           0.2000      0.2139       15.59     [ 0.1448    ,  0.2831    ] 
  V              30.00       29.58       15.15     [  20.28    ,   38.87    ] 
  Kcp           0.4000      0.3495       30.59     [ 0.1278    ,  0.5713    ] 
  Kpc           0.2000      0.2020       23.56     [ 0.1033    ,  0.3007    ] 
  LAM1          0.7464      0.7041       23.03     [ 0.3678    ,   1.040    ] 
  LAM2          0.5359E-01  0.6137E-01   15.27     [ 0.4194E-01,  0.8081E-01] 
  t1/2-LAM1     0.9286      0.9845       23.03     [ 0.5143    ,   1.455    ] 
  t1/2-LAM2      12.93       11.29       15.27     [  7.718    ,   14.87    ] 
 
  Correlation Matrix 
 
           CLt       Vc        CLd       Vp        Emax      EC50       
CLt         1.00 
 Vc          0.20      1.00 
 CLd        -0.09     -0.36      1.00 
 Vp         -0.39     -0.07      0.21      1.00 
 Emax       -0.39      0.04      0.16      0.44      1.00 
 EC50       -0.59      0.03      0.20      0.47      0.91      1.00 
 
 
  Covariance Matrix 
 
           CLt       Vc        CLd       Vp        Emax      EC50       
CLt       0.240     
 Vc        0.435      20.1     
 CLd       -.103     -3.65      5.00     
 Vp        -1.49     -2.41      3.68      59.4     
 Emax      -1.60      1.60      2.97      28.2      69.9     
 EC50      -.336E-01 0.173E-01 0.506E-01 0.416     0.875     0.134E-01 
 
           --- D.  ML Estimation Model Prediction and Data Summary --- 
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Figure 8.2 (continued) 
 
 Data file name (*.dat): C:\Program Files\BMSR\ADAPT 5\Examples\pd1.dat 
 
 Model:  pd1.for - Example pd1 in ADAPT Users Guide                   
 
Y( 1) 
  Obs.Num.   Time         Data       Model Est.     Residual     Variance 
      1       1.000        2.916        2.614        0.3019       0.9695E-01 
      2       2.000        1.267        1.613       -0.3453       0.4463E-01 
      3       3.000       0.9619        1.098       -0.1364       0.2555E-01 
      4       4.000       0.9755       0.8262        0.1493       0.1759E-01 
      5       5.000       0.7909       0.6747        0.1162       0.1380E-01 
      6       6.000       0.5048       0.5840       -0.7912E-01   0.1175E-01 
      7       8.000       0.2741       0.4806       -0.2065       0.9616E-02 
      8       10.00       0.3904       0.4163       -0.2592E-01   0.8396E-02 
      9       12.00       0.5752       0.3661        0.2091       0.7501E-02 
     10       16.00       0.2094       0.2858       -0.7642E-01   0.6175E-02 
     11       24.00       0.1885       0.1749        0.1363E-01   0.4555E-02 
     12       30.00       0.1579       0.1210        0.3690E-01   0.3857E-02 
     13       36.00       0.1219       0.8373E-01    0.3812E-01   0.3407E-02 
     14       48.00       0.4693E-01   0.4009E-01    0.6841E-02   0.2917E-02 
 
 Y( 1) (Continued)                 Std. Err.   Standardized 
           Obs.Num.   Model Est.   Model Est.   Residual 
                1       2.614       0.2846       0.9695     
                2       1.613       0.1198       -1.635     
                3       1.098       0.9313E-01  -0.8537     
                4      0.8262       0.6775E-01    1.126     
                5      0.6747       0.4987E-01   0.9893     
                6      0.5840       0.4378E-01  -0.7300     
                7      0.4806       0.4354E-01   -2.106     
                8      0.4163       0.4098E-01  -0.2829     
                9      0.3661       0.3672E-01    2.415     
               10      0.2858       0.3013E-01  -0.9725     
               11      0.1749       0.2519E-01   0.2019     
               12      0.1210       0.2274E-01   0.5943     
               13      0.8373E-01   0.1985E-01   0.6531     
               14      0.4009E-01   0.1371E-01   0.1267     
 
 Y( 2) 
  Obs.Num.   Time         Data       Model Est.     Residual     Variance 
      1       1.000        39.16        60.83        -21.67        73.66     
      2       2.000        47.66        56.75        -9.098        66.84     
      3       3.000        69.25        52.46         16.79        60.01     
      4       4.000        66.80        48.66         18.14        54.26     
      5       5.000        39.29        45.66        -6.373        49.93     
      6       6.000        40.39        43.40        -3.010        46.78     
      7       8.000        38.79        40.21        -1.413        42.52     
      8       10.00        40.37        37.78         2.587        39.42     
      9       12.00        30.37        35.58        -5.212        36.70     
     10       16.00        36.66        31.33         5.323        31.74     
     11       24.00        18.78        23.29        -4.516        23.32     
     12       30.00        17.71        17.99       -0.2798        18.49     
     13       36.00        12.74        13.54       -0.7996        14.86     
     14       48.00        8.041        7.226        0.8154        10.39     
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Figure 8.2 (continued) 
 
 Y( 2) (Continued)                 Std. Err.   Standardized 
           Obs.Num.   Model Est.   Model Est.   Residual 
                1       60.83        5.338       -2.524     
                2       56.75        4.084       -1.113     
                3       52.46        3.152        2.167     
                4       48.66        2.611        2.463     
                5       45.66        2.332      -0.9018     
                6       43.40        2.254      -0.4401     
                7       40.21        2.342      -0.2167     
                8       37.78        2.381       0.4121     
                9       35.58        2.336      -0.8603     
               10       31.33        2.176       0.9450     
               11       23.29        1.977      -0.9352     
               12       17.99        1.947      -0.6508E-01 
               13       13.54        1.920      -0.2075     
               14       7.226        1.667       0.2530     
 

 
Figure 8.3a Example pd1. Resulting Plots as Stored in file pd1.eps. 
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Figure 8.3b Example pd1. Resulting Plots as Stored in file pd1.eps. 
 
 
8.2 Example pd2: ID – Direct Response/Effect Site Model 

In this example an effect compartment is used to link the plasma concentration from the 
pharmacokinetic model to the Hill response model (see Figure 8.4). The following three 
differential and two output equations describe the model:  

 
( ) ( ) ( ) ( )1

1 2
C C P

dx t Clt Cld Cldx t x t r
dt V V V

⎛ ⎞
= − + + +⎜ ⎟

⎝ ⎠
t  

 ( ) ( ) ( )2
1 2

C P

dx t Cld Cldx t x
dt V V

= − t  

 ( ) ( ) ( )( )3
1 3/eo c

dx t
K x t V x t

dt
= −  
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 ( ) ( )1 1 Cy t x t V=  

 ( ) ( )
( )

3
2

350
maxE x t

y t
EC x t

=
+

             (8.2) 

 
These equations have been coded and entered into the Model File pd2.for. The data file pd2.dat 
contains the same data as used for example pd1. Figure 8.5 shows a run of ID using the 
maximum likelihood estimator. Also, files named pd2PLT.csv, pd2RSD.csv and pd2.aci are 
created as described in Chapter 6 and can be viewed in the \Example subfolder of the 
installation. 
 

 
 

Figure 8.4 Model for Example pd2. 
 
 
    ADAPT 5    ID -- INDIVIDUAL ESTIMATION    Tue Sep  2 12:07:34 2008 
 
Enter file name for storing session run (*.run): pd2.run 
 
      ----- MODEL INPUT INFORMATION ----- 
 
 Data file name (*.dat): C:\Program Files\BMSR\ADAPT 5\Examples\pd2.dat 
 
 The number of model inputs:     1 
 
 The number of bolus inputs:    0 
 
 The number of input event times:     2 
 
     Input Event Information 
           Time    Value for all Inputs 
 Event     Units,       R(1) 
    1.     0.000          100.0     
    2.     1.000          0.000     
 
Figure 8.5 Example pd2. ML estimation results for an effect compartment model. 
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Figure 8.5 (continued) 
 

      ----- MODEL OUTPUT INFORMATION ----- 
 
 The number of model output equations:   2 
 
 The number of observations:   14 
 
     Observation Information 
                 Time     Measured Value For Each Output 
 Observation     Units ,     Y(1), ... ,Y(   2) 
       1.         1.000       2.916       39.16     
       2.         2.000       1.267       47.66     
       3.         3.000      0.9619       69.25     
       4.         4.000      0.9755       66.80     
       5.         5.000      0.7909       39.29     
       6.         6.000      0.5048       40.39     
       7.         8.000      0.2741       38.79     
       8.         10.00      0.3904       40.37     
       9.         12.00      0.5752       30.37     
      10.         16.00      0.2094       36.66     
      11.         24.00      0.1885       18.78     
      12.         30.00      0.1579       17.71     
      13.         36.00      0.1219       12.74     
      14.         48.00      0.4693E-01   8.041     
 
      ----- ESTIMATOR SELECTION -----  
 
 The following estimation procedures are available: 
      1. Weighted least squares (WLS) 
      2. Maximum likelihood (ML) 
      3. Generalized least squares (GLS) 
      4. Maximum a posteriori probability (MAP) 
 
 Enter option number:  2 
 
      ----- INITIALIZE ESTIMATION PROCEDURE ----- 
 
 Parameter file name: pd2.prm 
 
 Enter initial values for parameters & specify those to be estimated:  
 
            Old Value    New Value      Estimate?  
                       (skip if same)    (Y/N) 
 CLt        6.000            y 
 Vc         30.00            y 
 CLd        12.00            y 
 Vp         60.00            y 
 Emax       100.0            y 
 EC50       25.00            y 
 Keo        .5000            y 
 IC(   1)   0.000            n 
 IC(   2)   0.000            n 
 IC(   3)   0.000            n 
 SDinter1   .5000E-01        n 
 SDslope1   .1000            n 
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Figure 8.5 (continued) 
 

 SDinter2   2.500            n  
 SDslope2   .1000            n  
 
 Enter maximum number of iterations:       999 
 
 Do you want the iterations printed (Y/N)?  n 
 
             ----- RESULTS ----- 
 
             --- A. Iterations ---   
 
     Number of iterations      =     0 
     Number of function calls  =     1 
 
      Fitted Parameters 
       CLt        =    6.000     
       Vc         =    30.00     
       CLd        =    12.00     
       Vp         =    60.00     
       Emax       =    100.0     
       EC50       =    25.00     
       Keo        =   0.5000     
 
     Negative Log Likelihood =  1259.85     
 
              ---B. Iteration Summary--- 
 
     Convergence has been achieved. 
 
     Number of iterations      =   169 
     Number of function calls  =   765 
 
      Fitted Parameters 
       CLt        =    5.812     
       Vc         =    27.94     
       CLd        =    12.39     
       Vp         =    60.93     
       Emax       =    100.9     
       EC50       =   0.8940     
       Keo        =   0.4786     
 
     Negative Log Likelihood =  34.1450     
 
             --- C. ML Estimation Summary--- 
 
 Tue Sep  2 12:07:35 2008 
 
 Data file name: C:\Program Files\BMSR\ADAPT 5\Examples\pd2.dat 
 
 Model:  pd2.for - Example pd2 in ADAPT Users Guide                   
 
 Convergence achieved 
   Number of iterations:         169 
   Number of function calls:     765 
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Figure 8.5 (continued) 
 
  Output        R-squared    Sum of Squares 
  Y( 1)          0.960         0.304445     
  Y( 2)          0.844          664.101     
 
  Model Selection Criteria 
   AIC:          82.2900     
   BIC:          91.6155     
 
                Initial      Final 
  Parameter      Value      Estimate    SE (CV%)   Confidence interval (95%) 
 
  CLt            6.000       5.812       8.479     [  4.787    ,   6.837    ] 
  Vc             30.00       27.94       15.87     [  18.72    ,   37.16    ] 
  CLd            12.00       12.39       19.39     [  7.395    ,   17.39    ] 
  Vp             60.00       60.93       14.64     [  42.37    ,   79.49    ] 
  Emax           100.0       100.9       29.89     [  38.17    ,   163.7    ] 
  EC50           25.00      0.8940       52.08     [-0.7453E-01,   1.862    ] 
  Keo           0.5000      0.4786       29.95     [ 0.1805    ,  0.7766    ] 
  IC(   1)       0.000      Not estimated 
  IC(   2)       0.000      Not estimated 
  IC(   3)       0.000      Not estimated 
 
  SDinter1      0.5000E-01  Not estimated 
  SDslope1      0.1000      Not estimated 
  SDinter2       2.500      Not estimated 
  SDslope2      0.1000      Not estimated 
 
  Kel           0.2000      0.2080       16.46     [ 0.1368    ,  0.2792    ] 
  V              30.00       27.94       15.87     [  18.72    ,   37.16    ] 
  Kcp           0.4000      0.4436       28.64     [ 0.1794    ,  0.7079    ] 
  Kpc           0.2000      0.2034       22.38     [ 0.1087    ,  0.2981    ] 
  LAM1          0.7464      0.8023       22.41     [ 0.4283    ,   1.176    ] 
  LAM2          0.5359E-01  0.5274E-01   15.99     [ 0.3520E-01,  0.7027E-01] 
  t1/2-LAM1     0.9286      0.8639       22.41     [ 0.4612    ,   1.267    ] 
  t1/2-LAM2      12.93       13.14       15.99     [  8.773    ,   17.51    ] 
 
  Correlation Matrix 
 
           CLt       Vc        CLd       Vp        Emax      EC50       
           Keo        
CLt         1.00 
 Vc          0.20      1.00 
 CLd        -0.07     -0.31      1.00 
 Vp         -0.46     -0.08      0.16      1.00 
 Emax       -0.44     -0.08      0.29      0.45      1.00 
 EC50       -0.52     -0.11      0.29      0.44      0.98      1.00 
 Keo         0.08      0.36     -0.04     -0.23     -0.44     -0.40 
             1.00 
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Figure 8.5 (continued) 
 
  Covariance Matrix 
 
           CLt       Vc        CLd       Vp        Emax      EC50       
           Keo        
CLt       0.243     
 Vc        0.428      19.7     
 CLd       -.833E-01 -3.33      5.78     
 Vp        -2.03     -3.36      3.38      79.6     
 Emax      -6.49     -10.3      20.9      120.      910.     
 EC50      -.120     -.233     0.322      1.81      13.8     0.217     
 Keo       0.549E-02 0.229     -.131E-01 -.288     -1.89     -.269E-01 
           0.205E-01 
 
            --- D.  ML Estimation Model Prediction and Data Summary --- 
 
 Data file name: C:\Program Files\BMSR\ADAPT 5\Examples\pd2.dat 
 
 Model:  pd2.for - Example pd2 in ADAPT Users Guide                   
 
 Y( 1) 
  Obs.Num.   Time         Data       Model Est.     Residual     Variance 
      1       1.000        2.916        2.667        0.2482       0.1003     
      2       2.000        1.267        1.546       -0.2791       0.4188E-01 
      3       3.000       0.9619        1.026       -0.6393E-01   0.2328E-01 
      4       4.000       0.9755       0.7754        0.2000       0.1627E-01 
      5       5.000       0.7909       0.6469        0.1440       0.1315E-01 
      6       6.000       0.5048       0.5740       -0.6913E-01   0.1153E-01 
      7       8.000       0.2741       0.4916       -0.2175       0.9833E-02 
      8       10.00       0.3904       0.4374       -0.4702E-01   0.8787E-02 
      9       12.00       0.5752       0.3926        0.1826       0.7968E-02 
     10       16.00       0.2094       0.3177       -0.1084       0.6687E-02 
     11       24.00       0.1885       0.2084       -0.1985E-01   0.5018E-02 
     12       30.00       0.1579       0.1518        0.6074E-02   0.4249E-02 
     13       36.00       0.1219       0.1107        0.1120E-01   0.3729E-02 
     14       48.00       0.4693E-01   0.5876E-01   -0.1183E-01   0.3122E-02 
 
 Y( 1) (Continued)                 Std. Err.   Standardized 
           Obs.Num.   Model Est.   Model Est.   Residual 
                1       2.667       0.2952       0.7837     
                2       1.546       0.1230       -1.364     
                3       1.026       0.9342E-01  -0.4190     
                4      0.7754       0.6379E-01    1.568     
                5      0.6469       0.4760E-01    1.255     
                6      0.5740       0.4423E-01  -0.6437     
                7      0.4916       0.4390E-01   -2.193     
                8      0.4374       0.4024E-01  -0.5016     
                9      0.3926       0.3589E-01    2.046     
               10      0.3177       0.3019E-01   -1.325     
               11      0.2084       0.2709E-01  -0.2802     
               12      0.1518       0.2576E-01   0.9318E-01 
               13      0.1107       0.2368E-01   0.1835     
               14      0.5876E-01   0.1813E-01  -0.2118     
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Figure 8.5 (continued) 
 

Y( 2) 
  Obs.Num.   Time         Data       Model Est.     Residual     Variance 
      1       1.000        39.16        40.44        -1.281        42.83     
      2       2.000        47.66        56.30        -8.643        66.09     
      3       3.000        69.25        57.17         12.08        67.52     
      4       4.000        66.80        54.68         12.12        63.49     
      5       5.000        39.29        51.22        -11.93        58.09     
      6       6.000        40.39        47.69        -7.301        52.83     
      7       8.000        38.79        41.69        -2.901        44.48     
      8       10.00        40.37        37.32         3.051        38.84     
      9       12.00        30.37        34.02        -3.651        34.84     
     10       16.00        36.66        28.93         7.732        29.08     
     11       24.00        18.78        20.95        -2.177        21.12     
     12       30.00        17.71        16.18         1.537        16.96     
     13       36.00        12.74        12.33        0.4179        13.93     
     14       48.00        8.041        6.943         1.098        10.20     
 
 Y( 2) (Continued)                 Std. Err.   Standardized 
           Obs.Num.   Model Est.   Model Est.   Residual 
                1       40.44        5.786      -0.1957     
                2       56.30        4.414       -1.063     
                3       57.17        4.150        1.470     
                4       54.68        3.619        1.521     
                5       51.22        3.182       -1.565     
                6       47.69        2.954       -1.004     
                7       41.69        2.801      -0.4349     
                8       37.32        2.678       0.4896     
                9       34.02        2.526      -0.6186     
               10       28.93        2.236        1.434     
               11       20.95        1.928      -0.4737     
               12       16.18        1.849       0.3732     
               13       12.33        1.782       0.1120     
               14       6.943        1.534       0.3438     
 
      ----- PLOTTING OPTIONS -----  
 
 Do you want to plot with options (Y/N)?  y 
 
 ...{Dialogue for plotting options not shown} ... 
 
      ________________________________________ 
 
      ----- RE-ESTIMATION OPTIONS ----- 
 
     1. Change initial parameter values 
     2. Select a different estimator 
     3. Exit ID 
 
 Enter option:  3 
 
      ________________________________________ 
 
    ADAPT 5    ID -- INDIVIDUAL ESTIMATION    Tue Sep  2 12:07:35 2008 
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Figure 8.6a Example pd2. Resulting Plots as Stored in file pd2.eps. 
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Figure 8.6b Example pd2. Resulting Plots as Stored in file pd2.eps. 

 
 
8.3 Example pd3: ID – Indirect Response Model 
 

In this example an indirect response model is used to describe drug response, together with a 
linear two compartment model for the drug’s pharmacokinetics (see Figure 8.7). The model 
differential and output equations are given below.  

 

( ) ( ) ( )1
1 2

C C P

dx Clt Cld Cldx t x t r
dt V V V

⎛ ⎞
= − + + +⎜ ⎟

⎝ ⎠
t  

( ) ( ) ( )2
1 2

C P

dx t Cld Cldx t x
dt V V

= − t  
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( ) ( )
( ) ( ) ( )3 1

3
1

1
50 3

C

C

dx t x t V KinKin x t
dt IC x t V IC

⎛ ⎞
= − −⎜ ⎟⎜ ⎟+⎝ ⎠

 

( ) ( )1 1y t x t V=  

( ) ( )2 3y t x t=                (8.3) 
 
To insure a return to the pre-drug control value of the drug response variable after the drug is 
cleared completely,  is replaced by  Kout ( )3Kin IC  in the above equations. Figure 8.8a is an 
excerpt from the Model File pd3.for showing the coding of the model differential equations. 
 

This example also involves measurements that exceed the limits of quantitation (BQL for 
plasma concentration  and AQL for response ( )1y t ( )2y t . Figure 8.8b also shows an excerpt 
from subroutine VARMOD were both the lower limit of quantitation and upper limit of 
quantitation are defined for the respective outputs. The data file indicates those measurements 
that exceed the quantitation limits as described in Chapter 6 (see also data tables in the program 
run below). 
 

Figures 8.9 and 8.10 show the run of ID. Also, files named pd3PLT.csv, pd3RSD.csv and 
pd3.aci are created as described in Chapter 8 and can be viewed in the \Example.  
 

 
 

Figure 7.8  Model for Example pd3. 
 
 
-----------------------------------------------------------------------C 
C 1. Enter Differential Equations Below {e.g. XP(1) = -P(1)*X(1) }     C 
C----c-----------------------------------------------------------------C 
 
       XP(1) = -(P(1)+P(3))/P(2)*X(1) + P(3)/P(4)*X(2) + R(1) 
       XP(2) = P(3)/P(2)*X(1) - P(3)/P(4)*X(2) 
       XP(3) = P(5)*(1 - X(1)/P(2)/(P(6)+X(1)/P(2))) 
      x                  - P(5)/IC(3)*X(3) 
 
C----------------------------------------------------------------------C 
C----------------------------------------------------------------------C 
 
Figure 8.8a  Excerpt from Model File pd3 showing coding of the differential equations.  
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C----------------------------------------------------------------------C 
C       Enter Variance Model Equations Below                           C 
C        {e.g. V(1) = (PV(1) + PV(2)*Y(1))**2 }                        C 
C----c-----------------------------------------------------------------C 
 
        V(1) = (PV(1) + PV(2)*Y(1))**2 
        V(2) = (PV(3) + PV(4)*Y(3))**2 
 
        LLQ(1) = 0.10  ! LLQ for Plasma - Output Y(1) 
        ULQ(2) = 90.0  ! ULQ for PD Response - Output Y(2) 
 
C----------------------------------------------------------------------C 
C----------------------------------------------------------------------C 
 
Figure 8.8b  Excerpt from Model File pd3 showing the specification of the quantitation limits 

in routine VARMOD.  
 
 
 
    ADAPT 5    ID -- INDIVIDUAL ESTIMATION    Tue Sep  2 12:07:37 2008 
 
 Enter file name for storing session run (*.run): pd3.run 
 
      ----- MODEL INPUT INFORMATION ----- 
 
 Data file name (*.dat): C:\Program Files\BMSR\ADAPT 5\Examples\pd3.dat 
 
 The number of model inputs:     1 
 
 The number of bolus inputs:    0 
 
 The number of input event times:     2 
 
     Input Event Information 
           Time    Value for all Inputs 
 Event     Units,       R(1) 
    1.     0.000          100.0     
    2.     1.000          0.000     
 
      ----- MODEL OUTPUT INFORMATION ----- 
 
 The number of model output equations:   2 
 
 The number of observations:   14 
 
     Observation Information 
                 Time     Measured Value For Each Output 
 Observation     Units ,     Y(1), ... ,Y(   2) 
       1.         1.000       2.853       84.43     
       2.         2.000       1.332       63.86     
       3.         3.000      0.9849       80.31     
       4.         4.000      0.8997       75.07     
       5.         5.000      0.7282       40.99     
 
Figure 8.9 Example pd3. ML estimation for an indirect response model. 
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Figure 8.9 (continued) 

 
       6.         6.000      0.5349       44.28     
       7.         8.000      0.3797       47.98     
       8.         10.00      0.4094       57.04     
       9.         12.00      0.4649       46.94     
      10.         16.00      0.2699       70.62     
      11.         24.00      0.1967       60.60     
      12.         30.00      0.1479       75.75     
      13.         36.00      0.1080       79.13     
      14.         48.00      L            H     
 
      ----- ESTIMATOR SELECTION -----  
 
 The following estimation procedures are available: 
      1. Weighted least squares (WLS) 
      2. Maximum likelihood (ML) 
      3. Generalized least squares (GLS) 
      4. Maximum a posteriori probability (MAP) 
 
Enter option number:  2 

 
     ----- INITIALIZE ESTIMATION PROCEDURE ----- 
 
 Parameter file name: pd3.prm 
 
 Enter initial values for parameters & specify those to be estimated:  
 
            Old Value    New Value      Estimate?  
                       (skip if same)    (Y/N) 
 CLt        6.000            y 
 Vc         30.00            y 
 CLd        12.00            y 
 Vp         60.00            y 
 Kin        20.00            y 
 IC50       .5000            y 
 IC(   1)   0.000            n 
 IC(   2)   0.000            n 
 IC(   3)   100.0            y 
 SDinter1   0.000            n 
 SDslope1   .1000            n 
 SDinter2   10.00            n 
 SDslope2   0.000            n 
 
 Enter maximum number of iterations:       999 
 
 Do you want the iterations printed (Y/N)?  n 
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Figure 8.9 (continued) 
 
             ----- RESULTS ----- 
 
             --- A. Iterations ---   
 
     Number of iterations      =     0 
     Number of function calls  =     1 
 
      Fitted Parameters 
       CLt        =    6.000     
       Vc         =    30.00     
       CLd        =    12.00     
       Vp         =    60.00     
       Kin        =    20.00     
       IC50       =   0.5000     
       IC( 3)     =    100.0     
 
     Negative Log Likelihood =  30.9948     
 
              ---B. Iteration Summary--- 
 
     Convergence has been achieved. 
 
     Number of iterations      =    36 
     Number of function calls  =   234 
      Fitted Parameters 
       CLt        =    5.942     
       Vc         =    28.94     
       CLd        =    11.56     
       Vp         =    59.35     
       Kin        =    25.19     
       IC50       =   0.4540     
       IC( 3)     =    105.4     
 
     Negative Log Likelihood =  30.4740     
 
             --- C. ML Estimation Summary--- 
 
 Tue Sep  2 12:07:37 2008 
 
 Data file name: C:\Program Files\BMSR\ADAPT 5\Examples\pd3.dat 
 
 Model:  pd3.for - Example pd3 in ADAPT Users Guide                   
 
 Convergence achieved 
   Number of iterations:          36 
   Number of function calls:     234 
 Negative Log Likelihood:    30.4740     
 
  Output        R-squared    Sum of Squares 
  Y( 1)          0.978         0.151697     
  Y( 2)          0.561          1225.96     
 
  Model Selection Criteria 
   AIC:          74.9479     
   BIC:          83.7546     
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Figure 8.9 (continued) 
 
                Initial      Final 
  Parameter      Value      Estimate    SE (CV%)   Confidence interval (95%) 
 
  CLt            6.000       5.942       3.169     [  5.548    ,   6.337    ] 
  Vc             30.00       28.94       12.22     [  21.53    ,   36.34    ] 
  CLd            12.00       11.56       12.47     [  8.541    ,   14.57    ] 
  Vp             60.00       59.35       7.159     [  50.46    ,   68.25    ] 
  Kin            20.00       25.19       30.06     [  9.341    ,   41.04    ] 
  IC50          0.5000      0.4540       33.42     [ 0.1364    ,  0.7716    ] 
  IC(   3)       100.0       105.4       10.86     [  81.41    ,   129.3    ] 
  IC(   1)       0.000      Not estimated 
  IC(   2)       0.000      Not estimated 
 
  SDinter1       0.000      Not estimated 
  SDslope1      0.1000      Not estimated 
  SDinter2       10.00      Not estimated 
  SDslope2       0.000      Not estimated 
 
  Kel           0.2000      0.2054       11.32     [ 0.1567    ,  0.2540    ] 
  V              30.00       28.94       12.22     [  21.53    ,   36.34    ] 
  Kcp           0.4000      0.3994       19.25     [ 0.2385    ,  0.5602    ] 
  Kpc           0.2000      0.1947       13.17     [ 0.1410    ,  0.2484    ] 
  LAM1          0.7464      0.7458       14.95     [ 0.5125    ,  0.9791    ] 
  LAM2          0.5359E-01  0.5361E-01   6.930     [ 0.4584E-01,  0.6139E-01] 
  t1/2-LAM1     0.9286      0.9294       14.95     [ 0.6386    ,   1.220    ] 
  t1/2-LAM2      12.93       12.93       6.930     [  11.05    ,   14.80    ] 
  Kout          0.2000      0.2391       22.48     [ 0.1266    ,  0.3516    ] 
 
Correlation Matrix 
 
           CLt       Vc        CLd       Vp        Kin       IC50       
           IC(   3)   
 CLt         1.00 
 Vc          0.41      1.00 
 CLd         0.26     -0.22      1.00 
 Vp         -0.09     -0.08      0.19      1.00 
 Kin        -0.04      0.00      0.07      0.10      1.00 
 IC50       -0.02      0.03      0.01     -0.11     -0.53      1.00 
 IC(   3)   -0.05     -0.04      0.02      0.09      0.79     -0.86 
             1.00 
   
  Covariance Matrix 
 
           CLt       Vc        CLd       Vp        Kin       IC50       
           IC(   3)   
 CLt       0.355E-01 
 Vc        0.270      12.5     
 CLd       0.699E-01 -1.10      2.08     
 Vp        -.686E-01 -1.22      1.14      18.1     
 Kin       -.514E-01 -.627E-01 0.781      3.25      57.3     
 IC50      -.666E-03 0.137E-01 0.124E-02 -.687E-01 -.614     0.230E-01 
 IC(   3)  -.103     -1.55     0.341      4.54      68.5     -1.49     
            131.     
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Figure 8.9 (continued) 
 
            --- D.  ML Estimation Model Prediction and Data Summary --- 
 
 Data file name: C:\Program Files\BMSR\ADAPT 5\Examples\pd3.dat 
 
 Model:  pd3.for - Example pd3 in ADAPT Users Guide                   
 
Y( 1) 
  Obs.Num.   Time         Data       Model Est.     Residual     Variance 
      1       1.000        2.853        2.625        0.2284       0.6891E-01 
      2       2.000        1.332        1.570       -0.2383       0.2465E-01 
      3       3.000       0.9849        1.052       -0.6749E-01   0.1108E-01 
      4       4.000       0.8997       0.7909        0.1088       0.6256E-02 
      5       5.000       0.7282       0.6516        0.7659E-01   0.4246E-02 
      6       6.000       0.5349       0.5711       -0.3629E-01   0.3262E-02 
      7       8.000       0.3797       0.4817       -0.1020       0.2321E-02 
      8       10.00       0.4094       0.4257       -0.1624E-01   0.1812E-02 
      9       12.00       0.4649       0.3808        0.8410E-01   0.1450E-02 
     10       16.00       0.2699       0.3069       -0.3704E-01   0.9420E-03 
     11       24.00       0.1967       0.1999       -0.3165E-02   0.3994E-03 
     12       30.00       0.1479       0.1449        0.3003E-02   0.2099E-03 
     13       36.00       0.1080       0.1050        0.2991E-02   0.1103E-03 
     14       48.00          L         0.5520E-01   BQL Observation 
 
Y( 1) (Continued)                 Std. Err.   Standardized 
           Obs.Num.   Model Est.   Model Est.   Residual 
                1       2.625       0.2355       0.8702     
                2       1.570       0.8774E-01   -1.518     
                3       1.052       0.6157E-01  -0.6413     
                4      0.7909       0.4278E-01    1.376     
                5      0.6516       0.2914E-01    1.175     
                6      0.5711       0.2350E-01  -0.6354     
                7      0.4817       0.2217E-01   -2.118     
                8      0.4257       0.2025E-01  -0.3815     
                9      0.3808       0.1726E-01    2.209     
               10      0.3069       0.1209E-01   -1.207     
               11      0.1999       0.8225E-02  -0.1584     
               12      0.1449       0.7876E-02   0.2073     
               13      0.1050       0.7581E-02   0.2848     
               14      0.5520E-01   0.6221E-02   BQL Observation 
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Figure 8.9 (continued) 
 
Y( 2) 
  Obs.Num.   Time         Data       Model Est.     Residual     Variance 
      1       1.000        84.43        89.54        -5.108        100.0     
      2       2.000        63.86        74.68        -10.82        100.0     
      3       3.000        80.31        64.74         15.57        100.0     
      4       4.000        75.07        58.49         16.58        100.0     
      5       5.000        40.99        54.79        -13.80        100.0     
      6       6.000        44.28        52.73        -8.455        100.0     
      7       8.000        47.98        51.41        -3.429        100.0     
      8       10.00        57.04        51.98         5.061        100.0     
      9       12.00        46.94        53.50        -6.552        100.0     
     10       16.00        70.62        57.83         12.79        100.0     
     11       24.00        60.60        67.91        -7.311        100.0     
     12       30.00        75.75        75.12        0.6296        100.0     
     13       36.00        79.13        81.47        -2.346        100.0     
     14       48.00          H          91.21       AQL Observation 
 
 Y( 2) (Continued)                 Std. Err.   Standardized 
           Obs.Num.   Model Est.   Model Est.   Residual 
                1       89.54        7.153      -0.5108     
                2       74.68        5.125       -1.082     
                3       64.74        4.665        1.557     
                4       58.49        4.549        1.658     
                5       54.79        4.393       -1.380     
                6       52.73        4.201      -0.8455     
                7       51.41        3.959      -0.3429     
                8       51.98        3.999       0.5061     
                9       53.50        4.170      -0.6552     
               10       57.83        4.460        1.279     
               11       67.91        4.636      -0.7311     
               12       75.12        4.903       0.6296E-01 
               13       81.47        5.503      -0.2346     
               14       91.21        7.241       AQL Observation 
 
 
      ----- PLOTTING OPTIONS -----  
 
 Do you want to plot with options (Y/N)?  y 
 
...{Dialogue for plotting options not shown} ... 
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Figure 8.10a Example pd3. Resulting Plots as Stored in file pd3.eps. 
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Figure 8.10b Example pd3. Resulting Plots as Stored in file pd3.eps. 
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CHAPTER 9 
 
 
SSoommee  OOtthheerr  EExxaammpplleess    
 
 
 
 
 
 
 
 
 
9.1 Example ivoral: NPD – Bioavailability Crossover Study 
 

This example illustrates the use of the NPD program to model data from a single subject 
bioavailability crossover study. Drug disposition is described by a two-compartment linear model 
with oral administration modeled as a delayed first-order absorption process. It is assumed that 
plasma drug concentration measurements have been obtained following both oral drug 
administration and intravenous drug administration in a single individual. Both sets of data will 
be used to simultaneously estimate all model parameters. It is further assumed that the 
disposition kinetics are the same for the two routes of administration.  
 

Figure 9.1 shows the composite model used to describe the plasma concentration for both 
routes of administration. In the data file shown in Table 9.1, the data from the IV administration 
is provided first (first individual) while the data from the oral administration is second (second 
individual). An excerpt from the model file for this example shows how Subroutine OUTPUT is  

 
 

 
 

Figure 9.1   Model for example ivoral. 
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coded to define the output for each of the two individual data sets in the data file (see in Figure 
9.2). As described in Chapter 6, the variable SubjInd indicates the number of the individual 
data set within the data file that is under analysis. Figures 9.3 and 9.4 show a complete run of the 
NPD program for this example. Also, files named oralivPLT.csv, oralivRSD.csv and oraliv.aci 
are created as described in Chapter 6 and can be viewed in the \Example subfolder of the 
installation. 
 
 

Table 9.1 Portion of Data File ivoral.dat 
 

IVData    OralData   
1    1   
1    1   
2    1   
0.0 100.0 0.0  0.0 0.0 100.0 
1.0 0.0 0.0  1   
1    12   
12    0.0 0.0  
0.0 0.0   0.50 0.0  
0.50 3.21      i    i  
  i   i      i    i  
  i   i      i    i  
  i   i   24.0 0.636  
24.0 0.697   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.2 Excerpt from Subroutine OUPUT of model file ivoral.for. The code P(2) 
represents V, while P(7) represents the model parameter F (see complete model 
file). The code entered by the user is indicated. This model file was created by 
editing the modellag.for file stored in the ADAPT Library folder via the edit 
option in the ADAPT interface Model Menu. 
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  ADAPT 5  NPD -- NAIVE POOLED DATA POP. EST.  Fri Jan  2 12:09:11 2009 
 
 
 Enter file name for storing session run (*.run): IVOral.run 
 
      ----- MODEL INPUT/OUTPUT INFORMATION ----- 
 
 Data file name: C:\Program Files\BMSR\ADAPT 5\Examples\IVOral.dat 
 
    - Successfully read all    2 subjects in the data file. 
 
 Enter the compartment number for each bolus input (e.g. 1,3,...):    2 
 
      ----- ESTIMATOR SELECTION -----  
 
 The following estimation procedures are available: 
      1. Weighted least squares (WLS) 
      2. Maximum likelihood (ML) 
      3. Maximum a posteriori probability (MAP) 
 
 Enter option number:  2 
 
     ----- INITIALIZE ESTIMATION PROCEDURE ----- 
 
 Parameter file name: C:\Program Files\BMSR\ADAPT 5\Examples\IVOral.prm 
 
 Enter initial values for parameters & specify those to be estimated:  
 
            Old Value    New Value      Estimate?  
                       (skip if same)    (Y/N) 
 Kel        .2000            y 
 Vc         10.00            y 
 Ka         1.000            y 
 Kcp        1.000            y 
 Kpc        .5000            y 
 Tau        1.000            y 
 F          .8000            y 
 IC(   1)   0.000            n 
 IC(   2)   0.000            n 
 IC(   3)   0.000            n 
 SDinter1   .1000            n 
 SDslope1   .1000            n 
 
 Enter maximum number of iterations:       999 
 
 Do you want the iterations printed (Y/N)?  n 
 
             ----- RESULTS ----- 
 
             --- A. Iterations ---   
 
     Number of iterations      =     0 
     Number of function calls  =     1 
 
 
Figure 9.3  NPD run for example ivoral. 
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Figure 8.3 (continued) 
 
      Fitted Parameters 
       Kel        =   0.2000     
       Vc         =    10.00     
       Ka         =    1.000     
       Kcp        =    1.000     
       Kpc        =   0.5000     
       Tau        =    1.000     
       F          =   0.8000     
 
     Negative Log Likelihood =  2.40611     
 
              ---B. Iteration Summary--- 
 
     Convergence has been achieved. 
 
     Number of iterations      =    91 
     Number of function calls  =   485 
 
      Fitted Parameters 
       Kel        =   0.1883     
       Vc         =    10.41     
       Ka         =   0.9660     
       Kcp        =   0.9392     
       Kpc        =   0.4808     
       Tau        =   0.9960     
       F          =   0.7845     
 
     Negative Log Likelihood =  2.02482     
 
             --- C. ML Estimation Summary--- 
 
 Fri Jan  2 12:09:31 2009 
 
 Data file name: C:\Program Files\BMSR\ADAPT 5\Examples\IVOral.dat 
 
 Model:  IVORAL.FOR: 2 comp., 1st Order Abs., Bioavail. Crossover     
 
 Convergence achieved 
   Number of iterations:          91 
   Number of function calls:     485 
 Negative Log Likelihood:    2.02482     
 
  Output        R-squared    Sum of Squares 
  Y( 1)          0.949          3.36153     
 
  Model Selection Criteria 
   AIC:          18.0496     
   BIC:          26.2960     
 
               Initial      Final 
  Parameter      Value      Estimate    SE (CV%)   Confidence interval (95%) 
 
  Kel           0.2000      0.1883       17.92     [ 0.1171    ,  0.2595    ] 
  Vc             10.00       10.41       15.03     [  7.107    ,   13.71    ] 
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Figure 9.3 (continued) 
 
  Ka             1.000      0.9660       20.14     [ 0.5554    ,   1.377    ] 
  Kcp            1.000      0.9392       32.21     [ 0.3009    ,   1.577    ] 
  Kpc           0.5000      0.4808       24.99     [ 0.2273    ,  0.7342    ] 
  Tau            1.000      0.9960       2.020     [ 0.9536    ,   1.038    ] 
  F             0.8000      0.7845       8.524     [ 0.6434    ,  0.9256    ] 
  IC(   1)       0.000      Not estimated 
  IC(   2)       0.000      Not estimated 
  IC(   3)       0.000      Not estimated 
 
  SDinter1      0.1000      Not estimated 
  SDslope1      0.1000      Not estimated 
 
  CLt            2.000       1.960       8.825     [  1.595    ,   2.325    ] 
  Vc             10.00       10.41       15.03     [  7.107    ,   13.71    ] 
  CLd            10.00       9.776       20.45     [  5.557    ,   14.00    ] 
  Vp             20.00       20.34       14.35     [  14.18    ,   26.49    ] 
  LAM1           1.639       1.550       26.90     [ 0.6702    ,   2.430    ] 
  LAM2          0.6101E-01  0.5842E-01   15.45     [ 0.3937E-01,  0.7746E-01] 
  t1/2-LAM1     0.4229      0.4472       26.90     [ 0.1934    ,  0.7011    ] 
  t1/2-LAM2      11.36       11.87       15.45     [  7.997    ,   15.73    ] 
 
 
  Correlation Matrix 
 
           Kel       Vc        Ka        Kcp       Kpc       Tau        
           F          
Kel         1.00 
 Vc         -0.87      1.00 
 Ka         -0.52      0.50      1.00 
 Kcp         0.79     -0.87     -0.31      1.00 
 Kpc         0.46     -0.38      0.10      0.70      1.00 
 Tau         0.05     -0.06      0.21      0.09      0.08      1.00 
 F           0.16      0.03     -0.54     -0.02     -0.18     -0.05 
             1.00 
 
 
  Covariance Matrix 
 
           Kel       Vc        Ka        Kcp       Kpc       Tau        
           F          
Kel       0.114E-02 
 Vc        -.460E-01  2.45     
 Ka        -.342E-02 0.152     0.379E-01 
 Kcp       0.808E-02 -.413     -.183E-01 0.915E-01 
 Kpc       0.186E-02 -.706E-01 0.231E-02 0.253E-01 0.144E-01 
 Tau       0.333E-04 -.200E-02 0.833E-03 0.552E-03 0.196E-03 0.405E-03 
 F         0.355E-03 0.288E-02 -.700E-02 -.410E-03 -.148E-02 -.681E-04 
           0.447E-02 
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Figure 9.3 (continued) 
 
            --- D.  ML Estimation Model Prediction and Data Summary --- 
 
 Data file name: C:\Program Files\BMSR\ADAPT 5\Examples\IVOral.dat 
 
 Number of subjects:    2 
 
 Model:  IVORAL.FOR: 2 comp., 1st Order Abs., Bioavail. Crossover     
 
 
IVData               
 
 Y( 1) 
  Obs.Num.   Time         Data       Model Est.     Residual     Variance 
      1       0.000        0.000        0.000         0.000       0.1000E-01 
      2      0.5000        3.210        3.737       -0.5267       0.2244     
      3       1.000        5.910        6.143       -0.2326       0.5102     
      4       1.250        5.920        4.980        0.9400       0.3576     
      5       1.500        4.830        4.179        0.6510       0.2682     
      6       2.000        2.970        3.236       -0.2655       0.1794     
      7       3.000        1.780        2.509       -0.7288       0.1231     
      8       5.000        2.000        2.099       -0.9896E-01   0.9604E-01 
      9       8.000        2.370        1.756        0.6144       0.7594E-01 
     10       12.00        1.090        1.390       -0.2998       0.5711E-01 
     11       20.00       0.8160       0.8709       -0.5491E-01   0.3500E-01 
     12       24.00       0.6970       0.6894        0.7565E-02   0.2854E-01 
 
 Y( 1) (Continued)                 Std. Err.   Standardized 
           Obs.Num.   Model Est.   Model Est.   Residual 
                1       0.000        0.000        0.000     
                2       3.737       0.3535       -1.112     
                3       6.143       0.4145      -0.3257     
                4       4.980       0.2883        1.572     
                5       4.179       0.2798        1.257     
                6       3.236       0.2410      -0.6269     
                7       2.509       0.1792       -2.077     
                8       2.099       0.1755      -0.3193     
                9       1.756       0.1302        2.229     
               10       1.390       0.9855E-01   -1.254     
               11      0.8709       0.9493E-01  -0.2935     
               12      0.6894       0.9557E-01   0.4478E-01 
 
 
OralData             
 
 Y( 1) 
  Obs.Num.   Time         Data       Model Est.     Residual     Variance 
      1       0.000        0.000        0.000         0.000       0.1000E-01 
      2      0.5000        0.000        0.000         0.000       0.1000E-01 
      3       1.000        0.000       0.2898E-01   -0.2898E-01   0.1059E-01 
      4       1.250        1.870        1.425        0.4453       0.5879E-01 
      5       1.500        1.790        2.210       -0.4200       0.1030     
      6       2.000        2.480        2.784       -0.3041       0.1432     
      7       3.000        2.460        2.582       -0.1223       0.1283     
      8       5.000        2.080        1.919        0.1609       0.8521E-01 
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Figure 9.3 (continued) 
 
      9       8.000        1.370        1.516       -0.1463       0.6332E-01 
     10       12.00        1.510        1.195        0.3155       0.4816E-01 
     11       20.00       0.6530       0.7485       -0.9546E-01   0.3057E-01 
     12       24.00       0.6360       0.5925        0.4350E-01   0.2536E-01 
 
 Y( 1) (Continued)                 Std. Err.   Standardized 
           Obs.Num.   Model Est.   Model Est.   Residual 
                1       0.000        0.000        0.000     
                2       0.000        0.000        0.000     
                3      0.2898E-01   0.9982E-01  -0.2816     
                4       1.425       0.1582        1.836     
                5       2.210       0.1991       -1.308     
                6       2.784       0.2032      -0.8036     
                7       2.582       0.1933      -0.3414     
                8       1.919       0.1666       0.5514     
                9       1.516       0.1320      -0.5812     
               10       1.195       0.9453E-01    1.438     
               11      0.7485       0.7931E-01  -0.5460     
               12      0.5925       0.7866E-01   0.2732     
 
     ________________________________________ 
 
      --- RE-ESTIMATION OPTIONS ---  
 
     1. Change initial parameter values 
     2. Select a different estimator 
     3. Exit ID 
 
 Enter option:  3 
 
      ________________________________________ 
 
 List of Files Created 
 
  Record of program run and all results: 
    IVOral.run 
  Table of predictions and residuals for each subject: 
    IVOralRSD.csv 
  Information for plotting model predictions for each subject: 
    IVOralPLT.csv 
  Composite residual and prediction vs measurements graphs and 
  individual subject model prediction and measurement vs time graphs: 
    IVOral.eps 
  Command file for subsequent Batch runs: 
    IVOral.aci 
 
 
      ________________________________________ 
 
  ADAPT 5  NPD -- NAIVE POOLED DATA POP. EST.  Fri Jan  2 12:09:36 2009 
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Figure 9.4  Example ivoral. Resulting plots for IV data as stored in file ivoral.eps. The 
residual plots include both the IV and oral predictions and data. 

 
 
9.2 Example igabs: ID – Inverse Gaussian Absorption Model 
 

After Weiss proposed the use of the inverse Gaussian (IG) function as a flexible empirical 
input function to describe drug delivery to the systemic circulation following oral administration, 
it has been used to model drug input for various extravascular administration routes. It is of 
interest to note that the IG is the first passage time distribution of a random walk with drift (first 
suggested by Schrödinger in 1915) and the solution of the convection-dispersion equation for 
pharmacokinetically relevant boundary conditions. The IG function has also been widely used to 
model the transit of drugs through organs and organ systems. See Wang, Weiss and D’Argenio 
[49] for further discussion, other references and applications using ADAPT.  

 
This example illustrates the use of the IG function to model the oral absorption process of a 

delayed release compound. It is assumed that the plasma drug concentration following oral 
administration of the drug can be decomposed into an independent input process (representing 
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dissolution, transit and absorption processes) followed by the disposition process. It is further 
assumed that the parameters of a linear two compartment model used to describe the disposition 
process have been estimated following intravenous drug administration to an individual. The 
model shown in Figure 9.5 will then be used to describe the plasma kinetics of an oral 
formulation of the drug delivered to the individual.  
 

 
 

Figure 9.5 Example igabs. Two compartment disposition model with IG function input. 
 
 

In the model above the systemic drug input function, ( )If t , is assumed to be a single inverse 
Gaussian function defined as:  
 

2

2 3 2

( )( ) exp , 0
2 2I

I I

MIT t MITf t D F t
CV t CV MITtπ

⎡ ⎤−
= ⋅ −⎢ ⎥

⎣ ⎦
>    (9.1) 

 
where MIT  represents the mean input time and  is a normalized variance (  is the 
standard deviation of the density function 

2
ICV ICV

( ) / ( )If t D F⋅  divided by MIT , i.e., the relative 
dispersion of input times). The factor F  is the bioavailability of the orally administered dose . 
(Note at .) One can also calculate, as a secondary parameter, the mode of the inverse 
Gaussian density as follows: 

D
(0) 0If =

 

4
,max

9 31
4 2II MIT CV CVt ⎛ ⎞

= + −⎜
⎝ ⎠

2
I ⎟      (9.2) 

 
which is the time the input function achieves its maximum value. 
 

Figure 9.6 shows a section of the model file igabs.for that implements this model. Figures 9.7 
and 9.8 show a complete run of the ID program using ML estimation for this example. In the 
program run a fictitious compartment number (compartment 3) is used as the compartment 
number for the bolus input dose that is read from the data file. An additional plot created via SIM 
using the final parameter estimates is shown in Figure 9.8 that displays the estimated IG function 

( )If t . 
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Figure 9.6 Excerpt from Subroutine DIFFEQ of model file igabs.for. For ease of coding, 

variables are used and defined to represent the three model parameters of the IG 
function as well as the function itself. Note the value of fI is defined explicitly 
for t=0. 

 
 
    ADAPT 5    ID -- INDIVIDUAL ESTIMATION    Sun Jan  4 10:11:24 2009 
 
Enter file name for storing session run (*.run): igabs.run 
 
      ----- MODEL INPUT INFORMATION ----- 
 
 Data file name (*.dat): C:\Program Files\BMSR\ADAPT 5\Examples\igabs.dat 
 
 The number of model inputs:     0 
 
 The number of bolus inputs:    1 
 
 Enter the compartment number for each bolus input (e.g. 1,3,...):   3 
 
 The number of input event times:     1 
 
     Input Event Information 
           Time    Value for all Inputs 
 Event     Units,       B(1) 
    1.     0.000          200.0     
 
      ----- MODEL OUTPUT INFORMATION ----- 
 
 The number of model output equations:   1 
 
 The number of observations:   14 
 
Figure 9.7  ID run for example igabs. 
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Figure 9.7 (continued) 
 
     Observation Information 
                 Time     Measured Value For Each Output 
 Observation     Units ,     Y(1) 
       1.         15.00      0.7220E-02 
       2.         30.00      0.5514     
       3.         60.00       2.871     
       4.         90.00       4.659     
       5.         120.0       5.491     
       6.         150.0       6.125     
       7.         210.0       5.648     
       8.         270.0       4.857     
       9.         330.0       4.548     
      10.         360.0       3.558     
      11.         390.0       2.611     
      12.         420.0       2.889     
      13.         450.0       2.116     
      14.         480.0       2.003     
 
      ----- ESTIMATOR SELECTION -----  
 
 The following estimation procedures are available: 
      1. Weighted least squares (WLS) 
      2. Maximum likelihood (ML) 
      3. Generalized least squares (GLS) 
      4. Maximum a posteriori probability (MAP) 
 
 Enter option number:  2 
 
      ----- INITIALIZE ESTIMATION PROCEDURE ----- 
 
 Parameter file name: C:\Program Files\BMSR\ADAPT 5\Examples\igabs.prm 
 
 Enter initial values for parameters & specify those to be estimated:  
 
            Old Value    New Value      Estimate?  
                       (skip if same)    (Y/N) 
 CLt        .7930E-01        n 
 V1         .6400            n 
 CL2        .2920            n 
 V2         9.630            n 
 MIT        190.0            y 
 CVI2       .6500            y 
 F          .9200            y 
 IC(   1)   0.000            n 
 IC(   2)   0.000            n 
 SDinter    0.000            n 
 SDslope    .1000            y 
 
 Enter maximum number of iterations:       999 
 
 Do you want the iterations printed (Y/N)?  n 
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Figure 9.7 (continued) 
 
            ----- RESULTS ----- 
 
             --- A. Iterations ---   
 
     Number of iterations      =     0 
     Number of function calls  =     1 
 
      Fitted Parameters 
       MIT        =    190.0     
       CVI2       =   0.6500     
       F          =   0.9200     
       SDslope    =   0.1000     
 
     Negative Log Likelihood = -4.39927     
 
 
              ---B. Iteration Summary--- 
 
     Convergence has been achieved. 
 
     Number of iterations      =    35 
     Number of function calls  =   156 
 
      Fitted Parameters 
       MIT        =    191.9     
       CVI2       =   0.6554     
       F          =   0.9060     
       SDslope    =   0.7866E-01 
 
     Negative Log Likelihood = -5.54229     
 
 
             --- C. ML Estimation Summary--- 
 
 Sun Jan  4 10:11:47 2009 
 
 Data file name (*.dat): C:\Program Files\BMSR\ADAPT 5\Examples\igabs.dat 
 
 Model:  IGABS.FOR; 2CompCL w/ Inverse Gaussian Absorption            
 
 Convergence achieved 
   Number of iterations:          35 
   Number of function calls:     156 
 Negative Log Likelihood:   -5.54229     
 
  Output        R-squared    Sum of Squares 
  Y( 1)          0.980          1.03974     
 
  Model Selection Criteria 
   AIC:         -3.08457     
   BIC:        -0.528342     
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Figure 9.7 (continued) 
 
                Initial      Final 
  Parameter      Value      Estimate    SE (CV%)   Confidence interval (95%) 
 
  MIT            190.0       191.9       4.243     [  173.8    ,   210.1    ] 
  CVI2          0.6500      0.6554       5.132     [ 0.5805    ,  0.7303    ] 
  F             0.9200      0.9060       2.376     [ 0.8581    ,  0.9540    ] 
  CLt           0.7930E-01  Not estimated 
  V1            0.6400      Not estimated 
  CL2           0.2920      Not estimated 
  V2             9.630      Not estimated 
  IC(   1)       0.000      Not estimated 
  IC(   2)       0.000      Not estimated 
 
  SDslope       0.1000      0.7866E-01   19.01     [ 0.4534E-01,  0.1120    ] 
  SDinter        0.000      Not estimated 
 
  tImax          80.11       80.45      0.9512     [  78.75    ,   82.16    ] 
 
  Correlation Matrix 
 
           MIT       CVI2      F          
 MIT         1.00 
 CVI2        0.98      1.00 
 F           0.34      0.28      1.00 
 
  Covariance Matrix  {results not shown} 
 
            --- D.  ML Estimation Model Prediction and Data Summary --- 
 
 Data file name (*.dat): C:\Program Files\BMSR\ADAPT 5\Examples\igabs.dat 
 
 Model:  IGABS.FOR; 2CompCL w/ Inverse Gaussian Absorption            
 
Y( 1) 
  Obs.Num.   Time         Data       Model Est.     Residual     Variance 
      1       15.00       0.7220E-02   0.7010E-02    0.2102E-03   0.3040E-06 
      2       30.00       0.5514       0.5633       -0.1198E-01   0.1964E-02 
      3       60.00        2.871        3.130       -0.2594       0.6061E-01 
      4       90.00        4.659        4.752       -0.9275E-01   0.1397     
      5       120.0        5.491        5.519       -0.2765E-01   0.1884     
      6       150.0        6.125        5.777        0.3485       0.2065     
      7       210.0        5.648        5.482        0.1653       0.1860     
      8       270.0        4.857        4.721        0.1352       0.1379     
      9       330.0        4.548        3.862        0.6860       0.9230E-01 
     10       360.0        3.558        3.450        0.1080       0.7363E-01 
     11       390.0        2.611        3.062       -0.4513       0.5802E-01 
     12       420.0        2.889        2.705        0.1845       0.4526E-01 
     13       450.0        2.116        2.379       -0.2631       0.3501E-01 
     14       480.0        2.003        2.085       -0.8180E-01   0.2689E-01 
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Figure 9.7 (continued) 
 
Y( 1) (Continued)                 Std. Err.   Standardized 
           Obs.Num.   Model Est.   Model Est.   Residual 
                1      0.7010E-02   0.5174E-03   0.3812     
                2      0.5633       0.2091E-01  -0.2704     
                3       3.130       0.1157       -1.054     
                4       4.752       0.1679      -0.2481     
                5       5.519       0.1794      -0.6369E-01 
                6       5.777       0.1712       0.7670     
                7       5.482       0.1375       0.3833     
                8       4.721       0.1091       0.3641     
                9       3.862       0.9454E-01    2.258     
               10       3.450       0.9081E-01   0.3981     
               11       3.062       0.8818E-01   -1.874     
               12       2.705       0.8591E-01   0.8674     
               13       2.379       0.8356E-01   -1.406     
               14       2.085       0.8090E-01  -0.4988     
 
 

 
Figure 9.8  Example igabs. Selected plots for the plasma concentration and resdiduals (upper 

panels). The lower panel shows the estimated IG input function produced using 
SIM with the parameter values as estimated in the example. 
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9.3 Example pmetab: ID – Parent/Metabolite 
 

Figure 9.9 shows the modeled used to describe the kinetics of a parent compound and its 
metabolite used in this example. Unlike the model in example pk8 in which the metabolism is 
saturable, the linear model in this example is not identifiable. The model relating dose of the 
parent compound to the plasma concentrations of parent drug and its metabolite can be rewritten 
in terms of the ratio  along with the other model parameters  and . 
This reparameterized model is coded in model file pmetab.for (note: the second state now 
represents the amount of the metabolite divided by the fraction of drug metabolized,

/Vm fm 12 21, , ,Kp Vp K K Km

fm ). 
Figures 9.10 and 8.11 show a run of ID using this model. 
 

 
 

Figure 9.9 Model for example pmetab. Kp  is the total elimination rate of the parent 
compound, while fm  represent the fraction metabolized. 

 
 
 
   ADAPT 5    ID -- INDIVIDUAL ESTIMATION    Mon Jan  5 11:35:47 2009 
 
 Enter file name for storing session run (*.run): pmetab.run 
 
      ----- MODEL INPUT INFORMATION ----- 
 
 Data file name (*.dat): C:\Program Files\BMSR\ADAPT 5\Examples\pmetab.dat 
 
 The number of model inputs:     1 
 
 The number of bolus inputs:    0 
 
 The number of input event times:     2 
 
Figure 9.10   ID run for example pmetab. 
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Figure 9.10 (continued) 
 
     Input Event Information 
           Time    Value for all Inputs 
 Event     Units,       R(1) 
    1.     0.000          100.0     
    2.     1.000          0.000     
 
      ----- MODEL OUTPUT INFORMATION ----- 
 
 The number of model output equations:   2 
 
 The number of observations:   10 
 
     Observation Information 
                 Time     Measured Value For Each Output 
 Observation     Units ,     Y(1), ... ,Y(   2) 
       1.        0.5000       3.602      0.1314     
       2.         1.000       7.767      0.5882     
       3.         3.000       2.599       1.457     
       4.         5.000       1.083       1.317     
       5.         7.000      0.5941      0.9595     
       6.         9.000      0.3987      0.7223     
       7.         12.00      0.2975      0.4448     
       8.         16.00      0.2440      0.4333     
       9.         20.00      0.2045      0.2252     
      10.         24.00      0.1233      0.1239     
 
      ----- ESTIMATOR SELECTION -----  
 
 The following estimation procedures are available: 
      1. Weighted least squares (WLS) 
      2. Maximum likelihood (ML) 
      3. Generalized least squares (GLS) 
      4. Maximum a posteriori probability (MAP) 
 
 Enter option number:  2 
 
      ----- INITIALIZE ESTIMATION PROCEDURE ----- 
 
 Parameter file name: C:\Program Files\BMSR\ADAPT 5\Examples\pmetab.prm 
 
 Enter initial values for parameters & specify those to be estimated:  
 
            Old Value    New Value      Estimate?  
                       (skip if same)    (Y/N) 
 Kp         .4000            y          
 Vp         10.00            y     
 K12        .2000            y      
 K21        .1000            y    
 Km         .2000            y      
 Vm/fm      30.00            y     
 IC(   1)   0.000            n       
 IC(   2)   0.000            n        
 IC(   3)   0.000            n                     
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Figure 9.10 (continued) 
 
 SDinter1   0.000            n                                  
 SDslope1   .1000            y                        
 SDinter2   0.000            n                                          
 SDslope2   .1500            y                             
 
 Enter maximum number of iterations:       999 
 
 Do you want the iterations printed (Y/N)?  n 
 
             ----- RESULTS ----- 
 
             --- A. Iterations ---   
 
     Number of iterations      =     0 
     Number of function calls  =     1 
 
      Fitted Parameters 
       Kp         =   0.4000     
       Vp         =    10.00     
       K12        =   0.2000     
       K21        =   0.1000     
       Km         =   0.2000     
       Vm/fm      =    30.00     
       SDslope1   =   0.1000     
       SDslope2   =   0.1500     
 
     Negative Log Likelihood = -25.4353     
 
              ---B. Iteration Summary--- 
 
     Convergence has been achieved. 
 
     Number of iterations      =    46 
     Number of function calls  =   327 
 
      Fitted Parameters 
       Kp         =   0.3836     
       Vp         =    10.71     
       K12        =   0.1788     
       K21        =   0.1002     
       Km         =   0.2096     
       Vm/fm      =    28.60     
       SDslope1   =   0.7706E-01 
       SDslope2   =   0.1450     
 
     Negative Log Likelihood = -27.3156     
 
             --- C. ML Estimation Summary--- 
 
 Mon Jan  5 11:36:08 2009 
 
 Data file name (*.dat): C:\Program Files\BMSR\ADAPT 5\Examples\pmetab.dat 
 
 Model:  PMETAB.FOR -Parent-Metab, 2 comp. parent, 1 comp. metab.     

 173



ADAPT 5 User’s Guide 

Figure 9.10 (continued) 
 
Convergence achieved 
   Number of iterations:          46 
   Number of function calls:     327 
 Negative Log Likelihood:   -27.3156     
 
  Output        R-squared    Sum of Squares 
  Y( 1)          0.991         0.596013     
  Y( 2)          0.980         0.461970E-01 
 
  Model Selection Criteria 
   AIC:         -38.6312     
   BIC:         -30.6653     
 
                Initial      Final 
  Parameter      Value      Estimate    SE (CV%)   Confidence interval (95%) 
  Kp            0.4000      0.3836       5.092     [ 0.3411    ,  0.4262    ] 
  Vp             10.00       10.71       5.902     [  9.334    ,   12.09    ] 
  K12           0.2000      0.1788       8.877     [ 0.1442    ,  0.2134    ] 
  K21           0.1000      0.1002       13.05     [ 0.7172E-01,  0.1287    ] 
  Km            0.2000      0.2096       7.457     [ 0.1756    ,  0.2437    ] 
  Vm/fm          30.00       28.60       8.784     [  23.12    ,   34.07    ] 
  IC(   1)       0.000      Not estimated 
  IC(   2)       0.000      Not estimated 
  IC(   3)       0.000      Not estimated 
 
  SDslope1      0.1000      0.7706E-01   22.49     [ 0.3929E-01,  0.1148    ] 
  SDslope2      0.1500      0.1450       22.83     [ 0.7289E-01,  0.2171    ] 
  SDinter1       0.000      Not estimated 
  SDinter2       0.000      Not estimated 
 
  CLp            4.000       4.109       3.286     [  3.815    ,   4.403    ] 
  CLp-dist       2.000       1.915       8.633     [  1.555    ,   2.275    ] 
  CLm/fm         6.000       5.994       4.904     [  5.354    ,   6.635    ] 
 
  Correlation Matrix 
 
           Kp        Vp        K12       K21       Km        Vm/fm      
 Kp          1.00 
 Vp         -0.83      1.00 
 K12         0.66     -0.37      1.00 
 K21         0.55     -0.17      0.56      1.00 
 Km         -0.29      0.33     -0.03      0.02      1.00 
 Vm/fm       0.38     -0.35      0.13      0.17     -0.83      1.00 
 
  Covariance Matrix 
 
           Kp        Vp        K12       K21       Km        Vm/fm      
 Kp        0.382E-03 
 Vp        -.103E-01 0.400     
 K12       0.204E-03 -.374E-02 0.252E-03 
 K21       0.141E-03 -.138E-02 0.115E-03 0.171E-03 
 Km        -.874E-04 0.330E-02 -.753E-05 0.502E-05 0.244E-03 
 Vm/fm     0.187E-01 -.560     0.527E-02 0.554E-02 -.326E-01  6.31     
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Figure 9.10 (continued) 
 
            --- D.  ML Estimation Model Prediction and Data Summary --- 
 
 Data file name (*.dat): C:\Program Files\BMSR\ADAPT 5\Examples\pmetab.dat 
 
 Model:  PMETAB.FOR -Parent-Metab, 2 comp. parent, 1 comp. metab.     
 
Y( 1) 
  Obs.Num.   Time         Data       Model Est.     Residual     Variance 
      1      0.5000        3.602        4.072       -0.4700       0.9847E-01 
      2       1.000        7.767        7.162        0.6053       0.3046     
      3       3.000        2.599        2.515        0.8365E-01   0.3758E-01 
      4       5.000        1.083        1.069        0.1391E-01   0.6788E-02 
      5       7.000       0.5941       0.5949       -0.8170E-03   0.2101E-02 
      6       9.000       0.3987       0.4188       -0.2006E-01   0.1041E-02 
      7       12.00       0.2975       0.3094       -0.1184E-01   0.5684E-03 
      8       16.00       0.2440       0.2331        0.1089E-01   0.3226E-03 
      9       20.00       0.2045       0.1797        0.2475E-01   0.1918E-03 
     10       24.00       0.1233       0.1389       -0.1562E-01   0.1146E-03 
 
 Y( 1) (Continued)                 Std. Err.   Standardized 
           Obs.Num.   Model Est.   Model Est.   Residual 
                1       4.072       0.2201       -1.498     
                2       7.162       0.3593        1.097     
                3       2.515       0.1135       0.4315     
                4       1.069       0.5443E-01   0.1688     
                5      0.5949       0.2506E-01  -0.1782E-01 
                6      0.4188       0.1851E-01  -0.6217     
                7      0.3094       0.1447E-01  -0.4968     
                8      0.2331       0.8773E-02   0.6062     
                9      0.1797       0.7454E-02    1.788     
               10      0.1389       0.8564E-02   -1.459     
 
 Y( 2) 
  Obs.Num.   Time         Data       Model Est.     Residual     Variance 
      1      0.5000       0.1314       0.1477       -0.1632E-01   0.4590E-03 
      2       1.000       0.5882       0.5228        0.6545E-01   0.5748E-02 
      3       3.000        1.457        1.338        0.1189       0.3765E-01 
      4       5.000        1.317        1.257        0.5995E-01   0.3324E-01 
      5       7.000       0.9595        1.009       -0.4908E-01   0.2139E-01 
      6       9.000       0.7223       0.7777       -0.5541E-01   0.1272E-01 
      7       12.00       0.4448       0.5270       -0.8226E-01   0.5841E-02 
      8       16.00       0.4333       0.3302        0.1031       0.2293E-02 
      9       20.00       0.2252       0.2212        0.4051E-02   0.1029E-02 
     10       24.00       0.1239       0.1562       -0.3226E-01   0.5130E-03 
 
 Y( 2) (Continued)                 Std. Err.   Standardized 
           Obs.Num.   Model Est.   Model Est.   Residual 
                1      0.1477       0.1183E-01  -0.7616     
                2      0.5228       0.4044E-01   0.8633     
                3       1.338       0.8652E-01   0.6127     
                4       1.257       0.6952E-01   0.3288     
                5       1.009       0.5020E-01  -0.3356     
                6      0.7777       0.3856E-01  -0.4913     
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                7      0.5270       0.3028E-01   -1.076     
                8      0.3302       0.2274E-01    2.152     
                9      0.2212       0.1613E-01   0.1263     
               10      0.1562       0.1151E-01   -1.424     
 
      ----- PLOTTING OPTIONS -----  {Dialogue for plotting not shown}... 
 
      ----- RE-ESTIMATION OPTIONS ----- 
 
     1. Change initial parameter values 
     2. Select a different estimator 
     3. Exit ID 
 
 Enter option:  3 
 
 
 
 

 
 

Figure 9.11  Example pmetab. Selected plots for the parent and metabolite concentrations. 
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9.4 Example plasmaurine: ID – Plasma and Urine Concentration Data 
 

In this example plasma and urine drug concentration data are modeled. Figure 9.12 shows a 
one compartment first order absorption model, including a compartment representing amount of 
drug collected in the urine ( 3x ) and another representing urine volume ( 4x ). In the ADAPT 
model file (see Subroutine DIFFEQ in Figure 9.13) the urine compartment is used to define the 
amount of drug in the urine during each collection interval while the volume compartment 
defines the volume of urine formed during each collection interval. At the end of each collection 
interval, the states 3x  and 4x  are set to 0.0 by the code in the Subroutine OUTPUT of the model 
file. See the complete model file plasmaurine.for for additional description on the use of this 
model and its modification.  
 
 

 
 

Figure 9.12 Model for example plasmaurine. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.13 Excerpt from Subroutine DIFFEQ of model file plasmaurine.for. The code P(2) 
represents CLrenal, while P(3) represents the model parameter V.  
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Figure 9.14 shows a section of Subroutine OUTPUT for this example. The routine 
COLLECT resides in ADAPT and controls resetting of states 3x  and 4x  at the collection times. 
This model file can be modified for other models by specifying the appropriate values for the 
symbols RNumVol, XNumColl and XNumVol, as well as defining any additional model outputs. 
 
 

 
Figure 9.14 Excerpt from Subroutine OUTPUT of model file plasmaurine.for. 

 
 

In addition to providing the bolus dose information and the measured plasma and urine 
concentration information in the data file, the user must also provide the urine volume 
information including the volume collected and the collection time. To provide this latter 
information, urine volume is treated as a model input (R(1) in the plasmaurine.for model file) 
and the urine volume collection times are included as model input times. In the example 
considered here, urine is collected at 1.0, 3.0, 5.0, 8.0 and 12.0 hours with volume 0.05, 0.1, 0.1, 
0.15, and 0.25 L, respectively. The annotated data file plasmaurine.dat that incorporates this 
information is shown in Table 9.12. If no volume is collected at a model input time then 0 is 
entered for the value of volume (in this example the bolus does of 100 mg is administered at time 
0 and therefore a value of 0.0 is entered for the collected urine volume at that time). In cases 
were the urine volume is collected but no measured value is available, the misdat number is 
entered for the volume (see input time 14 hr Table 8.x). All urine volume collection times must 
be specified as both model inputs times and model output times in the data file. (In routine 
COLLECT of the model file the entered urine volumes and collection times from the data file are 
converted to a rate of volume formation and stored in the variable R(1), which is used to define 
state 4x  of the model.) 
 

A run of ID for this example is shown in Figures 9.15 and 9.16. An additional plot created via 
SIM using the final parameter estimates is shown in Figure 9.16 that displays the predicted 
cumulative amount of drug in the urine together with available measured values.  
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Table 9.12 Data file plasmaurine.dat 
 

   1     # A model input is used to indicate amount of volume collected 
   1     # Drug administered as a bolus dose 
   7     # Input times: include both dose administration and collection times 
# Time   Volume      Bolus Dose 
 0.000   0.000000    100.000    # 0 indicates no urine collected  
 1.000   0.050000    0.00000    # 0.05L is the volume collected at t=1.0 
 3.000   0.100000    0.00000     
 5.000   0.100000    0.00000     
 8.000   0.150000    0.00000     
12.000   0.250000    0.00000     
14.000   -1          0.00000 # -1 indicates volume collected but not recorded 
   2                            # Output 1-plasma, Output 2-urine conc. 
   10 
# Time   Plasma       Urine conc. 
 0.000    -1            -1          # Neither plasma or urine measured 
 1.000    5.47418       208.        # Both plasma & urine measured 
 3.000    2.80660       180.        # Both plasma & urine measured    
 4.000    2.07265       -1          # No urine since not a collection time 
 5.000    1.23101       77. 
 6.000   0.623901       -1  
 7.000   0.317612       -1  
 8.000   0.234898       29. 
12.000   0.403408E-01   3.9 
14.000   0.01           -1  
 
 
 
    ADAPT 5    ID -- INDIVIDUAL ESTIMATION    Sat Jan  3 13:27:13 2009 
 
 Enter file name for storing session run (*.run): plasmaurine.run 
 
      ----- MODEL INPUT INFORMATION ----- 
 
Data file name (*.dat):C:\Program Files\BMSR\ADAPT 5\Examples\plasmaurine.dat 
 
 The number of model inputs:     1 
 
 The number of bolus inputs:    1 
 
 Enter the compartment number for each bolus input (e.g. 1,3,...):   2 
 
 The number of input event times:     7 
 
     Input Event Information 
           Time    Value for all Inputs 
 Event     Units,       R(1), B(1) 
    1.     0.000          0.000       100.0     
    2.     1.000         0.5000E-01   0.000     
    3.     3.000         0.1000       0.000     
    4.     5.000         0.1000       0.000     
    5.     8.000         0.1500       0.000     
    6.     12.00         0.2500       0.000     
    7.     14.00         -1.000       0.000     
 

Figure 9.15  ID run for example plasmaurine. 
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Figure 9.15 (continued) 
 
      ----- MODEL OUTPUT INFORMATION ----- 
 
 The number of model output equations:   2 
 
 The number of observations:   10 
 
     Observation Information 
                 Time     Measured Value For Each Output 
 Observation     Units ,     Y(1), ... ,Y(   2) 
       1.         0.000      -1.000      -1.000     
       2.         1.000       5.474       208.0     
       3.         3.000       2.807       180.0     
       4.         4.000       2.073      -1.000     
       5.         5.000       1.231       77.00     
       6.         6.000      0.6239      -1.000     
       7.         7.000      0.3176      -1.000     
       8.         8.000      0.2349       29.00     
       9.         12.00      0.4034E-01   3.900     
      10.         14.00      0.1000E-01  -1.000     
 
      ----- ESTIMATOR SELECTION -----  
 
 The following estimation procedures are available: 
      1. Weighted least squares (WLS) 
      2. Maximum likelihood (ML) 
      3. Generalized least squares (GLS) 
      4. Maximum a posteriori probability (MAP) 
 
 Enter option number:  2 
 
      ----- INITIALIZE ESTIMATION PROCEDURE ----- 
 
Parameter file name: C:\Program Files\BMSR\ADAPT 5\Examples\plasmaurine.prm 
 
 Enter initial values for parameters & specify those to be estimated:  
 
            Old Value    New Value      Estimate?  
                       (skip if same)    (Y/N) 
 CLnonrenal 2.500            y  
 CLrenal    2.500            y  
 Vc         10.00            y  
 Ka         2.000            y  
 IC(   1)   0.000            n  
 IC(   2)   0.000            n  
 IC(   3)   0.000            n  
 IC(   4)   0.000            n  
 SDinter1   0.000            n  
 SDslope1   .1000            y  
 SDinter2   0.000            n  
 SDslope2   .1000            y  
 
Enter maximum number of iterations:       999 
 
 Do you want the iterations printed (Y/N)?  n 
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Figure 9.15(continued) 
 
             ----- RESULTS ----- 
 
             --- A. Iterations ---   
 
     Number of iterations      =     0 
     Number of function calls  =     1 
 
      Fitted Parameters 
       CLnonrenal =    2.500     
       CLrenal    =    2.500     
       Vc         =    10.00     
       Ka         =    2.000     
       SDslope1   =   0.1000     
       SDslope2   =   0.1000     
 
     Negative Log Likelihood =  8.51487     
 
              ---B. Iteration Summary--- 
 
     Convergence has been achieved. 
 
     Number of iterations      =    58 
     Number of function calls  =   312 
 
      Fitted Parameters 
       CLnonrenal =    3.021     
       CLrenal    =    2.307     
       Vc         =    10.82     
       Ka         =    1.892     
       SDslope1   =   0.1447     
       SDslope2   =   0.8639E-01 
 
     Negative Log Likelihood =  2.72072     
 
             --- C. ML Estimation Summary--- 
 
 Sat Jan  3 13:27:29 2009 
 
Data file name (*.dat):C:\Program Files\BMSR\ADAPT 5\Examples\plasmaurine.dat 
 
 Model:  PLASMAURINE.FOR - 1 comp. plasma & urine,CL param.           
 
 Convergence achieved 
   Number of iterations:          58 
   Number of function calls:     312 
 Negative Log Likelihood:    2.72072     
 
  Output        R-squared    Sum of Squares 
  Y( 1)          0.993         0.224552     
  Y( 2)          0.982          652.086     
 
  Model Selection Criteria 
   AIC:          17.4414     
   BIC:          21.2758     
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Figure 9.15 (continued) 
 
                Initial      Final 
  Parameter      Value      Estimate    SE (CV%)   Confidence interval (95%) 
 
  CLnonrenal     2.500       3.021       7.382     [  2.507    ,   3.535    ] 
  CLrenal        2.500       2.307       6.504     [  1.961    ,   2.653    ] 
  Vc             10.00       10.82       7.201     [  9.026    ,   12.62    ] 
  Ka             2.000       1.892       13.55     [  1.301    ,   2.484    ] 
  IC(   1)       0.000      Not estimated 
  IC(   2)       0.000      Not estimated 
  IC(   3)       0.000      Not estimated 
  IC(   4)       0.000      Not estimated 
 
  SDslope1      0.1000      0.1447       24.06     [ 0.6440E-01,  0.2249    ] 
  SDslope2      0.1000      0.8639E-01   31.86     [ 0.2292E-01,  0.1499    ] 
  SDinter1       0.000      Not estimated 
  SDinter2       0.000      Not estimated 
 
  Knon-ur       0.2500      0.2791       3.414     [ 0.2571    ,  0.3011    ] 
  Kurine        0.2500      0.2132       5.286     [ 0.1872    ,  0.2392    ] 
  LAM1          0.5000      0.4923       2.339     [ 0.4658    ,  0.5189    ] 
  t1/2-LAM1      1.386       1.408       2.339     [  1.332    ,   1.484    ] 
 
  Correlation Matrix 
 
           CLnonrenalCLrenal   Vc        Ka         
 CLnonrenal  1.00 
 CLrenal     0.45      1.00 
 Vc          0.89      0.71      1.00 
 Ka         -0.11     -0.09      0.11      1.00 
 
  Covariance Matrix 
 
 CLnonrenal0.497E-01 
 CLrenal   0.149E-01 0.225E-01 
 Vc        0.155     0.827E-01 0.607     
 Ka        -.629E-02 -.340E-02 0.220E-01 0.658E-01 
 
            --- D.  ML Estimation Model Prediction and Data Summary --- 
 
Data file name (*.dat):C:\Program Files\BMSR\ADAPT 5\Examples\plasmaurine.dat 
 
 Model:  PLASMAURINE.FOR - 1 comp. plasma & urine,CL param.           
 
 Y( 1) 
  Obs.Num.   Time         Data       Model Est.     Residual     Variance 
      1       0.000       -1.000        0.000       No Observation 
      2       1.000        5.474        5.751       -0.2765       0.6920     
      3       3.000        2.807        2.809       -0.2163E-02   0.1651     
      4       4.000        2.073        1.736        0.3362       0.6310E-01 
      5       5.000        1.231        1.064        0.1667       0.2370E-01 
      6       6.000       0.6239       0.6510       -0.2708E-01   0.8868E-02 
      7       7.000       0.3176       0.3980       -0.8034E-01   0.3314E-02 
      8       8.000       0.2349       0.2432       -0.8348E-02   0.1238E-02 
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Figure 9.15 (continued) 
 
      9       12.00       0.4034E-01   0.3395E-01    0.6391E-02   0.2412E-04 
     10       14.00       0.1000E-01   0.1268E-01   -0.2683E-02   0.3366E-05 
 
Y( 1) (Continued)                 Std. Err.   Standardized 
           Obs.Num.   Model Est.   Model Est.   Residual 
                1       0.000        0.000       No Observation 
                2       5.751       0.4327      -0.3323     
                3       2.809       0.1794      -0.5324E-02 
                4       1.736       0.1047        1.338     
                5       1.064       0.5893E-01    1.083     
                6      0.6510       0.3335E-01  -0.2875     
                7      0.3980       0.1955E-01   -1.396     
                8      0.2432       0.1206E-01  -0.2373     
                9      0.3395E-01   0.2467E-02    1.301     
               10      0.1268E-01   0.1154E-02   -1.462     
 
Y( 2) 
  Obs.Num.   Time         Data       Model Est.     Residual     Variance 
      1       0.000       -1.000        0.000       No Observation 
      2       1.000        208.0        196.5         11.53        288.1     
      3       3.000        180.0        201.7        -21.67        303.5     
      4       4.000       -1.000        103.0       No Observation 
      5       5.000        77.00        83.21        -6.210        51.67     
      6       6.000       -1.000        38.80       No Observation 
      7       7.000       -1.000        31.27       No Observation 
      8       8.000        29.00        25.68         3.322        4.921     
      9       12.00        3.900        3.924       -0.2390E-01   0.1149     
     10       14.00       -1.000        0.000       No Observation 
 
 Y( 2) (Continued)                 Std. Err.   Standardized 
           Obs.Num.   Model Est.   Model Est.   Residual 
                1       0.000        0.000       No Observation 
                2       196.5        15.20       0.6793     
                3       201.7        9.124       -1.244     
                4       103.0        5.343       No Observation 
                5       83.21        4.231      -0.8640     
                6       38.80        1.826       No Observation 
                7       31.27        1.452       No Observation 
                8       25.68        1.186        1.498     
                9       3.924       0.2273      -0.7052E-01 
               10       0.000        0.000       No Observation 
 
      ----- PLOTTING OPTIONS -----  {Dialogue for plotting not shown}... 
 
      ----- RE-ESTIMATION OPTIONS ----- 
 
     1. Change initial parameter values 
     2. Select a different estimator 
     3. Exit ID 
 
 Enter option:  3 
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Figure 9.16  Example plasmaurine. Resulting plots for the plasma and urine concentrations 

(upper panels). The lower panel shows the predicted cumulative amount in the 
urine along with the urine amount as produced using SIM with the parameter 
values as estimated in the example. 

 
 
 
9.5 Example 2compsamp: SAMPLE – Partial D-Optimal Design 

 
This example illustrates the partial design feature of SAMPLE using the two-compartment 

pharmacokinetic model shown in Figure 9.17. A two dose intravenous regimen is used with two 
sample times fixed at the end of each of the two infusions. Four other sample times are then 
selected to estimate the four model parameters CLt , Vc , , and Vp . Figures 9.18 and 9.19 
show the run of SAMPLE for this example.  

CLd
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Figure 9.17   Model for example 2compsamp. 
 
 
ADAPT 5    SAMPLE -- SAMPLE SCHEDULE DESIGN    Tue Feb 17 10:13:30 2007 
 
 Enter file name for storing session run (*.run): 2compcl.run 
 
      ----- MODEL INPUT INFORMATION ----- 
 
 Data file name (*.dat): C:\Program Files\BMSR\ADAPT 5\Examples\2compsamp.dat 
 
 The number of model inputs:     1 
 
 The number of bolus inputs:    0 
 
 The number of input event times:     4 
 
     Input Event Information 
           Time    Value for all Inputs 
 Event     Units,       R(1) 
    1.     0.000          100.0     
    2.     1.000          0.000     
    3.     12.00          100.0     
    4.     13.00          0.000     
 
      ----- MODEL OUTPUT INFORMATION ----- 
 
 The number of model output equations:   1 
 
 The number of sample times:    6 
 
 For each sample number enter as required: 
                 Sample 
 Sample Number   Time , Optimize (Y/N)? 
      1.        1.0000     n 
      2.        6.0000     y 
      3.        12.000     y 
      4.        13.000     n 
      5.        18.000     y 
      6.        24.000     y 
 
Figure 9.18   Sample run for 2compsamp 
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Figure 9.18 (continued) 
 
Enter lower and upper time constraints. (Lower, Upper)    0.000     0.000     
 
         ----- ENTER PARAMETER VALUES ----- 
 
 Parameter file name: C:\Program Files\BMSR\ADAPT 5\Examples\2compsamp.prm 
 
 Enter nominal values for parameters & specify those to be estimated:  
                                        Estimated 
            Old Nominal  New Nominal    in Design?  
                       (skip if same)    (Y/N) 
 CLt        3.000            y                    
 Vc         10.00            y                                        
 CLd        5.000            y                                       
 Vp         15.00            y                           
 IC(   1)   0.000            n                                 
 IC(   2)   0.000            n                         
 
 Enter values for variance model parameters:  
          Old Value     New Value (<Enter> if no change) 
 SDinter    .2500                                 
 SDslope    0.000                             
 
         ----- SELECT OPTIMALITY CRITERION ----- 
 
 D or C optimality?   d 
 
 Enter maximum number of iterations:       500 
 
 Do you want the iterations printed (Y/N)?  n 
 
 Store inputs, sample times & data in a new file (Y/N)?  n 
 
             ------ RESULTS ------ 
 
             --- A. Iterations ---   
 
  Number of iterations      =      0 
  Number of function calls  =      5 
 
    Time(   1) =   1.000     
    Time(   2) =   6.000     
    Time(   3) =   12.00     
    Time(   4) =   13.00     
    Time(   5) =   18.00     
    Time(   6) =   24.00     
 
  Design criterion  = -0.241248E-02 
 
              ---B. Iteration Summary---  
 
  Convergence achieved 
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Figure 9.18 (continued) 
 
  Number of iterations       =     63 
  Number of function calls   =   1305 
 
    Time(   1) =   1.000     
    Time(   2) =   4.235     
    Time(   3) =   13.00     
    Time(   4) =   13.86     
    Time(   5) =   17.49     
    Time(   6) =   26.53     
 
  Design criterion  =  -7.91296     
 
             --- C. Sample Schedule Design Summary --- 
 
 Tue Feb 17 10:13:30 2007 
 
 Data file name (*.dat): C:\Program Files\BMSR\ADAPT 5\Examples\2compsamp.dat 
 
 Model:  s2compcl.for: - 2 compart., CL param. - linear variance      
 
 Convergence achieved 
   Number of iterations:          66 
   Number of function calls:    1300 
 D-optimal criterion value:  -7.86040     
 
                  Initial      Final 
 Sample Time       Value       Value 
   Time(   1)     1.000       1.000     
   Time(   2)     6.000       4.235     
   Time(   3)     12.00       13.00     
   Time(   4)     13.00       13.86     
   Time(   5)     18.00       17.49     
   Time(   6)     24.00       26.53     
 
Model Parameter Values used in the Design Calculations: 
 
  System                       "Expected" 
 Parameter       Value          SE (CV%) 
  CLt           3.000            9.145     
  Vc            10.00            6.936     
  CLd           5.000            23.85     
  Vp            15.00            28.96     
  IC(   1)      0.000            Not estimated 
  IC(   2)      0.000            Not estimated 
 
Secondary                     "Expected" 
 Parameter       Value          SE (CV%) 
  Kel           .3000            11.87     
  V             10.00            6.936     
  Kcp           .5000            29.61     
  Kpc           .3333            35.33     
  LAM1          1.037            23.67     
  LAM2          .9644E-01        27.33     
  t1/2-LAM1     .6685            23.67     
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Figure 9.18 (continued) 
 

  t1/2-LAM2     7.187            27.33     
 
 Variance 
 Parameter       Value 
  SDinter       .2500     
  SDslope       0.000     
 
            --- D. Simulation Summary --- 
 
 Tue Feb 17 10:13:30 2007 
 
 Data file name (*.dat): C:\Program Files\BMSR\ADAPT 5\Examples\2compsamp.dat 
 
 Model:  s2compcl.for: - 2 compart., CL param. - linear variance      
 
 Y( 1)  Obs.Num.    Time        Model Simul.     Error Var. 
            1       1.000         7.058           0.6250E-01 
            2       4.235         1.920           0.6250E-01 
            3       13.00         7.813           0.6250E-01 
            4       13.86         4.821           0.6250E-01 
            5       17.49         2.091           0.6250E-01 
            6       26.53        0.8561           0.6250E-01 
 
      ----- PLOTTING OPTIONS -----{Dialogue and program exit not shown}.  
 
 

 
Figure 9.19  Example 2compsamp. Resulting plot show the fixed and optimized sample points.  
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CHAPTER 10 
 
 
SSoommee  PPooppuullaattiioonn  MMooddeelliinngg  EExxaammpplleess  
 
 
 
 
 
 
 
 
10.1 Example pop1: MLEM – PK Base Model 
 

This example illustrates the use of the MLEM program to perform a population analysis 
using simulated plasma concentration data from 50 individuals following oral drug 
administration using the model shown in Figure 10.1. The population data file pop1.dat (not 
shown) contains the simulated data for each individual for an oral bolus dose of 100 mg along 
with six plasma concentration values ( /g mlμ ) at 0.5, 1.0, 3.0, 5.0, 8.0 and 14.0 hours. The model 
file for this example was constructed by editing the 1compcl.for file in the ADAPT Library to 
include the initial guesses for the population model parameters. Figure 10.2 shows an excerpt 
from the edited model file (saved as pop1.for) showing subroutine POPINIT and the initial 
guesses entered for the population mean (PmeanI(.) code) and population covariance matrix 
(PcovI(.,.) code) (also see the discussion in Chapter 6.1). The initial guess for the variance 
elements of the population covariance matrix are set at a standard deviation of 40% of the mean 
initial guess. Since no off diagonal elements of the population covariance matrix are entered, the 
initial guesses for these three elements are taken to be 0.0. (Note that off-diagonal elements will 
be estimated even an initial guess of zero. To constrain selected, or all, off-diagonal elements to 
zero see discussion in Chapter 6.1). No other changes to the original 1compcl.for library model 
file are required. All ADAPT Library model files are available to be edited in this manner so they 
can be used with the population analysis programs MLEM and ITS. 
 
 

 
 

Figure 10.1   Model for example pop1. 
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Figure 10.2 Excerpt from Subroutine POPINIT of model file pop1.for. This model file was 

created by editing the 1compcl.for file stored in the ADAPT Library folder via the 
edit option in the ADAPT interface Model Menu. 

 
 

Figure 10.3 shows a portion of the run of the MLEM program for this example. In the 
program run, the Lognormal distribution option was selected for the model parameters and the 
Full population covariance matrix was selected to be estimated (versus assuming a diagonal 
population covariance matrix – see Chapter 6.1 for further discussion on specifying a structured 
covariance matrix). Finally, 1000 samples/EM iteration and 30 EM iterations were specified. As 
discussed in Chapter 5.3, the number of samples/EM iterations ( M ) determines the accuracy of 
the importance sampler numerical approximation used in the MLEM algorithm and a value of 
1000 is generally large enough to produce two digits of accuracy in the estimates for the 
examples in the ADAPT library. More complicated models with more parameters may require a 
larger value for M  in the importance sampler. If the –logLikehood value displayed in the 
MLEM command window at each iteration during the course of the run (not shown here) shows 
an increasing trend over several iterations, this may indicate that the value of M  needs to be 
larger. The MLEM algorithm will perform the number of iterations specified and convergence is 
assessed by the user, in part via inspection of the parameter estimate versus iteration plots 
displayed in the MLEM plot window during the course of the program run (also see discussion 
regarding the created *IT.csv file below). 

 
The last portion of the pop1.run file is shown in Figure 10.3 and provides a summary of the 

population analysis. The table in section A gives the estimates for the population mean of the 
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parameters and the interindividual standard deviation along with their respective relative 
standard errors (see Chapter 4). The full population covariance matrix estimates are given in 
section B of the MLEM final population summary, while section D gives the estimates for the 
error variance model parameters. At the end of the run is a list of all the files created by the 
program, which have been discussed in general in Chapter 5. The middle portion of the pop1.run 
file (not sown in Figure 10.3) provides the conditional estimation results for each of the 50 
individuals at the last EM iteration. 
 
 
  ADAPT 5  MLEM -- MAXIMUM LIKELIHOOD EM POP. EST.  Fri Jan  9 10:16:00 2009 
 
 
 Enter file name for storing session run (*.run): pop1.run 
 
      ----- MODEL INPUT/OUTPUT INFORMATION ----- 
 
 Data file name: C:\Program Files\BMSR\ADAPT 5\Examples\pop1.dat 
 
    - Successfully read all   50 subjects in the data file. 
 
 Enter the compartment number for each bolus input (e.g. 1,3,...):    2 
 
     ----- INITIALIZE PARAMETERS ----- 
 
 Parameter file name: D:\AdaptV5\usersguide\Examples\pop1.prm 
 
 Indicate which parameters are to be estimated:  
 
               Value     Estimate? (Y/N) 
 CL          8.000           y 
 V           30.00           y 
 Ka          1.000           y 
 IC(   1)    0.000           n 
 IC(   2)    0.000           n 
 SDinter    0.1000           y 
 SDslope    0.1000           y 
 
 Fix non estimated parameters to subject specific values (Y/N)?  n 
 
 Select parameter distribution model (1 - Normal, 2 - Lognormal):  2 
 
 Select full or diagonal covariance matrix (1 - Full, 2 - Diagonal):  1 
 
 Enter number of samples/EM iteration (1000 - 3000):      1000 
 
 Enter number of EM iterations:        30 
 
 
      ________________________________________ 
 
 
      ----- INDIVIDUAL SUBJECT RESULTS    {Output not shown}----- 
 
Figure 10.3  MLEM run for example pop1. 
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Figure 10.3  (continued) 
 
     ----- MLEM FINAL POPULATION PARAMETER ESTIMATES ----- 
 
 Fri Jan  9 10:17:32 2009 
 
 Data file name: C:\Program Files\BMSR\ADAPT 5\Examples\pop1.dat 
 
 Model:  POP1.FOR: - 1 comp. pop. example base model                  
 
 Number of data sets analyzed successfully:    50 
 
 Importance Sampler with number samples/iteration:    1000 
 
 Total number of EM iterations:   30 
 
 Lognormal distribution option 
 
-2logLikelihood:   -258.991     
 
 Model Selection Criteria 
  AIC:       -236.991     
  BIC:       -196.249     
 
        --- A. Population Mean & Population Standard Deviation ---   
 
 Parameter     Mean        %RSE         Std.Dev.   SD as CV%     %RSE 
  CL           8.10        3.81          1.99        24.6        16.2     
  V            30.8        4.14          7.44        24.2        19.4     
  Ka           1.02        4.23         0.207        20.4        18.4     
  IC(   1)     0.00      Not estimated 
  IC(   2)     0.00      Not estimated 
 
        --- B. Full Population Covariance of Estimated Parameters ---   
 
  As Covariance Matrix: 
 
           CL        V         Ka         
 CL         3.97     
 V         -3.32      55.4     
 Ka        -.223E-01 0.164     0.429E-01 
 
  As Covariance Matrix for ln(parameters): 
 
           CL        V         Ka         
 CL        0.604E-01 
 V         -.133E-01 0.584E-01 
 Ka        -.271E-02 0.524E-02 0.415E-01 
 
  As Correlation Matrix: 
 
           CL        V         Ka         
 CL          1.00 
 V          -0.22      1.00 
 Ka         -0.05      0.11      1.00 
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Figure 10.3  (continued) 
 
  Standard Errors of Estimated Covariance Matrix for ln(parameters): 
 
           CL        V         Ka         
CL        0.197E-01 
 V         0.122E-01 0.227E-01 
 Ka        0.120E-01 0.131E-01 0.159E-01 
 
       --- D. Error Variance Model Parameters ---   
 
Parameter     Estimate    %RSE 
  SDinter     0.167E-02   141.     
  SDslope     0.105       2.25     
 
        --- E. Secondary Parameters: Pop. Mean & Pop. Std. Dev. ---   
 
 Parameter     Mean       Std.Dev. 
  Kel         0.263      0.100     
  LAM1        0.263      0.100     
  t1/2-LAM1    2.63       1.00     
 
        --- F. Population Mean and Covariance (ADAPT Format) ---   
 
       Pmean(  1) =   8.103535         ! CL         
       Pmean(  2) =   30.80188         ! V          
       Pmean(  3) =   1.016579         ! Ka         
  
       Pcov(  1,  1) =   3.969320      ! CL         & CL         
       Pcov(  2,  1) =  -3.317430      ! V          & CL         
       Pcov(  2,  2) =   55.37318      ! V          & V          
       Pcov(  3,  1) = -0.2230249E-01  ! Ka         & CL         
       Pcov(  3,  2) =  0.1641737      ! Ka         & V          
       Pcov(  3,  3) =  0.4292971E-01  ! Ka         & Ka         
 
      ________________________________________ 
 
List of Files Created 
 
  Record of program run and all results: 
    pop1.run 
  Summary of population estimates at each iteration: 
    pop1IT.csv 
  Individual subject estimates at final iteration: 
    pop1IND.csv 
  Table of predictions and residuals for each subject: 
    pop1RSD.csv 
  Information for plotting model predictions for each subject: 
    pop1PLT.csv 
  Composite residual and prediction vs measurements graphs and 
  individual subject model prediction and measurement vs time graphs: 
    pop1.eps 
  Command file for subsequent Batch runs: 
    pop1.aci 
 
      ________________________________________ 
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Figure 10.4 below shows several of the plots stored in the pop1.eps file. Additional plots in 
the file that are not shown in Figure 10.4 include all the plots used to assess convergence and 
displayed in the ADAPT plot window during the program run, additional residual plots, as well 
as the concentration-time curves for all of the individuals constructed using the conditional mean 
estimates for the subjects.  
 
 

 
 
Figure 10.4  Example pop1. Selected plots from the file pop1.eps. Concentrations in /g mlμ . 
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The estimation results for each of the individuals are stored in the file pop1IND.csv, a portion 
of which is shown in Table 10.1 (all results are defined in Chapter 4). For each individual, the 
table gives for the values for all model parameters (estimated conditional means and non 
estimated values - ), as well as values of the 
error variance parameters (estimated and non estimated - ). Subsequent 
columns in the table give, for each individual, the values for any secondary parameters 
( ), the negative loglikelihood ( ), the conditional 
covariance values (  ), values for any model 
inputs from the data file ( ) values for the conditional mean minus the population mean 
for all estimated model parameters (

1( / ), ( ), ( ), (1) ( ), (2) ( )CL L hr V L Ka hr IC mg IC mg−

int ,SD er SDslope

, 1, 1/ 2Kel LAM t LAM− 1 NegLogLike
/ , / , / ,CL CL V CL V V / , / , /Ka CL Ka V Ka Ka

(1), (2)R R
, ,CL V KaCL V Kaμ μ μ− − − ), and values for the conditional 

modes (not shown). This file can be used to perform more detailed analyses and visual display of 
individual subject results. 
 
 

Table 10.1 Example pop1. Section of file pop1IND.csv. 
 
Created by:        MLEM 
Model Description: POP1.FOR: - 1 comp. pop. example base model 
Num of Diff. Eqs. # Sys. Params # Var. Params # of Covariate Params 
         2                 3                2                0 
Individ.# Individ.ID    ‘CL’       ‘V’      ‘Ka’    ‘IC(1)’   ‘IC(2)’    i i i
          Estimated?     Y          Y        Y       N          N 
1         ’Subject1’  5.83810   23.6576   1.32678    0.00000   0.00000 
2         ’Subject2’  12.0612   32.7264   1.10975    0.00000   0.00000 
3         ’Subject3’  9.03042   37.8750   0.783812   0.00000   0.00000 

i i i  
50        ‘Subject50’ 10.1362   37.1951   0.975136    0.00000   0.00000 
 
i i i‘Sdinter’      ‘Sdslope’    ‘Kel’     ‘LAM1’  ‘t1/2-LAM1’   ‘NegLogLike’  i i i
       Y             Y 
   0.162406E-02   0.104733   0.247587    0.247587    2.80757    3.81014     
   0.162406E-02   0.104733   0.369555    0.369555    1.87984    -4.68287     
   0.162406E-02   0.104733   0.239648    0.239648    2.90756    -2.11896     

i i i  
   0.162406E-02   0.104733   0.273657    0.273657    2.54197    -4.72100     
 
i i i    ‘CL/CL’        ‘V/CL’          ‘V/V’         ‘Ka/CL’        ‘Ka/V’  i i i
   0.182010E-02   0.227279E-02   0.556469E-02   0.144243E-02   0.582041E-02 
   0.230858E-02   0.280849E-02   0.555330E-02   0.144243E-02   0.582041E-02 
   0.203119E-02   0.191045E-02   0.703263E-02   0.535889E-03   0.582041E-02 

i i i  
   0.201808E-02   0.263949E-02   0.683308E-02   0.163348E-02   0.717409E-02 
 
i i i   ‘Ka/Ka’       ‘R( 1)’    ‘R( 2)’    ‘CL-mean’   ‘V-mean’    ‘Ka-mean’  i i i
   0.158254E-01   0.00000    47.730     -2.26543    -7.14429    0.310198     
   0.155714E-01   0.00000    103.910     3.95763    1.92449     0.931757E-01 
   0.160259E-01   0.00000    70.5300     0.926888   7.07315     -0.232767     

i i i  
   0.162418E-01   0.00000    104.110     2.03267    6.39317     -0.414422E-01 
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The program also creates an iteration summary file (pop1IT.csv, not shown) containing the 
population estimates at each iteration of the EM algorithm (1 – 30 for this example). The 
pop1IND.csv file along with the pop1IT.csv file are used when continuing the EM algorithm for 
additional iterations. This is accomplished by selecting the the pop1IND.csv file in the parameter 
menu of the ADAPT Interface (the program will retrieve the population parameters estimates at 
the last iteration in the corresponding *IT.csv file – pop1IT.csv in this case). 

 
The remaining files created by the program run include the iteration file pop1IT.csv shown in 

Table 10.2, as well as the residual file pop1RSD.csv, the raw data plot file pop1PLT.csv, and the 
command input file pop1.aci (the latter three are not shown.). The pop1RSD.csv file can be used 
to create customized residual plots. The complete contents of all files created can be viewed in 
the \Example subfolder of the installation. 
 

Table 10.2 Example pop1. Section of file pop1IT.csv. 
 
Created by:        MLEM 
Model Description: POP1.FOR: - 1 comp. pop. example base model 
LognormalPopulationOption 
Iteration       ‘CL’       ‘V’       ‘Ka’       ‘CL/CL’       ‘V/CL’      i i i
    0           8.00000    30.0000   1.00000    0.160000      0.00000  
    1           8.26889    30.8460   0.998223   0.651266E-01  -0.717103E-02 
    2           8.09862    30.4296   1.00536    0.614439E-01  -0.126448E-01 

i i i  
    30          8.10353    30.8019   1.01658    0.604459E-01  -0.132908E-01 
 
i i i‘V/V’          ‘Ka/CL’        ‘Ka/V’         ‘Ka/Ka’        ‘SDinter’   i i i
   0.160000       0.00000        0.00000        0.160000       0.100000 
   0.770847E-01   0.703480E-03   0.280941E-01   0.945759E-01   0.125441E-01 
   0.703618E-01   -0.202568E-02  0.211628E-01   0.710464E-01   0.748325E-02 

i i i  
   0.583640E-01   -0.270731E-02  0.524307E-02   0.415409E-01   0.166726E-02 
 
i i i‘SDslope’      ‘NegLogLikelihood’ 
   0.100000     
   0.768214E-01 
   0.928054E-01   -110.013 

i i i  
   0.104527       -129.495 
 
 
10.2 Example pop2: MLEM – PK Model with Covariates 
 

In the previous example, the data file also included each individual’s CrCl (ml/min) as a 
model input (model input 2). (In the library model file 1compcl.for from which the model file 
pop1.for was created, model input 1, R(1), is reserved for any IV infusion.) As shown in Table 
10.1, all model inputs (R(1) and R(2) in this case) from the data file are also listed in the 
pop1IND.csv file created by MLEM. Thus the pop1IND.csv file can be used to explore possible 
covariate models by plotting the conditional mean estimates versus covariates. Figure 10.5 is a 
plot constructed from pop1IND.csv showing the conditional mean of CL versus CrCl (R(2)) for 
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each of the 50 individuals analyzed in example pop1. The plot in Figure 10.5 suggests a linear 
covariate model for the mean CL in the Stage 2 population model. 
 

Figures 10.6 and 10.7 shows the modifications needed to the model file of example pop1 to 
incorporate a Stage 2 covariate model for CL. Subroutine COVMOD shown in Figure 10.6 
includes specification of the total number of parameters in the covariate models (one in this case), 
symbols for each of the covariate model parameters, and each of the covariate models (in this 
case a linear model relating mean CL to CrCl model input R(2)). Subroutine POPINIT is 
modified from that used in example pop1 and shown in Figure 10.2 by adding the initial guess 
for the covariate model parameter. 
 

 
 

Figure 10.5  Conditional mean of CL versus CrCl constructed from the pop1IND.csv file. 
 

 
 

Figure 10.6 Excerpts from Subroutine COVMOD of model file pop2.for.  
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Figure 10.7 Excerpts from Subroutine COVMOD of model file pop2.for. 
 
 

Figure 10.8 shows a portion of the run of the MLEM program for this example. Compare the 
resulting estimation results with those from the base model shown in Figure 10.3. 
 
 
  ADAPT 5  MLEM -- MAXIMUM LIKELIHOOD EM POP. EST.  Thu Jan  8 11:57:19 2009 
 
Enter file name for storing session run (*.run): pop2.run 
 
      ----- MODEL INPUT/OUTPUT INFORMATION ----- 
 
 Data file name: C:\Program Files\BMSR\ADAPT 5\Examples\pop2.dat 
 
    - Successfully read all   50 subjects in the data file. 
 
 Enter the compartment number for each bolus input (e.g. 1,3,...):    2 
 
     ----- INITIALIZE PARAMETERS ----- 
 
 Parameter file name: C:\Program Files\BMSR\ADAPT 5\Examples\pop2.prm 
 
 Indicate which parameters are to be estimated:  
 
               Value     Estimate? (Y/N) 
 CLt         8.000           y 
 Vc          30.00           y 
 Ka          1.000           y 
 IC(   1)    0.000           n 
 IC(   2)    0.000           n 
 SDinter    0.1000           y 
 SDslope    0.1000           y 
 

 
Figure 10.8  MLEM run for example pop2. 
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Figure 10.8  (continued) 
 
 Fix non estimated parameters to subject specific values (Y/N)?  n 
 
 Indicate which covariate model parameters are to be estimated:  
 
               Value     Estimate? (Y/N) 
 CLslope      1.000          y 
 
 Select parameter distribution model (1 - Normal, 2 - Lognormal):  2 
 
 Select full or diagonal covariance matrix (1 - Full, 2 - Diagonal):  1 
 
 Enter number of samples/EM iteration (1000 - 3000):      1000 
 
 Enter number of EM iterations:        30 
 
      ________________________________________ 
 
 
      ----- MLEM FINAL POPULATION PARAMETER ESTIMATES ----- 
 
 Thu Jan  8 11:58:46 2009 
  
Data file name: C:\Program Files\BMSR\ADAPT 5\Examples\pop2.dat 
 
 Model:  POP2.FOR: - 1 comp. pop. example w/ covariate                
 
 Number of data sets analyzed successfully:    50 
 
 Importance Sampler with number samples/iteration:    1000 
 
 Total number of EM iterations:   30 
 
 Lognormal distribution option 
 
 -2logLikelihood:   -354.709     
 
 Model Selection Criteria 
  AIC:       -332.709     
  BIC:       -291.968     
 
        --- A. Population Mean & Population Standard Deviation ---   
 
 Parameter     Mean        %RSE         Std.Dev.   SD as CV%     %RSE 
  CL            --          --             --        8.27        14.9     
  V            30.8        4.13          7.40        24.0        18.1     
  Ka           1.02        4.26         0.205        20.2        18.0     
  IC(   1)     0.00      Not estimated 
  IC(   2)     0.00      Not estimated 
 

 199



ADAPT 5 User’s Guide 

Figure 10.8  (continued) 
 
       --- B. Full Population Covariance of Estimated Parameters ---   
 
  As Covariance Matrix for ln(parameters): 
 
           CLt       Vc        Ka         
 CL        0.685E-02 
 V         -.457E-03 0.575E-01 
 Ka        -.870E-03 0.466E-02 0.408E-01 
 
  As Correlation Matrix: 
 
           CLt       Vc        Ka         
 CL          1.00 
 V          -0.02      1.00 
 Ka         -0.05      0.10      1.00 
 
  Standard Errors of Estimated Covariance Matrix for ln(parameters): 
 
           CLt       Vc        Ka         
 CL        0.205E-02 
 V         0.423E-02 0.210E-01 
 Ka        0.380E-02 0.133E-01 0.151E-01 
 
             --- C. Covariate Model Parameters ---   
 
Parameter     Estimate    %RSE 
  CLslope      8.13       1.64     
 
        --- D. Error Variance Model Parameters ---   
 
Parameter     Estimate    %RSE 
  SDinter     0.171E-02   135.     
  SDslope     0.105       2.20     
 
      ________________________________________ 
 
List of Files Created 
 
  Record of program run and all results: 
    pop2.run 
  Summary of population estimates at each iteration: 
    pop2IT.csv 
  Individual subject estimates at final iteration: 
    pop2IND.csv 
  Table of predictions and residuals for each subject: 
    pop2RSD.csv 
  Information for plotting model predictions for each subject: 
    pop2PLT.csv 
  Composite residual and prediction vs measurements graphs and 
  individual subject model prediction and measurement vs time graphs: 
    pop2.eps 
  Command file for subsequent Batch runs: 
    pop2.aci 
      ________________________________________ 
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10.3 Example pop3: MLEM – PK/PD Sequential Analysis 
 

This example involves population parameter estimation using the indirect response model 
illustrated in Figure 10.9. The pharmacokinetic portion of the model consists of a two 
compartment linear model (clearance parameterization) with intravenous drug administration 
(100.0 mg/hr over 1.0 hr). The complete equations defining this PK/PD model have been 
introduced previously for example pd3 in Chapter 8.3.  
 

 
 

Figure 10.9   Model for example pop3. 
 
 

Both PK (plasma concentration) and PD (response variable) measurements are available 
from 50 simulated subjects, which will be used to perform a sequential population analysis. First 
a population PK analysis will be performed using the plasma concentration data alone, which 
will yield a population PK model as well as estimates for the PK parameters for each of the 50 
subjects. Next, each individual’s estimated PK parameters (conditional means) will then be used 
to perform a population analysis using the PD response data only, resulting in a population 
model for the indirect response portion of the model.  
 

The two equations for the PK portion of the model have been coded and entered into the 
model file pop3PK.for. Initial guesses for all population mean and population covariance 
parameters are entered in the POPINIT subroutine in the model file pop3PK.for. Figure 10.10 
shows a portion of the run of the MLEM program for this example using data file pop3PK.dat 
and parameter file pop3PK.prm. In the program run, the Lognormal distribution option was 
selected for the model parameters and the Diagonal population covariance matrix was selected. 
Figure 10.11 shows several of the plots stored in the pop3PK.eps file, including selected 
composite residual plots as well as concentration-time curves for selected individuals constructed 
using the conditional mean estimates for the subjects. The conditional mean estimates for each of 
the 50 subjects are store in the file pop3PK.ind and will be used as described below in modeling 
of the PD response. 
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ADAPT 5  MLEM -- MAXIMUM LIKELIHOOD EM POP. EST.  Sun Jan 18 09:58:13 2009 
 
 Enter file name for storing session run (*.run): pop3PK.run 
 
      ----- MODEL INPUT/OUTPUT INFORMATION ----- 
 
 Data file name: C:\Program Files\BMSR\ADAPT 5\Examples\pop3PK.dat 
 
    - Successfully read all   50 subjects in the data file. 
 
     ----- INITIALIZE PARAMETERS ----- 
 
 Parameter file name: C:\Program Files\BMSR\ADAPT 5\Examples\pop3PK.prm 
 
 Indicate which parameters are to be estimated:  
 
               Value     Estimate? (Y/N) 
 CLt         6.000           y 
 Vc          30.00           y 
 CLd         12.00           y 
 Vp          60.00           y 
 IC(   1)    0.000           n 
 IC(   2)    0.000           n 
 SDinterPK   0.000           n 
 SDslopePK  0.1000           y 
 
 Fix non estimated parameters to subject specific values (Y/N)?  n 
 
 Select parameter distribution model (1 - Normal, 2 - Lognormal):  2 
 
 Select full or diagonal covariance matrix (1 - Full, 2 - Diagonal):  2 
 
 Enter number of samples/EM iteration (1000 - 3000):      1000 
 
 Enter number of EM iterations:        25 
 
      ________________________________________ 
 
      ----- MLEM FINAL POPULATION PARAMETER ESTIMATES ----- 
 
 Sun Jan 18 10:05:28 2009 
 
 Data file name: C:\Program Files\BMSR\ADAPT 5\Examples\pop3PK.dat 
 
 Model:  POP3PK.for - 2 comp CL, PK part of PK/PD pop modeling        
 
 Number of data sets analyzed successfully:    50 
 
 Importance Sampler with number samples/iteration:    1000 
 
 Total number of EM iterations:   25 
 
 Lognormal distribution option 
 
 -2logLikelihood:   -1862.36     
 
Figure 10.10  MLEM run for example pop3 – PK portion. 
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Figure 10.10  (continued) 
 
 Model Selection Criteria 
  AIC:       -1844.36     
  BIC:       -1803.40     
 
        --- A. Population Mean & Population Standard Deviation ---   
 
 Parameter     Mean        %RSE         Std.Dev.   SD as CV%     %RSE 
  CLt          5.58        4.72          1.74        31.2        13.5     
  Vc           30.2        5.64          9.22        30.5        17.4     
  CLd          11.8        4.91          3.41        29.0        15.1     
  Vp           57.5        4.32          15.5        27.0        11.8     
  IC(   1)     0.00      Not estimated 
  IC(   2)     0.00      Not estimated 
 
        --- B. Full Population Covariance of Estimated Parameters ---   
 
  As Covariance Matrix: 
 
           CLt       Vc        CLd       Vp         
 CLt        3.04     
 Vc         0.00      85.0     
 CLd        0.00      0.00      11.6     
 Vp         0.00      0.00      0.00      241.     
 
  As Covariance Matrix for ln(parameters): 
 
           CLt       Vc        CLd       Vp         
 CLt       0.976E-01 
 Vc         0.00     0.930E-01 
 CLd        0.00      0.00     0.839E-01 
 Vp         0.00      0.00      0.00     0.729E-01 
 
  Standard Errors of Estimated Covariance Matrix for ln(parameters): 
 
           CLt       Vc        CLd       Vp         
 CLt       0.233E-01 
 Vc        -1.00     0.259E-01 
 CLd       -1.00     -1.00     0.227E-01 
 Vp        -1.00     -1.00     -1.00     0.181E-01 
 
        --- D. Error Variance Model Parameters ---   
 
Parameter     Estimate    %RSE 
  SDslopePK   0.979E-01   3.28     
  SDinterPK    0.00      Not estimated 
 
        --- F. Population Mean and Covariance (ADAPT Format) ---   
... {Not Shown} 
 
List of Files Created ... {Not Shown} 
 
 
  ADAPT 5  MLEM -- MAXIMUM LIKELIHOOD EM POP. EST.  Sun Jan 18 10:05:30 2009 
 

 203



ADAPT 5 User’s Guide 

Figure 10.10  (continued) 
 

 

 
Figure 10.11  Example pop3 – PK portion. Selected plots from the file pop3PK.eps. 

 
 

The equations for the complete PK/PD model have been coded and entered into the model 
file pop3PD.for with the PD response as the single output. Initial guesses for only those 
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population mean and population covariance PD parameters to be estimated  and  
are entered in subroutine POPINIT of the model file pop3PD.for. Using the pop3PK.ind file 
created from the PK analysis above, a file name pop3PKFIX.csv containing the estimated PK 
parameters from each of the 50 subjects has been created as shown in Table 10.3.  

, 50inK IC (3)IC

 
 

Table 10.3 Example pop3. Section of file pop3PKFIX.csv created from pop3PKIND.csv. 
 
pop3PKFIX.csv - For example pop3 
6 
Num  IndividID   ‘CLt’     ‘Vc’      ‘CLd’     ‘Vp’     ‘IC(   1)’ ‘IC(   2)’ 
1    ‘Subject1’   8.28365   29.2557   7.60259   40.069   0          0 
2    ‘Subject2’   8.77795   42.0821   8.97461   48.624   0          0 
3    ‘Subject3’   5.03366   33.9735   16.7842   45.5373  0          0 

i i i  
50   ‘Subject50’  4.60157   33.2455   10.5916   47.5017  0          0 
 
 

Figure 10.11 shows a portion of the run of the MLEM program for this example using data 
file pop3PD.dat and parameter file pop3PD.prm. The PK model parameters 
( CL  ) are not estimated, but they are fixed to their subject specific 
estimates as read from the file pop3PDFIX.csv. In the program run, the 

, , , , (1),t C d PV CL V IC (2)IC
Lognormal distribution 

option was selected for the model parameters and the Diagonal population covariance matrix was 
selected. Figure 10.12 shows several of the plots stored in the pop3PD.eps file. 
 
 
 
ADAPT 5  MLEM -- MAXIMUM LIKELIHOOD EM POP. EST.  Mon Jan 19 09:29:30 2009 
 
Enter file name for storing session run (*.run): pop3PD.run 
 
      ----- MODEL INPUT/OUTPUT INFORMATION ----- 
 
 Data file name: C:\Program Files\BMSR\ADAPT 5\Examples\pop3PD.dat 
 
    - Successfully read all   50 subjects in the data file. 
 
     ----- INITIALIZE PARAMETERS ----- 
 
 Parameter file name: C:\Program Files\BMSR\ADAPT 5\Examples\pop3PD.prm 
 
 Indicate which parameters are to be estimated:  
 
               Value     Estimate? (Y/N) 
 CLt         6.000           n 
 Vc          30.00           n 
 CLd         12.00           n 
 Vp          60.00           n 
 Kin         20.00           y 
 IC50       0.5000           y 
 
Figure 10.12  MLEM run for example pop3 – PD portion. 
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Figure 10.12  (continued) 
 
 IC(   1)    0.000           n 
 IC(   2)    0.000           n 
 IC(   3)    100.0           y 
 SDinterPD   5.000           y 
 SDslopePD   0.000           n 
 
 Fix non estimated parameters to subject specific values (Y/N)?  y 
 
 Enter file name with individual subject values (*FIX.csv): pop3PKFIX.csv 
 
 Select parameter distribution model (1 - Normal, 2 - Lognormal):  2 
 
 Select full or diagonal covariance matrix (1 - Full, 2 - Diagonal):  2 
 
 Enter number of samples/EM iteration (1000 - 3000):      1000 
 
 Enter number of EM iterations:        15 
 
      ________________________________________ 
 
 
      ----- MLEM FINAL POPULATION PARAMETER ESTIMATES ----- 
 
 Mon Jan 19 09:34:05 2009 
 
 Data file name: C:\Program Files\BMSR\ADAPT 5\Examples\pop3PD.dat 
 
 Model:  POP3PD.for - IRM, PD part of PK/PD pop modeling              
 
 Number of data sets analyzed successfully:    50 
 
 Importance Sampler with number samples/iteration:    1000 
 
 Total number of EM iterations:   15 
 
 Lognormal distribution option 
 
 -2logLikelihood:    4697.25     
 
 Model Selection Criteria 
  AIC:        4711.25     
  BIC:        4743.11     
 
        --- A. Population Mean & Population Standard Deviation ---   
 
 Parameter     Mean        %RSE         Std.Dev.   SD as CV%     %RSE 
  Kin          19.1        5.78          6.41        33.6        13.4     
  IC50        0.481        6.54         0.184        38.3        16.3     
  IC(   3)     96.8        3.96          25.9        26.8        15.6     
  CLt          5.86      Not estimated 
  Vc           31.6      Not estimated 
  CLd          12.3      Not estimated 
  Vp           59.7      Not estimated 
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Figure 10.12  (continued) 
 
  IC(   1)     0.00      Not estimated 
  IC(   2)     0.00      Not estimated 
 
        --- B. Full Population Covariance of Estimated Parameters ---   
 
  As Covariance Matrix: 
 
           Kin       IC50      IC(   3)   
 Kin        41.1     
 IC50       0.00     0.340E-01 
 IC(   3)   0.00      0.00      670.     
 
  As Covariance Matrix for ln(parameters): 
 
           Kin       IC50      IC(   3)   
 Kin       0.113     
 IC50       0.00     0.147     
 IC(   3)   0.00      0.00     0.716E-01 
 
  Standard Errors of Estimated Covariance Matrix for ln(parameters): 
 
           Kin       IC50      IC(   3)   
 Kin       0.294E-01 
 IC50      -1.00     0.379E-01 
 IC(   3)  -1.00     -1.00     0.215E-01 
 
        --- D. Error Variance Model Parameters ---   
 
Parameter     Estimate    %RSE 
  SDinterPD    4.99       3.93     
  SDslopePD    0.00      Not estimated 
 
        --- F. Population Mean and Covariance (ADAPT Format) ---  {Not Shown} 
 
 

 
Figure 10.13  Example pop3 – PD portion. Selected plots from the file pop3PD.eps. 
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Figure 10.13 (cont.) Example pop3 – PD portion. Selected plots from the file pop3PD.eps. 
 
 
 
10.4 Example pop4: STS – ML Estimation 
 

In this example the STS program applied to the model and data used in example pop1 above. 
The exact model, data and parameters files used for the pop1 example are used here but have 
been renamed to pop4.for, pop4.dat and pop4.prm. Figure 10.14 shows a run of the STS program 
using the ML estimation option (initial section and estimation summary sections), while Figure 
10.15 shows selected plots from the file pop4.eps. These results can be compared to the 
corresponding results obtain using the MLEM program. As described on Chapter 6.3, the file 
created containing each individual’s parameter estimates, pop4IND.csv, can be used in the place 
of a *.prm file if the STS program is rerun. The values in the pop4IND.csv file will then serve as 
the individual specific initial guesses for the estimated parameters. 
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ADAPT 5  STS -- STANDARD TWO STAGE POP. EST.  Mon Jan 19 10:24:18 2009 
 
Enter file name for storing session run (*.run): pop4.run 
 
      ----- MODEL INPUT/OUTPUT INFORMATION ----- 
 
 Data file name: C:\Program Files\BMSR\ADAPT 5\Examples\pop4.dat 
 
    - Successfully read all   50 subjects in the data file. 
 
 Enter the compartment number for each bolus input (e.g. 1,3,...):    2 
 
      ----- ESTIMATOR SELECTION -----  
 
 The following estimation procedures are available: 
      1. Weighted least squares (WLS) 
      2. Maximum likelihood (ML) 
      3. Maximum a posteriori probability (MAP) 
 
 Enter option number:  2 
 
     ----- INITIALIZE ESTIMATION PROCEDURE ----- 
 
 Parameter file name: C:\Program Files\BMSR\ADAPT 5\Examples\pop4.prm 
 
 Enter initial values for parameters & specify those to be estimated:  
 
            Old Value    New Value      Estimate?  
                       (skip if same)    (Y/N) 
 CL         8.000            y      
 V          30.00            y    
 Ka         1.000            y   
 IC(   1)   0.000            n   
 IC(   2)   0.000            n    
 SDinter    .1000            y     
 SDslope    .1000            y     
 
 Fix non estimated parameters to subject specific values (Y/N)?  n 
 
 Enter maximum number of iterations per subject:       999 
 
      ----- SUMMARY OF PARAMETER ESTIMATES ----- 
 
 Mon Jan 19 10:24:56 2009 
 
 Data file name: C:\Program Files\BMSR\ADAPT 5\Examples\pop4.dat 
 
 Model:  POP4.FOR: - 1 comp. pop. example base model                  
 
 Number of data sets analyzed successfully:    50 
 
Figure 10.14  STS run for example pop4. 

 209



ADAPT 5 User’s Guide 

Figure 10.14  (continued) 
 
             --- A. System Parameters ---   
 
 Parameter     Mean      Median     Std.Dev.    Min        Max 
  CL           8.347      7.734      2.159      4.930      13.56     
  V            31.65      31.02      8.888      10.04      53.18     
  Ka           1.064      1.023     0.3468     0.3007      2.126     
  IC(   1)     0.000     Not estimated 
  IC(   2)     0.000     Not estimated 
 
 
             --- B. Variance Model Parameters ---   
 
 Parameter     Mean      Median     Std.Dev.    Min        Max 
  SDinter     0.8893E-02 0.2141E-07 0.2106E-01 0.1695E-11 0.8708E-01 
  SDslope     0.5620E-01 0.8062E-01 0.4014E-01 0.7076E-08 0.1628     
 
 
             --- C. Full Covariance of Estimated System Parameters ---   
 
  As Parameter Covariance Matrix: 
 
           CL        V         Ka         
 CL         4.66     
 V         -3.38      79.0     
 Ka        -.210E-01  1.32     0.120     
 
  As Parameter Correlation Matrix: 
 
           CL        V         Ka         
 CL          1.00 
 V          -0.18      1.00 
 Ka         -0.03      0.43      1.00 
 
 
             --- D. Parameter Mean and Covariance (ADAPT Format) ---   
 
       Pmean(  1) =   8.347059         ! CL         
       Pmean(  2) =   31.65449         ! V          
       Pmean(  3) =   1.064148         ! Ka         
  
       Pcov(  1,  1) =   4.661885      ! CL         & CL         
       Pcov(  2,  1) =  -3.379068      ! V          & CL         
       Pcov(  2,  2) =   78.99181      ! V          & V          
 
       Pcov(  3,  1) = -0.2097815E-01  ! Ka         & CL         
       Pcov(  3,  2) =   1.316012      ! Ka         & V          
       Pcov(  3,  3) =  0.1202989      ! Ka         & Ka         
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Figure 10.14  (continued) 
 
             --- E. Secondary Parameters ---   
 
 Parameter     Mean      Median     Std.Dev.    Min        Max 
  Kel         0.2919     0.3747     0.1326     0.1076     0.6675     
  LAM1        0.2919     0.3747     0.1326     0.1076     0.6675     
  t1/2-LAM1    2.829      4.138      1.148      1.038      6.440     
 
 
      ________________________________________ 
 
 List of Files Created    {Not Shown} 
 
 
 

 
 

 

Figure 10.15  Example pop4. Selected plots from the file pop1.eps. Concentrations in /g mlμ . 

 211



ADAPT 5 User’s Guide 

 

 212



Biomedical Simulations Resource 
 

 213

CHAPTER 11 
 
 
AADDAAPPTT  MMooddeell  LLiibbrraarryy  
 
 
 
 
 
 
 
 
11.1 Introduction 
 

This Chapter details the pharmacokinetic/pharmacodynamic models that are included in the 
ADAPT Model Library and provided with the ADAPT distribution. Many of the Model Files 
contained in the Library implement pharmacokinetic/ pharmacodynamic models commonly used 
in basic and clinical pharmacological research and drug development. Others, illustrate some of 
the varied modeling capabilities of ADAPT. All Model Files in the Library can accommodate 
single or nonuniform multiple dose regimens for model inputs, unless indicated. All the Model 
Files, moreover, can be readily modified, extended or otherwise customized for specific user 
applications. The Model Files contained in the ADAPT Library are summarized in Table 11.1 
(pharmacokinetic models), Table 11.2 (pharmacokinetic/pharmacodynamic models), and Table 
11.3 (some user requested and contributed models).  
 

All of these library models are also available as standalone, executable programs bundled 
with each of the ADAPT high-level programs. Interested users can download any of these 
executable programs, together with a sample run, from the BMSR web site.  
 

The Library of Model Files presented in this Chapter represent only some of the models that 
can be implemented in ADAPT. The generality of ADAPT is such that any model that can be 
written as a set of first order, linear or nonlinear differential and/or algebraic equations can be 
handled by ADAPT.  
 

The format used for each of the Library Models presented in the pages to follow is outlined 
below.  

 
1. A brief description of the model. 
 
2. The name of the Fortran file containing the model. 

 
3. A block diagram representing the model. 
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4. The differential, output and variance equations for the model, as well as any secondary 

model parameters.  The Fortran code is also given. 
 

5. Comments on the model and notes on modifying and generalizing the Model File.  
 

In describing the Library Models, the following conventions are employed: ( )r t - piece-wise 
constant input  (e.g., IV input); b - bolus input; x  - differential equation variables (e.g., drug 
amounts, concentrations, physiological variables, etc.); y  - model outputs (e.g., drug 
concentrations, urine amounts, drug effects, etc.); ijK  - inter-compartmental rate constant; CL  - 

inter-compartmental clearance; V  - compartment volumes; F  - fraction of dose absorbed;τ - 
absorption delay. 
 
 

Table 11.1 Pharmacokinetic Library Models 
 
1COMPK 
 

Linear 1-compartment IV 
and/or 1st order absorption. 
Rate constant 
parameterization. 

1COMPCL Linear 1-compartment IV 
and/or 1st order absorption. 
Clearance parameterization. 

1LAGK Linear 1-compartment 1st 
order absorption with lag, w/o 
IV.  Rate constant 
parameterization. 

1LAGCL Linear 1-compartment 1st 
order absorption with lag, w/o 
IV.  Clearance 
parameterization. 
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Table 11.1 (cont.) Pharmacokinetic Library Models 
 
2COMPK 
 

 

Linear 2-compartment IV 
and/or 1st order absorption.  
Rate constant 
parameterization. 

2COMPCL 
 

 

Linear 2-compartment IV 
and/or 1st order absorption.  
Clearance parameterization. 

2LAGK 
 

 

Linear 2-compartment 1st 
order absorption with lag, 
w/o IV.  Rate constant 
parameterization. 

2LAGCL 
 

 

Linear 2-compartment 1st 
order absorption with lag, 
w/o IV.  Clearance 
parameterization. 

3COMPK 
 

 

Linear 3-compartment IV.  
Rate constant 
parameterization. 

3COMPCL 
 

 

Linear 3-compartment IV.  
Clearance parameterization. 
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Table 11.1 (cont.) Pharmacokinetic Library Models 

 
2COMPMM 
 

 

2-compartment IV and/or 
1st order absorption.  
Michaelis-Menton 
elimination. 

2LAGMM 
 

 

2-compartment 1st order 
absorption with lag, w/o IV.  
Michaelis-Menton 
elimination. 

PMETAB 
 

 

Parent (linear 2-
compartment disposition 
with IV)-metabolite (linear 
1-compartment disposition). 
Rate constant 
parameterization. 
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Table 11.2 Pharmacokinetic/Pharmacodynamic Library Models 
 
DIRECT 
 

 

PK model: 1 compartment 
disposition with IV.  PD 
model: Hill (sigmoid-Emax) 
response equation linked to 
plasma concentration. 

LINK1 
 

 

PK model: 1 compartment 
1st order absorption.  PD 
model: effect compartment 
with hill response equation.  
Single dose.  Following 
Sheiner et al. 

LINK2 
 

 

PK model: 2-compartment 
IV and/or 1st order 
absorption.  PD model: 
effect compartment with 
Hill response equation.  
Following Sheiner et al. 

IRMPROD1 

 

PK model: 1 compartment 
disposition with IV. PD 
model: Indirect Response 
Model with production 
linked to plasma 
concentration (inhibition). 
Following Jusko et al. 
 

IRMPROD2 
 

 

PK model: 1 compartment 
disposition with IV. PD 
model: Indirect Response 
Model with production 
linked to plasma 
concentration (stimulation). 
Following Jusko et al. 
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Table 11.2 (cont.) Pharmacokinetic/Pharmacodynamic Library Models 
 
IRMREM1 
 

 

PK model: 1 compartment 
disposition with IV. PD 
model: Indirect Response 
Model with removal linked 
to plasma concentration 
(inhibition). Following 
Jusko et al. 
 

IRMREM2 
 

 

PK model: 1 compartment 
disposition with IV. PD 
model: Indirect Response 
Model with removal linked 
to plasma concentration 
(stimulation). Following 
Jusko et al. 
 

IRMLINK 
 

 

PK model: 1 compartment 
disposition with IV. PD 
model: Indirect Response 
Model with production 
linked to effect 
compartment concentration. 
Following Jusko et al. 
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Table 11.3 User Requested and Contributed Models 
 
INDUCT 
 

 

2-compartment IV with 
Michaelis-Menten 
elimination. Enzyme 
induction modeled as increase 
in Vmax with time after start 
of dose.  Contributed by John 
Rodman. 
 

MULTMOD 
 

 

Simultaneous modeling of 
oral (first order absorption 
with lag) and IV kinetics. 
Disposition model, linear 2-
compartment.  Contributed by 
Alan Forrest. 

 
IGABS 
 

 

2-compartment disposition 
with inverse Gaussian 
function input. Contributed by 
Jian Wang and Michael 
Weiss. 
 

ZEROIN 
 

 

1-compartment disposition 
with zero-order input and lag. 
Fraction absorbed, duration of 
input and lag time included as 
parameters. Requested by 
Lloyd Whitfield. 
 

PLASMA 
URINE 
 

 

Plasma and urine 
concentration data (allows for 
missing urine measurements). 
Linear 1-compartment IV 
and/or 1st order absorption. 
Requested by Alan Forrest 
and Paul Berringer. 
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Table 11.3 (cont.) User Requested and Contributed Models 
 

AUCRESP 
 

 

PK model: 2 compartment 
disposition with IV. PD 
model: Hill response 
equation, with response at 
time t linked to area under 
the plasma concentration 
from 0 to t. Contributed by 
Alan Forrest. 
 

DURATION 
 

 

PK model: 2 compartment 
disposition with IV. PD 
model: Hill response 
equation, with response at 
t linked to the cumulative 
time plasma conc. Is 
above a threshold value. 
Requested by Merrill 
Egorin. 
 

CIRCAD 
 

 

PK model: 1 compartment 
disposition with IV. PD 
model: Indirect Response 
Model with endogenous 
production governed by a 
circadian rhythm and 
inhibited by plasma 
concentration. Contributed 
by Wojciech Krzyzanski. 
 

ORGAN1 
 

Isolated organ disposition 
model with arterial drug 
concentration input 
represented as sum of 
exponentials. Contributed 
by Bill Ebling. 
 

ORGAN2 
 

Isolated organ disposition 
model with measured 
arterial concentration data 
represented as piece-wise 
linear input.  Requested by 
Bill Ebling 
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Table 11.3 (cont.) User Requested and Contributed Models 

 
RECEPTOR 
 

 

Receptor-ligand binding 
kinetics. One binding site, two 
conformational states.  
Contributed by Deanna 
Najman. 
 

NMDA 
 

Kinetic model of Glutamate 
NMDA receptor with 
desensitization. 
Contributed by Deanna 
Najman, Jim-Shih Liaw and 
Theodore Berger. 
 

ESIGMAX 
 

 

Excitatory sigmoid Emax 
model.  Requested by Edward 
Acosta. 
 

ISIGMAX 
 

 

Inhibitory sigmoid Emax 
model.  Requested by Edward 
Acosta  
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11.2 Pharmacokinetic Models 
 

1COMPK 
 
Description 
 

One compartment linear model with first-order elimination parameterized as a rate 
constant. The model input is via IV infusion or first-order absorption, or both. Also both 
inputs can accommodate multiple dose regimens. The model differential equations are 
solved via analytic solution with the differential equations listed in subroutine DIFFEQ 
for reference only. 

 
Model File Name 
 

1COMPK.FOR 
 
Model Diagram 
 

 
 
 
Model Equations 
 

Differential Equations: 
 

  ( ) ( ) ( ) ( )1
1 2el a

dx t
K x t K x t r t

dt
= − + +  

  ( ) ( )2
2a

dx t
K x t

dt
= −  

   
  XP(1) = -P(1)*X(1) + P(3)*X(2) + R(1) 

XP(2) = -P(3)*X(2) 
 

Output Equations: 
 
  ( ) ( )1y t x t V=  
 
  Y(1) = X(1)/P(2) 
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Variance Model: 
 
  ( )( )22

inter slope y tσ σ σ= +  

 
  V(1) = (PV(1) + PV(2)*Y(1))**2 
 

Secondary Parameters: 
 
  elCL K V= ∗  

  1 elKλ =  

  1 2 1 1ln 2t λ λ− =  

 
PS(1) = P(1)*P(2) 
PS(2) = P(1) 
PS(3) = DLOG(2.0)/PS(2) 

 
 Symbol Table: 
 

system variance secondary 
elK  - P(1) interσ   -PV(1) CL          -PS(1)

V    - P(2) slopeσ  -PV(2) 1λ            -PS(2)

aK   - P(3)  1 2 1t λ−    -PS(3)
 
 

Notes 
 

This Model File is a special case of the linear two compartment model given in the Model 
File 2COMPK, with 0cp pcK K= =  . The variables ( )1x t  and ( )2x t  represent amounts of 

drug in compartments 1 and 2, respectively, with ( )y t  representing drug concentration in 

compartment 1. The variable ( )r t  represents the rate of infusion of drug into 
compartment 1, if any, with b  denoting any bolus doses absorbed through the first-order 
route. 
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1COMPCL 
 
 
Description 
 

One compartment linear model with first-order elimination parameterized as clearance. The 
model input is via IV infusion or first-order absorption, or both.  Also both inputs can 
accommodate multiple dose regimens. The model differential equations are solved via 
analytic solution with the differential equations listed in subroutine DIFFEQ for reference 
only. 

 
Model File Name 
 

1COMPCL.FOR 
 
Model Diagram 
 

 
 
Model Equations 

 
Differential Equations: 

 

  ( ) ( ) ( ) ( )1
1 2a

dx t CL x t K x t r t
dt V

= − + +  

  ( ) ( )2
2a

dx t
K x t

dt
= −  

   
  XP(1) = -(P(1)/P(2))*X(1) + P(3)*X(2) + R(1) 
  XP(2) = -P(3)*X(2) 
 
 Output Equations: 
 
  ( ) ( )1y t x t V=  
   
  Y(1) = X(1)/P(2) 
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 Variance Model: 
  
  ( )( )22

inter slope y tσ σ σ= +  
 
  V(1) = (PV(1) + PV(2)*Y(1))**2 
 
 Secondary Parameters: 
 
  elK CL V=  
  1 elKλ =  
  1/ 2 1 1ln 2 /t λ λ− =  
   
  PS(1) = P(1)/P(2) 

PS(2) = PS(1) 
PS(3) = DLOG(2.0)/PS(2) 

 
 Symbol Table: 
   

system variance secondary 
CL     - P(1) interσ     - PV(1) elK             - PS(1) 
V       - P(2) slopeσ    - PV(2) 1λ               - PS(2) 

aK     - P(3)  1/ 2 1t λ−       - PS(3)
 
 
Notes 
 

This Model File is a special case of the linear two compartment model given in the 
Model File 2COMPCL, with 0dCL = . The variables ( )1x t  and ( )2x t  represent 

amounts of drug in compartments 1 and 2, respectively, with ( )y t  representing drug 

concentration in compartment 1. The variable ( )r t  represents the rate of infusion of 
drug into compartment 1, if any, with b  denoting any bolus doses absorbed through the 
first-order route. 
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1LAGK 
 
 
Description 
 

One compartment linear model with first-order elimination parameterized as a rate 
constant. The model input is via first-order absorption that is subject to an absorption 
delay. The first-order absorption input can accommodate multiple doses, but the same 
delay is assumed for all doses. A simultaneous IV infusion input can also be specified. 
The model differential equations are solved via analytic solution with the differential 
equations listed in subroutine DIFFEQ for reference only. 

 
Model File Name 
 

1LAGK.FOR 
 
Model Diagram 
 

  
 
Model Equations 
 

Differential Equations: 
  

  ( ) ( ) ( )1
1 2el a

dx t
K x t K x t

dt
= − +  

  ( ) ( )2
2a

dx t
K x t

dt
= −  

 
  XP(1) = -(P(1)/P(2))*X(1) + P(3)*X(2) +R(1) 

XP(2) = -P(3)*X(2) 
 
 Output Equations: 
 
  ( ) ( )1 /y t x t V=  
 
  Y(1) = X(1)/P(2) 
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 Variance Model: 
 
  ( )( )22

inter slope y tσ σ σ= +  
 
  V(1) = (PV(1) + PV(2)*Y(1))**2 
 
 Secondary Parameters: 
 
  *elCL K V=  
  1 elKλ =  
  1/ 2 1 1ln 2 /t λ λ− =  
  
  PS(1) = P(1)*P(2) 

PS(2) = P(1) 
PS(3) = DLOG(2.0)/PS(2) 

 
 System Table: 
   

system variance secondary 
elK     - P(1) interσ     - PV(1) CL          - PS(1)

V       - P(2) slopeσ    - PV(2) 1λ            - PS(2)
Ka     - P(3) 1/ 2 1t λ−   - PS(3) 
τ        - P(4) 

 
 

 
 
Notes 
 

This Model File is a special case of the linear two compartment model given in the Model 
File 2LAGK, with 0cp pcK K= = .  The variables ( )1x t  and ( )2x t  represent amounts of 

drug in compartments 1 and 2, respectively, with ( )y t  representing drug concentration in 

compartment 1. The variable ( )r t  represents the rate of infusion of drug into compartment 
1, if any, with b  denoting any bolus doses absorbed through the first-order route.. 
 
The absorption delay is accomplished by shifting all doses by the amount of the delay; this 
is, however, transparent to the user. The code needed to perform the dose shifting is 
accessed through subroutine OUTPUT in the Model File.  This implementation can handle 
single or multiple doses, but for the latter it assumes the same delay exists for all doses. 
N.B. To use this Model File, it is necessary to include an observation time = 0.0 in the data. 
If one does not exist in the original problem, it can be added using the missing data number 
(default -1) in place of the observation. 
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1LAGCL 
 
 
Description 
 

One compartment linear model with first-order elimination parameterized as clearance. 
The model input is via first-order absorption that is subject to an absorption delay. The 
first-order absorption input can accommodate multiple doses, but the same delay is 
assumed for all doses. A simultaneous IV infusion input can also be specified. The model 
differential equations are solved via analytic solution with the differential equations listed 
in subroutine DIFFEQ for reference only. 

 
Model File Name 
 

1LAGCL.FOR 
 
Model Diagram 
 

  
 
Model Equations 
 

Differential Equations: 
 

  ( ) ( ) ( )1
1 2a

dx t CL x t K x t
dt V

= − +  

  ( ) ( )2
2a

dx t
K x t

dt
= −  

 
  XP(1) = -(P(1)/P(2))*X(1) + P(3)*X(2) +R(1) 

XP(2) = -P(3)*X(2) 
 
 Output Equations: 
   
  ( ) ( )1 /y t x t V=  
 
  Y(1) = X(1)/P(2) 
 
 Variance Model: 
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  ( )( )22

inter slope y tσ σ σ= +  
 
  V(1) = (PV(1) + PV(2)*Y(1))**2 
 
 Secondary Parameters: 
 
  /elK CL V=  
  1 elKλ =  
  1/ 2 1 1ln 2 /t λ λ− =  
  
  PS(1) = P(1)/P(2) 

PS(2) = P(1) 
PS(3) = DLOG(2.0)/PS(2) 

 
 System Table: 
 

system variance secondary 
CL     - P(1) interσ     - PV(1) elK          - PS(1)
V       - P(2) slopeσ    - PV(2) 1λ            - PS(2)
Ka     - P(3) 1/ 2 1t λ−   - PS(3) 
τ        - P(4) 

 
 

 
Notes 
 

This Model File is a special case of the linear two compartment model given in the Model 
File 2LAGCL, with 0dCL = . The variables  ( )1x t  and ( )2x t  represent amounts of drug 

in compartments 1 and 2, respectively, with  ( )y t  representing drug concentration in 

compartment 1. The variable ( )r t  represents the rate of infusion of drug into 
compartment 1, if any, with b  denoting any bolus doses absorbed through the first-order 
route. 
 
The absorption delay is accomplished by shifting all doses by the amount of the delay; 
this is, however, transparent to the user. The code needed to perform the dose shifting is 
accessed through subroutine OUTPUT in the Model File.  This implementation can 
handle single or multiple doses, but for the latter it assumes the same delay exists for all 
doses. N.B. To use this Model File, it is necessary to include an observation time = 0.0 in 
the data. If one does not exist in the original problem, it can be added using the missing 
data number (default -1) in place of the observation. 
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2COMPK 
 
 
Description 
 

Two compartment linear model parameterized using rate constants. The model input is 
via IV infusion or first-order absorption, or both. Also both inputs can accommodate 
multiple dose regimens. The model differential equations are solved via analytic solution 
with the differential equations listed in subroutine DIFFEQ for reference only. 

 
Model File Name 
 

2COMPK.FOR 
 
Model Diagram 
 

  
 
Model Equations 
 

Differential Equations: 
 

  
( ) ( ) ( ) ( ) ( ) ( )1

1 2 3el cp a pc

dx t
K K x t K x t K x t r t

dt
= − + + + +  

  
( ) ( )2

2a

dx t
K x t

dt
= −  

  
( ) ( ) ( )3

1 3cp pc

dx t
K x t K x t

dt
= −  

 

  XP(1) = -(P(1)+P(4))*X(1)+P(3)*X(2)+P(5)*X(3)+R(1) 
XP(2) = -P(3)*X(2) 
XP(3) = P(4)*X(1)-P(5)*X(3) 

 

Output Equations: 

  ( ) ( )1 / Cy t x t V=   Y(1) = X(1)/P(2) 
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 Variance Model: 

  ( )( )22
inter slope y tσ σ σ= +  V(1)=(PV(1)+PV(2)*Y(1))**2 

 Secondary Parameters: 

  *t el CCL K V=    C CV V=  
  *d cp CCL K V=   * /P C cp pcV V K K=  

  ( ) ( )2

1 4 2el cp pc el cp pc el pcK K K K K K K Kλ ⎛ ⎞= + + + + + −⎜ ⎟
⎝ ⎠

 

  ( ) ( )2

2 4 2el cp pc el cp pc el pcK K K K K K K Kλ ⎛ ⎞= + + − + + −⎜ ⎟
⎝ ⎠

 

  1/ 2 1 1ln 2 /t λ λ− =   1/ 2 2 2ln 2 /t λ λ− =  
 
  PS(1)=P(1)*P(2)   PS(2)=P(2) 

PS(3)=P(4)*P(2)   PS(4)=P(2)*P(4)/P(5) 
  PS(5)=((P(1)+P(4)+P(5))+DSQRT((P(1)+P(4)+P(5))**2- 

4*P(1)*P(5)))/2. 
  PS(6)=((P(1)+P(4)+P(5))-DSQRT((P(1)+P(4)+P(5))**2- 

4*P(1)*P(5)))/2. 
  PS(7)=DLOG(2.0)/PS(5) 

PS(8)=DLOG(2.0)/PS(6) 
 
 Symbol Table: 
   

system variance secondary 
elK    - P(1) interσ     - PV(1) tCL        - PS(1) 

CV     - P(2) slopeσ    - PV(2) CV          - PS(2) 

aK    - P(3) dCL        - PS(3) 

cpK   - P(4) PV           - PS(4) 

pcK   - P(5) 1λ           - PS(5) 
 2λ           - PS(6) 
 1/ 2 1t λ−   - PS(7) 
 

 

1/ 2 2t λ−   - PS(8) 
 
Notes 
 

The variables ( )1x t , ( )2x t  and ( )3x t  represent amounts of drug in compartments 1, 2 

and 3, respectively, with ( )y t  representing drug concentration in compartment 1. The 

variable ( )r t  represents the rate of infusion with b  denoting any bolus doses absorbed 
through the first-order route. 
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2COMPCL 

 
 
Description 
 

Two compartment linear model parameterized using clearances. The model input is via 
IV infusion or first-order absorption, or both. Also both inputs can accommodate multiple 
dose regimens. The model differential equations are solved via analytic solution with the 
differential equations listed in subroutine DIFFEQ for reference only. 

 
Model File Name 
 

2COMPCL.FOR 
 
Model Diagram 

 

 
 
Model Equations 
 
 Differential Equations: 
 

  ( ) ( ) ( ) ( ) ( )1
1 2 3

t d d
a

C C P

dx t CL CL CLx t K x t x t r t
dt V V V

⎛ ⎞
= − + + + +⎜ ⎟

⎝ ⎠
 

  ( ) ( )2
2a

dx t
K x t

dt
= −  

  ( ) ( ) ( )3
1 3

d d

C P

dx t CL CLx t x t
dt V V

= −  

 
XP(1) = -(P(1)+P(4))/P(2)*X(1)+P(3)*X(2)+P(4)/P(5)*X(3)+R(1) 
XP(2) = -P(3)*X(2) 
XP(3) = P(4)/P(2)*X(1) - P(4)/P(5)*X(3) 
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Output Equations: 

  ( ) ( )1 / Cy t x t V=   Y(1) = X(1)/P(2) 

 Variance Model: 

  ( )( )22
inter slope y tσ σ σ= +  V(1)=(PV(1)+PV(2)*Y(1))**2 

 Secondary Parameters: 

  *el t CK CL V=    C CV V=  
  *cp d CK CL V=   /pc d PK Cl V=  

  ( ) ( )2

1 4 2el cp pc el cp pc el pcK K K K K K K Kλ ⎛ ⎞= + + + + + −⎜ ⎟
⎝ ⎠

 

  ( ) ( )2

2 4 2el cp pc el cp pc el pcK K K K K K K Kλ ⎛ ⎞= + + − + + −⎜ ⎟
⎝ ⎠

 

  1/ 2 1 1ln 2 /t λ λ− =   1/ 2 2 2ln 2 /t λ λ− =  
 
  IF(P(2).ne.0.0) PS(1) = P(1)/P(2) 
  PS(2) = P(2) 
  IF(P(2).ne.0.0) PS(3) = P(4)/P(2) 
  IF(P(5).ne.0.0) PS(4) = P(4)/P(5) 
  PS(5) = ((PS(1)+PS(3)+PS(4))+DSQRT((PS(1)+PS(3)+PS(4))**2- 
    4.0*PS(1)*PS(4)))/2.0 
  PS(6) = ((PS(1)+PS(3)+PS(4))-DSQRT((PS(1)+PS(3)+PS(4))**2- 
    4.0*PS(1)*PS(4)))/2.0 
  IF(PS(5).ne.0.0) PS(7) = DLOG(2.0D0)/PS(5) 
  IF(PS(6).ne.0.0) PS(8) = DLOG(2.0D0)/PS(6) 
 
 Symbol Table: 
 

system variance secondary 
tCL    - P(1) interσ     - PV(1) elK          - PS(1)

CV      - P(2) slopeσ    - PV(2) V            - PS(2)

aK     - P(3) cpK         - PS(3) 

dCL   - P(4) pcK         - PS(4) 

PV      - P(5) 1λ           - PS(5) 
 2λ           - PS(6) 
 1/ 2 1t λ−   - PS(7) 
 

 

1/ 2 2t λ−   - PS(8) 
 
Notes 
 

The variables are defined as given above in model 2COMPK. 
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2LAGK 
 
 
Description 
 

Two compartment linear model parameterized using rate constants. The model input is 
via first-order absorption that is subject to an absorption delay. The first-order absorption 
input can accommodate multiple doses, but the same delay is assumed for all doses. A 
simultaneous IV infusion input can also be specified. The model differential equations are 
solved via analytic solution with the differential equations listed in subroutine DIFFEQ 
for reference only. 

 
Model File Name 
 

2LAGK.FOR 
 
Model Diagram 
 

 
 
Model Equations 
 
 Differential Equations: 
 

  ( ) ( ) ( ) ( ) ( )1
1 2 3 ( )el cp a pc

dx t
K K x t K x t K x t r t

dt
= − + + + +  

  ( ) ( )2
2a

dx t
K x t

dt
= −  

( ) ( ) ( )3
1 3cp pc

dx t
K x t K x t

dt
= −  

 

XP(1) = -(P(1)+P(4))*X(1)+P(3)*X(2)+P(5)*X(3)+R(1) 
XP(2) = -P(3)*X(2) 
XP(3) = P(4)*X(1)-P(5)*X(3) 

 

Output Equations: 

  ( ) ( )1 / Cy t x t V=   Y(1) = X(1)/P(2) 
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 Variance Model: 

  ( )( )22
inter slope y tσ σ σ= +  V(1)=(PV(1)+PV(2)*Y(1))**2 

 Secondary Parameters: 
 
  *t el CCL K V=    C CV V=  
  *d cp CCL K V=   * /P C cp pcV V K K=  

  ( ) ( )2

1 4 2el cp pc el cp pc el pcK K K K K K K Kλ ⎛ ⎞= + + + + + −⎜ ⎟
⎝ ⎠

 

  ( ) ( )2

2 4 2el cp pc el cp pc el pcK K K K K K K Kλ ⎛ ⎞= + + − + + −⎜ ⎟
⎝ ⎠

 

  1/ 2 1 1ln 2 /t λ λ− =   1/ 2 2 2ln 2 /t λ λ− =  
 
  PS(1)=P(1)*P(2)    PS(2)=P(2) 

PS(3)=P(4)*P(2)    PS(4)=P(2)*P(4)/P(5) 
  PS(5)=((P(1)+P(4)+P(5))+DSQRT((P(1)+P(4)+P(5))**2- 

4*P(1)*P(5)))/2. 
  PS(6)=((P(1)+P(4)+P(5))-DSQRT((P(1)+P(4)+P(5))**2- 

4*P(1)*P(5)))/2. 
  PS(7)=DLOG(2.0)/PS(5) 

PS(8)=DLOG(2.0)/PS(6) 
 
 Symbol Table: 
   

system variance secondary 
elK    - P(1) interσ     - PV(1) tCL         - PS(1) 

CV     - P(2) slopeσ    - PV(2) CV           - PS(2)

aK     - P(3) dCL        - PS(3) 

cpK    - P(4) PV           - PS(4) 

pcK    - P(5) 1λ            - PS(5)
τ       - P(6) 2λ           - PS(6) 
 1/ 2 1t λ−   - PS(7) 
 

 

1/ 2 2t λ−   - PS(8) 
 
Notes 

 
The variables ( )1x t , ( )2x t  and ( )3x t  represent amounts of drug in compartments, 2 and 

3, respectively, with ( )y t  representing drug concentration in compartment 1. (See Notes 
under 1LAGK.) 
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2LAGCL 
 
 
Description 

 
Two compartment linear model parameterized using clearances. The model input is via 
first-order absorption that is subject to an absorption delay. The first-order absorption 
input can accommodate multiple doses, but the same delay is assumed for all doses. A 
simultaneous IV infusion input can also be specified. The model differential equations 
are solved via analytic solution with the differential equations listed in subroutine 
DIFFEQ for reference only. 

 
Model File Name 
 

2LAGCL.FOR 
 
Model Diagram 

 

 
 
Model Equations 
 

Differential Equations: 
 

  ( ) ( ) ( ) ( ) ( )1
1 2 3

t d d
a

C C P

dx t CL CL CLx t K x t x t r t
dt V V V

⎛ ⎞
= − + + + +⎜ ⎟

⎝ ⎠
 

  ( ) ( )2
2a

dx t
K x t

dt
= −  

  ( ) ( ) ( )3
1 3

d d

C P

dx t CL CLx t x t
dt V V

= −  

 
XP(1) = -(P(1)+P(4))/P(2)*X(1)+P(3)*X(2)+P(4)/P(5)*X(3)+R(1) 
XP(2) = -P(3)*X(2) 
XP(3) = P(4)/P(2)*X(1)-P(4)/P(5)*X(3) 
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Output Equations: 

  ( ) ( )1 /y t x t Vc=   Y(1) = X(1)/P(2) 

 Variance Model: 

  ( )( )22
inter slope y tσ σ σ= +  V(1)=(PV(1)+PV(2)*Y(1))**2 

 Secondary Parameters: 
 
  *el t CK CL V=    C CV V=  
  *cp d CK CL V=   /pc d PK Cl V=  

  ( ) ( )2

1 4 2el cp pc el cp pc el pcK K K K K K K Kλ ⎛ ⎞= + + + + + −⎜ ⎟
⎝ ⎠

 

  ( ) ( )2

2 4 2el cp pc el cp pc el pcK K K K K K K Kλ ⎛ ⎞= + + − + + −⎜ ⎟
⎝ ⎠

 

  1/ 2 1 1ln 2 /t λ λ− =   1/ 2 2 2ln 2 /t λ λ− =  
 
  PS(1)=P(1)*P(2)   PS(2)=P(2) 

PS(3)=P(4)*P(2)   PS(4)=P(2)*P(4)/P(5) 
  PS(5)=((P(1)+P(3)+P(4))+DSQRT((P(1)+P(3)+P(4))**2- 

4*P(1)*P(5)))/2. 
  PS(6)=((P(1)+P(3)+P(4))-DSQRT((P(1)+P(3)+P(4))**2- 

4*P(1)*P(5)))/2. 
  PS(7)=DLOG(2.0)/PS(5) PS(8)=DLOG(2.0)/PS(6) 
 
 Symbol Table: 
 

system variance secondary 
tCL    - P(1) interσ     - PV(1) elK          - PS(1)

CV      - P(2) slopeσ    - PV(2) V            - PS(2)

aK     - P(3) cpK         - PS(3) 

dCL   - P(4) pcK         - PS(4) 

PV      - P(5) 1λ            - PS(5)
τ       - P(6) 2λ           - PS(6) 

 1/ 2 1t λ−   - PS(7) 
 

 

1/ 2 2t λ−   - PS(8) 
 
Notes 
 

The variables ( )1x t , ( )2x t  and ( )3x t  represent amounts of drug in compartments 1, 2 

and 3, respectively, with ( )y t  representing drug concentration in compartment 1. (See 
Notes under 1LAGCL.) 
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3COMPK 
 
 
Description 
 

Three compartment linear model parameterized using rate constants. The model input is 
via IV infusion or first-order absorption, or both. Also both inputs can accommodate 
multiple dose regimens. The model differential equations are solved via analytic solution 
with the differential equations listed in subroutine DIFFEQ for reference only. 

 
Model File Name 
 

3COMPK.FOR 
 
Model Diagram 
  

  
 
Model Equations 
 

Differential Equations: 
 

  
( ) ( ) ( ) ( ) ( ) ( )1

10 12 13 1 21 2 31 3 1

dx t
K K K x t K x t K x t r t

dt
= − + + + + +  

  
( ) ( ) ( )2

12 1 21 2

dx t
K x t K x t

dt
= −  

  
( ) ( ) ( )3

13 1 31 3

dx t
K x t K x t

dt
= −  

 
XP(1) = -(P(1)+P(2)+P(4))*X(1)+P(3)*X(2)+P(5)*X(3)+R(1) 
XP(2) = P(2)*X(1)-P(3)*X(2) 
XP(3) = P(4)*X(1)-P(5)*X(3) 
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 Output Equations: 
 
  ( ) ( )1 1y t x t V=    Y(1) = X(1)/P(6) 

 
 Variance Model: 
 
  ( )( )22

inter slope y tσ σ σ= +   V(1)=(PV(1)+PV(2)*Y(1))**2 

 
 Secondary Parameters: 
 
  10 1*tCL K V=    1 1V V=  

  2 12 1*CL K V=    2 1 12 21* /V V K K=  

  3 13 1*CL K V=    3 1 13 31* /V V K K=  

  1λ , 2λ , 3 (solution tocubic equation)λ −  

  1/ 2 1 1ln 2 /τ λ λ− = , 1/ 2 2 2ln 2 /τ λ λ− = , 1/ 2 3 3ln 2 /τ λ λ− =  

 
  PS(1)=P(1)*P(6)    PS(2)=P(6) 

PS(3)=P(2)*P(6)    PS(4)=P(6)*P(2)/P(3) 
PS(5)=P(4)*P(6)    PS(6)=P(6)*P(4)/P(5) 
PS(7), PS(8), PS(9) (from Subroutine CUBIC**) 
PS(10)=DLOG(2.0)/PS(7)  PS(11)=DLOG(2.0)/PS(8) 
PS(12)=DLOG(2.0)/PS(9) 

 
 Symbol Table: 
   

system variance secondary 
10K   - P(1) interσ     - PV(1) tCL   - PS(1)      1λ           - PS(7) 

12K   - P(2) slopeσ    - PV(2) 1V     - PS(2)      2λ           - PS(8) 

21K   - P(3) 2CL  - PS(3)      3λ           - PS(9) 

13K   - P(4) 2V    - PS(4)       1/ 2 1t λ−   - PS(10) 

31K   - P(5) 3CL  - PS(5)      1/ 2 2t λ−   - PS(11) 

1V      - P(6) 

 

3V    - PS(6)      1/ 2 3t λ−   - PS(12) 
 
Notes 
 

The variables ( )1x t , ( )2x t  and ( )3x t  represent amounts of drug in compartments 1, 2 

and 3, respectively, with ( )y t  representing drug concentration in compartment 1.  
 
** The characteristic values, 1λ , 2λ  and 3λ , are calculated by the built-in 3 compartment 
solution routine CUBIC and passed into the Model File (see code). 



ADAPT 5 User’s Guide 

 240

3COMPCL 
 
 
Description 
 

Three compartment linear model parameterized using clearances. The model input is via 
IV infusion or first-order absorption, or both. Also both inputs can accommodate multiple 
dose regimens. The model differential equations are solved via analytic solution with the 
differential equations listed in subroutine DIFFEQ for reference only. 

 
Model File Name 
 

3COMPCL.FOR 
  
Model Diagram 
 

  
 
Model Equations 
 

Differential Equations: 
 

  
( ) ( ) ( ) ( ) ( )1 3 32 2

1 2 3
1 1 1 2 3

tdx t CL CL CLCL CLx t x t x t r t
dt V V V V V

⎛ ⎞
= − + + + +⎜ ⎟

⎝ ⎠
 

  
( ) ( ) ( )2 1 2

1 2
1 2

dx t CL CLx t x t
dt V V

= −  

  
( ) ( ) ( )3 1 3

1 3
1 3

dx t CL CLx t x t
dt V V

= −  

 
XP(1)=-(P(1)+P(3)+P(4))/P(2)*X(1)+P(3)/P(4)*X(2)+ 

   P(4)/P(5)*X(3)+R(1) 
XP(2)=P(3)/P(2)*X(1)-P(3)/P(4)*X(2) 
XP(3)=P(5)/P(2)*X(1)-P(5)/P(6)*X(3) 
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Output Equations: 
 
  ( ) ( )1 1y t x t V=    Y(1) = X(1)/P(2) 

 
 Variance Model: 
 

  ( )( )22
inter slope y tσ σ σ= +   V(1)=(PV(1)+PV(2)*Y(1))**2 

 
 Secondary Parameters: 
 
  10 1/tK CL V=    12 2 1/K CL V=  

  21 2 2/K CL V=    13 3 1/K CL V=  

  31 3 3/K CL V=    1 1V V=  

  1λ , 2λ , 3 (solution tocubic equation)λ −  

  1/ 2 1 1ln 2 /τ λ λ− = , 1/ 2 2 2ln 2 /τ λ λ− = , 1/ 2 3 3ln 2 /τ λ λ− =  

 
  PS(1)=P(1)/P(2)    PS(2)=P(3)/P(2) 

PS(3)=P(3)/P(4)    PS(4)=P(5)/P(2) 
PS(5)=P(5)/P(6)    PS(6)=P(2) 
PS(7), PS(8), PS(9) (from Subroutine CUBIC**) 
PS(10)=DLOG(2.0)/PS(7)  PS(11)=DLOG(2.0)/PS(8) 
PS(12)=DLOG(2.0)/PS(9) 

 
 Symbol Table: 
   

system variance secondary 
tCL    - P(1) interσ     - PV(1) 10K    - PS(1)      1λ           - PS(7) 

1V      - P(2) slopeσ    - PV(2) 12K    - PS(2)      2λ           - PS(8) 

2CL   - P(3) 21K    - PS(3)      3λ           - PS(9) 

2V     - P(4) 13K    - PS(4)      1/ 2 1t λ−   - PS(10) 

3CL   - P(5) 31K    - PS(5)      1/ 2 2t λ−   - PS(11) 

3V      - P(6) 

 

1V      - PS(6)      1/ 2 3t λ−   - PS(12) 
 
Notes 
 

The variables ( )1x t , ( )2x t  and ( )3x t  represent amounts of drug in compartments 1, 2 

and 3, respectively, with ( )y t  representing drug concentration in compartment 1.  
 

** The characteristic values, 1λ , 2λ  and 3λ , are calculated by the built-in 3 compartment 
solution routine CUBIC and passed into the Model File (see code). 
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2COMPMM 
 
 
Description 
 

Two compartment linear disposition with Michaelis-Menten elimination, parameterized 
using rate constants. The model input is via IV infusion or first-order absorption, or both. 
Also both inputs can accommodate multiple dose regimens. The model differential 
equations are solved via the differential equation solver. 

 
Model File Name 
 

2COMPMM.FOR 
 
Model Diagram 
 

  
 
Model Equations 
 

Differential Equations: 
 

 
( )

( )
( ) ( ) ( ) ( ) ( )1 1

1 2 3
1 / cp a pc

C C

dx t x tVmax K x t K x t K x t r t
dt Km x t V V

⎛ ⎞⎛ ⎞
= − − + + +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠

 

 
( ) ( )txK

dt
tdx

a 2
2 −=  

 
( ) ( ) ( )txKtxK

dt
tdx

pccp 31
3 −=  
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XP(1) = -(P(2)/(P(1)+X(1)/P(3))*(X(1)/P(3))-P(5)*X(1)+ 

P(4)*X(2)+P(6)*X(3)+R(1) 
XP(2) = -P(4)*X(2) 
XP(3) = P(5)*X(1)-P(6)*X(3) 

 
Output Equations: 

 
( ) ( )1 Cy t x t V=     Y(1)=X(1)/P(3) 

 
 Variance Model: 
 
  ( )( )22

inter slope y tσ σ σ= +   V(1)=(PV(1)+PV(2)*Y(1))**2 

 
 Secondary Parameters: 
 
  *d cp CCL K V=  
  * /P C cp pcV V K K=  

 
PS(1)=P(5)*P(3) 
PS(2)=P(5)*P(3)/P(6) 

 
 Symbol Table: 
   

system variance secondary 
Km       - P(1) interσ     - PV(1) dCL  - PS(1) 
Vmax    - P(2) slopeσ    - PV(2) PV     - PS(2) 

CV         - P(3)  

aK        - P(4)  

cpK       - P(5)  

pcK       - P(6) 

 

 
 
 
Notes 
 

The variables ( )1x t , ( )2x t  and ( )3x t  represent amounts of drug in compartments 1, 2 

and 3, respectively, with ( )y t  representing drug concentration in compartment 1.  
 
NB: This model file assumes the units for Vmax  are amount/time. In previous version of 
this user’s guide the units used for Vmax  were assumed to be concentration/time.  
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2LAGMM 
 

 
Description 
 

Two compartment linear disposition with Michaelis-Menten elimination, parameterized 
using rate constants. The model input is via first-order absorption that is subject to an 
absorption delay. The first-order absorption input can accommodate multiple doses, but 
the same delay is assumed for all doses. A simultaneous IV infusion input can also be 
specified.  Also both inputs can accommodate multiple dose regimens. The model 
differential equations are solved via the differential equation solver. 

 
Model File Name 
 

2LAGMM.FOR 
 
Model Diagram 
  

 
 
Model Equations 

 
Differential Equations: 
 

 
( )

( )
( ) ( ) ( )1 1max

1 2
1 / cp a

m C C

dx t x tV K x t K x t
dt K x t V V

⎛ ⎞⎛ ⎞
= − + + +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠

( ) ( )3pcK x t r t+  

( ) ( )txK
dt

tdx
a 2

2 −=  

( ) ( ) ( )txKtxK
dt

tdx
pccp 31

3 −=  
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XP(1) = -(P(2)/(P(1)+X(1)/P(3))*(X(1)/P(3))-P(5)*X(1)+ 
P(4)*X(2)+P(6)*X(3)+R(1) 

XP(2)=-P(4)*X(2) 
XP(3)=P(5)*X(1)-P(6)*X(3) 

 
Output Equations: 

  
( ) ( )1 Cy t x t V=     Y(1)=X(1)/P(3) 

 
 Variance Model: 
 
  ( )( )22

inter slope y tσ σ σ= +   V(1)=(PV(1)+PV(2)*Y(1))**2 

  
 Secondary Parameters: 
 
  *d cp CCL K V=  
  * /P C cp pcV V K K=  
 
  PS(1)=P(5)*P(3) 

PS(2)=P(5)*P(3)/P(6) 
 

Symbol Table: 
 

system variance secondary 
mK        - P(1) interσ     - PV(1) dCL  - PS(1) 

maxV      - P(2) slopeσ    - PV(2) PV     - PS(2) 

CV         - P(3)  

aK        - P(4)  

cpK       - P(5)  

pcK       - P(6) 

 

 
τ           - P(7)   

 
Notes 
 

The variables ( )1x t , ( )2x t  and ( )3x t  represent amounts of drug in compartments 1, 2 

and 3, respectively, with ( )y t  representing drug concentration in compartment 1. The 
variable b  denotes the bolus doses absorbed through the first-order route. (See Notes 
under 1LAGK.) 

 
NB: This model file assumes the units for maxV  are amount/time. In previous version of 
this user’s guide the units used for Vmax  were assumed to be concentration/time.  
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PMETAB 
 
 
Description 

 
Parent/metabolite kinetic model. The parent is a two compartment linear model and the 
metabolite is a one compartment linear model. The total rate constant for disappearance 
of the parent compound (elimination plus metabolism) is denoted pK , while the 
metabolite elimination rate constant is mK . The distribution volume for the metabolite is 
denoted mV , the fraction of parent metabolized is mf  and their ratio ( / )m mV f  is 
estimated. 

 
Model File Name 
 

PMETAB.FOR 
 
Model Diagram 
 

 
 

 
Model Equations 

 
Differential Equations: 
 

( ) ( ) ( ) ( ) ( )1
12 1 21 2 1p

dx t
K K x t K x t r t

dt
= − + + +        ( pK  is parent elimination rate.) 

( ) ( ) ( )2
12 1 21 2

dx t
K x t K x t

dt
= −  

( ) ( ) ( )3
1 3p m

dx t
K x t K x t

dt
= −               ( ( )3x t  is metabolite amount divided by mf .) 
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XP(1) = -(P(1)+P(3))*X(1) + P(4)*X(2) + R(1) 
XP(2) = P(3)*X(1) - P(4)*X(2) 
XP(3) = P(1)*X(1) - P(5)*X(3) 

! Note X(3) is (amount metab)/fm 
 
 Output Equations: 
 
  ( ) ( )1 1 1y t x t V=     Y(1)=X(1)/P(2) 

  ( ) ( ) ( )2 3 /m my t x t V f=    Y(2)=X(3)/P(6) 

 
 Variance Model: 
 

( )( )22
1 1 1 1inter slope y tσ σ σ= +   V(1)=(PV(1)+PV(2)*Y(1))**2 

  ( )( )22
2 2 2 2inter slope y tσ σ σ= +   V(2)=(PV(3)+PV(4)*Y(2))**2 

 
 Secondary Parameters: 
 

*p p pCL K V=     12 *p pCL dist K V− =  

( )/ * /m m m m mCL f K V f=  

 
PS(1) = P(1)*P(2)  PS(2) = P(3)*P(2) 
PS(3) = P(5)*P(6) 

 
Symbol Table: 
 

system variance secondary 
pK        - P(1) 1interσ   - PV(1) pCL               - PS(1) 

pV         - P(2) 1slopeσ   - PV(2) pCL dist−     - PS(2)  

12K       - P(3) 2interσ   - PV(3) /m mCL f        - PS(3) 

21K       - P(4) 2slopeσ   - PV(4)  

mK        - P(5)  
/m mV f  - P(6) 

 
 

 
 
Notes 

 
The variables ( )1x t  and ( )2x t  represent amounts of parent compound in the central and 

peripheral compartments, while ( )3x t  is the amount of the metabolite divided by the 
fraction of parent metabolized.  
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11.3 Pharmacokinetic/Pharmacodynamic Models 
 
 

DIRECT 
 
 
Description 
 

PK Model: One compartment linear model with .rst-order elimination parameterized as a 
rate constant. The model input is via multiple dose IV infusion. PD Model: Drug 
response is related via the Hill equation (sigmoid-Emax model) to plasma concentration. 

 
Model File Name 
 

DIRECT.FOR 
 
Model Diagram 
 

 
 
Model Equations 
 

Differential Equations: 
 

  ( ) ( ) ( )1
1el

dx t
K x t r t

dt
= − +  

 
  XP(1) = -P(1)*X(1)+R(1) 
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Output Equations: 
 
  ( ) ( )1 1 /y t x t V=  

  ( ) ( )2 1
1

H
H H

Emaxy t y
EC50 y

=
+

 

 
  Y(1) = X(1)/P(2) 

Y(2) = P(3)*Y(1)**P(5)/(P(4)**P(5)+Y(1)**P(5)) 
 

Variance Model: 
 
  ( )( )22

1 1 1 1inter slope y tσ σ σ= +   V(1)=(PV(1)+PV(2)*Y(1))**2 

  ( )( )22
2 2 2 2inter slope y tσ σ σ= +   V(2)=(PV(3)+PV(4)*Y(2))**2 

 
Secondary Parameters: 
 
 *elCL K V=  
 1 elKλ =  
 1/ 2 1 1ln 2 /t λ λ− =  
 

  PS(1) = P(1)*P(2) 
PS(2) = P(1) 
PS(3) = DLOG(2.0)/PS(2) 

 
Symbol Table: 
 

system variance secondary 
elK       - P(1) 1interσ    - PV(1) CL          - PS(1) 

V         - P(2) 1slopeσ   - PV(2) 1λ            - PS(2) 
Emax   - P(3) inter2σ    - PV(3) 1/ 2 1t λ−   - PS(3)  

50EC   - P(4) 2slopeσ   - PV(4)   
H         - P(5)   

 
 

Notes 
 

The variable ( )1x t  represents the amount of drug in plasma, with ( )1y t  representing drug 

concentration in plasma and ( )2y t  representing drug effect. The variable ( )r t  represents 
the rate of infusion of drug into compartment 1. The model can be easily modified to 
accept other PK models. 
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LINK1 
 
Description 
 

PK Model: One compartment linear model with first-order absorption and elimination 
parameterized as a rate constant. PD Model: Drug response is related via the Hill 
equation (sigmoid-Emax model) to drug concentration in a hypothetical effect site. 
Analytic solutions are used for both the PK and PD portions of the model, and only a 
single bolus dose is allowed. Following Sheiner et al. 

 
Model File Name 
 

LINK1.FOR 
 
Model Diagram 
 

 
 
 
 
Model Equations 
 

Differential Equations: 
 

None 
 

Output Equations: 

 ( ) ( ) ( )1
e aK t K ta

a el

bKy t e e
V K K

− −= −
−

 

 ( ) ( )2
max

50
H
eH H

e

Ey t C
EC C

=
+

 

  where 
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( )( ) ( )( ) ( )( )
el a eoK t K t K t

a eo

a el eo el el a eo a el eo a eo

bK K e e eCe
V K K K K K K K K K K K K

− − −⎛ ⎞
= + +⎜ ⎟⎜ ⎟− − − − − −⎝ ⎠

 
Y(1)=B(1)*P(3)/(P(2)*(P(3)-P(1)))*(DEXP(-P(1)*T)-DEXP(-P(3)*T)) 
Ce=(B(1)*P(3)*P(4)/P(2))*(DEXP(-P(1)*T)/((P(3)-P(1))*(P(4)-

P(1)))+DEXP(-P(3)*T)/((P(1)-P(3))*(P(4)- 
P(3)))+DEXP(-P(4)*T)/((P(1)-P(4))*(P(3)-
P(4)))) 

Y(2)=P(5)*Ce**P(7)/(P(6)**P(7)+Ce**P(7)) 
 

Variance Model: 
 

( )( )22
1 1 1 1inter slope y tσ σ σ= +   V(1)=(PV(1)+PV(2)*Y(1))**2 

  ( )( )22
2 2 2 2inter slope y tσ σ σ= +   V(2)=(PV(3)+PV(4)*Y(2))**2 

 
Secondary Parameters: 
 

*CL Kel V=     PS(1) = P(1)*P(2) 
 
Symbol Table: 
 

system variance secondary 
elK        - P(1) inter1σ    - PV(1) CL   - PS(1)  

V          - P(2) 1slopeσ   - PV(2)  

aK        - P(3) inter2σ    - PV(3)  

eoK       - P(4) 2slopeσ   - PV(4)   
Emax  - P(5) 

50EC   - P(6) 
H        - P(7) 

 

 
Notes 
 

The variable ( )1y t  represents drug concentration in plasma and ( )2y t  represents drug 
effect. The model allows only a single dose at time zero. 
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LINK2 
 
 

Description 
 

PK Model: Two compartment linear model parameterized using rate constants. The 
model input is via IV infusion or first-order absorption, or both. PD Model: Drug 
response is related via the Hill equation (sigmoid-Emax model) to drug concentration in 
an effect compartment. Following Sheiner et al. See the attachment to this library model 
description providing a general derivation for the differential equation describing the 
concentration of drug in an effect compartment, which can be used with any 
pharmacokinetic model. 

 
Model File Name 
 

LINK2.FOR 
 
Model Diagram 

 

 
 
Model Equations 
 

Differential Equations: 
 

  ( ) ( ) ( ) ( ) ( )1
1 2 3

t d d
a

C C P

dx t CL CL CLx t K x t x t r t
dt V V V

⎛ ⎞
= − + + + +⎜ ⎟

⎝ ⎠
 

  ( ) ( )2
2a

dx t
K x t

dt
= −  

  ( ) ( ) ( )3
1 3

d d

C P

dx t CL CLx t x t
dt V V

= −  

 



Biomedical Simulations Resource 
 

 253

 

  4
1 4( / )eo c

dx K x V x
dt

= −  

 
XP(1) = -(P(1)+P(4))/P(2)*X(1)+P(3)*X(2)+P(4)/P(5)*X(3)+R(1) 
XP(2) = -P(3)*X(2) 
XP(3) = P(4)/P(2)*X(1) - P(4)/P(5)*X(3) 
XP(4) = P(6)*(X(1)/P(2) – X(4)) 

 
Output Equations: 
 

( ) ( )1 1 /y t x t V=  

( ) ( )2
max

50
H
eH H

e

Ey t C
EC C

=
+

 

 
Y(1)= X(1)/P(2) 

 Y(2)= P(7)*x(4)**P(9)/(P(8)**P(9)+x(4)**P(9)) 
 

Variance Model: 
 

( )( )22
1 1 1 1inter slope y tσ σ σ= +   V(1)=(PV(1)+PV(2)*Y(1))**2 

  ( )( )22
2 2 2 2inter slope y tσ σ σ= +   V(2)=(PV(3)+PV(4)*Y(2))**2 

 
Secondary Parameters: 

  *el t CK CL V=    C CV V=  
  *cp d CK CL V=   /pc d PK Cl V=  

  ( ) ( )2

1 4 2el cp pc el cp pc el pcK K K K K K K Kλ ⎛ ⎞= + + + + + −⎜ ⎟
⎝ ⎠

 

  ( ) ( )2

2 4 2el cp pc el cp pc el pcK K K K K K K Kλ ⎛ ⎞= + + − + + −⎜ ⎟
⎝ ⎠

 

  1/ 2 1 1ln 2 /t λ λ− =   1/ 2 2 2ln 2 /t λ λ− =  
 
  IF(P(2).ne.0.0) PS(1) = P(1)/P(2) 
  PS(2) = P(2) 
  IF(P(2).ne.0.0) PS(3) = P(4)/P(2) 
  IF(P(5).ne.0.0) PS(4) = P(4)/P(5) 
  PS(5) = ((PS(1)+PS(3)+PS(4))+DSQRT((PS(1)+PS(3)+PS(4))**2- 
    4.0*PS(1)*PS(4)))/2.0 
  PS(6) = ((PS(1)+PS(3)+PS(4))-DSQRT((PS(1)+PS(3)+PS(4))**2- 
    4.0*PS(1)*PS(4)))/2.0 
  IF(PS(5).ne.0.0) PS(7) = DLOG(2.0D0)/PS(5) 
  IF(PS(6).ne.0.0) PS(8) = DLOG(2.0D0)/PS(6) 
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Symbol Table: 
 

system variance secondary 
tCL    - P(1) inter1σ    - PV(1) elK          - PS(1)

CV      - P(2) 1slopeσ   - PV(2) V            - PS(2)

aK     - P(3) cpK         - PS(3) 

dCL   - P(4) pcK         - PS(4) 

PV      - P(5) 

inter2σ    - PV(3)

2slopeσ   - PV(4) 

1λ           - PS(5) 

eoK       - P(6) 2λ           - PS(6)   
Emax    - P(7) 1/ 2 1t λ−   - PS(7)   

50EC    - P(8) 1/ 2 2t λ−   - PS(8)   
H          - P(9) 

 

 
 
 

Notes 
 

The variables ( )1x t , ( )2x t  and ( )3x t  represent amounts of drug in compartments 1, 2 

and 3, respectively, with ( )4x t  representing the drug concentration in the effect site. 

( )1y t  represents drug concentration in the plasma and ( )2y t  represents drug response. 

The variable ( )r t  represents the rate of infusion of drug into compartment 1, if any, with 
b denoting any bolus doses absorbed through the first-order route. 
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Attachment to LINK2 Model 
Effect Compartment Differential Equation 

 
 

Diagram 
 

 
 
 
Effect Compartment Differential Equation Derivation 

 
The following symbols are used: 
        Ae  amount of drug in effect site 
        1A  amount of drug in pharmacokinetic compartment 
        eCL  clearance of drug between kinetic and effect sites 
        eV  volume of effect site 
        1V   volume of pharmacokinetic compartment 
        eC  concentration of drug in effect site ( )/e eA V  

        1C  concentration of drug in pharmacokinetic compartment ( )1 1/A V  

        Keo  effect site elimination rate constant ( )/e eCl V  
 
 

( )
1

1

e
e

e

dA t CLe CLeA A
dt V V

= −  

        substituting for 1 1/A V  and /e eA V  
 

  ( )
1

e
e

dA t
CLe C CLe C

dt
= ⋅ − ⋅  

           dividing by Ve 
  

( )1 1
( / )e e

e e
e e e

d A V CLe CLe CLeC C C C
dt V V V

= − = −  

          substituting for Ae/Ve and CLe/Ve 
  

( )1eo e
dCe K C C
dt

= −  
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IMPROD1 
 
 
Description 
 

PK Model: One compartment linear model with first-order elimination parameterized as a 
rate constant. The model input is via multiple dose IV infusion. PD Model: Indirect 
response model with production of the response variable inhibited by the concentration of 
the drug in the plasma. Following Jusko et al. 

 
Model File Name 
 

IRMPROD1.FOR 
 
Model Diagram 
 

 
 
Model Equations 

 
Differential Equations: 

 

( ) ( ) ( )1
1el

dx t
K x t r t

dt
= − +  

( ) ( )( )
( )( ) ( ) ( )12

2
1

/
1

250 /
in

in

Imax x t Vdx t KK x t
dt ICIC x t V

⎛ ⎞
= − −⎜ ⎟⎜ ⎟+⎝ ⎠

 

 (NB: 
( )2
in

out
KK

IC
= ) 

 
XP(1) = -P(1)*X(1)+R(1) 
XP(2) = P(3)*(1-P(5)*X(1)/P(2)/(P(4)+X(1)/P(2)))- 

P(3)/IC(2)*X(2) 
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Output Equations: 
 

( ) ( )1 1 /y t x t V=  

( ) ( )2 2y t x t=  
 
Y(1)= X(1)/P(2) 
Y(2)= X(2) 

 
Variance Model: 
 

( )( )22
1 1 1 1inter slope y tσ σ σ= +   V(1)=(PV(1)+PV(2)*Y(1))**2 

  ( )( )22
2 2 2 2inter slope y tσ σ σ= +   V(2)=(PV(3)+PV(4)*Y(2))**2 

 
Secondary Parameters: 
 

*elCL K V=  
 ( )/ 2out inK K IC=  
 

  PS(1)= P(1)*P(2) 
PS(2)= P(1) 

 
Symbol Table: 
 

system variance secondary 
elK        - P(1) 1interσ    - PV(1) tCL        - PS(1)  

V          - P(2) 1slopeσ   - PV(2) outK       - PS(2)  

inK        - P(3) 2interσ   - PV(3)  
50IC     - P(4) 2interσ   - PV(4)   

Imax     - P(5)   
 
 
Notes 
 

The variable ( )1x t , represents the amount of drug in compartment 1 and ( )1y t  represents 

drug concentration in the plasma. The variable ( )r t  represents the rate of infusion of 

drug into compartment 1. The variables ( )2x t  and ( )2y t  represent the pharmacodynamic 
response, and IC(2) is the control (pre-drug) value of the response. 
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IRMPROD2 
 
 
Description 
 

PK Model: One compartment linear model with .rst-order elimination parameterized as a 
rate constant. The model input is via multiple dose IV infusion. PD Model: Indirect 
response model with production of the response variable stimulated by the concentration 
of the drug in the plasma. Following Jusko et al. 

 
Model File Name 
 

IRMPROD2.FOR 
 
Model Diagram 
 

 
 
Model Equations 
 

Differential Equations 
 

( ) ( ) ( )1
1el

dx t
K x t r t

dt
= − +  

( ) ( )( )
( )( ) ( ) ( )12

2
1

/
1

250 /
in

in

Emax x t Vdx t KK x t
dt ICEC x t V

⎛ ⎞
= + −⎜ ⎟⎜ ⎟+⎝ ⎠

 

 (NB: 
( )2
in

out
KK

IC
= ) 

 
XP(1) = -P(1)*X(1)+R(1) 
XP(2) = P(3)*(1-P(5)*X(1)/P(2)/(P(4)+X(1)/P(2)))- 

P(3)/IC(2)*X(2) 
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Output Equations: 
 

( ) ( )1 1 /y t x t V=  

( ) ( )2 2y t x t=  
 
Y(1)= X(1)/P(2) 
Y(2)= X(2) 

 
Variance Model: 
 

( )( )22
1 1 1 1inter slope y tσ σ σ= +   V(1)=(PV(1)+PV(2)*Y(1))**2 

  ( )( )22
2 2 2 2inter slope y tσ σ σ= +   V(2)=(PV(3)+PV(4)*Y(2))**2 

 
Secondary Parameters: 
 

*elCL K V=  
 ( )/ 2out inK K IC=  
 

  PS(1)= P(1)*P(2) 
PS(2)= P(3)/IC(2) 

  
Symbol Table: 
 

system variance secondary 
elK        - P(1) 1interσ    - PV(1) tCL        - PS(1)  

V          - P(2) 1slopeσ   - PV(2) outK       - PS(2)  

inK        - P(3) 2interσ   - PV(3)  
50IC     - P(4) 

Emax   - P(5) 
2interσ   - PV(4)   

 
 

Notes 
 

The variable ( )1x t , represents the amount of drug in compartment 1 and ( )1y t  represents 

drug concentration in the plasma. The variable ( )r t  represents the rate of infusion of 

drug into compartment 1. The variables ( )2x t  and ( )2y t  represent the pharmacodynamic 
response, and IC(2) is the control (pre-drug) value of the response. 
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IRMREM1 
 
 

Description 
 

PK Model: One compartment linear model with first-order elimination parameterized as a 
rate constant. The model input is via multiple dose IV infusion. PD Model: Indirect 
response model with removal of the response variable inhibited by the concentration of 
the drug in the plasma. Following Jusko et al. 

 
Model File Name 
 

IRMREM1.FOR 
 
Model Diagram 
 

 
 
Model Equations 
 

Differential Equations 
 

( ) ( ) ( )1
1el

dx t
K x t r t

dt
= − +  

( ) ( )( )
( )( ) ( )12

2
1

/
1

(2) 50 /
in

in

Imax x t Vdx t KK x t
dt IC IC x t V

⎛ ⎞
= − −⎜ ⎟⎜ ⎟+⎝ ⎠

 

 (N.B. 
( )2
in

out
KK

IC
= ) 

 
XP(1)=-P(1)*X(1)+R(1) 
XP(2)=P(3)-(P(3)/IC(2))*(1-P(5)*X(1)/P(2)/(P(4)+X(1)/P(2))) 
                       *X(2) 
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Output Equations: 
 

( ) ( )1 1 /y t x t V=  

( ) ( )2 2y t x t=  
 
Y(1)= X(1)/P(2) 
Y(2)= X(2) 

 
Variance Model: 
 

( )( )22
1 1 1 1inter slope y tσ σ σ= +   V(1)=(PV(1)+PV(2)*Y(1))**2 

  ( )( )22
2 2 2 2inter slope y tσ σ σ= +   V(2)=(PV(3)+PV(4)*Y(2))**2 

 
Secondary Parameters: 
 

*elCL K V=  
 ( )/ 2out inK K IC=  
 

  PS(1)= P(1)*P(2) 
PS(2)= P(3)/IC(2) 

  
Symbol Table: 
 

system variance secondary 
elK       - P(1) 1interσ    - PV(1) tCL        - PS(1)  

V         - P(2) 1slopeσ   - PV(2) outK       - PS(2)  

inK       - P(3) 2interσ   - PV(3)  
50IC    - P(4) 2interσ   - PV(4)   

Imax    - P(5)   
 
 

Notes 
 

The variable ( )1x t , represents the amount of drug in compartment 1 and ( )1y t  represents 

drug concentration in the plasma. The variable ( )r t  represents the rate of infusion of 

drug into compartment 1. The variables ( )2x t  and ( )2y t  represent the pharmacodynamic 
response, and IC(2) is the control (pre-drug) value of the response. 
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IRMREM2 
 
 
Description 
 
PK Model: One compartment linear model with .rst-order elimination parameterized as a rate 
constant. The model input is via multiple dose IV infusion. PD Model: Indirect response model 
with removal of the response variable stimulated by the concentration of the drug in the plasma. 
Following Jusko et al. 
 
Model File Name 
 

IRMREM2.FOR 
 
Model Diagram 
 

 
 

Model Equations 
 

Differential Equations 
 

( ) ( ) ( )1
1el

dx t
K x t r t

dt
= − +  

( ) ( )( )
( )( ) ( )12

2
1

/
1

(2) 50 /
in

in

Emax x t Vdx t KK x t
dt IC EC x t V

⎛ ⎞
= − +⎜ ⎟⎜ ⎟+⎝ ⎠

 

 (NB: 
( )2
in

out
KK

IC
= ) 

 
XP(1) = -P(1)*X(1)+R(1) 
XP(2) = P(3)-(P(3)/IC(2))*(1+P(5)*X(1)/P(2)/(P(4) 

+X(1)/P(2)))*X(2) 
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Output Equations: 
 

( ) ( )1 1 /y t x t V=  

( ) ( )2 2y t x t=  
 
Y(1)= X(1)/P(2) 
Y(2)= X(2) 

 
Variance Model: 
 

( )( )22
1 1 1 1inter slope y tσ σ σ= +   V(1)=(PV(1)+PV(2)*Y(1))**2 

  ( )( )22
2 2 2 2inter slope y tσ σ σ= +   V(2)=(PV(3)+PV(4)*Y(2))**2 

 
Secondary Parameters: 
 

*elCL K V=  
 ( )/ 2out inK K IC=  
 

  PS(1)= P(1)*P(2) 
PS(2)= P(3)/IC(2) 

  
Symbol Table: 
 

system variance secondary 
elK       - P(1) 1interσ    - PV(1) tCL        - PS(1)  

V         - P(2) 1slopeσ   - PV(2) outK       - PS(2)  

inK       - P(3) 2interσ   - PV(3)  
50EC   - P(4) 

Emax   - P(5) 
2interσ   - PV(4)          

 
 

Notes 
 

The variable ( )1x t , represents the amount of drug in compartment 1 and ( )1y t  represents 

drug concentration in the plasma. The variable ( )r t  represents the rate of infusion of 

drug into compartment 1. The variables ( )2x t  and ( )2y t  represent the pharmacodynamic 
response, and IC(2) is the control (pre-drug) value of the response. 
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IRMLINK 
 
Description 
 

PK Model: One compartment linear model with first-order elimination parameterized as a 
rate constant. The model input is via multiple dose IV infusion. PD Model: Indirect 
response model with production of the response variable inhibited by the concentration of 
the drug in an effect site. Following Jusko et al. 

 
Model File Name 
 

IRMLINK.FOR 
 
Model Diagram 
 

 
 

Model Equations 
 

Differential Equations 
 

( ) ( ) ( )1
1el

dx t
K x t r t

dt
= − +  

( ) ( ) ( )2 1
2eo

dx t x t
K x t

dt V
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 

( ) ( )( )
( )( ) ( )23

3
2

1
(3)50
in

in

Imax x tdx t KK x t
dt ICIC x t

⎛ ⎞
= − −⎜ ⎟⎜ ⎟+⎝ ⎠

 

 (NB: 
( )3

in zero
out

KK
IC

−= ) 

 
XP(1) = -P(1)*X(1)+R(1) 
XP(2) = P(3)*(X(1)/P(2)-X(2))  
XP(3) = P(4)*(1-P(6)*X(2)/(P(5)+X(2)))-P(4)/IC(3)*X(3) 
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Output Equations: 
 

( ) ( )1 1 /y t x t V=  

( ) ( )2 3y t x t=  
 
Y(1)= X(1)/P(2) 
Y(2)= X(3) 

 
Variance Model: 
 

( )( )22
1 1 1 1inter slope y tσ σ σ= +   V(1)=(PV(1)+PV(2)*Y(1))**2 

  ( )( )22
2 2 2 2inter slope y tσ σ σ= +   V(2)=(PV(3)+PV(4)*Y(2))**2 

 
Secondary Parameters: 
 

*elCL K V=  
 ( )/ 2out inK K IC=  
 

  PS(1)= P(1)*P(2) 
PS(2)= P(3)/IC(2) 

  
Symbol Table: 
 

system variance secondary 
elK       - P(1) inter1σ    - PV(1) tCL        - PS(1) 

V         - P(2) 1slopeσ   - PV(2) outK      - PS(2) 

eoK       - P(3) 2interσ   - PV(3)  

inK       - P(4) 
50IC   - P(5) 

2slopeσ   - PV(4)   

 
Notes 
 

The variable ( )1x t , represents the amount of drug in compartment 1, ( )1y t represents 

drug concentration in the plasma, and ( )r t  represents the rate of infusion of drug into 

compartment 1. The variable. ( )2x t  represents drug concentration in the effect site. The 

variables ( )2x t and ( )2y t  represent the pharmacodynamic response, and IC(3) is the 
control (pre-drug) value of the response. 
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11.4 User Contributed and Requested Models 
 
 

INDUCT 
 
 
Description 
 

The model simulates enzyme induction by incorporating an exponential increase in the 
effective Vmax from a pre-drug baseline value of VmBase to a steady-state value of 
VmBase + VmAdd. An exponential rate constant for induction is also included as a model 
parameter. Contributed by John Rodman. 

 
Model File Name 
 

INDUCT.FOR 
 
Model Diagram 

 

 
 
 

Model Equations 
 

Differential Equations: 
 

( )1 Kinduct tVmax VmBase VmAdd e− ⋅= + −  

( )
( )

( ) ( ) ( ) ( )1 1max
1 2

1 / cp pc
m C C

dx t x tV K x t K x t r t
dt K x t V V

⎛ ⎞
= − − + +⎜ ⎟⎜ ⎟+⎝ ⎠

 

( ) ( ) ( )2
1 2cp pc

dx t
K x t K x t

dt
= −  

 
 

Vmax = P(3)+P(4)*(1.0D0-DEXP(-P(5)*T)) 
XP(1) = -(Vmax/(P(2)+X(1)/P(1))*(X(1)/P(1))-P(6)*X(1)+ 
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                       P(7)*X(2)+R(1) 
XP(2) = P(6)*X(1) - P(7)*X(2) 

 
Output Equations: 
 

( ) ( )1 /y t x t Vc=   Y(1) = X(1)/P(1) 

 
Variance Model: 

 
( )( )22

inter slope y tσ σ σ= +   V(1)=(PV(1)+PV(2)*Y(1))**2 

 
Secondary Parameters: 

 
*d cp cCL K V=  

 * /p cp pcV V K K=  
 

  PS(1)= P(6)*P(1) 
PS(2)= P(6)*P(1)/P(7) 

 
Symbol Table: 
 

system variance secondary 
Vc               - P(1) interσ     - PV(1) CLd       - PS(1)  
Km             - P(2) slopeσ    - PV(2) Vp          - PS(2)  
VmBase      - P(3)   
VmAdd       - P(4) 
Kinduct      - P(5)
Kcp            - P(6) 
Kpc            - P(7) 

   

 
 
Notes 
 

The variables ( )1x t , and ( )2x t  represent the amount of drug in compartments 1, and 2, 

respectively, with ( )y t  representing drug concentration in compartment 1.  
 
NB: This model file assumes the units for Vmax  (VmBase  and VmAdd )are amount/time. 
In previous version of ADAPT the units used for these paramteres were assumed to be 
concentration/time.  
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MULTMOD 
 
 
Description 
 

Model file for simultaneous analysis of data from separate intravenous and oral studies 
on the same subject. Disposition is described by a two compartment linear model 
parameterized using rate constants. Oral administration is described by first-order 
absorption subject to a delay. Contributed by Alan Forrest. 

 
Model File Name 
 

MULMOD.FOR 
 
Model Diagram 

 

 
 

Model Equations 
 

Differential Equations: 
 

( ) ( ) ( ) ( ) ( )1
1 2el cp pc

dx t
K K x t K x t r t

dt
= − + + +  

( ) ( ) ( )2
1 2cp pc

dx t
K x t K x t

dt
= −  

( ) ( )3
3a

dx t
K x t

dt
= −  

( ) ( ) ( ) ( ) ( )4
4 3 5el cp a pc

dx t
K K x t K x t K x t

dt
= − + + +  

 ( ) ( ) ( )5
4 5cp pc

dx t
K x t K x t

dt
= −  
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XP(1) = -(P(1)+P(4))*(1)+P(5)*X(2)+R(1) 
XP(2) = P(4)*X(1)-P(5)*X(2) 
XP(3) = -P(3)*X(3) 
XP(4) = -(P(1)+P(4))*X(4)+P(5)*X(5)+P(3)*X(3) 
XP(5) = P(4)*X(4)-P(5)*X(5) 

 
Output Equations: 
 

( ) ( )1 1 /y t x t Vc=    Y(1) = X(1)/P(2) 

( ) ( )2 4 /y t x t F Vc= ⋅    Y(2) = X(4)*P(7)/P(2) 

 
Variance Model: 
 

( )( )22
1inter slope y tσ σ σ= +   V(1)=(PV(1)+PV(2)*Y(1))**2 

( )( )22
2inter slope y tσ σ σ= +   V(2)=(PV(1)+PV(2)*Y(1))**2 

 
Secondary Parameters: 
 

  *CLt Kel Vc=    Vc Vc=  
  *CLd Kcp Vc=    * /Vp Vc Kcp Kpc=  
  1/ 2 1 1ln 2 /t λ λ− =    1/ 2 2 2ln 2 /t λ λ− =  where 

  ( ) ( )( )2
1 4 2Kel Kcp Kpc Kel Kcp Kpc KelKpcλ = + + + + + −  

  ( ) ( )( )2
2 4 2Kel Kcp Kpc Kel Kcp Kpc KelKpcλ = + + − + + −  

 
  PS(1)=P(1)*P(2)    PS(2)=P(2) 

PS(3)=P(4)*P(2)    PS(4)=P(2)*P(4)/P(5) 
  PS(5)=((P(1)+P(4)+P(5))+DSQRT((P(1)+P(4)+P(5))**2- 

4*P(1)*P(5)))/2. 
  PS(6)=((P(1)+P(4)+P(5))-DSQRT((P(1)+P(4)+P(5))**2- 

4*P(1)*P(5)))/2. 
  PS(7)=DLOG(2.0)/PS(5)  

PS(8)=DLOG(2.0)/PS(6) 
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Symbol Table: 
 

system variance secondary 
Kel       - P(1) interσ     - PV(1) CLt        - PS(1) 

cV          - P(2) slopeσ   - PV(2)  Vc         - PS(2)   
Ka        - P(3) CLd       - PS(3) 
Kcp      - P(4) Vp          - PS(4)  
Kpc      - P(5) 1λ            - PS(5)  

τ           - P(6) 2λ           - PS(6)  
Emax    - P(7) 1/ 2 1t λ−   - PS(7)   

1/ 2 2t λ−   - PS(8)   
 
 
Notes 
 

While this particular analysis could have been performed using the NPD program as 
illustrated in Chapter 8.1, this model file illustrates the general concept of state 
augmentation that allows several sub models with common parameters to be written as a 
single (larger) composite model. 
 
The variables ( )1x t , ... ( )5x t  represent amounts of drug in compartments 1, through 5, 

with ( )1y t  representing drug concentration following intravenous administration (in 

compartment 1) and ( )2 2y  representing drug concentration following oral administration 
(in compartment 3). The variable b  denotes bolus doses absorbed through the first-order 
route. 
 
The absorption delay is accomplished by shifting all oral doses by the amount of the 
delay; this is, however, transparent to the user. The code needed to perform the dose 
shifting is accessed through subroutine OUTPUT in the Model File. This implementation 
can handle single or multiple doses, but for the latter it assumes the same delay exists for 
all doses. N.B. To use this Model File, it is necessary to include an observation time = 0.0 
in the data. If one does not exist in the original problem, it can be added using the missing 
data number (default -1) in place of the observation. 
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IGABS 
 
 
Description 
 

This model illustrates the use of the inverse Gaussian function to describe the oral 
absorption process of a delayed release compound. It is assumed that the plasma drug 
concentration following oral administration of the drug can be decomposed into an 
independent input process (representing dissolution, transit and absorption processes) 
followed by the disposition process, which in this example is modeled as a two 
compartment system. Contributed by Jian Wang and Michael Weiss. 

 
 
Model File Name 
 

IGABS.FOR 
 
Model Diagram 
 

 
 
Model Equations 
 

Differential Equations: 
 

2

2 3 2

( )( ) exp
2 2I

I I

MIT t MITf t D F
CV t CV MITtπ

⎡ ⎤−
= ⋅ −⎢ ⎥

⎣ ⎦
 

( ) ( ) ( )1
1 2 ( )t d

a I
C C

dx t CL CL x t K x t f t
dt V V

⎛ ⎞
= − + + +⎜ ⎟

⎝ ⎠
 

( ) ( ) ( )2
1 2

d d

C P

dx t CL CLx t x t
dt V V

= −  

 
fI = F*B(1)*dsqrt(MIT/(2.0*pi*CVI2*t**3))* 
            dexp(-(t-MIT)**2/(2.0*CVI2*MIT*t)) 
XP(1) = -(P(1)+P(3))/P(2)*X(1) + P(3)/P(4)*X(2) + fI 
XP(2) = P(3)/P(2)*X(1) - P(3)/P(4)*X(2) 
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Output Equations: 
 

  ( ) ( )1 / Cy t x t V=   Y(1) = X(1)/P(2) 

 
Variance Model: 
 

  ( )( )22
inter slope y tσ σ σ= +  V(1)=(PV(1)+PV(2)*Y(1))**2 

 
Secondary Parameters: 

 

 4 2
,max

9 31
4 2I II MIT CV CVt

⎛ ⎞
= + −⎜ ⎟⎜ ⎟

⎝ ⎠
 

 
PS(1) = P(5)*(dsqrt(1.0+9.0*P(6)**2/4.0) –  

3.0*P(6)/2.0 ) 
 

Symbol Table: 
   

system variance secondary 
tCL     - P(1) interσ     - PV(1)   tImax   - PS(1) 

CV      - P(2) slopeσ    - PV(2)  

dCL    - P(3)  

PV      - P(4)  
MIT   - P(5)  

2
ICV   - P(6)  

F       - P(7) 

 

 
 
 
Notes 
 
The input process can itself be decomposed into an independent dissolution (or gastrointestinal transit time) 
component followed by an absorption component. Such a dissolution-absorption process can be modeled using an 
inverse Gaussian function to describe the drug’s dissolution/transit (using the parameters MDT and CVD) followed 
by a first-order absorption model (with rate constant ka = 1/MAT). In this case, the mean input time is the sum, MIT 
= MDT + MAT. See Wang et al. [43]. 
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ZEROIN 
 
 
Description 
 

One compartment linear model with first-order elimination parameterized as a rate 
constant. The model input is via a zero-order absorption process with delay. Both the 
duration of the absorption process and the fraction of dose absorbed are model 
parameters. The model can accommodate multiple doses, but the same duration, delay 
and fraction absorbed are assumed for all doses. Requested by Lloyd Whitfield. 

 
Model File Name 
 

ZEROIN.FOR 
 
Model Diagram 
 

 
 
Model Equations 
 

Differential Equations: 
 

( ) ( )1
1el

dx t
K x t Rate

dt
= − +  

 
XP(1) =  -P(1)*X(1) + RATE  (see code in model file) 

 
Output Equations: 

 
  ( ) ( )1 /y t x t V=   Y(1) = X(1)/P(2) 

 
Variance Model: 

 
  ( )( )22

inter slope y tσ σ σ= +  V(1)=(PV(1)+PV(2)*Y(1))**2 

 
 

Secondary Parameters: 



ADAPT 5 User’s Guide 

 274

 
  *elCL K V=  

elKλ1 =  

1/ 2 1 1ln 2 /t λ λ− =  
 

PS(1) = P(1)*P(2) 
PS(2) = P(1) 
PS(3) = DLOG(2.0)/PS(2) 

 
Symbol Table: 

   
system variance secondary 

Kel             - P(1) interσ       - PV(1) CL            - PS(1) 
V                 - P(2) slopeσ      - PV(2) 1λ              - PS(2) 
τ                 - P(3)  1/ 2 1t λ−      - PS(3)
Duration    - P(4)   
F                 - P(5)   

   
 
Notes 
 

The variables 1( )x t  represents the amount of drug in compartment 1, with y(t) 
representing drug concentration in compartment 1. Additional code provides the correct 
input to the differential equation given values for absorption delay, its duration, and the 
amount and fraction of the dose absorbed. The amount of drug administered at each dose 
is specified using the model input (not bolus input) mechanism.  
 
The absorption delay is accomplished by shifting all doses by the amount of the delay, 
however, this is transparent to the user. The code needed to perform the dose shifting is 
contained in the Model File in subroutine OUTPUT. This implementation can handle 
single or multiple doses, but for the latter it assumes the same delay exists for all doses. 
To use this Model File, it is necessary to include an observation time = 0.0 in the data. If 
one does not exist in the original problem, it can be added using the missing data number 
(default -1) in place of the observation. 
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PLASMAURINE 
 
 
Description 
 

Model for plasma and urine drug concentration data. The one compartment first order 
absorption model includes a compartment representing amount of drug collected in the 
urine ( 3x ) and another representing urine volume ( 4x ). In the model file the urine 
compartment is used to define the amount of drug in the urine during each collection 
interval while the volume compartment defines the volume of urine formed during each 
collection interval. At the end of each collection interval, the states 3x  and 4x  are set to 
0.0 by the code in the Subroutine OUTPUT of the model file. Requested by Alan Forrest 
and Paul Berringer.  

 
Model File Name 
 

PLASMAURINE.FOR 
 
Model Diagram 
 

 
 
Model Equations 
 

Differential Equations: 
 

( ) ( ) ( )1
1 2a

dx t CLnonrenal CLrenal x t K x t
dt V V

⎛ ⎞= − + +⎜ ⎟
⎝ ⎠

 

( ) ( )2
2a

dx t
K x t

dt
= −  

( ) ( )3
1

dx t CLrenal x t
dt V

=  

( ) ( )4dx t
r t

dt
=  
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XP(1) = -(P(1)/P(3)+P(2)/P(3))*X(1) + P(4)*X(2) 
XP(2) = - P(4)*X(2) 
XP(3) = (P(2)/P(3))*X(1) ! X(3)-Drug amount in urine 
XP(4) = R(1)        ! X(4)-Volume of urine collected 

 
Output Equations: 

 
( ) ( )1 1 /y t x t V=    Y(1)=X(1)/P(3) 

( ) ( ) ( )2 3 4/y t x t x t=    Y(2)=X(3)/X(4) 

 
Variance Model: 

 
( )( )22

1 1 1 1inter slope y tσ σ σ= +   V(1)=(PV(1)+PV(2)*Y(1))**2 

  ( )( )22
2 2 2 2inter slope y tσ σ σ= +   V(2)=(PV(3)+PV(4)*Y(2))**2 

 
Secondary Parameters: 

 
Knonrenal CLnonrenal V=   PS(1) = P(1)/P(3) 
Krenal CLrenal V=    PS(2) = P(2)/P(3) 

Knonrenal Krenalλ1 = +    PS(3) = PS(1)+PS(2) 

1/ 2 1 1ln 2 /t λ λ− =     PS(4) = DLOG(2.0D0)/PS(3) 
 
Symbol Table: 

   
system variance secondary 

CLnonrenal  - P(1) 1interσ    - PV(1) Knon ur−   - PS(1)
CLrenal        - P(2) 1slopeσ   - PV(2) Kurine       - PS(2) 

cV                  - P(3) 2interσ    - PV(1) λ1                - PS(3) 

aK                - P(4) 2slopeσ   - PV(2) 1/ 2 1t λ−        - PS(4)
 

Notes 
 
A new model input must be added to the data file that indicates the amount of volume collected 
at each collection time. When an input time is not a collection time enter 0. for the amount 
volume collected. If the volume is lost enter the misdat number as the volume (e.g., -1). An 
obervation at t=0 needs to occur. Use misdat # if needed. At each collection time a corresponding 
observation time must be specified. If no measurement is made use misdat #.  
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AUCRESP 
 
 

Description 
 

PK Model: Two compartment linear model parameterized using rate constants. The 
model input is via IV infusion. PD Model: Drug response at time t is related to the area 
under the plasma concentration-time curve from time 0 to time t, through a sigmoid-
Emax model. Contributed by Alan Forrest. 

 
Model File Name 
 

AUCRESP.FOR 
 
Model Diagram 
 

 
 
Model Equations 
 

Differential Equations: 
 

( ) ( ) ( ) ( ) ( )1
1 2el cp pc

dx t
K K x t K x t r t

dt
= − + + +  

( ) ( ) ( )2
1 2cp pc

dx t
K x t K x t

dt
= −  

( ) ( )3
1 / c

dx t
x t V

dt
=  
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XP(1)=-(P(1)+P(3))*X(1)+P(4)*X(2)+R(1) 
XP(2)=P(3)*X(1)- P(4)*X(2) 
XP(3)=X(1)/P(2) 
 

Output Equations: 
 

( ) ( )1 / cy t x t V=  

( )
( )( ) ( )2 3

3

 
50

H

H H

maxEy t x t
EC x t

=
+

 

 
Y(1)=X(1)/P(2) 
Y(2)=P(5)*X(3)**P(7)/(P(6)**P(7)+X(3)**P(7)) 

 
Variance Model: 
 

  ( )( )22
1 1 1 1inter slope y tσ σ σ= +   V(1)=(PV(1)+PV(2)*Y(1))**2 

  ( )( )22
2 2 2 2inter slope y tσ σ σ= +   V(2)=(PV(3)+PV(4)*Y(2))**2 

 
Secondary Parameters: 

 
  *t el CCL K V=    C CV V=  
  *d cp CCL K V=   * /P C cp pcV V K K=  

  ( ) ( )2

1 4 2el cp pc el cp pc el pcK K K K K K K Kλ ⎛ ⎞= + + + + + −⎜ ⎟
⎝ ⎠

 

  ( ) ( )2

2 4 2el cp pc el cp pc el pcK K K K K K K Kλ ⎛ ⎞= + + − + + −⎜ ⎟
⎝ ⎠

 

  1/ 2 1 1ln 2 /t λ λ− =   1/ 2 2 2ln 2 /t λ λ− =  
 
  PS(1)=P(1)*P(2)   PS(2)=P(2) 

PS(3)=P(3)*P(2)   PS(4)=P(2)*P(3)/P(4) 
  PS(5)=((P(1)+P(3)+P(4))+DSQRT((P(1)+P(3)+P(4))**2- 

4*P(1)*P(4)))/2. 
  PS(6)=((P(1)+P(3)+P(4))-DSQRT((P(1)+P(3)+P(4))**2- 

4*P(1)*P(4)))/2. 
  PS(7)=DLOG(2.0)/PS(5) 

PS(8)=DLOG(2.0)/PS(6) 
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Symbol Table: 
 

system variance secondary 
elK                   - P(1) inter1σ      - PV(1)        tCL                   - PS(1) 

cV                     - P(2) 1slopeσ      - PV(2)        cV                     - PS(2) 

cpK                  - P(3) inter2σ      - PV(3)        dCL                  - PS(3) 

pcK                 - P(4) 2slopeσ     - PV(4)       pV                     - PS(4) 
Emax              - P(5)       1λ                       - PS(5) 

50EC              - P(6)       2λ                      - PS(6) 
     1/ 2 1t λ−               - PS(7) H                    - P(7)  
     1/ 2 1t λ−               - PS(8) 

 
 

Notes 
 

The variables ( )1x t , and ( )2x t  represent the amount of drug in compartments 1 and 2, 

respectively, with ( )1y t  representing drug concentration in compartment 1. The variable 

( )3x t  is the area under the plasma concentration-time curve (AUC) from time 0.0 to time 

t, and ( )2y t  is the drug response related to AUC through the sigmoid-Emax model. The 

variable ( )r t  represents the rate of infusion of drug into compartment 1. 
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DURATION 
 
 

Description 
 

PK Model: Two compartment linear model parameterized using rate constants. PD 
Model: Drug response at time t is related to the total duration of time that plasma 
concentration exceeds a threshold value up to time t, through a sigmoid-Emax model. 
Requested by Merril Egorin. 

 
Model File Name 
 

DURATION.FOR 
 
Model Diagram 
 

 
 
Model Equations 
 

Differential Equations: 
 

( ) ( ) ( ) ( ) ( )1
1 2el cp pc

dx t
K K x t K x t r t

dt
= − + + +  

( ) ( ) ( )2
1 2cp pc

dx t
K x t K x t

dt
= −  

( )3 1.0
dx t

dt
=   when ( )1 /x t Vc Cthres≥    

( )3 0.0
dx t

dt
=   when ( )1 /x t Vc Cthres<    (see code in model file) 
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XP(1) = -(P(1) + P(3))*X(1) + P(4)*X(2) + R(1) 
XP(2) = P(3)*X(1) - P(4)*X(2) 
IF(X(1)/P(2).GE.P(5)) THEN 

XP(3) = 1.0 
ELSE 

XP(3)= 0.0 
END IF 

 
Output Equations: 
 

( ) ( )1 / cy t x t V=  

( )
( )

( )2 3
3

y t = 
50

H
HH

maxE x t
EC x t+

 

 
Y(1)=X(1)/P(2) 
Y(2)=P(6)*X(3)**P(8)/(P(7)**P(8)+X(3)**P(8)) 

 
Variance Model: 
 

  ( )( )22
1 1 1 1inter slope y tσ σ σ= +   V(1)=(PV(1)+PV(2)*Y(1))**2 

  ( )( )22
2 2 2 2inter slope y tσ σ σ= +   V(2)=(PV(3)+PV(4)*Y(2))**2 

 
Secondary Parameters: 

 
  *t el CCL K V=    C CV V=  
  *d cp CCL K V=   * /P C cp pcV V K K=  

  ( ) ( )2

1 4 2el cp pc el cp pc el pcK K K K K K K Kλ ⎛ ⎞= + + + + + −⎜ ⎟
⎝ ⎠

 

  ( ) ( )2

2 4 2el cp pc el cp pc el pcK K K K K K K Kλ ⎛ ⎞= + + − + + −⎜ ⎟
⎝ ⎠

 

  1/ 2 1 1ln 2 /t λ λ− =   1/ 2 2 2ln 2 /t λ λ− =  
 
  PS(1)=P(1)*P(2)   PS(2)=P(2) 

PS(3)=P(3)*P(2)   PS(4)=P(2)*P(3)/P(4) 
  PS(5)=((P(1)+P(3)+P(4))+DSQRT((P(1)+P(3)+P(4))**2- 

4*P(1)*P(4)))/2. 
  PS(6)=((P(1)+P(3)+P(4))-DSQRT((P(1)+P(3)+P(4))**2- 

4*P(1)*P(4)))/2. 
  PS(7)=DLOG(2.0)/PS(5) 

PS(8)=DLOG(2.0)/PS(6) 
 



ADAPT 5 User’s Guide 

 282

 
 
 
 

Symbol Table: 
 

system variance secondary 
elK                  - P(1) inter1σ      - PV(1)        tCL                   - PS(1) 

cV                    - P(2) 1slopeσ      - PV(2)        cV                     - PS(2) 

cpK                 - P(3) inter2σ      - PV(3)        dCL                  - PS(3) 

pcK                 - P(4) 2slopeσ     - PV(4)       pV                      - PS(4) 
Cthres            - P(5)        1λ                      - PS(5) 
Emax             - P(6)        2λ                      - PS(6) 

50EC             - P(7) 1/ 2 1t λ−                    - PS(7) 
H                   - P(8) 

 

1/ 2 2t λ−                    - PS(8) 
 
 

Notes 
 

The variables ( )1x t , and ( )2x t  represent the amount of drug in compartments 1 and 2, 

respectively, with ( )1y t  representing drug concentration in compartment 1. The variable 

( )3x t  is the total duration of time that plasma concentration exceeds the threshold value, 

and ( )2y t  is the drug response related to time duration above threshold through the 

sigmoid-Emax model. The variable ( )r t  represents the rate of infusion of drug into 
compartment 1. 
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CIRCAD 
 
 

Description 
 

PK Model: One compartment linear model with first-order elimination parameterized as a 
rate constant. The model input is via multiple dose IV infusion. PD Model: Indirect 
response model with production of the response variable inhibited by the concentration of 
the drug in the plasma. Endogenous production rate governed by a circadian rhythm. 
Contributed by Wojciech Krzyzanski. 

 
Model File Name 
 

CIRCAD.FOR 
 
Model Diagram 
 

 
 

Model Equations 
 

Differential Equations 

( )
2

2 2

2 2 22 cos( ) sin( )
(2 / 24) 24 24 24

amp out
mean out peak peak

out out

K K
K K IC t t

K K
π π π

π
⋅ ⎡ ⎤

= ⋅ − ⋅ ⋅ − ⋅⎢ ⎥+ ⎣ ⎦

 cos 2
24

peak
in mean amp

t t
K K K π

−⎛ ⎞
= + ⋅⎜ ⎟

⎝ ⎠
 

( ) ( ) ( )1
1el

dx t
K x t r t

dt
= − +  

( ) ( )
( )( ) ( )2 1

2
1

1 /
50 /in out

dx t x t V
K K x t

dt IC x t V
⎛ ⎞−

= −⎜ ⎟⎜ ⎟+⎝ ⎠
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Kmean=IC(2)*P(4)-((P(5)*P(4)**2/(P(4)**2+(2.0*pi/24.0)**2)) 
               *(DCOS((2.0*pi/24.0)*P(6))-(2.0*pi/(P(4)*24) 
               *DSIN((2.0*pi/24.0)*P(6))) 
Kin=Kmean+P(5)*DCOS((t - P(6))*2.0*pi/24.0) 
 
XP(1)=-P(1)*X(1)+R(1) 
XP(2)=Kin*(1-X(1)/P(2)/(P(3)+X(1)/P(2)))-P(4)*X(2) 

 
Output Equations: 
 

( ) ( )1 1 /y t x t V=      Y(1)=X(1)/P(2) 

( ) ( )2 2 y t x t=      Y(2)=X(2) 

 
Variance Model: 
 

  ( )( )22
1 1 1 1inter slope y tσ σ σ= +   V(1)=(PV(1)+PV(2)*Y(1))**2 

  ( )( )22
2 2 2 2inter slope y tσ σ σ= +   V(2)=(PV(3)+PV(4)*Y(2))**2 

 
Secondary Parameters: 
 

  *  CL Kel V=    PS(1) = P(1)*P(2) 
 

Symbol Table: 
 

system variance Secondary 
elK                   - P(1) interσ       - PV(1)              CL       - PS(1) 

V                     - P(2) slopeσ      - PV(2)  
50IC               - P(3) inter2σ      - PV(3)  

outK                 - P(4) 2slopeσ     - PV(4)  

ampK                - P(5)   

peakT                - P(6)   
 
Notes 
 

The variable ( )1x t , represents the amount of drug in compartment 1 and ( )1y t  represents 

drug concentration in the plasma. The variable ( )r t  represents the rate of infusion of 

drug into compartment 1. The variable ( )2x t  (and ( )2y t ) represents the 
pharmacodynamic response, and IC(2) is the control (pre-drug) value of the response. 
NB: The trigonometric equation used to model the circadian variation in production rate 
assumes time is measured in hours. 
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ORGAN1 
 
 
Description 
 

The model presented describes an isolated organ experiment in which arterial drug 
concentration, represented as a known sum of exponentials, serves as the input to the 
model. The organ model includes a vascular and tissue space with first-order processes 
describing the exchange between the two regions. The model output is measured 
concentration of the drug in the venous effluent. Contributed by William Ebling. 

 
Model File Name 
 

ORGAN1.FOR 
 
Model Diagram 
 

 
 
Model Equations 
 

Differential Equations: 
 

       1 2t tCa Ae Beλ λ− −= +  
( ) ( ) ( )1

12 1 12 2

dx t Q K x t K x t Q Ca
dt Vvasc

⎛ ⎞= − + + + ⋅⎜ ⎟
⎝ ⎠

 

( ) ( ) ( )2
12 1 21 2

dx t
K x t K x t

dt
= −  

 
   CA = (P(5)*DEXP(-P(6)*T)+P(7)*DEXP(-P(8)*T)) 
XP(1) = -(P(1)/P(2)+P(3))*X(1)+P(4)*X(2)+P(1)*CA 
XP(2) = P(3)*X(1)-P(4)*X(2) 
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Output Equations: 
 

         ( ) ( )1 1 /y t x t V=                Y(1)= X(1)/P(2) 
 

Variance Model: 
 
         ( )22

inter slope = + y(t)σ σ σ               V(1)=(PV(1)+PV(2)*Y(1))**2 
 

Secondary Parameters: 
 

         none 
 
Symbol Table: 
 

system variance Secondary 
Q                     - P(1) interσ      - PV(1) none 
Vvasc               - P(2)

12K                   - P(3)
slopeσ      - PV(2)  

21K                   - P(4)  
Ca A−             - P(5)  

1Ca Lam−       - P(6)  
Ca B−             - P(7)  

2Ca LAM−     - P(8)  
 
Notes 
 

The variables ( )1x t , and ( )2x t  represent amounts of drug in the vascular and tissue 

spaces of the organ, with ( )y t  representing drug concentration in the venous effluent 
which is assumed to be in equilibration with the blood in the tissue. 
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ORGAN2 
 
 
Description 
 

The model presented describes an isolated organ experiment in which measured arterial 
drug concentration serves as the input to the model. It is assumed that the arterial drug 
concentration varies linearly between each measured arterial drug concentration value. 
The function LINE (added at the end of the model file for this example) performs the 
needed linear interpolation. The measured values of arterial concentration and the 
corresponding measurement times are entered using the model input entry when the 
program is run. The organ model includes a vascular and tissue space with first-order 
processes describing the exchange between the two regions. The model output is 
measured concentration of the drug in the venous effluent. Requested by William 
Ebling. 

 
Model File Name 
 

ORGAN2.FOR 
 
Model Diagram 
 

 
 
 
Model Equations 
 

Differential Equations: 
 

( ) ( ) ( )1
12 1 12 2

dx t Q K x t K x t Q Ca
dt Vvasc

⎛ ⎞= − + + + ⋅⎜ ⎟
⎝ ⎠

 

( ) ( ) ( )2
12 1 21 2

dx t
K x t K x t

dt
= −  

 
Call LINE(t, u) 
XP(1)=-(P(1)/P(2)+P(3))*X(1)+P(4)*X(2)+P(1)*u 
XP(2)=P(3)*X(1)-P(4)*X(2) 
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Output Equations: 
 

( ) ( )1 1y t = x t /V              Y(1)= X(1)/P(2) 

 
Variance Model: 
 

( )22 ( )inter slope   y tσ σ σ= +             V(1)=(PV(1)+PV(2)*Y(1))**2 
 

Secondary Parameters: 
 
none 
 

Symbol Table: 
 

system variance Secondary 
Q                     - P(1) interσ      - PV(1) none 
Vvasc               - P(2)

12K                   - P(3)
slopeσ      - PV(2)  

21K                   - P(4)  
 
 

Notes 
 
The variables ( )1x t , and ( )2x t  represent amounts of drug in the vascular and tissue 

spaces of the organ, with ( )y t  representing drug concentration in the venous effluent 
which is assumed to be in equilibration with the blood in the tissue. 
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RECEPTOR 
 

Description 
 

Receptor-ligand model describing the association of the ligand L and receptor R to form 
the complex R1L, which in turn under goes a change of state to R2L. The model 
represents the kinetics of a receptor with one binding site and two conformational states. 
Contributed by D. Najman 

 
Model File Name 
 

RECEPTOR.FOR 
 
Model Diagram 
 

 
 

 
Model Equations 
 

Differential Equations: 
 

1 1 1dL k L R k R L
dt −= − ⋅ ⋅ + ⋅  

1 1 1dR k L R k R L
dt −= − ⋅ ⋅ + ⋅  

1 1 2 2
1 1 1 2dR L k L R k R L k R L k R L

dt − −= ⋅ ⋅ − ⋅ − ⋅ + ⋅  

2 2
2 1 2dR L k R L k R L

dt −= ⋅ − ⋅  

 
XP(1) = -P(1)*X(1)*X(2) + P(2)*X(3) 
XP(2) = -P(1)*X(1)*X(2) + P(2)*X(3) 
XP(3) = P(1)*X(1)*X(2) - P(2)*X(3) - P(3)*X(3) + P(4)*X(4) 
XP(4) = P(4)*X(3) - P(5)*X(4) 
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Output Equations: 
 

( )1  y t L=      Y(1)= X(1) 

( )2y t R=      Y(2)= X(2) 

( )3 1y t R L=     Y(3)= X(3) 

( )4 2y t R L=      Y(4)= X(4) 

 
Variance Model: 

 
none 

 
Secondary Parameters: 

 
none 

 
Symbol Table: 
 

system variance Secondary 
1K                        - P(1)         none                   none 

1K−                      - P(2) 

2K                       - P(3) 

2K−                      - P(4) 

  

 
 
Notes 
 

The variables ( )1x t  and ( )2x t  ( ( )1y t  and ( )2y t ) represent the concentration of free 

ligand and receptor, while ( )3x t  and  ( )4x t ( ( )3y t  and ( )4y t ) represent the 
concentration of receptor ligand in conformation states R1L and R2L, respectively. 
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NMDA 
 
 
Description 
 

Model for NMDA receptor-ligand kinetics. Model assumes two binding sites and 
incorporates a receptor-ligand desensitized state. Contributed by D. Najman, J-S Liaw 
and T. Berger. 

 
Model File Name 
 

NMDA.FOR 
 
Model Diagram 
 

 
 
Model Equations 
 

Differential Equations: 
 

  2 2 2on off on off
dA K A R K A AR K A AR K A R
dt

= − ⋅ + ⋅ − ⋅ +  

  2 on off
dR K A R K A AR
dt

= − ⋅ + ⋅  

  2 2 2on off on off
dAR K A R K A AR K A AR K A R
dt

= ⋅ − ⋅ − ⋅ +  

  2 2 2 2 2 2on off open r d
dA R K A AR K A R P A R K A D K A R

dt
β α= ⋅ − + ⋅ − ⋅ + −  

  2open
open

dP
A R P

dt
α β= ⋅ − ⋅  

  2 2 2d r
dA D K A R K A D

dt
= −  
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XP(1) = -2.0*P(1)*X(1)*X(2)+P(2)*X(1)*X(3)-P(1)*X(1)*X(3) 

+2.0*P(2)*X(4) 
XP(2) = -2.0*P(1)*X(1)*X(2)+P(2)*X(1)*X(3) 
XP(3) = 2.0*P(1)*X(1)*X(2)-P(2)*X(1)*X(3)-P(1)*X(1)*X(3) 

+2.0*P(2)*X(4) 
XP(4) = P(1)*X(1)*X(3)-2.0*P(2)*X(4)+P(3)*X(5)-P(4)*X(4) 

+P(5)*X(6)-P(6)*X(4) 
XP(5) = P(4)*X(4)-P(3)*X(5) 
XP(6) = P(6)*X(4)-P(5)*X(6) 

 
Output Equations: 

 
( )1  y t A=      Y(1)= X(1) 

( )2y t R=      Y(2)= X(2) 

( )3y t AR=      Y(3)= X(3) 

( )4 2y t A R=     Y(4)= X(4) 

( )5  openy t P=      Y(5)= X(5) 

( )6 2y t A D=     Y(6)= X(6) 

 
Variance Model: 

 
none 

 
Secondary Parameters: 

 
none 

 
Symbol Table: 

 
system variance Secondary 

 onK     - P(1)         none                   none 

offK     - P(2) 
β         - P(3) 
α         - P(4) 

rK        - P(5) 

dK       - P(6) 
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ESIGMAX 
 

Description 
 

Excitatory sigmoid Emax  model. Requested by Edward Acosta and Burgess B. 
Freeman. 

 
Model File Name 
 

ESIGMAX.FOR 
 
Model Diagram 
 

 
 
Model Equations 
 

Differential Equations: 
 

None 
 

Output Equations: 
 

 ( ) ( )1 0 50
H

H H

Emaxy t E t
EC t

= +
+

 

 

   Note: The independent variable t is used to represent D. 
 

Y(1) =P(1) + P(2)*t**P(4)/(P(3)**P(4)+t**P(4)) 
 

Variance Model: 
 

( )22 ( )inter slope   y tσ σ σ= +             V(1)=(PV(1)+PV(2)*Y(1))**2 
 

Secondary Parameters: 
 

none 
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Symbol Table: 
 

system variance Secondary
0E                 - P(1) interσ      - PV(1)    none 

Emax           - P(2) 
50EC           - P(3) 

H                 - P(4) 

slopeσ      - PV(2)  

 
 
Notes 
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ISIGMAX 
 

Description 
 

Inhibitory sigmoid Emax  model. Requested by Edward Acosta and Burgess B. 
Freeman. 

 
Model File Name 
 

ESIGMAX.FOR 
 
Model Diagram 
 

 
 
Model Equations 
 

Differential Equations: 
 

None 
 

Output Equations: 
 

 ( ) ( )1 0 50
H

H H

Imaxy t E t
IC t

= −
+

 

 

   Note: The independent variable t is used to represent D. 
 

Y(1) =P(1) - P(2)*t**P(4)/(P(3)**P(4)+t**P(4)) 
 

Variance Model: 
 

( )22 ( )inter slope   y tσ σ σ= +             V(1)=(PV(1)+PV(2)*Y(1))**2 
 

Secondary Parameters: 
 

none 
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Symbol Table: 
 

system variance Secondary
0E                 - P(1) interσ      - PV(1)    none 

Imax           - P(2) 
50IC           - P(3) 

H                 - P(4) 

slopeσ      - PV(2)  

 
 
Notes 
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APPENDIX 
 
  
AA..  SSeettttiinngg  VVaarriiaabblleess  iinn  tthhee  GGlloobbaallss..iinncc  FFiillee  
 
 
 
 
 
 
 
 

On installation of ADAPT, certain constants defining maximum values for model 
variables and values for numerical tolerances are incorporated into the compiled program 
libraries. These and other constants are specified in the file globals.inc located in the 
installation folder (default: C:\Program File\BMSR\ADAPT 5). As distributed, the 
globals.inc file contains certain default values for these constants (see section from 
file in Figure A.1). The numerical tolerances and other constants defined in 
globals.inc are discussed in Chapters 5. If desired, the default values included in 
globals.inc can be changed by editing this file. If any of the constants in 
globals.inc are changed after the initial installation, ADAPT must be reinstalled by 
running the RecompileADAPT program in the ADAPT Program Group. If ADAPT is 
uninstalled, the file globals.inc is not deleted from the ADAPT installation folder; 
whether it has been modified by the user or not. If ADAPT is then reinstalled, the 
existing globals.inc file is used by the program. 

 
Maximum values should not be increased arbitrarily above what is expected to be 

needed for the user’s application, as degradation in computing performance can result. In 
particular the constants indicating the maximum number of parameters estimated 
(MaxNPest) and the maximum number of total observations (MaxOBE) critically 
influence program memory requirements and thus speed of computation. In ADAPT 5, 
the constant MaxNPest can be set independently of the MaxNSP and MaxNSP to allow 
large models. 
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Table A.1 Excerpt from file Globals.inc 

 
C  Define maximum value constants. 
      Integer MaxNDE,MaxNSP,MaxNRI,MaxNBI,MaxND 
      Integer MaxNOE,MaxNOB,MaxOBE 
      Integer MaxNVP,MaxSIM,MaxPLT,MaxNSECP,MaxNSO 
      Integer MaxNSubs, MaxNITS, MaxNSAMP 
      Integer MaxNPest, MaxNTest 
      Integer MaxNCP 
      Parameter (MaxNDE=25)    ! Max Number of Differential Equations 
      Parameter (MaxNSP=35)    ! Max Number of System Parameters 
      Parameter (MaxNRI=10)    ! Max Number of Rate Inputs 
      Parameter (MaxNBI=10)    ! Max Number of Bolus Inputs 
      Parameter (MaxND=200)    ! Max Number of Dose Events 
      Parameter (MaxNOE=15)    ! Max Number of Output Equations 
      Parameter (MaxNOB=100)   ! Max Number of Observations per Output 
      Parameter (MaxOBE=300)   ! Max Number of Total Observations 
      Parameter (MaxNVP=20)    ! Max Number of Variance Parameters 
      Parameter (MaxSIM=5000)  ! Max Number of Simulations 
      Parameter (MaxNSECP=15)  ! Max Number of Secondary Parameters 
      Parameter (MaxNSO=10)    ! Max Number of Secondary Outputs 
      Parameter (MaxPLT=1000)  ! Number of Points used for Smooth Plots 
                               !   MaxPLT>=MaxOBE 
      Parameter (MaxNSubs=500) ! Max Number of Subjects 
      Parameter (MaxNITS=1000) ! Max Number of ITS and EM Iterations 
      Parameter (MaxNSAMP=3000)! Max Number of Samples per EM Iteration 
                               !   for Importance Sampler 
      Parameter (MaxNPest=25)  ! Max Number of Parameters Estimated  
                               !   ( <= MaxNSP+MaxNDE ) 
      Parameter (MaxNTest=20)  ! Max Number of Sample Times Optimized  
                               !   ( <= MaxNOB ) 
      Parameter (MaxNCP = 35)  ! Max Number Covariate Model Parameters 
 
C  Stopping tolerance for Nelder-Mead algorithm. 
      Real*8 Reqmin 
      Parameter (Reqmin = 1.0d-06) 
 
C  Missing data number. 
      Real*8 Misdat 
      Parameter (Misdat=-1.0D0) 
 
C  Define constants for LSODA (see documentation in LSODA code). 
C   Note that DimRW must be set MANUALLY based on the value of MaxNDE. 
      Integer ITOL,ITASK,IOPT,DimRW,LIW,JT 
      Real*8 RTOL,ATOL 
      Parameter (ITOL=1) 
      Parameter (ITASK=1) 
      Parameter (IOPT=0) 
      Parameter (LIW=MaxNDE+20) 
      Parameter (JT=2) 
      Parameter (DimRW=872)     ! DimRW = 22 + MaxNDE*Max(16,MaxNDE+9) 
      Parameter (RTOL=1.0D-06)  ! Rel. error tolerance for LSODA 
      Parameter (ATOL=1.0D-06)  ! Abs. error tolerance for LSODA 
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