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Preface

The Short Course is intended for basic and clinical research scientists who are
actively involved in the application of modeling, computational and data analysis
methods to problems involving drug kinetics and drug response. Background
lectures and case studies will cover the following topics: population modeling —
theory and applications; PK/PD models (indirect & target mediated response
models); modeling with covariates; modeling using inverse Laplace transformation
(absorption, metabolite PK); least squares, maximum likelihood and Bayesian
estimation; estimation with multiple response models.

It is hoped that this Short Course will give the participants a thorough
exposure to the broad class of pharmacokinetic/ pharmacodynamic modeling and
data analysis problems that can be solved using ADAPT 5.

David Z. D’ Argenio Michael Weiss
Los Angeles Halle/Salle
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ADAPT Short Course Schedule
Tuesday, 15 July 2008

8:30 Background: Modeling with ADAPT 5
9:45 Case Study: Doses and Covariates
10:30 Break
10:45 Background: Parameter Estimation
11:45 Case Study: WLS/ML Estimation
12:30 Lunch Break
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ADAPT Short Course Schedule
Tuesday, 15 July 2008

13:30 Case Study : Multiresponse Estimation

14:15 Case Study: Recirculatory Modeling of Disposition
15:00 Break

15:15 Case Study: Models for Drug-Receptor Interaction
16:00 Case Study: Direct Response PK/PD Models

16:45 Dinner Excursion
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9:00
9:45
10:45
11:00
11:45
12:30

ADAPT Short Course Schedule
Wednesday, 16 July 2008

Case Study: Indirect Response PK/PD Models
Background: Population PK/PD Modeling
Break

Case Study: The ADAPT Population Programs
Case Study: The MLEM Program

Lunch Break
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13:30
14:15
15:00
15:15
15:45
16:30
16:45

ADAPT

¥

ADAPT Short Course Schedule
Wednesday, 16 July 2008

Case Study: Absorption/Disposition Modeling
Background: Population Modeling with Covariates
Break

Case Study: Modeling Building with Covariates
Case Study: PK/PD Population Modeling Example
Summary Comments

Adjourn
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ADAPT

o

MODELING with ADAPT

Model Formulation

* Model Equations

* Inputs

* Measurement Model
* Parameter Model

o Secondary Parameters

Implementing the Model in ADAPT

* Model Equations — Model File
 Inputs/Measurements — Data File
o Parameter Values — Parameter File

ADAPT Short Course BMSR
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ADAPT

o

MODELING with ADAPT

Comments on Computational Methods

» Solving Differential Equations (LSODA)
« Function Minimization (Nelder Mead Simplex)

The Programs

 SIM, ID, SAMPLE
« NPD, STS, ITS, MLEM

Library Models

Dissemination and Support

ADAPT Short Course BMSR
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PK/PD Paradigm

DRUG
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DISPO BIOSENSOR  BIOSIGNAL TRANS- e
KINETICS DISTRIBUTION PROCESS FLUX DUCTION

L PHARMACOKINETICS —'”— PHARMACODYNAMICS ——l

(From Jusko J. Pharmacokin. Biopharm.)
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X(t)

r(t)

y(t)

Model Formulation

» Model Equations (state space formulation)

d(’;f)_f(x(t) o, r). 1), x(0)=c

y(t)=h(x(t), a, r(t), 1)

amount of drug in compartment; concentration of drug in
tissue; effect site concentration; receptor activity; signaling
protein; physiological variable; disease state

rate constant; clearance; distribution volume; binding constant;
partition coefficient; diffusivity; EC50; Emax; effect site
elimination rate; physiological production/elimination rate; etc.
drug infusion regimen; covariate (e.g., body weight,

creatinine clearance, liver enzyme, cardiac output)

initial values of x: compartment amounts; biological variables
plasma concentration; drug exposure; drug effect (biomarker;
surrogate endpoint; cllnlcal response); etc.
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ADAPT

o

* Model Equations - Examples

A

1. x-amount of drug, y - concentration of drug:

ax(t) __ -
it Kx(t), x(0)=D

y(t)=x(t)/V

ADAPT Short Course BMSR

Page 5




* Model Equations - Examples

2: X - concentration of drug, y - concentration of drug:

dx(t) _ _
T Kx(t), x(0)=D/V

y(t) =x(t)
3: analytic solution, y - concentration of drug:

()= Kt

ADAPT
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» Model Equations - Examples

Receptor — Ligand Interaction Model
One Binding Site — Two Conformational States

. L+Re==2RL1==>RL2
= 2 4

% =—K,-L(t)-R(t)+ K, -RL1(t), L(O)

% = —K,-L(t)-R(t)+ K, -RLL({t), R(0)

dRId_t1 O —K,-L©)-R(®)-K,-RLL ~K,-RLIO+K,-RL2(t), RLL0)
R0 K,-RLI(t) - K, -RL2(t), RL2(0)

dt
ADAPT
,O/ ADAPT Short Course BMSR Page 7




* [nputs

1. Model Inputs — appear explicitly in equations; piecewise constant

ADAPT

o

rt)=r_,, dt_,<t<dt 1=2,..,nd+1
e.g., r{t) - 1V Infusion Regimen
F4

Arl

r(t) '
I r3 's
>
dtq dty dtg dty dtg

ADAPT Short Course
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1. Model Inputs — appear explicitly in equations; piecewise constant

e.g., r(t) - Covariate (e.g., CrCl; BW)

CrCl

A

r

o r3

dtq

dto

dtg

e.g., r() - Organ Blood Flow

Flow
Rate

ADAPT

A

il

r2

dtq

,O/ ADAPT Short Course
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2. Bolus Inputs — not in equations; change states instantaneously;
specified at program run

X(dth)=x(dt)+b(dt),  i=1...nd
b
0 |, A b3
>
dtq dto dt3

Delayed model inputs/bolus inputs OK: r(t—z), b(t—7)

ADAPT
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ADAPT

o

3. Other Inputs

e.g., Piecewise linear

c(t)

e.g., Algebraic equation (sum of exponentials, sin)

Kin

ADAPT Short Cou

Time

rse

circadian variation of physiological
property

BMSR

Page 11

11



* Measurement Model

— Measurement Equation (Iet 9=[a|c], y(tj)_>y((9,tj)j

2(t)=y(O, t))+e(t;),  j=L...m

— Variance Model

Var{ei(tj)}:gi(yi(e, tj),,B) j=1...,m, i=1..,1

e.g., Oneoutput - I=1
=
kS <
a) Oslope
0
~“—Ainter
y(6, 1)
ADAPT
oy ADAPT Short Course BMSR

Vare(t)}= (0 ror + 0o YO.1)2

slope

B=1%nter Gslope]
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SD{e4(1)}

e.g., Two outputs - 1 =2

“~0slope1 X
Q,
M)
¥~ Ointer1 N
y1(61)
_ 2
Var{el(t)}_ (Ji nterl " Jslopel y1(9, D)

ADAPT

o

p=1

Zinter1 Gslopel

ADAPT Short Course BMSR

Ointer2

y2(6,t)

Var{e (t)}= 2
{2()} Ginterz

]

Ginterz
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e.g., Oneoutputs - 1 =1

0.4- Y=
E 6020.1
%‘ 0.2 V=2
" =1
0.0+ T T T 1
0.0 0.5 1.0 15 2.0
y(6,9)
Var{e(t)}=o2y(0,1)”
p=lo, 7l
ADAPT Short Course BMSR Page 14
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ADAPT

o

— Distribution of the Output Error e(t)

1. Continuous (interval) data: Normal, Log Normal Distribution
e.g., drug concentration, physiological variables

2. Count data: Poisson Distribution
e.g., radioactivity

3. Categorical data (nominal/ordinal):
a. Dichotomous (Binary) Data: Binomial Distribution
e.g., relief of pain
b. Multiple categories: Multinomial Distribution
e.g., pain severity, cancer stage

4. Time to event data
e.g., time to onset of pain relief

ADAPT Short Course BMSR Page 15
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« Parameter Model
— @ — constant (known or unknown)

— @ — random vector with distribution p(&) - 8~ p(8)

p(6) =N(1,2) multivariate Normal
p(@) = LN(1,2) multivariate lognormal
p(@)=U(0, a,.,) independent uniform
p(&) =NI, >0 noninformative

p( 9 ) - Z Wk N (,le ) Zk ) m |Xture mOdEI 75, Population Distribution -K

5.04
2.5
0.0:

— Recall e [a | C] 00 02 04 06 08

K (hrh

p(K)

IC’s (initial conditions) modeled as constant or random

ADAPT
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Secondary Parameters:
y=w@)  r=[r:v
Example - two compartment model:

System parameters:
0=| Ky V Kg Kpe |

Secondary parameters:
y =[CL V. CL,V,]
CL=VK, V=V

CLy=VKep Vp=VKep/Kpg

ADAPT Short Course BMSR Page 17




o

Implementing the Model in ADAPT 5

ADAPT

= /O

Program

Feset
Exit

Select.

Model Data Parameter Batch Hep

ADAPT 5

Pharmacokinetic/Pharmacodynamic

X Systems Analysis Software
Individual Analysiz Fopulatioh Analysis
St MLEM
Is] ITS
SAMPLE 5TS
NFD

SIMULATION
Model Sirmulation includi
1. Individual Simulation

ng:

2. Individual Simulation with Output Error

3. Population Simulation
4. Population Simulation

[ RuninEatch Mode

Ready

with Dutput Error

Select Cancel Q !

Biomedical Simulations Resource

University of Southern California

ADAPT Short Course BMSR
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E model. for

[S] apapT
e ADAPT £
_Egram Model Data Paralmeter Batch Help a Verdinn 5 i
| | Mewd, . [ T g
=
Cpern... c MODEL o
Library... c : ) -
C This file contains Fortran subroutines into which the user = -
Reset c must enter the relevant model equations and constants. *
Pharmacok| C Consult the User's Guide for details concerning the format for =
C entered equations and definition of symbols. *
System o 5
C 1. Symhol- Parameter symbols and model constants *
Program:  Sik 16 2. DiffEq- BSystem differential equations =
16 3. ODutput- BSystem output eguations =
Madel File: 16 4. Varmod- Error variance model egquations =
’ 16 5. Covmod- Covariate model eguations (ITS, MLEM) =
Executable File: 16 (=8 Popinltf Population parameter inl‘_cial values (ITS,MLEM) =
6 7. Prior - Parameter mean and covariance values (ID,NPD,3T3) =
6 8. Sparam- Secondary parameters =
6 9. Amat - System state matrix =
I =
C
Data File:
Parareter File:
Subroutine 3IYMBOL
Implicit None
Include 'globals.inc!'
Include 'model.ine’
Biomedical| o
B i [t b it a b Bl i e e el et el i i e e e el | 2]
Universityll ©  Enter as Indicated C
e e e e e e 12
DEgs = 0 [ Enter # o DIiEE. Fgs.
‘l SParam = 0 | Enter # of System Parameters.
aram = 00 | Enter # of Wariance Parameters.
Ready P
SecPar = 1 | Enter # of Secondary Parameters.
SecOut = 0 | Enter # of Secondary Outputs (not used).
legsol = 1 | Model type: 1 - DIFFEQ, 2 - AMAT, 3 - OUIPUT only.
Descr = ' Insert Model File Description ! =
[«] | M 4
ADAPT
ADAPT Short Course BMSR Page 19
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Implementing the Model in ADAPT 5
» The ADAPT Model File

C**********************************************************************

C ADAPT
C Version 5

*

*

C**********************************************************************

MODEL

This file contains Fortran subroutines into which the user
must enter the relevant model equations and constants.

entered equations and definition of symbols.

1. Symbol- Parameter symbols and model constants

2. DiffEg- System differential equations

3. Output- System output equations

4. Varmod- Error variance model equations

5. Covmod- Covariate model equations (ITS,MLEM)

6. Popinit- Population parameter initial values (ITS,MLEM)

7. Sparam- Secondary parameters
8. Amat - System state matrix

NN NONONONONONO NGO NONONONONO NGNS

Consult the User®s Guide for details concerning the format for

7. Prior - Parameter mean and covariance values (1D,NPD,STS)

ok ok ok % ok %k ok % ok o % F ¥

*

BD@*********************************************************************

ADAPT Short Course BMSR
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CHEHH TR AR AR R R R R R HC
Subroutine SYMBOL
Implicit None
Include “globals.inc”
Include "model.inc*

cC
Cmm e C
C Enter as Indicated C
Cm— C
NDEQs = ? 1 Enter # of Diff. Egs.
NSParam = ? 1 Enter # of System Parameters.
NVparam = ? 1 Enter # of Variance Parameters.
NSecPar = ? I Enter # of Secondary Parameters.
legsol = ? ! Model type: 1 - DIFFEQ, 2 - AMAT, 3 - OUTPUT only.
Descr = "Enter Model File Description Here"
C-—k—————————— C
C-—k——————————— . C
C Enter Symbol for Each System Parameter (eg. Psym(1)="Kel*") C
Cm— C
Enter System Parameter Symbols Here
Psym(1)= "Kel*
Psym(2)= "Vc*©
C-————— C
C-—k—————————— C
ADAPT
1 ADAPT Short Course BMSR Page 21
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C Enter Symbol for Each Variance Parameter {eg: PVsym(1)="Sigma*} C

e C
Enter Variance Parameter Symbols Here
PVsym(1)="Sigma“
CcC
Cm oo C
C Enter Symbol for Each Secondary Parameter {eg: PSsym(1)="CLt"} C
e C
Enter Secondary Parameter Symbols Here
PSsym(1)="CLt"
Cm oo C
Cm oo C
C
ADAPT
1 ADAPT Short Course BMSR Page 22
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CHHBHAHHHBHBHBHHH AR AR H A H AR A H AR A A A AR A AHAHC

Subroutine DIFFEQ(T,X,XP)
Implicit None

Include “"globals.inc*

Include "model.inc*

Real*8 T,X(MaxNDE) ,XP(MaxNDE)

Enter Differential Equations Below {e.g. XP(1) = -P(1)*X(1) } C

e C

Enter Differential Equations Here
XP(1) = -P(1)*X(1)

Cm m C
G m o C
C

Return
End
ADAPT
1 ADAPT Short Course BMSR Page 23
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CHARR AR AR r R r R R e R e R s e A #48C
Subroutine OUTPUT(Y,T,X)
Implicit None
Include “globals.inc”
Include "model.inc”
Real*8 Y(MaxNOE),T,X(MaxNDE)

cC
Cmmm C
C Enter Output Equations Below {e.g. Y(1) = X(1)/P(2) } C
Cm—m G- C
Enter Output Equations Here
Y(1) = X(1)/P(2)
Y(1) = X(D/(P(2)*R(2))
Cmmmm C
G - C
C
Return
End
ADAPT
1 ADAPT Short Course BMSR Page 24
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CHHHH B A T R R R R R R R R R R C
Subroutine VARMOD(V,T,X,Y)
Implicit None
Include "globals.inc*
Include "model.inc*
Real*8 V(MaxNOE),T,X(MaxNDE),Y(MaxNOE)

CcC
s C
C Enter Variance Model Equations Below C
c {e.g. V(1) = (PV(1) + PV(2)*Y(1))**2 } C
C————-C-—— C
Enter Variance Model Equations Here
V(1) = (PV(1) + PV(2)*Y(1))**2
. C
o C
C
Return
End
ADAPT
1 ADAPT Short Course BMSR Page 25

25



CHAHHHHHH R H R T R R R R R R R C
Subroutine COVMOD(PC, P, 10)
Implicit None
Include "globals.inc”
Include "model.inc”

cC
Cm C
C Enter # of Covariate Parameters C
Cm G C
NCparam = ? ! Enter # of Covariate Parameters.
cC
Cm C
C Enter Symbol for Covariate Params. {eg: PCsym(1)="CLRenal*"} C
C-—mm G C
Enter Covariate Parameter Symbols Here
PCsym(1)="CLnonRen*
PCsym(2)="CLRenal "
ADAPT
1 ADAPT Short Course BMSR Page 26
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cC--————————— . . C
C For the Model Params. that Depend on Covariates Enter the Equation C
C {e.g. Pmean(1l) = PC(L)*R(2) } C
C-———Cmmm C

Enter Covariate Model Equations Here
Pmean(1) = PC(1) + PC(2)*R(2)

Cm m o C
Cm m C
C

Return
End
ADAPT
1 ADAPT Short Course BMSR Page 27
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CHARR TR AR r R r R R e R e R R e ea A #8C
Subroutine POPINIT(Pmeanl,ICmeanl,Pcovl,ICcovl, PCIl)
C Initial parameter values for population program parameters (ITS, MLEM)

CcC
o S Y C
C Enter Initial Values for Population Means C
C { e.g. Pmeanl(1) = 10.0 } C
C-——C————— C
Enter Initial Values for Population Means Here
CcC
Cm C
C Enter Initial Values for Pop. Covariance Matrix (Lower Triang.) C
C { e.g. Pcovl(2,1) = 0.25 } C
C-——C——————— C
Enter Initial Values for Pop. Covariance Matrix Elements Here
CcC
Cm C
C Enter Values for Covariate Model Parameters C
C { e.g. PCI(1) = 2.0 3} C
o C
Enter Initial Values for Covariate Model Parameters Here
CcC
C-—————————.— . ————_———_—————————————————————————— C
ADAPT
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CHEHHAHHH A H AR R R C
Subroutine PRIOR(Pmean,Pcov, ICmean, ICcov)
Implicit None
Include “globals.inc*
Include "model.inc”
Integer 1,J
Real*8 Pmean(MaxNSP+MaxNDE), ICmean(MaxNDE)
Real*8 Pcov(MaxNSP+MaxNDE ,MaxNSP+MaxNDE), ICcov(MaxNDE,MaxNDE)
cC
G C
C Enter Nonzero Elements of Prior Mean Vector C
C { e.g. Pmean(l) = 10.0 } C
C-——C-———— C
Enter Population Mean Values Here
Pmean(1) = 0.25
Cmmm e C
cC
G C
C Enter Nonzero Elements of Covariance Matrix (Lower Triang.) C
C { e.g. Pcov(2,1) = 0.25 } C
Cm— == G C
Enter Population Covariance Values Here
Pcov(1,1) = 0.1
ADAPT
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Subroutine SPARAM(PS,P,IC)

Implicit None

Include “globals.inc”

Real*8 PS(MaxNSECP), P(MaxNSP+MaxNDE), 1C(MaxNDE)

cC
G m o C
C Enter Equations Defining Secondary Paramters C
C { e.g. PS(1) = P(QD*P(2) } C
S C
Enter Secondary Parameter Equations Here
PS(3) = P(2)*P(3)/P(4)
G m o C
G m o C
C
Return
End
ADAPT
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ADAPT

| X

Program Model Data Parameter Batch Help

e

Cpen...
Library..,
Reset

ADAPT 5

Pharmacokinetic/Pharmacodynamic

Chictome Anahoic Saofhunar

ADAPT Model Library

Frograrm:
Madel File:

Executahle File:

Data File:

Parareter File:

Ready

Select a model file

Direct.for [PS |
Duration. For o K;
EXAMPLE.FOR t N
Induct.for r( )
Trmlink.for
Irmprodi.for
IrmprodZ.for
Trmremi For
Trmrem.Far
Link1.for
Linkz2.for
model. for
modellag. For
MNMDA, For
Oraliv.For
Crganl.for
Crganz. for
PD1.FOR
PDz.FOR
PDE.FOR
PK1.FOR
PKZ.FOR
PK3.FOR
PE4.FOR
PKS.FOR
PE6.FOR
PK7.FOR |

Flm e \

o]

Ko ut

Cancel ]

ADAPT Short Course

BMSR Page 31
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ADAPT

o

 Supplying Inputs

Spread Sheet Format
» model inputs (e.g., drug infusions, covariates)
* bolus inputs
* input event times

Example #1: 1V and Bolus administration

" 1=1000
(0, by L o
b=250 ﬂ
. >
01 6 12 13

Time (hours)

model input; 1 bolus input; 5 input event times, 0, 1, 6, 12, 13 hrs.

ADAPT Short Course BMSR
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Spread Sheet for Example #1

Input Event Time Infusion Rate Bolus Amount
(hr) r (mg/hr) b (mg)
0 1000 0
1 0 0
6 0 500
12 500 250
13 0 0

ADAPT Short Course

BMSR
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Enter all Input and Output, then Save.
Frogram Model Data Parameter Bl nputData

Tl:l:—(> Mo, of Model Inputs : | 1 Mo, of Bolus Inputs : | 1 Mo, of Input Events : I B Feset Yalues |

Edit. ..
Open... Time R )
= o 11000 Is
Pharr| |2 1 o I
& NE & o 500
Progran:  SIM 4 1z 5_500 1250
. 5 13 o
Model File:  C:hAdapty |

Executable File:  C:hAdapty

— Output Data
Leave cell empty if no measurement

Ha. of Madel Dutputs : | 1 Ma. of Observatians : | 2 = | Enter Diata Individually for Each Dutput Erter Values |

Drata File:

Parameter File:

Bion
Uni
Cancel Saye..
Ready [ A
ADAPT Short Course BMSR Page 34
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ADAPT

o

Example #2: IV administration of two drugs

A ;=1000
"1(0). r2(0) rp=500  r1=500

1
| |
I I ||

01 6 9 1213

Time (hours)
2 model inputs: r,(t), ry(t) (mg/hr)

6 input event times: 0,1,6,9, 12, 13 hrs

ADAPT Short Course BMSR
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Spread Sheet for Example #2

Input Event Time

Infusion Rate

Infusion Rate

(hr) rl (mg/hr) r2 (mg/hr)
0 1000 0
1 0 0
6 0 500
9 0 0
12 500 0
13 0 0

ADAPT Short Course

BMSR
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» Supplying Measurements

Simultaneous Entry of Observations for all Outputs

» Use when outputs measured at same times

» QOccasional missed measurements indicated by using the
missing data number ( -1 default)

* e.g., PK model of parent & metabolite

Time

Observation units,

apbrwWNBE

0.500

1.000

6.000
10.00
18.00

ADAPT Short Course BMSR

Measured Value for Each Output

Y(L),
9.66
17.67
8.56
3.45
1.23

LY

0.22
0.86
0.56
-1

0.12

Page 37
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ADAPT

o

Individual Entry of Observations for Each Output

» Used when different outputs measured at different times
* e.¢., PK/PD models with kinetic & dynamic data

Enter the number of observations for Y(1): 5
Time
Observation Units ,

8,
12

O~ WNPEF
N

Enter the number of

Time
Observation Units ,
1. 3,
2. 6,
3. 9,
4. 18,

ADAPT Short Course

BMSR

Measured Value For
Y(1)
10.2
8.13
5.54
2.32
1.41

observations for Y(2): 4
Measured Value For
Y(2)
3.23
7.67
5.32
1.33

Page 38
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Program  Model

Data Parameter PBatch Help

Mew.,

Ready

Edit...
Open...

Enter all Input and Output, then Sawe

- Input Dat

Mo, of Madel Inputs : 1

e of Bolus Inputs : 1

Time RL) B(1)
Frogram: 5 1 o 1000 0
Model File: 2z o] o]
Executable File:  C| £ & g 200
4 12 500 250

5 )

Drata File:

No. of Input Everts : I 5 FesetValues

Parameter File: ||~ Output Data

Leave cell empty if no measurement

Ma. of Madel Outputs t4 Mo. of Obsenvations : 5 [~ Enter Data Individually for Eash Output ResetValues

Time (1) ¥(2)
1 i) 9.66 0.22
2 17.67 Q.86
) 3 8.56 0.56
4 10 3.45
i 123

Cancel | Save... |

ADAPT Short Course

BMSR
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Comments on Numerical Methods

e Solving Differential Equations (LSODA)

Livermore Solver for Ordinary Differential equations with
Automatic method switching for stiff and nonstiff problems

 Variable Step Methods

* VVariable Order Methods (Adam's)
» Overshooting and Interpolation

« Stiff Equations (Gear's Method)

Error Control (local error)
e - LSODA estimate of error at time t;

step size, method and method order selected so that:
e < RTOL [x(t)| + ATOL
RTOL & ATOL =10°% inglobals.inc

ADAPT
§of ADAPT Short Course BMSR
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Euler's Method

%: F(x(t),1), x(0)=c

» Graphical Interpretation

XU _kxty, x(0)=4]

ADAF | onorteourse

BIVISK
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Euler's Method

%: F(x(t),1), X(0)=c

» Definition of Derivative
dx(t)  x(t+h)—x(t)
dt h

X(t+h)—x(t)
h

X(t +h) = x(t) + h- f (x(t),1)

~ f(x(t),1)

ADAPT Short Course BMSR
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ADAPT

o

e Function Minimization

Nelder Mead Simplex Method
Direct search method (Does not use derivatives)

Convergence Control - min O(&)

|0(8 )/IO(O .., -1 < REQMIN
REQMIN = 10 in globals.inc
Function Evaluation, Iteration

e Sampling Based Methods (Population Analysis)

Importance Sampling

ADAPT Short Course BMSR
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AD2
<

Two Parameter Illustration of Nelder-Mead Simplex Method

8

=r Start

-4 i
-1 -0.5 0 0.5
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The Programs

* SIM

Individual simulation
Individual simulation with output error
Population simulation
Population simulation with output error

ID

Weighted least squares (WLS)

Maximum likelihood (ML)

Generalized least squares (GLYS)
Maximum a posteriori probability (MAP)

SAMPLE
D optimality
C optimality
ADAPT
,O/ ADAPT Short Course BMSR Page 45
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ADAPT

o

The Programs

e MLEM
Parametric maximum likelihood (EM/Sampling)

e ITS
Iterative two stage

o STS
Weighted least squares (WLS)
Maximum likelihood (ML)
Maximum a posteriori probability (MAP)

e NPD
Weighted least squares (WLS)
Maximum likelihood (ML)
Maximum a posteriori probability (MAP)

ADAPT Short Course BMSR
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o

e BMSR Web Site

(bmsr.usc.edu)

ADAPT Short Course

Biomedical

B M S R Simulations

Resource

The Biomedical Simulations Resource (BMSR) in the Department of Biomedical
Engineering at the University of Southern California is dedicated to the advancement of
the state-of-the-art in biomedical modeling and sirmilation through Core and Collaborative
Research projects, as well as the dissemination of this knowledge and related software
through Service, Training and Dissernination activities aimed at the biomedical comrmurnity at
large. The BMSE includes four core research projects

Monlinear and Nonstationary
Modeling of Biomedical Spstems
Vasilis Z. Marmarelis, Ph.D.
Co-Diractor

Dynawaic Modeling of State-

Cardiovespivetory Intevactions

Michael C.K. Khoo, Ph.D.
Co-Imvastigator

Eighteen Collaborative Research Projects serve as challenging test grounds for the Resource's

Phaymacokinetic/Pharmacodynaric

Spsterns Analysis

David Z. D"Argenio, Ph.D.

Co-Dhirector
Nonlinear Modeling of

the Hippocernpus

Theodore W. Berger, Ph.D.

Co-Fnvastigator

methodologies and expertise. The BMER's service activities inchude the development and
distribution of four software packages (ADAPT, LY315, PNEUMA & EONS).

The Resource's Tratning and Dissemination activities include short courses, advanced
wotkshops and the publication of associated research volumes

The BMSR is funded through grant P41-EFBO01978 from the National Institute of

Bil dical I ing and Bi
the NIH.

Resource Links
Hational Resource for Cell Analysis and

Modeling {HRCAM)
Hational Simulation Resource (NHSR)

BMSR

ing /National Center for Research Resources of

ContactUs

Marcos Briano

Administragive Coordinagor
Uniwersity of Southern California
Rintnedical Sirmidatinns Reamiree

‘e

%o NCRR

Uniwersity of Southern California
witerbi School of Engineering

Biomedical Enginesring

Mh'['m" o
- BMSR

What's New

Postdoctoral Fellowship
20082009

2008 Workshop
Closed-Loop Estimation &
Control of Blood Glucose-
From Theory to Practice
Augerst 13, 2008

2008 Short Course
Advanced Methods of PKPD
Systems Analysis Using
ADAPT

duty 1516, 2008
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» Citing ADAPT in Publications

Pharmacokinetic/Pharmacodynamic
Systems Analysis Software

ADAPT 57

Biomedical Simulations Resource (BMSR)

NCRR

ADAPT Short Course BMSR

D’Argenio, D.Z. and A. Schumitzky.

ADAPT 5 User’s Guide: Pharmacokinetic/
Pharmacodynamic Systems Analysis Software.
Biomedical Simulations Resource,

Los Angeles, 2008.
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» Searching the ADAPT Citation Library
ADAPT

Pharmacokinetic/Pharmacodynamic Systems Analysis

)

Citations Appearing in 2008

Uriversity of Southern California

1. Chiorean, E.G., ..M. Porter, A E. Foster, A5, Al Ornari, C.A Yoder, K.L. Fife, R.M. Biormedical Simulations Resource
Strather, D.J. Murry, W Yu, D.R. Jones and C.J. Sweeney. A phase | and
pharmacaokinetic trial of erlotinib in combication with weekly docetaxel in patient with Biomedical Engineering

taxane-naive malighancies. Clinical Cancer Research 14(4):1131-1137, 2008

2. Dong, JQ., B. Chen, MA. Gibbs, M. Emery and JP. Gibbs. Application of
computer-aided  pharmacokinetic and  pharmacodynamic  methods  from drug
discovery through registration. Current Computer-Aided Drug Design 4(1): 54-66(13),

2Rl Download Software
" . . User's Guide
3. Hazra, A, M.A Pyszczynski, D.C. DuBois, R.R. Almon and W.J. Juska. Modeling Citations
of coticosteroid effects on hepatic love-density lipoprotein receptors and plasma lipid Model Library

dyharnics in rats. Pharmaceutical Research 25(4):769-780, 2008

4. Hope, W.W., D. Mickiene, V. Petraitis, R. Petraitiene, A.M. Kelaher, J.E. Hughes, 2008

M.P. Cotton, J. Bacher, J.J. Keirms, D. Buell, 5. Heresi, D.K. Benjamin Jr, AH. 007

Grall, G.L. Drusano and T.J. Walsh. The pharmacokinetics and pharmacodynamics of 2008

micafungin - in experimental  hematogenous  Candida  meningoencephalitis: 2003

implications for echinacandin therapy in neonates. Journal of Infectious Diseases 2004

197(1): 163-171, 2008 2003

2002

5. Granizo, J.J., B. Sadaba, J. Honorato, M.J. Gimenez, D. Sevillano, L. Aguilar and P. 200

Coronel. Monte Carlo simulation describing the pharmacodynamic profile of 2l

cefditoren in plasma from healthy volunteers. International Journal of Antimicrobial 1;22

Agents 31(4): 396-398, 2008 e

B Kirstein, M.N., R.C. Brundage, MM Moore, BW. Williams, LA Hillman, J3. 1995

Dagit, J.E. Flsher, P.H.Marker, RA. Kratzke and D. Yee. Pharmacodynamic 1588

characterization of gemcitabine cytotoxicity in an in vitro cell culture bioreactor 1994

systern. Cancer Chemotherapy and Pharmacology 51(2):291-299, 2008 1993

1482

7. Kirstein, M.M., 5. Root, M.M. Moore, KM, ¥Wieman, B Williams, P.A. Jacobson, 1881

m P.A, Marker, P.H  and Tuttle, T.M. Exposure-response relationships  for 1040
e~ oxaliplatin-treated colon cancer cells. Anti-Cancer Drugs 19(1): 37-44, 2008. 1989
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Case Study - Doses and Covariates

This case study is designed to illustrate how to specify model inputs. The
first example involves simulating the simultaneous infusion of a parent drug
and its metabolite. The second example in this case study incorporates a
measured covariate that changes with time during the simulation.

Consider the following 3 compartment model with the infusion inputs shown
(r1(t) represents the parent and ro(t) the metabolite). Assume that we are

interested in simulating the concentrations in compartments 1 and 3

1. The three differential equations and two output equations describing this
model have been coded and entered in a Model File named dcl.for, along
with all other code necessary to define the model. The following
correspondence between the kinetic parameters and Fortran symbols has
been used:

V1 -PQ) K13 -P(4)
K12 - P(2) K30 - P(5)
K21 - P(3) V3 -P(6)

D.Z. D’Argenio, Biomedical  Simulations  Resource, ADAPT  Short Course
1



Examine the file dcl.for using the Fortran Editor (double click on the
file) to verify that the model has been correctly coded.

2. Consider the following dosing regimen for the parent and metabolite:

parent: 1000mg/hr - 0.0-1.0 hrs; 750mg/hr - 24.-25. hrs;
metabolite: ~ 25mg/hr - 0.0-12.hrs;  25mg/hr - 36.-48. hrs.

The figure below illustrates the dose regimen for parent (solid) and
metabolite (dashed).

A

r1=1000
ri(), ra(t) r1=750
r2=25 {W r2=25
I L | L | 5
01 12 24 25 36 48

Time (hours)

The table below shows the entries required to specify the above dose
regimen in ADAPT.

Number of model inputs: 2
Number of bolus inputs: 0

Number of input event times: 7

Input Time Value for all Inputs
Event Units R(1) R(2)

1 0.0 1000 25

2 1.0 0 25

3 12 0 0

4 24 750 0

5 25 0 0

6 36 0 25

7 48 0 0

D.Z. D’Argenio, Biomedical  Simulations  Resource, ADAPT  Short Course
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D.Z.

3

The model input information for this example is stored in the Adapt Data
File, dcl.dat, along with output information. Inspect this file in the
Adapt Data Editor. First select the Program SIM and then from the
Model menu Open dcl.for. Next, from the Data menu select Edit and
browse for the file dcl.dat. After inspecting the file in the Adapt Data
Editor, select Cancel.

The following values for the model parameters are stored in the
parameter file dcl.prm.

Vi =30L, K13 =0.05 hr-1
K12=0.2 hr-l K3p=0.3hr-1
K21=0.1hr1 V3 =25. L.

Also, all three initial conditions (IC(1), IC(2), IC(3)) are 0.0. Inspect this
file in the Adapt Parameter Editor

Simulate the model and examine the results.

The model equations used above have been modified to allow both V1
and V3 to depend linearly on measured body weight as a covariate. A

third model input, R(3), is used to represent body weight. This can be
done by replacing the variables V1 and V3 in the original output

equations, with V1slope*R(3) and VV3slope*R(3), respectively. A Model
File named dc2.for contains these modified equations. Examine this
Model File in the Fortran Editor.

We want to simulate this new model using the same infusion regimen
given above as well as the same observation times and parameter values.
To do this we need to define the body weight during the dose regimen.
Assume body weight is given as follows:

BW(t): 50Kg-0.0t024.0 hrs 75 Kg - after 24 hrs

D’Argenio, Biomedical  Simulations  Resource, ADAPT  Short Course



D.Z.

4

The following figure shows the dose regimen described previously with
the body weight covariate information added.

A
r(), ra() r3=75
r3(t) r3=50

Time (hours)

The data file dc2.dat includes this information. Examine this data file in
the Adapt Data Editor.

Now simulate the model dc2.for with the data file dc2.dat, letting the
new parameters, V1slope and V3slope, equal 1.0 and 0.5, respectively.
The parameter file dc2.prm contains all the parameter values for this
example. Examine the parameter summary and view the plots using the
default option.

How would you modify the model equations used in part 5, to allow K3

to depend on measured serum creatinine as a second covariate in the
model. A fourth input, R(4), can be used to represent serum creatinine.
The model file dc3.for contains the needed equations to implement this
two drug infusion, two covariate example. Examine this Model File in
the Fortran Editor.

D’Argenio, Biomedical  Simulations  Resource, ADAPT  Short Course



PARAMETER ESTIMATION - INDIVIDUAL

Review of Notation

* Model Equations
* Measurements
e Parameters

The Estimation Problem and Methods

e The Problem
e The Methods

Least Squares Estimation

» Gauss’s Solution
» Weighting

ADAPT
,O/ ADAPT Short Course BMSR Page 1

PARAMETER ESTIMATION

Likelihood Estimation

e The Problem
 Maximum Likelihood Estimation
» ELS, GLS, & Iteratively Re-Weighted Least Squares

Bayesian Estimation

e The Problem
 MAP Estimation

Model Selection Criteria

e AIC and BIC for WLS & ML Estimation
 GEN-IC for MAP Estimation

ADAPT
/o/ ADAPT Short Course BMSR Page 2




Review of Notation

* Model Equations
dzit)z F(x(M), o r(D), 1), x(0)=c
yt)=h(x(t), &, r(t), t) @ — Collection of all
model parameters

* Measurements
Z(tj):y(g,tj)+e(tj), j:l,...,m

e(t)~N (O, a(y(6,1), ,6’)) 3 — All variance

model parameters
» Parameters

@ — constant or @~ N(z,X) or LN(z,X)

ADAPT
,O/ ADAPT Short Course BMSR Page 3

The Estimation Problem and Methods

* The Problem

Model
(6 unknown) Data (2)

Estimation
Method

Estimate of & (state of nature)

ADAPT
/O/ ADAPT Short Course BMSR Page 4




» Methods

- Least Squares
= Ordinary nonlinear least squares (OLS)

= Weighted nonlinear least squares (WLS)
- Likelihood Estimation

= Maximum Likelihood (ML)

— Extended Least Squares (ELS)

- Iteratively Re-Weighted Least Squares

— Generalized Least Squares (GLS)
- Bayesian Estimation

= The Problem

= Maximum A Posterior Estimation (MAP)

ADAPT
,O/ ADAPT Short Course BMSR Page 5

Least Squares Estimation

¢ (Gauss’s Solution

Gauss suggested:

“...the most probable value

of the unknown quantities

will be that in which the

sum of squares of the differences
between the actually observed and
computed values multiplied by
numbers that measure the

degree of precision

is a minimum.”

ADAPT
,O/ ADAPT Short Course BMSR Page 6




Single Output Case:

fys — min Jgwje(tj)2 :mindzn:iwj(z(tj)—y(e,tj))z

J

~
Obijective or Criterion Function —— OWLS

ADAPT
,O/ ADAPT Short Course BMSR Page 7

Some Comments:
- Weighting

- Multiple Output Case (ADAPT User’s Guide)

- Standard errors of the parameter estimates - SE of é(/vLs

A

and standard errors for model predictions - SE of y( s ,t)

(ADAPT User’s Guide)

ADAPT
,O/ ADAPT Short Course BMSR Page 8




» Weighting
= If all weights are equal = OLS
Weighting Option 1 in ADAPT

Generally would like w; oc1/ 02 = WLS

— Weighting Option 3 in ADAPT: O'j2 known

Enter the value of o at each time

- Weighting Option 2 in ADAPT: linear variance

Gi :O-inter +O—slope y(eltj) and O.

inter?

Oy KNOWN

replace y(6,t;) with z(t;) to approximate o,

ADAPT

,O/ ADAPT Short Course BMSR Page 9
= Weighting Option 2 in ADAPT enter 2 points on line
Gi :O-inter +O—slopez(tj)
then ADAPT sets
O
: w, ocl/ o2
— Ginter
Z(tj)
Example:
Ointer =0.0, Ogppe =0.1 = CV%=10.
therefore o, -0.1z(t,) and w,«1,0.01z(t;)?
ADAPT

¥ ADAPT Short Course BMSR Page 10




Maximum Likelihood Estimation

Model
(€ unknown)

Output Error
Model (e(t))

Data (z
@ Error Model

e(t;) - N(o, 0'1-2)

g /

2
O-J? - (Ginter +010pe Y (011 ))

Estimation
Method

B =1%nter O-slope]
e(tj) j=1....m

Estimate of & (state of nature) are independent

(also B )

ADAPT Short Course

ADAPT

¥

BMSR Page 11

Single Output Case:
y(0)

1(0]2,)

f \/Y(& Y

I(612y) !

1012)=

ADAPT

¥

N(y(0t).0?) /

\ N(y(0.t,).07)

o2

2
20;

ADAPT Short Course

L exp(_(zl_y(g’tl))z] |(0|ZZ)=0jgexp[

BMSR

2
20,

—(zz—y(e,tz)fJ

Page 12




ADAPT

¥

Joint likelihood function (independent errors):
1(012)=1(0|2)1(0]2,)---1(0]zy)
y(6.t)))

(i s

The maximum likelihood estimate:

OumL-maxl(@|z) or min(=Inl(0]z))

ONLL

ONLL - m|n(2”)/2+%zm:[(2(tj)_ yz(a,tj)) +|naf]
o

=t j

=9(¥(0. t;). B);

BMSR

Recall: Var{e(t )}= 0

ADAPT Short Course

)

2
e.g. O'J? :(O'imer—kgslopey(g, t))

Page 13

Some Comments:

- Relation to WLS estimation
- Estimate all or subsets of 4,
- Multiple Output Case (ADAPT User’s Guide)

- Standard errors of the parameter estimates - SE of 67

and standard errors for model predictions - SE of y( L » )

(ADAPT User’s Guide)

- Other distributions for the output error
e.g., categorical data (dichotomous)

ADAPT

¥

ADAPT Short Course BMSR
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* ELS, GLS and Iteratively Reweighted Least Squares

— ELS the same as ML Interpretation depends on
distributional assumptions

= GLS - Generalized Least Squares
An alternative to ML
More robust than ML to deviations from Normal assumption

Has some computational advantages, i.e., two smaller
optimization problems

Basic approach implemented in ADAPT,
see User’s Guide

ML and GLS often yield similar estimates

- lteratively reweighted least squares; use ML or GLS

ADAPT Short Course BMSR Page 15

Ronald Fisher
1890-1962
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Bayesian Estimation

Rev. T. Bayes
(1702-1761)

ADAPT Short Course BMSR Page 17

Model  Output Error  Prior (p(@))
(@random) Model (e(t))  Distribution  Data (z)

/ Prior Distribution

Estimation
Method €.0.

PO)=N (%)
p(6‘) =LN (,U, Z)

Estimate posterior p(&|z)

ADAPT Short Course BMSR Page 18




Prior

Application of Bayes’ Theorem: p(0) [ /\

/ 0

p(6l2) = 1(0]2) p(@)/c

/

Posterior y(t) | Likelihood
1(012,)
p(6]2) /\ ] (‘
f y(6,1)
- Juorz ! »
0 ;

ADAPT ty t t
,O/ ADAPT Short Course BMSR Page 19

Prior

Application of Bayes’ Theorem: p(®) /\

/ 0

p(@l2) = 1(012) p(@)/c

/

Posterior

p(612)

Likelihood

1(62)

0
s

O ADAPT Short Course

>

BMSR

>

Page 20
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* Maximum a Posteriori Estimate (MAP)

.

p(6l2)

>

0
— One unknown parameter case: @ ~ N (u, o7)
p@lz) < 1(8]2) p(6)

p(6]2) o« ug](a jﬁjp[[%ﬂ

(e o5

ADAPT
,O/ ADAPT Short Course BMSR Page 21
Owmap >max p(@|z) or min(=Inp(@]|z))
—
OMAP
2
n ((z(t;)-y(6.t;)) 0-u)
OMAPEZ[ "+ +—( 2)
it o o
- Multi parameter case: 6 ~ N (,X)
2
n ((z(t;)-y(0.t;)) - .
OMAPEZ;[ ! —~ L tlIno? |+(0-u) (0 p)
i= j
With informative data on an individual, . .
the data will dominate the prior: Oune = O
With poorly informative data on an individual, ¢~ _
the prior will matter:
ADAPT
,O/ ADAPT Short Course BMSR Page 22
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Some Comments:

- Noninformative prior for some parameters
- Estimate all or subsets of 4,

- Multiple Output Case (ADAPT User’s Guide)

Standard errors of the parameter estimates - SE of éM AP

~

and standard errors for model predictions - SE of y( Oy AP,t)

(ADAPT User’s Guide)

- Howare ¢ and X~ determined?

From a Population Analysis.

ADAPT
,O/ ADAPT Short Course BMSR Page 23

Model Selection Criteria
Method for comparing fit of different models with same data

o Akiake (AIC) and Bayesian (BIC) Information Criteria
For WLS (m observations, | outputs & p parameters):
AIC=I-m-InO, s+2-p
BIC=1-m-InO, s +In(l-m)p
For ML (q variance model parameters)
AIC=InOy | +2(p+0q)
BIC=InOy, +In(I-m)(p+q)
e General Information Criterion for MAP Estimation

GEN-IC=0,,, +M
ADAPT m
,O/ ADAPT Short Course BMSR Page 24




Case Study - WLS/ML Estimation

The linear compartment model shown below has been used to simulate
measured concentration values from compartments 1 and 3, following an
infusion into compartment 1 (1000 mg/hr over 1 hour). A total of 12
observations for each output have been simulated between 0.0 and 72 hours.
We will use this model and the simulated data with measurement error, to
illustrate some of the estimation methods discussed previously. The model to
be used is contained in the file mout.for and the data are in the file
mout.dat. The model file has two measured outputs, representing the
concentration of drug in compartments 1 and 3 shown below.

D.Z. D’Argenio, Biomedical Simulations Resource, ADAPT Short Course 1



1. Using the model file mout.for, the data file mout.dat and the intitial
guesses for the parameters in the file mout.prm, find the maximum
likelihood estimates for the system parameters V1, K12, K21, K13, V3,
and K30, and the two variance parameters indicated in the table
below. Linear models for the standard deviation of the output errors
will be assumed as specified in subroutine VARMOD of the model
file mout.for. The table below shows the initial guesses for the
parameters that are stored in the file mout.porm as well as which
parameters are to be estimated. View all the results stored in the run
file as well as the plots.

Parameter Initial Value Estimate ? | ML Estimate
V1 50.0 Y 62.10
K12 0.2 Y 0.1713
K21 0.1 Y 0.1084
K13 0.05 Y 0.03925
K30 0.3 Y 0.3522
V3 25.0 Y 19.83

IC(1) 0.0 N -
IC(2) 0.0 N -
IC(3) 0.0 N -
SDinterl 0.0 N -
SDqjope1 0.25 Y 0.2221
SDinterz 0.0 N -
SDgjope2 0.1 Y 0.08431
R - Y(1) - -
SS-Y(1) - -
R - Y(2) - -
SS-Y(2) - -

D.Z. D’Argenio, Biomedical Simulations Resource, ADAPT Short Course 2



2. Using the model file mout.for, the data file mout.dat and the intitial

guesses for the parameters in the file mout.prm,, find the weighted
least squares estimates of V1, K12, K21, K13, V3, & K30. Assign a

weight of 1 to each response (output). For y; , use the linear inverse
variance option (weighting option 2): low concentration and
associated standard deviation of 1.0 and 0.25; high concentration and
associated standard deviation of 10 and 2.5. For y, , also use the linear
inverse variance option (weighting option 2): low concentration and
associated standard deviation of 1.0 and 0.1; high concentration and
associated standard deviation of 10 and 1.0. The table below shows
the initial guesses for the parameters that are stored in the file
mout.prm as well as which parameters are to be estimated. View all
the results stored in the run file as well as the plots.

Parameter Initial VValue Estimate ? WLS
Estimate
V1 50.0 Y 69.96
K12 0.2 Y 0.1555
K21 0.1 Y 0.09546
K13 0.05 Y 0.03641
K30 0.3 Y 0.3597
V3 25.0 Y 18.82
IC(1) 0.0 N -
1C(2) 0.0 N -
IC(3) 0.0 N -
R® - Y(1) - -
SS-Y(1) - -
R - Y(2) - -
SS-Y(2) - -

3. Compare the estimates obtained for this model and data set from the

two estimators, WLS and ML.

D.Z. D’Argenio, Biomedical Simulations Resource, ADAPT Short Course



Case Study - Multiresponse Estimation

The linear compartment model shown below has been used to simulate noisy
concentration values from compartments 1 and 3, following an infusion into
compartment 1 (1000 mg/hr over 1 hour). A total of 12 observations for each
output have been simulated between 0.0 and 72 hours. We will use this model
and the simulated data to illustrate the idea of estimating model parameters by
simultaneously fitting both sets of concentration measurements, versus
estimating subsets of the model parameters using the measured outputs
individually.

The following three data files have been constructed.

mout.dat contains both outputs
moutl.dat contains only compartment 1 values
mout2.dat contains only compartment 3 values

The following three model files have also been created:

mout.for model shown above (two outputs)
moutl.for model w/o comp. 3 and one output from compartment 1
mout2.for model shown above with one output from compartment 3

The remaining units are as follows: V’s in L, K’s in hrs™, concentrations in
ug/ml. Corresponding parameter files (*.prm) have also been created.

D.Z. D’Argenio, Biomedical Simulations Resource, ADAPT Short Course 1



1. Using the model file moutl.for, the data file moutl.dat and the initial
guesses for the parameters in the file moutl.prm, find the Maximum
Likelihood estimates for the parameters V1, K12, K21, and K13. The table
below shows the initial guesses for the parameters that are stored in the file
moutl.prm as well as which parameters are to be estimated. View all the
results stored in the log file as well as the plots and record the estimates.

Parameter | Initial Value | Estimate ? | ML Estimate
V1 50.0 Y 64.9
K12 0.2 Y 0.108
K21 0.1 Y 0.0253
K13 0.05 Y 0.0175
IC(1) 0.0 N -
1C(2) 0.0 N -
SDinterl 0.0 N -
SDslooel 0.25 N -

. Using the model file mout2.for and the data file mout2.dat and the initial
guesses for the parameters in the file mout2.prm, find the Maximum
Likelihood estimates for the parameters V3, and K30. Fix the parameters

V1, K12, K21, and K13 at their ML estimates obtained in part 1. As initial
parameter values for the parameters V3, and K30 use the numbers given in

the table below. (All these parameter values are stored in the file
mout2.prm.) View all the results stored in the run file as well as the plots

and record the estimates

Parameter | Initial Value | Estimate ? | ML Estimate
K30 0.3 Y 0.279
V3 25.0 Y 9.9
IC(1) 0.0 N -
1C(2) 0.0 N -
IC(3) 0.0 N -
SDinterz 0.0 N -
SDsjope2 0.1 N -

D.Z. D’Argenio, Biomedical Simulations Resource, ADAPT Short Course




3. Using the model file mout.for, the data file mout.dat, and the initial guesses
for the parameters in the file mout.prm, find the Maximum Likelihood
estimates for all six of the parameters V1, K12, K21, K13, V3, and K30. Do
not estimate the variance model parameters. The table below shows the
initial guesses for the parameters that are stored in the file mout.prm as well
as which parameters are to be estimated. View all the results stored in the
run file as well as the plots and record the estimates.

Parameter | Initial Value | Estimate ? | ML Estimate
V1 50.0 Y 62.9
K12 0.2 Y 0.169
K21 0.1 Y 0.106
K13 0.05 Y 0.0392
K30 0.3 Y 0.352
V3 25.0 Y 19.91
IC(1) 0.0 N -
1C(2) 0.0 N -
IC(3) 0.0 N -
SDinterl 0.0 N -
SDslooel 0.25 N -
SDinterZ 0.0 N -
SDgjope2 0.1 N -

4. Compare the estimates obtained from parts 1 and 2 to those that were
obtained in part 3 using both measured outputs simultaneously. The actual
parameter values used to generate the observations are the Initial Values
given in the table of part 3.

5. NB: In other multiresponse examples, performing a simultaneous estimation
Is inferior to performing a sequential estimation. This can occur, for
example, when the data of the first response is very informative while the
data from the second response variable is minimal (because of few
observations or noisy data).

D.Z. D’Argenio, Biomedical Simulations Resource, ADAPT Short Course 3



D.Z. D’Argenio, Biomedical Simulations Resource, ADAPT Short Course



Recirculatory Modeling of Drug Disposition

=\Why? Modeling of distribution kinetics

Important for initial distribution (vascular mixing),e.g., thiopental
=No well-mixed compartments: Laplace transformation

= Case study: Sorbitol disposition in humans

Mixing/Distribution

Body Reactor

7
b

Circulation through Turbulent mixing
fractal network

Blood volume ~ 5 L, Cardiac output ~ 5 L/min — Mixing time ~ 1 min




Residence time Transit time
Sytem Sytem

SN — L@ >
Disposition 1 Outflow

curve curve

Mean transit time — Extent of distribution

Transit time dispersion=s) Rate of distribution

Transit Time Distribution

L
.

¢ curve

fis(t) MTT e (t—MTT )? e
— eyl ]
16 27RD?E 7| T 2RD? MTT L

Density function of Inverse Gaussian Distribution
MTT — Extent of distribution, Distribution volume: V= MTT Q

RD? — VTT

= MTT? — Rate of distribution




Fat

Spleen

Pancrea

Arteries

Cardiac Output: Q

Minimal Circulatory Model

Heterogeneous subsystems

 SE—
Pulmonary

Circulation

——
C(t)
 SE—
Systemic

Circulation
Extraction: E @ —

Carcass

Weiss et al., Br J Clin Pharm, 1996

Model Formulation in the Laplace Domain

Model Structure:

eCompartments —  Differential Equations

eSubsystems

Transit Time Density Functions, fi(t)
(Impulse Response)

Limitation of using compartments as subsystems —
exponential distributed transit times

Advantage of model building in Laplace domain —
simple rules for connecting subsystems




Model building: Laplace Transformation

— fis) = () — f(s) = f,(s) f,(5)

Sl fe

,|: L, f(s)=qf,(s)+L-q) f,(s)
[ ]?2(8) i q:Ql/Q

Q
SRAC!

£ 1?1 (s)
f == s
© 1-1,(9)1,(5)

SRAC)

Recirculatory PK Model

S r— ;
Cardiac Output: Q Pulmonary 2 Div fp (S)

Circulation C(S) = = =
D. fp(S) C(t) Q 1- (1_ E) fs (S) fp (S)

v
[V./Q (t-V,/Q)?
Sserie ) f,(t)= ' exp{— !
C)i/rscﬁra];?on 27RO} 2RD (V; /Q)t

Extraction: E @iz CL
E=—

Q

Numerical inverse Laplace Transformation

Ct)= L‘l{g fCirc(S)} ADAPT Il + Talbot’s Method

Schalla & Weiss, Eur J Pharm Sci, 1999
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Sp(t) - AT A

e . ce |f
Sensitivity o
Sorbitol in humans [Hg/mﬂn \

Bolus dose, 0.8 g

TT—

Time (min)

sampling

2 Il g o
]

Time (min)

wdiac output, Q
Extraction ratio, E \

()

Physiological Interpretation of RD?

Pulmonary Circulation
VP

2
RD?

Systemic Circulation
V=Vg+Vg

2

RD;

2
RD? = RD? + Q 2(V: Vs) - .
PS (1+VT/VB)

Weiss, Pharm Res, 2007




W1
First-principles modeling of distribution kinetics

Advective transport
Advective dispersion — Vascular mixing

Vascular Mixing Kinetics
P Vascular Marker (ICG) in Dog

( ) 10
Vep

RD;Ip
~—
fIG,S(S)
G —————m

VB,S

@ RDS,
EY ———

v
Relative dispersion
-> Intravascular mixing

@
|

ICG Concentration (jug/ml)

Time (min)
Predicted from V; and

Q; data of Benowitz et al.
in monkeys

RDZ, =2

MTT, =V, /Q|

Weiss, Krejcie & Avram, Am J Physiol Heart Circ, 2006
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Distribution Kinetics: Area Under the Mixing Curve

Divl
Q2

AUC,, = (RD2-1)
VCT

RD? =
¢ MCT?

Relative Dispersion

C() of Transit Time
= Rate of Distribution

AUC,,= 0

o= C(t)

t well-mixed system

Distribution Clearance

Closed CL. = Div
(noneliminating) " AUC,,
system (CL = 0)

Weiss & Pang, J Pharmacokin Biopharm, 1992

From Flow-to Diffusion-Limited Distribution Kinetics

A Continuous Transition

14
O
= 12 - flow-limited
£
= 10 - . = .
§ Antipyrine
< Thiopental O
s 8-
2
(@)
s 7
= e} o)
> ()
.'g 4 - © ____7»4,,_-7/”—-'Deff~ 7_*Dinulin
2 4 Sorbitol
2 1 e -~ . e
o Inulin g diffusion
o =! - = -limited
0 T T T T T T 1
0 2 4 6 8 10 12 14

Cardiac Output (I/min)

Weiss, Krejcie & Avram, Pharm Sci, 2007




Model Parameters
Q,Vpu,,RD2 VS,RD2 E

pul s s

Distribution
Kinetics

2Q

CL,=
" RD?-1

Steady-state

Vi =(MTT, + MTT)*Q =V +V,

Elimination

CL=E.Q

3-Compartment Model

Fit excellent for t > about 2 min

BV, :no meaning in terms of initial

2 distribution
CLy, 8 CL,, CL, : no meaning in terms of
D, cL underlying distribution
—Vi 1 | processes

B Estimation and interpretation of

3 steady-state parameters (CL, V) is
straightforward:

V.., CL model independent

SS?
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Case Study — Recirculatory Modeling of Drug Disposition

The method is applied to disposition data of sorbitol measured after rapid intravenous
injection and arterial sampling in patients who had undergone cardiac catheterization whereby
the cardiac output was measured (Weiss et al., 1996).

Model equations coded in Model File recirc.for.
Y (1): Concentration-time curve, C(t)

Parameters:

D iv Bolus Dose
Q Cardiac Output (Plasma Flow: Qpiasma = Qbiood (1-Hct); Hct : Hematocrit)

RDp Relative Dispersion of Transit Time across the Pulmonary Circulation, RD§
V,  Distribution Volume of Pulmonary Circulation
RDs Relative Dispersion of Transit Time across the Systemic Circulation, RDS2

Vs Distribution Volume of Systemic Circulation
Es Systemic Extraction Ratio

Complex Function FLAP(S)

Complex s,D,Q,RDp,Vp,RDs,Vs,Fs C(s) = D fp(As) _
D=CMPLX(P(1),0) Q 1-(1-E)f(s)f,(s)
Q=CMPLX(P(2),0)

RDp=CMPLX(P(3),0)
Vp=CMPLX(P(4),0)

RDs=CMPLX(P(5),0) fy= | VAIQ g (E-V/Q)F
Vs=CMPLX(P(6),0) ' 27RD?t? 2RD/ (V, /Q)t
Es=CMPLX(P(7),0)

FLAP=(D/Q)*CEXP(1/RDp-sqrt(2*(Vp/Q)/RDp*(s+1/(2*(Vp/Q)*RDp))))/
1 (1-(1-Es)*CEXP(1/RDp-sqrt(2*(Vp/Q)/RDp*(s+1/(2*(Vp/Q)*RDp))))*
2 CEXP(1/RDs-sqrt(2*(Vs/Q)/RDs*(s+1/(2*(Vs/Q)*RDs)))))

Return

End

CALL TSUM(FLAP,CONLAM,CONSIG,CONNU,NOPTS, TVALUE,INVF,IER)
Y(1) = INVF

D. Z. D’Argenio/M Weiss 1 ADAPT Short Course



Secondary Parameters:

1. Clearance

CL =EQ

2. Volume of Distribution at Steady-State
Ves=Vp + Vs

3. Distribution Clearance

2Q
CLy=———
" RDZ-1

Analysis:

1. Data file, recircd.dat contains the bolus input information and drug concentration values.
- ML Estimation, recircp.prm contains initial values (Q measured by thermodilution).
- D and Q fixed
- view plots (PostScript file)
- results (run file), enter estimates in Table, below (first column)

RE-ESTIMATION: change initial values

- estimate Q: initial value 2000 (measured 3600), only D fixed
- view plots (PostScript file)

- enter the results in Table , below (second column)

Table

Q =3600 |Q estimated

measured |Ini: 2000

AIC
Q fixed

D. Z. D’Argenio/M Weiss 2 ADAPT Short Course



Discussion
1. The data (design of experiment) do not allow a reliable estimation of cardiac output and
pulmonary distribution Kinetics (RDp)

2. The systemic extraction ratio Es of ~ 10 % may reflect fractional liver blood flow.
CL = E.Q =CL,, = E;,Q,, = Q,,, since the hepatic extraction of sorbitol is nearly 100%,

Eiiv 1. This patient (congestive cardiomyopathy) has a relatively low Q and Q.
3. The steady-state distribution volume of ~16 | matches that of the extracellular volume

(ECV).

4. The distribution clearance exceeds elimination clearance (in this patient).

D. Z. D’Argenio/M Weiss 3 ADAPT Short Course



Modeling Drug-Receptor Interaction

=Why? “Slow” receptor binding in PK/PD modeling

Discrimination between receptor binding and signal transduction
=Link model assumes instantaneous binding

= Case study: Digoxin PK/PD in humans

What causes the delayed inotropic response?

The 1989 Harry Gold Award Lecture

A Pharmacokinetic Odyssey

Arthur J. Atkinson, Jr., MD
Director of Clinical Pharmacology and
Professor of Medicine and Pharmacology,
Northwestern University Medical School

»| suspect, but have no proof, that the process of digoxin distribution from plasma to
ist myocardial site of action is responsible for this clinically important delay. ,,

There is no honor that could have the same impact on me as [
the Harry Gold Award. Not only is it conferred by a distin- - Digoxin 1.2mg.
guished society in the memory of one of the illustrious pic- 120
neers of clinical pharmacology, but Harry Gold was one of my
teachers when!was amedical student at Cornell. ltis perhaps 10—
intrinsic to human nature that, no matter how much we learn
during our professional carears, we instinctively inue to
attribute infinitely more knowledge and wisdom to our teach-
ors. Howaever, even when subjected to the most critical
scrutiny, nothing could have been more auspicious for a future
clinical pharmacologist than to have been a medical student
at Cornell in the late 1950s and early 60s.

¥ T

N

twas an unparalieled privilege to have iearned biochemistry, §
physiology, and pharmacology in departments chaired re- ©
spectively by Vincent du Vigneaud, Robert Pitts, and Walter Ho
Riker (Table 1). | also owe a special debt of gratitude to the
mentors who guided me at certain critical periods after |

Ventricular pate

o[ Dose

RN B [T BRR T S B W T
0 05 ) 2 34 8

H

2
Days 1 2 34567

completed my formal education: Mones Barman and Marge Fig. 1. Curve of onset and disappearance of digoxin action in
Waeiss, who taught me kinetic modeling when | was a Clinical patients with atrial fibrillation (Reprinted from Gold et al., 1953,
A at the National Insti of Health; Les Webster, with permission).

who fostered my early development as a iunior member of the




PK PD
input output
Ca(t) \ E(t)
..._.\_________ \
:3 bt C.(t :C t)* —tiz — EmaxCB(t)
Ca = ae” d;() 1 NORE EO -0
dtB =—[C.(t)-C; ()]
T

© Weiss 2005

Traditional Method to Analyse Drug-Receptor
Interaction

Steady-state experiments — no integration of kinetic information

Dose (or Concentration) -Response Curves

Occupation Theory

Effect Emax kﬂ)
D]+ [R] > [DR]

off

E ¢[DR] ¢[D]
Eve [Ra] [DJ+K,

Kp : D producing 50% of £,
Dissociation constant

log [D]
more general: [DR] — Stimulus — Response




Operational Model

Biophase Receptor Signal
Concentration  Binding Transduction Response
Stimulus
[DR]
C(t) E(t)
Steady state: [DR] -~ [D] E~ ﬂ
[D]+ K, [DR]+ K¢

Transient state: [ DR](t)

Transient State

dDR(t
OIt( ) _ Kon (Rior = DR(£)) Dyiggnase (t) — Ko DR(Y)
== E(t) = eDR(t) —_
off
D+RS DR AT

S




Average inotropic response data
in human volunteers <Y

>

obtained after 1mg digoxin 7
%30 .,
(A) as bolus dose s F\\\\
C(t) = 57.3e°0:164t 4 9 9Qp0.011t 4 () 74¢-0.00024 t ‘E": QOQ
° ° .
£ 10 R
Kramer et al., JPB, 1979 8
o} T v
0 20 40 60 80
Time (h)
B
(B) infused in concentration-clamp e

experiments
30
C=42ng/ml,0<t<4hr

Weiss et al., Eur J Clin Pharmacol, 1983

10

Positive inotropy [-AQS,c(ms)}
N
Q

100

Time (h)

100

0.1

0.

o

(juyBu) uonesUsOUO)

(lw/Bu) uonesnusouo)

Empirical Link Model for Digoxin in Humans

Co)=C®)*e™"  E(t)= ECEmaXiBét)(t)

= Fits bolus dose PD data (t = 19 h)
= Fails to fit step response PD data.

model experiment

_ -tz _t/r
E,.C,(l—e 4)/ ~ (1_e t/ slep)
EC,a +Col—e )

E step (t) =

Totep = 1.3 N




Mechanistic PK/PD Model for Digoxin in Humans

————————————————————————

Whole Body
| PK |
C(t) C(t)-curves — forcing functions in ADAPT
CH Qp Heart
vascular ki, interstitial Kot receptor bound ei inotropic effect
Dyas Di DR :> E(t)
i K () | E(t) = AQS,c - AQS,,
Qp vV i Shortening of the
””” e hbhbh hbhbh hbhbh emeeneed electromechanical
_ systole
K(t) = kon [Rtot -DR ()] corrected for heart rate
Preassigned physiological/anatomical Adjustable parameters: k,,, K, Ry €
parameters : Qp, V. » Kiv s K;,
Weiss & Kang, Pharm Res, 2004
Differential Equations
Dvals(t)/dt = '(QD/ Vvas"' I(vi) Dvas(t) + I(iv Dis (t) + QD C(t) (1)

Dis (t)/dt = kvi Dvas(t) - [kiv + kon (Rtot -DR (t)) ]Dis (t) + koff DR(t) (2)
DR(t)/dt = kon [Rtot -DR (t)] Dis (t) - kof‘f DR (t) (3)

E(t) = e DR(t) @)




Mechanistic PK/PD Model for Digoxin in Humans
Step response (Concentration clamp experiment)

1

—t/ Tge _
Estep = Ess (1—9 t p) Tstep = k D +k
on —is off

When transcapillary exchange is not rate-limiting (g, >> 1/k; ).
30
Estimated: 7y, =1.3h (ha .,
3 . .
2]
g 2 .
o — d
Prediction from k,, and 215 .
k.. ? 5 e
off < 10 . . .
.E
g s
0 : : : : : !
0 40 80 120 160 200 240
Time (min)
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Case Study — Digoxin PK/PD in Humans

Fit of digoxin plasma concentration and inotropic response after a 1 mg iv dose in human
volunteers, see (Weiss and Kang, Pharm Res, 2004), mean data from (Kramer et al., J
Pharmacokin Biopharm, 1979).

Model equations are coded in Model File dig.for.

Y(1): Inotropic response, E(t)

Real*8 Ca, PMX3
Ca=P(9)*dexp(-P(10)*t)+P(11)*dexp(-P(12)*t)+P(13)*dexp(-P(14)*t)

If (P(5) .GT. X(3)) Then
PMX3 = P(5) - X(3)

XP(1)=-(P(1)/P(2)+P(3))*X(1)+P(4)*X(2) + P(1)*Ca
XP(2)= P(7)*X(3)-PMX3*P(6)*X(2)

X +P(3)*X(1)-P(4)*X(2)
XP(3)= PMX3*P(6)*X(2)-P(7)*X(3)

End If
Psym(1) ='Q'
Psym(2) ="V1' A priori knowledge (literature, experiments)
Psym(3) = 'Kvi'
Psym(4) = 'Kiv'

Psym(5) = 'Rtot’
Psym(6) = 'kon’
Psym(7) = 'koff’

Psym(8) ='e’
Psym(9) = 'A1l' )
Psym(10) = 'b1' Disposition curve (forcing function)

Psym(11) ="A2" { Colt) =A™ + Ae™ + Ag™
Psym(12) = 'b2'
Psym(13) = 'A3' _ o
Psym(14) = 'b3' ) Parameter estimated by fitting C;,(t) data

D. Z. D’Argenio/M Weiss 1 ADAPT Short Course



Parameters:

Psym(5) = 'Rtot’ Total functional receptor amount

Psym(6) = 'kon*

Psym(7) = 'koff'

Psym(8) ="' efficacy (effect per occupied receptor, E/AR)

Parameter estimation:
Fix Psym(1) - Psym(4) and Psym(9) - Psym(14)

Secondary Parameter:

1. Kg = Kosi/kon : Apparent dissociation constant (digoxin binding to myocardial Na/K-ATPase)

2. Time constant tsep Of the increase of E(t) in a concentration clamp experiment

E

step

_ _ -t/ Tstep 1
=&L-eT) D, T

on—Is

3. kii’kon Ratio of time constants of transport(vascular to interstitial) and receptor binding

Analysis:

Fit data of inotropic response after a 1 mg iv dose of digoxin (Model File dig.for).
Data file, digd.dat

- ML estimation, digp.prm contains initial values (including fixed parameter values)
- view plots (PostScript file)

- results (run file)

Discussion:

The mechanistic approach - but not the link model - allowed a modeling of digoxin PD which
is consistent with available inotropic response data.

Uncertainty in estimation of Ryt (dose too low to reach saturation).

Estimates of K4 and Ry similar to that obtained in human myocardial tissue in vitro.

Estimate of tgep is in agreement with the

value of 1.3 h estimated by fitting the step

response data (concentration clamp Response
experiment). ] .

4h

D. Z. D’Argenio/M Weiss 2 ADAPT Short Course



Case Study - Direct Response PD Models

This case study involves parameter estimation using direct response models.
In Part 1, a PK/PD model incorporating a direct connection between the
measured drug response and plasma concentration will be fitted to data
consisting of both measured plasma concentration and measured drug
response. In Part 2, the pharmacodynamic portion of the model will be
changed to include an effect compartment.

Part 1

The pharmacokinetic portion of the model consists of a two compartment
linear model (clearance parameterization) with intravenous drug
administration (100.0 mg/hr over 1.0 hr). In the pharmacodynamic portion of
the model, the drug's effect is related to plasma concentration using a Hill-
type model (Emax model — H=1).

r(t)

Emax

H
ECS50

- —_ -

The following equations define the drug's plasma concentration and
response, where x; and x, are compartment amounts (mg), y; is plasma
concentration (ug/ml) and y, is drug response (% of maximum).

d¢  CLt CLd,  CLd

=—(—+—)X +——X, +r(t
dt (Vc Vc)x1 Vp ° ®
dx, CLd CLd

= X - X
dt Vc Vp
y, =x1Ve
y, = Emaxyl
* EC50+y,

D.Z. D’Argenio, Biomedical Simulations Resource, ADAPT Short Course
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1. These equations have been coded and entered in the Model File

drm1.for, along with linear variance models for the two outputs. Several
secondary parameters have been defined as well. Inspect the model file
drml.for in the Fortran editor. The following system, variance and
secondary parameters have been defined:

system variance secondary

CLt -P(2) SDinter1 -PV(1) Kel - PS(1)
Ve -P(2) SDslope1 -PV(2) V - PS(2)
CLd -P(@3) SDinter2 - PV(3) Kep - PS(3)
Vp - P(4) S‘Dslope2 - PV(4) KpC - PS(4)
Emax - P(5) A - PS(5)
EC50 - P(6) A, - PS(6)

L, _/11 - PS(7)

t1/2 _ﬂ'z - PS(8)

The parameters have the following units: CL’s (L/hr?); V’s (L); Emax (%
max response); EC50 (ug/ml).

The data file drm.dat contains the dose regimen information along with
measured values for plasma concentration and drug response. Fit the
model to the data stored in this file using the ML estimation option of 1D,
with initial values for model parameters as listed below (parameter file
drml.prm). Compare the ML estimates to those in the table below, along
with AIC. View the graphs of the fitted model response.

Parameter Initial Value Estimate? ML Estimate
CLt 6.0 Y 6.326
Ve 30.0 Y 29.56
CLd 12.0 Y 10.35
Vp 60.0 Y 51.19

Emax 100.0 Y 68.75
EC50 1.0 Y 0.3413
IC(1) 0.0 N -
1C(2) 0.0 N -
SDintert 0.05 N -
SDslopel 01 N -
SDinter2 2.5 N -
SDslope2 01 N -
AlIC - - 91.1

D.Z. D’Argenio, Biomedical Simulations Resource, ADAPT Short Course
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Part 2

Consider the same linear two compartment PK model and Hill-type PD
model used above. In this case, however, it will be assumed that the
response is mediated through a hypothetical effect compartment as
illustrated in the following figure.

r(t)

The additional differential equation given below (x3) describes the
concentration in the effect site; it has been coded and added to the
differential equations. The second output equation has also been modified
as indicated below. The model file drm2.for contains the modified
equations needed to describe this effect site model.

dx
=K (x /V.—X
dt eo( 1 Cc 3)
Emaxxs
Y, = ——
EC50 + x,

D.Z. D’Argenio, Biomedical Simulations Resource, ADAPT Short Course
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1. These equations have been coded and entered in the Model File
drm2.for. Inspect this file in the Fortran editor.

2. Fit the model to the data stored in the file drm.dat (the same data used in
Part 1 of this Case Study) using the maximum likelihood estimation
option of ID, with initial values for model parameters as listed below;
these values are also stored in the parameter file drm2.prm. Compare the
ML estimates to those in the table below, along with AIC. Examine the
model prediction summary table. View the graphs of the fitted model

response.

Parameter Initial Value Estimate? ML Estimate
CLt 6.0 Y 5.812
Ve 30.0 Y 27.91
CLd 12.0 Y 12.45
Vp 60.0 Y 60.93

Emax 100.0 Y 101.5
EC50 1.0 Y 0.9022
Keo 0.5 Y 0.4775
IC(1) 0.0 N -
IC(2) 0.0 N -
IC(3) 0.0 N -
SDinterl 0.05 N -
SDsjope1 0.1 N -
SDinterZ 2.5 N -
SDsjope2 0.1 N -
AlIC - - 82.3

D.Z. D’Argenio, Biomedical Simulations Resource, ADAPT Short Course




Case Study - Indirect Response PD Models

This case study involves parameter estimation using an indirect response
model. Indirect response models (IRM), as introduced by Jusko, are used to
model a drug’s effect when the physiological, biochemical, immunological,
etc. variable that the drug alters is itself under dynamic process control. The
pharmacokinetic/pharmacodynamic IRM used in this case study is shown
below. The pharmacokinetic portion of the model consists of a two
compartment linear model (clearance parameterization) with intravenous
drug administration (100.0 mg/hr over 1.0 hr).

r(t) I

Kout

1. The following equations define the plasma concentration and response.

dx __CLt CLd, CLd

gt (Vc )X1+—p X, +1(t)

dx, _CLd CLd

dt Ve % Vp

dX oo X (ONVG Kin

gt - nd |C50+X1(t)/VC) IC(3)X3(t)
y, =X /Vc

Yo =X

D.Z. D’Argenio, Biomedical Simulations Resource, ADAPT Short Course
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To insure a return to the pre-drug control value of the drug response after
the drug is cleared completely, Kout has been replaced by Kin/IC(3) in
the above equations. View these equations in the Model File irm.for. in
the Adapt editor.

The following system, variance and secondary parameters have been
defined:

system variance secondary

CLt -P(1) SDinter1 -PV(1) Kel - PS(1)
Ve -P(2) SDsiope1 -PV(2) V - PS(2)
CLd -P(@3) SDinter2 - PV(3) Kep - PS(3)
Vp - P(4) S‘Dslopez - PV(4) KpC - PS(4)
Kin - P(5) A - PS(5)
IC50 - P(6) A, - PS(6)

Ly, =4y - PS(7)

t1/2 _/12 - PS(8)

Kout - PS(9)

The parameters have the following units: CL’s (L/hr); V’s (L); Kin
(units/hr); 1C50 (ug/ml).

The data file irm.dat contains the dose regimen information along with
measured values for plasma concentration and drug response, and the
initial guesses for the parameters in the file irm.prm. Fit the model to the
data stored in this file using the maximum likelihood estimation option of
ID. Note that the initial value of the response variable (IC(3)) is also
estimated. The table below shows the initial guesses for the parameters
that are stored in the file irm.prm as well as which parameters are to be
estimated. View all the results stored in the run file as well as the plots
and confirm the results shown in the table below.

D.Z. D’Argenio, Biomedical Simulations Resource, ADAPT Short Course
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Parameter Initial Value Estimate? ML Estimate
CLt 6.0 Y 6.040
Vc 30.0 Y 28.35
CLd 12.0 Y 12.10
Vp 60.0 Y 56.75
Kin 20.0 Y 22.34

IC50 0.5 Y 0.5036
IC(1) 0.0 N -
IC(2) 0.0 N -
IC(3) 100.0 Y 100.6
SDinter1 0.0 N -
SDslope1 0.1 N -
SDinter2 10. N -
SDslope2 0.0 N -

D.Z. D’Argenio, Biomedical Simulations Resource, ADAPT Short Course
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POPULATION PK/PD MODELING

ADAPT 5 Population Programs

 Population Model Definition
 Population Data File

* Model File for Population Analysis
* NPD Analysis

o STS Analysis

* ITS Analysis
ADAPT
/O/ ADAPT Short Course BMSR Page 3
The Population Problem
» Notation

- Model Equations (state space formulation)

%: fi(x (1), &, 1. (0),1), % (0)=c;

yi(tji) = hi(Xi(tji)1ai’ri(tji)!tji)+ei(tji)’ J =1,...m,

i=1...,N (subjects)

ADAPT
¥ ADAPT Short Course BMSR Page 4




— or More Compactly

Qi = [ai Ci] ith subject’s parameters

Y. =h(8)+e , i=1...,N

/)'
Measurements \

for the ith subject Model for the ith subject

ADAPT
,O/ ADAPT Short Course BMSR Page 5

» The Parametric Population Problem

€ — random vector with distribution p(&)

P(@) =N(u 2) multivariate Normal
pP(@) = LN(w, X) multivariate lognormal
p(0) = 2 W N(#,%,)  mixture of Normals

7. Population Distribution -K

0.0 02 04 06 08
K (hrh)

ADAPT
¥ ADAPT Short Course BMSR Page 6




 Hierarchical Framework
Stage 1: Individual Subject Variation (Intra-Individual)

Y. =h(8)+e , i=1...,N
e ~N(0,G,(h(6).5)
or Y, |6,8~N(h(6).G (h(6).B)), i=1...,N
Stage 2: Inter-Individual Variation
g~ N(u,%) or LN(1,Z) = p(0|u,%)

Want to Estimate:

m) 4 X B 6,i=1.. N | =

ADAPT
/O/ ADAPT Short Course BMSR Page 7
Solution via Maximum Likelihood
* The Concept For the Individual
Model Output Error
(6 unknown) Model (e(t)-3) Data ()
Estimation
Method
Estimate of @
ADAPT

¥ ADAPT Short Course BMSR Page 8




Solution via Maximum Likelihood
» The Concept For the Population

Population Distribution & ~N( . X') or LN{, X)

¥ ' \

Models Output Error Data
(0) Model (e(r) -#)  (z)

l

oo Estimate of 1 X f3, (}‘j,f:.-’f,,,fN

,O/ ADAPT Short Course BMSR Page 9

* A Simple Example (one parameter, two subjects)

T Subject 1
| Likelihood Subject 1
| . L(O]Y))
W e,
~;!(9|z‘,)‘, /'{ i ' '
T Subject 2
| 146 zy)
1 f Likelihood Subject 2
l s L(O1Y,)
ADA

T T T T T 1
¥ ADAPT Short Course BMSR Page 10




- The Overall Likelihood for both Subjects

L (@Y, (B]Y,) since errors are independent
- But @ is a Random Variable Defined by the Distribution
p(O)=N(u,0%) PO

p(O|u.0?)=p(o)

- The Estimation Problem is to find

uand o

ADAPT
,O/ ADAPT Short Course BMSR Page 11

- Relation Between 4, o and 1 (€|Y)I,(@]Y,)

p(@|u, 0%)=N(u, o?)
Subject 1

1 } Which one?
16,1
) GENE /1

o - SN
1 Subject 2
- AN
t 1

(«f_,{ 0|z,

0, 6, o

True

16, 1)
¥

¥ ADAPT Short Course BMSR Page 12




- The Average (Expected) Value of 1,(@|Y,)l,(@]Y,)

TLOIYIL@IY,)p(0]m07)d0

ERIENE

2 L@ Y)L@]Y,)

M
i=1
M
i=1

pick 4,6 sample g =N (u©, o)

2 L@ Y)L@E]Y,)

1
M
pick 1®,6®  sample g =N (u®, o) ﬁ

want 1%, ™ imi L M| oY), (6|Y
M7, Mmaximizes VZ 1( i| 1) 2( i| 2)
ADAPT =

,O/ ADAPT Short Course BMSR Page 13

* The General Problem

Overall Data Likelihood

L(, 2, B) = ][ (%16, /)P(0| . 2)d0

Problem: Find &, X, f tomaximize L(u, Z,/0)

How?
1. Directly maximize: big nonlinear optimization, integration
2. Approximate likelihood (linearization - NONMEM)
3. EM algorithm: iterative solution to 2 simpler problems,
plus sampling-based methods
Produces the Exact Maximum Likelihood Estimate

ADAPT
,O/ ADAPT Short Course BMSR Page 14




Some Basic Probability

Random Process: Any process whose possible results are
known but whose actual results cannot be predicted with
certainty in advance.

Random Variable (RV): Outcome of a random process.

Experiment: A procedure used to generate outcomes (or
make measurements) from a random process.

ADAPT
/O/ ADAPT Short Course BMSR Page 15

» Random Variable - Discrete

Definition: RV that can take on only one
of a finite set of values

Example 1: Outcome of acointoss—Hor T

Represent the RV by X and its value by x

4H7T
x|1 2

Prob (X=x) ?
Prob (X=1)=1/2
- Prob (X=2)=1/2

/O/ ADAPT Short Course BMSR Page 16




Example 2:  Outcome of a rolling a die — RV # dots showing

x 1 2 3 4 5 6
< Possible values of the RV X

Prob (X=x) ?

Prob (X=1)=1/6
Prob (X=2)=1/6

Prob (X=6)=1/6

ADAPT

/O/ ADAPT Short Course BMSR Page 17

» Random Variable - Continuous
Definition: RV that can take on any value in a range

Example 1: Body temperature of humans:
Xin°: min— 37 — max

Example 2: Detectable HIV1 virus in children born
to infected mothers:

X in viral RNA copies/ml blood: 0 — max

Example 3: Forced expiratory volume in 1 sec (FEV1):
XinL: min —25L— max

woer  Degree of Randomness - Probability X is within a range

ADAPT Short Course BMSR
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* Probability Density Function

Let X denote a discrete RV with values: X, X,, ..., X,

The Probability Density Function of X is denoted f(x), where
f(X) = Prob(X=x)

Example 1: Outcome of a coin toss — H (x=x;=1) or

T (X=X,=2)
f(x)
Y2 b f(x)=1/2, x=1 x=2
0, elsewhere
o 1 2 X
/O/ ADAPT Short Course BMSR Page 19

Example 2:  Outcome of a rolling a die — # dots showing

f(x)
L e R
1 2 6  x
f(x)=1/6, x=12,...,6
0, elsewhere
ADAPT
/O/ ADAPT Short Course BMSR Page 20
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 Probability Density Function - Continuous RV
How to describe the “degree of randomness” of a continuous RV X?

f(x)>0 such that

b
Prob(a< X <b) = j f (x)dx Properties
a f(x)>0

T f(x)dx =1

Prob(50 < HR < 75)

—0

f(x)

) L] 1 L} |>
0 100 200
“/‘i X HR (beats/min) et
1. Uniform Density
1
f(x)=——, a<x<b, 0 elsewhere
b—a
f(x)
|
|
‘ —
a b
X
X ~U(a, b)
Special case X ~U(0, 1) uniform 0, 1
ADAPT
/O/ ADAPT Short Course BMSR Page 22
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2. Normal or Gaussian Density

f(x)= 12 expL_(X;'u)zJ

ADAPT
/O/ ADAPT Short Course BMSR Page 23
3. Standard Normal Density (special case)
1 (z)
f(2)= exp| — =0 o?=1
(2) oo =, 7
o=1
f(z) >
=0 7
Z~N(0,1)
ADAPT
/O/ ADAPT Short Course BMSR Page 24
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» Expected Value

Definition:

X ~ f(x) E[X]= ]O xf (x)dx =

Example:
fe)
f(x):i, a<x<b, 0 elsewhere —
b-a ! |
a b
X
b 2
E[X]:IX 1 dx:(ijx_gza_”’
- \b-a b-a)2 2
% ADAPT Short Course BMSR Page 25
Example:
_ 1 ~(x-p)’
= exp[ 20 J f(x) /\
} >
E[X]=u . X
In general:
E[g()]= | 9(x) f (x)dx
% ADAPT Short Course BMSR e Page 26
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Example:

y=g(X) =a+bx

E[y]= T g(x) f (X)dx = j(a+bx) f (x)dx

:a]3 f(x)dx+bT xf (x)dx
=a+bE[X]

Hy, =a+by,

Also: o, = bax

ADAPT
¥ ADAPT Short Course BMSR

Page 27

» Distribution of Two Random Variables

RV: X, and X, — p.d.f. f(x, X,)
1. Bivariate Normal f(x,%,)=N(x,X)

2
73 ol o,
H, Oy O,
O

pdf - p(x1, ¥2)

0,0,

If p=0 then
. X,and X, are independent

F(x6) = F(x) (%)

f(x %) ZWexp(—(x—u)T Z_l(x—,u)/Z)

¥ ADAPT Short Course BMSR

Page 28
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2. Marginal Density (Distribution)

if f(x,%)=N(4Z), then f(x)=N(zu, o)
and f (x,)= N (1, o3)

ADAPT Short Course BMSR Page 29

3. Conditional Density (Distribution)

f(X1|X2=X2) andf(X2|X1=X1)

ADAPT Short Course BMSR Page 30
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The MLEM Algorithm

EM ALGORITHMS AND TWO STAGE METHODS IN
PHARMACOKINETIC POPULATION ANALYSIS

Alan Schumitzky

Department of Mathematics
University of Southern California

Advanced Methods of Pharmacokinetic and Phnrrmu‘m’yrr{mn'c Systems Analysis,
Volume 2, Edited by D.Z. D'Argenio, Plenum Press, New York, 1995

BIOMETRICS 52, 934-944
September 1996

An EM Algorithm for Nonlinear
Random Effects Models

Stephen Walker

Department of Mathematics, Imperial College,
180 Queen's Gate, London SW7 2BZ, England

ADAPT Short Course BMSR

Page 31

* The Iterative Equations

- Initialization
initial guesses: ,u(o) >@ ,B(O) Qi(o) k=0

- Stage 1 — Estimation (E Step)

Conditional Mean — (K K K K
for each subject ei():E[in,ﬂ(),E(),ﬂ()]

Conditional o — E[(g_é(k))(g_é(k))T |Y-,ﬂ(k)’2(k)’ﬂ(k)}

Covariance
for each subject

ADAPT
ADAPT Short Course BMSR

Page 32
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p(®)
Recall from Bayes’ Theorem: /\
/[ o
plY) = 1@NY) p(luz)lc

/

Posterior Likelihood
ei
,O/ ADAPT Short Course BMSR Page 33

- Stage 2 — Maximization (M Step)
k+1 1 N N (k
2% :_Z‘gi( )
N 3

wy _ 1< { 700, kD70 kT —<k)}
z —N;(ﬁi a0 (GW - p V) + O

B 6Iog L(,u(k),Z(k),,B(k))

(D) _ k) _ H
p p B

Repeat Steps 1 and 2

ADAPT
¥ ADAPT Short Course BMSR Page 34




* EM Algorithm Guarantees
,U(k) 3 (k) ﬂ("), k=0,...

maximizes

L(, 2, 8) = ][ (%16, /)P(0] 1, 2)d0

(at least local solution)

ADAPT
/O/ ADAPT Short Course BMSR Page 35

 Conditional Mean and Covariance for Each Subject
(hard to calculate)

The conditional mean §“and conditional covariance Q{
for the ith subject at the kth iteration are given by:

g — E[@ |Yi,y("),2("’,ﬁ(")]
O — E[(@—é("))(é?—é(k))T |Yi,y(k),2(k),ﬁ(k’}

The conditional density of & is:

P, 16.8)p(0] 1.5)
p(Q'Y"”’Z’ﬂ)_in(Yi 16, )P(6| 1,2)d6

ADAPT Short Course BMSR Page 36
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» Sampling Based Methods used to Calculate
Conditional Means and Variances

- Densities and Samples

0(0), 0,i=1,...

Densities <e=p- Samples from Densities

- Given a sample can approx. recreate a density
(e.g., histogram, moments (e.g. mean), etc.)

- Update a sample from p(€) to a sample from p(@|Y)
through the likelihood function I1(6]Y)

ADAPT
/O/ ADAPT Short Course BMSR Page 37
- Monte Carlo Sampling
1(@|Y)p(@
0(0]Y) = @1Y)p©)
[1@1Y)p(©)de
1. Sample 6,i=1...,n, from p(6)
2. Calculate 1(6Y),i=1...,n
3. Calculate qi=w,i=lp..,n
1@ 1Y)
i=1
4. Select ¢ from the discrete distribtion
{6,,...,6,} placing mass g, on 6,
0 approx. ~ p(@]Y) (n— o)
ADAPT
/O/ ADAPT Short Course BMSR Page 38
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ADAPT

¥

« Standard Errors also Calculated for the Following:
u o x p
6 h(6), i=1..,N

* Programs Using the EM Algorithm for Pop PK/PD
* ADAPT 5
* S-ADAPT (Bob Bauer - distributed via BMSR)
* MONOLIX (Marc Lavielle, Univ. Paris) — Stochastic EM

* PDx-MCPEM (Globomax/Icon)

ADAPT Short Course BMSR

Page 39

ADAPT 5 Population Programs

» Population Model Definition

- Define a composite model for all subjects.

- Allows different model and bolus inputs, as well as
different measured outputs for each subject.

Plasma or response measurements Oral or 1V dosing

) b r(t)

ADAPT Short Course BMSR

Page 40
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* Population Data Fi

le

- collection of individual Subjectt
subject data files !
0.000 100.000000
1
\ 3
0.100 7.807446
0.250 7.370744
0.500 7.320860
Subject2
0
1
1
0.000 40.000000
1
4
1.000 16.049698
2.000 13.047071
4.000 7.723986
6.000 4.983869
ADAPT
,O/ ADAPT Short Course BMSR Page 41
* Population Data File - Example
- Subject 1 — plasma only Subjectl
- Subject 2 — response only !
0.000 100.000000
2
\ 3
0.100 7.807446 -1
0.250 7.370744 -1
0.500 7.320860 -1
Subject2
0
1
1
0.000 40.000000
2
4
1.000 -1 16.049698
2.000 -1 13.047071
4.000 -1 7.723986
6.000 -1 4.983869
ADAPT
¥ ADAPT Short Course BMSR Page 42
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* Population Data File - Example

- Subject 1 — 1V infusion Subjectt
- Subject 2 — Oral dose as bolus 9
0.000 100.000000
1.000 0.0
1
3
0.100 7.807446
0.250 7.370744
0.500 7.320860
Subject2
0
1
1
0.000 40.000000
1
4
1.000 16.049698
2.000 13.047071
4.000 7.723986
6.000 4.983869
ADAPT
ADAPT Short Course BMSR Page 43

CHHHHHHHHHHHHHHHHHHHHHHHHHH R HC
Subroutine POPINIT(Pmeanl, ICmeanl,Pcovl,ICcovl, PCI)
C Initial parameter values for population program parameters (ITS,MLEM)

cc
C— C
C Enter Initial Values for Population Means C
C { e.g. Pmeani(1) = 10.0 } C
Cmm— = G m - C

Enter Initial Values for Population Means Here

cc
G mm C
C Enter Initial Values for Pop. Covariance Matrix (Lower Triang.) C
C { e.g. Pcovl(2,1) = 0.25 } C
Cm— == G C

Enter Initial Values for Pop. Covariance Matrix Elements Here

cc
C—— - C
C Enter Values for Covariate Model Parameters C
C { e.g. PCI(1) = 2.0 } C
Cmm— = G C

Enter Initial Values for_Covariate Model Parameters Here

cC
G mm C

ADAPT
ADAPT Short Course BMSR Page 44
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* NPD Analysis

Y.=h(8)+e , i=1...,N (N-#subj. orexp.)

6, = 6 Same for each subject/experiment

and no model for @

- Can use WLS, ML or MAP as in Individual Analysis

- Different Designs/Repeated Experiments

ADAPT
/O/ ADAPT Short Course BMSR Page 45
» STS Analysis
Y, =h(8)+e , i=1...,N (N-#subj orexp)
Hi Different for each subject/experiment
and no model for @
- Can use WLS, ML or MAP for each subject
as in Individual Analysis
_ N 13 — —\T
7134 cov, =22 {(6-0)(6-9) |
N = N =
ADAPT
/O/ ADAPT Short Course BMSR Page 46
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* Calculating &z and 2 in a Standard Two Stage Analysis

Example 1: One parameter case — K

K., K, K.

p=RK=E(K)=T3K

5 = 62 =var(K) =ﬁZ(Ki _R)2
i

ADAPT Short Course BMSR

Page 47

Example 2: Two parameter case — K and V

CRANCRARCEAN

ol :%Z(Ki —K)? o3 =52V Y oy = 20K V)
: i

_ 2
o O
ﬂ:{;} s-| K K2V (Also p=%)
O, O,

Calculations via Excel, for example.

ADAPT Short Course BMSR

Page 48
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ADAPT
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* ITS Analysis

Stage 1: Individual Subject Variation (Intra-Individual)
Y. =h(8)+e , i=1...,N
e ~ N(0,G,(h(6).5))
Stage 2: Inter-Individual Variation
¢ ~ N(u,2)
Want to Estimate:

4 = B 6,i=1..,N

ADAPT Short Course BMSR Page 49

ADAPT

¥

ITS Algorithm

- Initialization
initial guesses: ,u(o) > ,B(O) 6. = 69 i=1...,N
k=0

- Stage 1 — Estimation (Individual MAP Estimates)

MAP estimate
for each subject

6%, i=1..,N

Approx. SE A(k) s
for each subject 7, 1=1...,N

ADAPT Short Course BMSR Page 50
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MAP Estimate and Approximate Standard Error of Estimate

p(©)
Recall from Bayes’ Theorem:

/ o
pEIY) = 1(AN) pOluT)c
o[ [1\ e 10N
! Mode
o O 0 B

- Stage 2 — Updating

N =

(k+1) _ 1

Mz

3 (k1) :%i{(é(k) _Iu(k+1))(63i(k) _lu(k+1) )T n éi(k)}

i=1
N ~
(k+1) _ k
pr =argmax | [ (%, 147,

Repeat Steps 1 and 2

ADAPT
¥ ADAPT Short Course BMSR Page 52
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Case Study — The ADAPT Population Programs

This case study is intended to familiarize you with the ADAPT population
programs MLEM, ITS, STS and NPD. A simple two parameter, one
compartment, 1V bolus PK model is used in this example, along with a
Normal distribution model for the population parameters.

b (CLV)~N(15)

47 CL | u o

CL (L/hr)
V (L)

Data from 10 Subjects

OcLv

20 0.6(30%) 1.44(r=0.8)
10.0 3.0 (30%)

. 30

£

>

= .
~ 20 Error variance
S ce = 05
o

§ 10

c

(@)

O

0 5 10 15 20 25
Time (hours)

Part 1 — The NPD Program

While naive pooled data (NPD) analysis is not a population modeling
approach (all the data are assumed to arise from one set of model parameters
— no inter subject variability), it is useful to apply it to the data set in this
example. The model, data and parameters are contained in the files x.for,
x.dat and x.prm.

D.Z. D’Argenio, Biomedical Simulations Resource, ADAPT Short Course 1



The analytic solution of the PK model is coded in the file x.for (subroutine
OUTPUT). Also inspect the data file x.dat to see the format of a population
data file.

Perform a naive pooled data (NPD) analysis using the maximum likelihood
estimation option (enter xnpd.run as the name of the run file when
prompted). The table below shows the initial guesses for the parameters that
are stored in the file x.prm as well as which parameters are to be estimated.
View all the results stored in the run file as well as the plots and confirm the
results shown in the table below.

Parameter Initial VValue Estimate? ML Estimate
CL 2.0 Y 1.620
V 10.0 Y 8.178
Sigma 0.5 Y 3.847

As expected all of the between subject variability in the data is attributed to
output error variance, resulting in an estimate of 3.8 while the true value was
0.5.

Part 2 — The STS Program

Next, perform a standard two stage analysis (STS) analysis using the
maximum likelihood estimation option for individual subject estimation
(enter xits.run as the name of the run file when prompted). Again use the
model, data and parameters contained in the files x.for, x.dat and x.prm.
View the results stored in the run file and confirm the results shown in the
table below taken from the SUMMARY OF PARAMETER ESTIMATES
found at the end of the run file.

————— SUMMARY OF PARAMETER ESTIMATES -----

-—- A. System Parameters ---

Parameter Mean Median Std.Dev. Min Max
CL 1.926 1.719 0.7888 0.7064 2.948
V 9.784 10.03 3.773 3.977 15.73

-—-- B. Variance Model Parameters ---

Std.Dev. Min Max
0.6467E-01 0.2547 0.4718

Median
0.5489

Parameter Mean
Sigma 0.3684

D.Z. D’Argenio, Biomedical Simulations Resource, ADAPT Short Course 2



The standard two stage approach will generally overestimate intersubject
variability. In this example the overestimation is small, can you explain why
this is the case? Inspect the results present in the xits.ind and xits.rsd files.

Part 3 — The MLEM Program

Initial values (guesses) for all population mean, population covariance and
error variance parameters are entered in the POPINIT subroutine in the
model file x.for (view this section of the model file).

Perform a population maximum likelihood (MLEM) analysis using the
model, data and parameters contained in the files x.for, x.dat and x.prm
(enter x.run as the name of the run file when prompted). Select a Normal
parameter distribution model with a Full covariance. Use 1000 samples/EM
iteration and perform 15 EM iterations. View the results stored in the x.run
file and confirm the results shown in the table below taken from the MLEM
FINAL POPULATION PARAMETER ESTIMATES found at the end of the
run file.

--— A. Population Mean & Population Standard Deviation ---

Parameter Mean %RSE Std.Dev. SD as CV% %RSE
CL 1.92 16.0 0.738 38.4 55.9
Vv 9.79 13.6 3.57 36.5 45.1

--— B. Full Population Covariance of Estimated Parameters --—-
As Covariance Matrix:

CL \
CL 0.544
\ 2.29 12.8

As Correlation Matrix:
CL \Y

CL 1.00

\Y, 0.87 1.00

Standard Errors of Estimated Covariance Matrix:

CL \Y

CL 0.609

Vv 2.27 11.5

-—— D. Error Variance Model Parameters ---

D.Z. D’Argenio, Biomedical Simulations Resource, ADAPT Short Course 3



Case Study — The MLEM Program

This case study uses the MLEM program to perform a population analysis of
data from 30 subjects using a one compartment, first order absorption model
(LCOMPCL library model file is used).

r(t)

Kga Bl
2 1
()

Data from 30 Subjects

o

O Mesurement

Concentration (mg/ml)
O O Fr P NDNWW
o 01 O O O g1 O O
[ [l [ [l [ [l [ [

——

6 8 10 12
Time (hours)

o
N
N

The 1COMPCL library model file has been copied and renamed mlem.for
for use in this example. Initial values (guesses) for all population mean,
population covariance and error variance parameters are entered in the
POPINIT subroutine in the model file mlem.for (view this section of the
model file using the Fortran editor).

Perform a population maximum likelihood (MLEM) analysis using the
model, data and parameters contained in the files mlem.for, mlem.dat and
mlem.prm (enter mlem.run as the name of the run file when prompted).

D.Z. D’Argenio, Biomedical Simulations Resource, ADAPT Short Course 1



The bolus input is into compartment 2. Estimate those parameters indicated
in the following table.

Parameter Initial VValue Estimate?
CLt (L/hr) 8.0 Y
Ve (L) 30.0 Y
Ka (hr') 1.0 Y
IC(1) 0.0 N
IC(2) 0.0 N
SDinter 0.0 N
SDslope 0.1 Y

Do Not Fix non estimated parameters, and select a Lognormal parameter
distribution model with a Full covariance. Use 1000 samples/EM iteration
and perform 30 EM iterations. View the results stored in the mlem.run file
and confirm the results shown in the table below taken from the MLEM
FINAL POPULATION PARAMETER ESTIMATES found at the end of the
run file.

Sun Jun 29 12:41:24 2008
Data file name: D:\test\mlem.dat

Model: MLEM.FOR: - 1 comp. pop. example

Number of data sets analyzed successfully: 30
Importance Sampler with number samples/iteration: 1000
Total number of EM iterations: 30

Lognormal distribution option

Negative Log Likelihood: -32.8502
Model Selection Criteria

AlC: -45.7003

BIC: -13.7707

D.Z. D’Argenio, Biomedical Simulations Resource, ADAPT Short Course 2



--— A. Population Mean & Population Standard Deviation ---

Parameter Mean %RSE Std.Dev. SD as CV% %RSE
CLt 8.39 5.27 2.04 24 .3 29.2
Vc 30.1 7.17 5.98 19.9 48.9
Ka 1.02 6.77 0.146 14.3 100
I1C( 1) 0.00 Not estimated
ICC 2) 0.00 Not estimated

--— B. Full Population Covariance of Estimated Parameters ---

As Covariance Matrix:

CLt Vc Ka
CLt 4.17
Vc -1.51 35.7
Ka -.130E-02 -.321 0.212E-01

As Covariance Matrix for In(parameters):

CLt Vc Ka
CLt 0.592E-01
Vc -.598E-02 0.395E-01
Ka -.151E-03 -.104E-01 0.203E-01

As Correlation Matrix:

CLt Vc Ka
CLt 1.00
Vc -0.12 1.00
Ka 0.00 -0.37 1.00

Standard Errors of Estimated Covariance Matrix:

CLt Vc Ka
CLt 2.43
Vc 5.04 34.9
Ka 0.227 0.645 0.424E-01

-—— D. Error Variance Model Parameters ---

Parameter Estimate %RSE
SDslope 0.181 6.08
SDinter 0.00 Not estimated

--- E. Secondary Parameters: Pop. Mean & Pop. Std. Dev. ---

Parameter Mean Std.Dev.
Kel 0.279 0.928E-01
LAM1 0.279 0.928E-01
t1/2-LAM1 2.49 0.827

D.Z. D’Argenio, Biomedical Simulations Resource, ADAPT Short Course 3



Absorption/Disposition Modeling

Rate and Extent of Bioavailability

=Why? To avoid biased estimates due to model misspecification

Determination of the absorption kinetics
=Maximum absorption rate is not achieved instantaneously

= Case study: Extended release product

Identifiability
Dosis . : "
po, Absorption Disposition
Cp"(t) Bioavailability, F
D, Civ(t) Rate of absorption
Simplification:
D, Kk, K reality
------ » Gut — Body L c, 3
Civ (t) = Z Bie%it
1 Comp 1 Comp i=1
Input(t) =1,  C,(t)=C,e™

\ N k, = real absorption rate constant!

_ —k,
unrealistic Cy () =B —e™") A#k,!




Absorption Rate: Inverse Gaussian Density
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Weiss, Pharm Res, 1996

Metabolite Kinetics
(Systems Approach)

Absorption

Precursor
oral

Liver

Metabolite iv

Disposition
metabolite

Disposition |,
Precursor .-~

Precursor iv

Weiss, Drug Metab Dispos, 1998




Modelling Metabolite Kinetics, O,

Formation of morphine-6-glucuronide (M66G) from morphin

Morphin

100 W M6G {//"’\\
f o

0 2 4 6 8 0 2 4 6 8
Time [h] Time [h]

Plasma concentration [nmol/I]

[$2)
o

o

Létsch et al, Anesthesiology, 1999

Modelling Metabolite Kinetics, O,

Morphin 90 mg sustained release tablet (MST?)

150 Morphin
3 S M6G
g £ 400
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= £ 200
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Lotsch et al, Anesthesiology, 1999
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Case Study — Population Analysis of Dissolution-
Absorption Models

The method is applied to data of an oral extended-release product investigated together with
an intravenous reference in a bioavailability study (Wang, Weiss & D’Argenio, 2008).

Model equations are coded in Model File absdis.for.

Y(1): = X(1) Oral concentration-time curve

X(1) Concentration in central compartment (3-compartment disposition model + 1 absorption
compartment) with input function (dissolution rate), fi,(t) to the absorption compartment:

1V
|V i
i CL]_Z“ E
fm(t Eka \4 i
pO —_— - V; +—>CL
| Cly I :
Vs

4-Compartment model (differential equations) in Library
+ dissolution rate function fi,(t) as input in absorption compartment

if(t .eq. 0.0) then
fAofT = 0.0
else
fAOfT = F*10000000.0*dsqrt(MIT/(2*pi*CVA2*t**3))*
X dexp(-(t-MIT)**2/(2.0D0*CVA2*MIT*t))

XP(4) = - X(4)/P(10) + fAOfT

D. Z. D’Argenio/M Weiss 1 ADAPT Short Course



Parameters:

PSym(1) = "'CLt' CL Total clearance

PSym(2) ='V1' V1 Volume of sampling compartment
PSym(3) ='CL2' CLi,

PSym(4) ='V2' V,

PSym(5) = 'CL3' CLis

PSym(6) ='V3' Vs

PSym(7) ="'MIT' MIT Mean input time (mean dissolution time)
PSym(8) = 'CVA2' RD? Relative dispersion of input time
PSym(9) ='F F Bioavailability

PSym(10) = 'MAT' MAT Mean absorption time (1/k,)

Parameter estimation:
1. Fit of iv data to estimate Psym(1) - Psym(6)
2. Fix Psym(1) - Psym(6) and fit po data to estimate Psym(7) - Psym(8)

Secondary Parameter:

1. The time at which the input (dissolution) rate attains its maximum value (mode of the
inverse Gaussian)

t, e = MIT 1+ 2rp* —3Rp2
' 4 2

Analysis:

Data for 10 subjects with 19 (oral) and 24 (iv) plasma concentrations collected between 5
minutes and 32 hours will be analyzed.

1. We start with a separate fit of the intravenous data (Model File dis.for).
Data file, disd.dat contains the bolus input information and iv drug concentration values.
- MLEM estimation, disp.prm contains initial values
- view plots (PostScript file)

- results (run file), conditional estimates for all subjects are entered in fixed parameter file
iv.fix

2. The parameter estimates of the dis-subsystem obtained by the separate fit of the
intravenous data are used as fixed values in the simultaneous abs-dis-fit.
Data file, absdisd.dat contains the input information and oral drug concentrations.
- MLEM estimation, absdisp.prm contains initial values
- CL, V4, CL1s, V5, CL13, V3 tO be fixed: iv.fix
- view plots (PostScript file)

- results (run file), enter estimates (means) of F, MIT, RD? , MAT and tymax in Table,
below (first column)

D. Z. D’Argenio/M Weiss 2 ADAPT Short Course



3. RE-ESTIMATION: assuming rapid distribution (1-compartment behavior)
keeping ke = CL/V; constant
- repeat 2. using ivre.fix where all CL2 = 1000 CL;, (est.) and CL3 = 1000 CL3(est.)

- view plots (PostScript file))
- results (run file), enter estimates of F, MIT, RD? and MAT in Table, below (first column)

Table

real CL 1; |high CL y;

AIC

MIT
RD 2
MAT

1:Imax

Discussion:

Correct modeling of drug disposition (independent iv study) is essential for estimation of
unbiased absorption parameters.

Note that in this case the assumption of 1-compartment-like distribution kinetics (1000-fold
increase in CL;, and CL3 with unchanged Vs = Vi or ke * MRT = V/CL ) affected mainly
MAT and t; max (RD?).

fin(t) Ka CL

Misspecification of the disposition model

D. Z. D’Argenio/M Weiss 3 ADAPT Short Course



Model Building with Covariates

The Population Problem with Covariates

» Base Model Notation
» Notation with Covariate Model
» The Concept

Solution via the MLEM Algorithm

* lterative Equations with Covariates
» Specifying the Covariate Model in ADAPT

Covariate Model Building

ADAPT
/O/ ADAPT Short Course BMSR Page 1

The Population Problem

» Base Model Notation

Stage 1: Individual Subject Variation (Intra-Individual)
Y.=h(8)+e , i=1,...,N
e~ N(0,G;(h(6). )

Stage 2: Inter-Individual Variation

6 ~N(u,Z) or LN(x,Z) = p(0|1,%)

Wantto Estimate: u« X g 6,i=1...,,N

ADAPT
/O/ ADAPT Short Course BMSR Page 2




» Notation with Covariate Model

Stage 1: Same

Stage 2: Inter-Individual Variation

6 ~ N(@Z) or LN@,Z) = p(0|@2)

Covariate Model

#=Vv(c, r.) i

I. - vector of covariate values for ith subject

C - vector of covariate model parameters

assumed to be the same for all subjects

Want to Estimate: @ X p 6,i=1...,N

Page 3

ADAPT
Lol ADAPT Short Course BMSR
» The Concept i 0
K CL
(CL.V;. Ka;) ~N (,uv ’:uKa)’ Z)
’uCLi :CLnon renal +CLrenaI slope 'CrCIi = V(C’ IFI)
Without
covariate
H CL;
'\ A ST - He
O-CL
ADAPT
¥ ADAPT Short Course BMSR CrC Ii Page 4




Solution via The MLEM Algorithm

BIOMETRICS 52, 934-044
September 1996

Special Case (Linear Model)

An EM Algorithm for Nonlinear
Random Effects Models ILL _ C r
i i

Stephen Walker

Department. of Mathematics, Imperial College,
180 Queen's Gate, Landon SWT 2BZ, England

MONTE CARLO PARAMETRIC
EXPECTATION MAXIMIZATION
(MC-PEM) METHOD FOR ANALYZING General Case

POPULATION PHARMACOKINETIC/
PHARMACODYNAMIC DATA
#=v(c, 1)

Robert J. Baver and Serge Guey
XOMA (US) LLC
Berkedey, California

Advanced Methods of Pharmacokinetic and Pharmacodynamic Systems Analysis,
Volume 3, Edited by D.Z. D'Argenio, Kluwer Academic Publishers, Boston, 2004

ADAPT
ADAPT Short Course BMSR Page 5

* Iterative Equations with Covariates

- Initialization

initial guesses: 2(0) ,B(O) Qi(o) k=0

- Stage 1 — Estimation (E Step)

Conditional Mean gi(k) _E [9 Y ,@z(k)1ﬂ(k):|

for each subject

Conditional Qv - E [(9_ é(k))(e_ é(k))T |Yi2(k)’ﬂ(k)}

Covariance
for each subject

Note: 249 =v(c®, )

ADAPT
ADAPT Short Course BMSR Page 6




- Stage 2 — Maximization (M Step)

- Update covariate model parameters:

C(k+l):argmin%i{(§i(k) —v(c, r,))T Z(k)(gi(k) -v(c, r,))}

i=1
which updates the population mean for each subject:

lui(k+1) — V(C, rl)

- Update intersubject covariance:
k+1 1 2 n k+1 n k+1 T O
st -G v v ) <o)

ADAPT
,O/ ADAPT Short Course BMSR Page 7

* Specifying the Covariate Model in ADAPT

Example: 4, =CL +CL -CI’CIi
i

non renal renal slope

CHHEH AR HH A A AR C
Subroutine COVMOD(PC, P, IC)
Implicit None
Include "globals.inc*
Include "model.inc*”

cC
G C
C Enter # of Covariate Parameters C
Cmm O C
NCparam = 2 ! Enter # of Covariate Parameters.
cc
G C
C Enter Symbol for Covariate Params. {eg: PCsym(1)="CLRenal"} C
(O et e C
PCsym(1)="CLnonrenal "
PCsym(2)="CLrenalslope*
ADAPT

¥ ADAPT Short Course BMSR Page 8




G c
C For the Model Params. that Depend on Covariates Enter the Equation C
o {e.g. Pmean(1l) = PC(1)*R(2) } c
Cmm O C

Pmean(1) = PC(1) + PC(2)*R(2)

C-—————————— .. . ————————————————————————————————— C
C-—————————— .. . —————————————————————————————— C
C

Return

End

CHHHHH I HH I H A R I HHC
Subroutine POPINIT(Pmeanl, ICmeanl,Pcovl,I1Ccovl, PCI)
C Initial parameter values for population program parameters (ITS, MLEM)

o C
C Enter Values for Covariate Model Parameters C
C { e.g. PCI(D) = 2.0 } C
C-———C-— c
PC(1)=2.0 I CLnonrenal
PC(2)=0.01 I CLrenalslope
By~~~ —— = = = = c
ADAPT Short Course BMSR Page 9

CHHHLHL R HH I H S A A I HHC
Subroutine POPINIT(Pmeanl, ICmeanl,Pcovl,I1Ccovl, PCI)
C Initial parameter values for population program parameters (ITS, MLEM)

e C
C Enter Values for Covariate Model Parameters C
C { e.g. PCI(D) = 2.0 } C
(O o e C
PC(1)=2.0 I CLnonrenal
PC(2)=0.01 I CLrenalslope
cc
e C
ADAPT

ADAPT Short Course BMSR Page 10




Case Study — Model Building with Covariates

This case study uses the MLEM program to perform a population analysis
with covariates. The example presented previously involving a one
compartment, first order absorption model to analysis the data from 30
subjects following single dose oral administration is also used.

3.5- Data from 30 Subjects

3.01
2.54
2.04
1.54
1.04
0.51
0.0 = S——
0 2 4 6 8 10 12 14
Time (hours)

r(t)

Ka o1
2 1
.

o

Concentration (mg/ml)

Creatine clearance (CrCl) was also determined in each of these 30 subjects.
We would like to explore if CrCl can explain any of the intersubject
variability in drug CL estimate in the previous analysis. In the following
graphs the estimated values for CL and V for each of the 30 subjects (from
the population analysis using the base model above) are plotted versus the
subject’s CrCl.

CL versus CrcClI V versus CrCl
159 50+
[ ]
= e o 40 W
< ° A
o 101 s A, a4
= ” o = 301 4 4
| ‘.’ . = AAﬁ‘A“ A a ‘
2 L > 20 A a
S 9
[a)] 104
C L) L) L) L) L) 1 C L) L) L) L) L) 1
0 25 50 75 100 125 150 0 25 50 75 100 125 150
CrCl  (ml/min) CrCl  (ml/min)

These plots suggest that CrCl may be an explanatory covariate for CL but
not for V.

D.Z. D’Argenio, Biomedical Simulations Resource, ADAPT Short Course 1



To test this hypothesis, the population analysis of the data is performed
using CrCl as a covariate for drug CL. The relation between the mean value
of CL in the population and CrCl is modeled as follows:

Model Equation ADAPT Code

e, = C,-CrCl Pmean(1) = PC(1)*(R(2)/70)

The model file mlemcov.for incorporates this covariate model in subroutine
COVMAOD (inspect this file in the Fortran editor). Initial values (guesses) for
all population mean (when not modeled with covariates), population
covariance, error variance and now covariate parameters are entered in the
POPINIT subroutine in the model file mlemcov.for (also view this section
of the model file using the Fortran editor).

Perform a population maximum likelihood (MLEM) analysis using the
model, data and parameters contained in the files mlemcov.for, mlem.dat
and mlem.prm (enter mlemcov.run as the name of the run file when
prompted). The bolus input is into compartment 2. Estimate those
parameters indicated in the following table.

Parameter Initial Value Estimate?

CLt 8.0 Y

Ve 30.0 Y

Ka 1.0 Y
IC(1) 0.0 N
IC(2) 0.0 N
SDinter 0.0 N
SDslope 0.1 Y
CLslope 1.0 Y

Do Not Fix non estimated parameters, and select a Lognormal parameter
distribution model with a Full covariance. Use 1000 samples/EM iteration
and perform 30 EM iterations. View the results stored in the mlem.run file
and confirm the results shown in the table below taken from the MLEM
FINAL POPULATION PARAMETER ESTIMATES found at the end of the
run file.

D.Z. D’Argenio, Biomedical Simulations Resource, ADAPT Short Course 2



Model: MLEMcov.FOR: - 1 comp. pop. example w/ covariates
Number of data sets analyzed successfully: 30
Importance Sampler with number samples/iteration: 1000
Total number of EM iterations: 30

Lognormal distribution option
Negative Log Likelihood: -69.5241
Model Selection Criteria

AIC: -119.048

BIC: -87.1186

--— A. Population Mean & Population Standard Deviation ---

Parameter Mean %RSE Std.Dev. SD as CV% %RSE
CLt - - - 3.98 68.9
Vc 30.1 7.13 6.12 20.3 46.8
Ka 1.02 7.46 0.143 14.1 85.5
ICC 1) 0.00 Not estimated
ICC 2) 0.00 Not estimated

-—- B. Full Population Covariance of Estimated Parameters ---

As Covariance Matrix for In(parameters):

CLt Vc Ka
CLt 0.158E-02
Ve 0.950E-04 0.412E-01
Ka 0.894E-03 -.872E-02 0.198E-01

As Correlation Matrix:

CLt Vc Ka
CLt 1.00
Vc 0.01 1.00
Ka 0.16 -0.31 1.00

Standard Errors of Estimated Covariance Matrix for In(parameters):

CLt Ve Ka
CLt 0.218E-02
Vc 0.614E-02 0.353E-01
Ka 0.104E-01 0.206E-01 0.329E-01

-—— C. Covariate Model Parameters ---

Parameter Estimate %RSE
CLslope 8.26 2.43

D.Z. D’Argenio, Biomedical Simulations Resource, ADAPT Short Course



Case Study — Population PK/PD Analysis

This case study involves population parameter estimation using an indirect
response model (IRM). The pharmacokinetic/pharmacodynamic IRM used
in this case study is shown below. The pharmacokinetic portion of the model
consists of a two compartment linear model (clearance parameterization)
with intravenous drug administration (100.0 mg/hr over 1.0 hr). The
complete equations defining this PK/PD model have been introduced in a
previous Case Study.

l Kout

Both PK (plasma concentration) and PD (response variable) are available
from 50 simulated subjects, which will be used to perform a population
analysis. In this case study a sequential analysis will be performed. In part 1
of this example a population PK analysis will be performed using the plasma
concentration data alone, which will yield a population model for the PK as
well as estimates for the PK parameters for each of the 50 subjects. In part
2, each individual subject’s estimated PK parameters will then be used to
perform a population analysis using the PD response data only, resulting in a
population model for the indirect response portion of the model.

D.Z. D’Argenio, Biomedical Simulations Resource, ADAPT Short Course 1



Part 1 — Population PK Analysis

The two equations for the PK model have been coded and entered into the
model file irmPK.for. Initial values (guesses) for all population mean,
population covariance and error variance parameters are entered in the
POPINIT subroutine in the model file irmPK.for (view this section of the
model file using the Fortran editor).

Perform a population maximum likelihood (MLEM) analysis using the
model, data and parameters contained in the files irmPK.for, irmPK.dat
and irmPK.prm (enter irmPK.run as the name of the run file when
prompted). Estimate those parameters indicated in the following table.

Parameter Initial Value Estimate?
CLt (L/hr) 6.0 Y
Ve (L) 30.0 Y
Cld (L/hr) 12.0 Y
Vp (L) 60.0 Y
IC(1) 0.0 N
1C(2) 0.0 N
SDinterPK 0.0 N
SDslopePK 0.1 Y

Do Not Fix non estimated parameters, and select a Lognormal parameter
distribution _model with a Diagonal covariance. Use 1000 samples/EM
iteration and perform 15 EM iterations. View the results stored in the
irmPK.run file and confirm the results shown in the table below taken from
the MLEM FINAL POPULATION PARAMETER ESTIMATES found at
the end of the run file.

D.Z. D’Argenio, Biomedical Simulations Resource, ADAPT Short Course 2



Mon Jun 30 17:27:52 2008

Data file name: D:\test\irmPK.dat

Model: irmpopPK.for - ADAPT Short Course Example
Number of data sets analyzed successfully: 50
Importance Sampler with number samples/iteration:
Total number of EM iterations: 15

Lognormal distribution option

Negative Log Likelihood: -931.254

Model Selection Criteria

AlC: -1844 .51
BIC: -1803.55

1000

--— A. Population Mean & Population Standard Deviation ---

Parameter Mean %RSE Std.Dev. SD as CV% %RSE
CLt 5.58 4.72 1.74 31.3 12.1
Ve 30.3 5.66 9.25 30.6 12.1
CLd 11.7 4.88 3.39 28.9 13.8
Vp 57.4 4.32 15.5 27.0 14.4
I1C( 1) 0.00 Not estimated
ICC 2) 0.00 Not estimated

--- B. Full Population Covariance of Estimated Parameters ---
As Covariance Matrix for In(parameters):
CLt Ve CcLd Vp

CLt 0.977E-01

Ve 0.00 0.934E-01

CLd 0.00 0.00 0.834E-01

Vp 0.00 0.00 0.00 0.731E-01
Standard Errors of Estimated Covariance Matrix:

CLt Ve CcLd Vp

CLt 0.736

Vc 0.00 20.6

CcLd 0.00 0.00 3.17

Vp 0.00 0.00 0.00 69.3

--— D. Error Variance Model Parameters ---
Parameter Estimate %RSE
SDslopePK  0.979E-01 3.29
D.Z. D’Argenio, Biomedical Simulations Resource, ADAPT Short Course 3




Part 2 — Population PD Analysis

The complete equations for the PK/PD model have been coded and entered
into the model file irmPD.for. Initial values (guesses) for the only those
population mean and population covariance parameters to be estimated, as
well as error variance parameters are entered in the POPINIT subroutine in
the model file irmPD.for (view this section of the model file using the
Fortran editor).

Using the irmPK.ind file create from the PK analysis, a file name_irmPK.fix
containing the estimated PK parameters from each of the 50 subjects has
been created. View this file in an editor.

Perform a population maximum likelihood (MLEM) analysis using the
model, data and parameters contained in the files irmPD.for, irmPD.dat
and irmPD.prm (enter irmPD.run as the name of the run file when
prompted). Estimate those parameters indicated in the following table.

Parameter Initial Value Estimate?
CLt (L/hr) 6.0 N
Vc (L) 30.0 N
Cld (L/hr) 12.0 N
Vp (L) 60.0 N
Kin (units/hr) 0.0 Y
IC50 (ug/ml) 0.0 Y
IC(1) 0.0 N
IC(2) 0.0 N
1C(3) 100.0 Y
SDinterPD 5.0 Y
SDslopePD 0.0 N

Fix_non estimated parameters (file irmPK.fix), and select a Lognormal
parameter distribution _model with a Diagonal covariance. Use 1000
samples/EM iteration and perform 15 EM iterations. View the results stored
in the irmPD.run file and confirm the results shown in the table below taken
from the MLEM FINAL POPULATION PARAMETER ESTIMATES
found at the end of the run file.
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Mon Jun 30 17:59:14 2008
Data file name: D:\test\irmPD.dat

Model: irmpopPD.for - ADAPT Short Course Example

Number of data sets analyzed successfully: 50
Importance Sampler with number samples/iteration: 1000
Total number of EM iterations: 15

Lognormal distribution option
Negative Log Likelihood: 2348.62
Model Selection Criteria

AlIC: 4711.24

BIC: 4743.10

-—— A. Population Mean & Population Standard Deviation ---

Parameter Mean %WRSE Std.Dev. SD as CV% %RSE
Kin 19.0 5.81 6.43 33.8 15.2
1C50 0.482 6.58 0.185 38.4 12.3
1C(C 3) 96.7 3.96 25.8 26.7 15.4
CLt 5.85 Not estimated
Vc 31.6 Not estimated
CLd 12.2 Not estimated
Vp 59.6 Not estimated
1C(C 1) 0.00 Not estimated
ICC 2) 0.00 Not estimated

--— B. Full Population Covariance of Estimated Parameters —--
As Covariance Matrix:

As Covariance Matrix for In(parameters):

Kin 1C50 Ic(C 3)
Kin 0.114
1C50 0.00 0.148
ICC 3) 0.00 0.00 0.713E-01

Standard Errors of Estimated Covariance Matrix:

Kin 1C50 IcCC 3)
Kin 12.6
1C50 0.00 0.843E-02
ICC 3) 0.00 0.00 206.

—--- D. Error Variance Model Parameters ---

D.Z. D’Argenio, Biomedical Simulations Resource, ADAPT Short Course 5
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