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Identification of Nonlinear Biological Systems 
Using Laguerre Expansions of Kernels 
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Abstract- Identification of nonlinear dynamic systems using the 
Volterra-Wiener approach requires the estimation of system ker- 
nels from input-output data. A kernel estimation technique, orig- 
inally proposed by Wiener (1958) and recently studied by Ogura 
(1986), employs Laguerre expansions of the kernels and esti- 
mates the unknown expansion coefficients via time-averaging 
of covariance samples. This paper presents another implemen- 
tation of the technique which utilizes least-squares fitting in- 
stead of covariance time-averaging and provides for the proper 
selection of the intrinsic Laguerre parameter "c~". Results from 
simulation examples demonstrate that this implementation can 
yield accurate kernel estimates up to 3rd-order from short in- 
put-output data records. Furthermore, it is shown that this im- 
plementation remains effective in the presence of noise and when 
the spectral characteristics of the input signal deviate somewhat 
from the theoretical requirements of whiteness. The computa- 
tional requirements and the overall performance of this tech- 
nique compare favorably to existing methods, especially in cases 
where the system kernels can be represented with a relatively 
small number of Laguerre basis functions. 

Keywords--Nonlinear systems, Kernel estimation, Laguerre 
expansions. 

INTRODUCTION 

The problem of identification and modeling of  non- 
linear biological systems from experimental input-output 
(stimulus-response) data has been attracting increasing 
attention in recent years. The need arises in the study 
of  impor tant  nonlinearities inherent in physiological 
function. For instance, the nervous system relies on es- 
sential nonlinear operations (such as, generation of action 
potentials, stimulus compression, nonlinear inhibition 
or facilitation, etc.) to accomplish a great diversity of  
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tasks; the cardiovascular, renal, and respiratory systems 
rely on nonlinear mechanisms for homeodynamic control 
and autoregulation; to mention a few celebrated non- 
linearities in physiological systems. Among the possible 
methodological approaches,  the methods based on the 
Volterra-Wiener theory of nonlinear systems have gained 
considerable popularity in recent years. A number of  im- 
portant  applications and theoretical studies have estab- 
lished the strengths and limitations of  this approach (for 
partial review see [1,6,7,8,10,11]). 

For systems that can be tested experimentally with 
broadband stimuli and can be represented adequately by 
low-order nonlinearities, this approach appears particu- 
larly efficacious. Among the advantages are: (a) the ca- 
nonical representat ion of  nonlinearities with kernel 
functions which provide rigorous and predictive models 
of  the input-output functional relation; (b) the ability to 
obtain these models accurately under noisy experimental 
conditions; (c) the validity of  these models over the en- 
tire frequency range of the system operation; (d) the fact 
that these models do not rely on prior postulates and can 
be extended to nonstationary cases; (e) the ability to study 
nonlinear systems with multiple inputs and multiple out- 
puts; (f) the experimental efficiency of  this approach,  re- 
sulting from the rich information content of  the employed 
test stimulus; and (g) the inclusion of  linear dynamics as 
a first-order component  of  the obtained results. Among 
the current disadvantages of  this approach are: (a) the 
practical limitations of  modeling high-order nonlineari- 
ties, except in certain special cases; (b) the more sophisti- 
cated experimental apparatus required for the necessary 
broadband stimulus, and the associated data collection 
and processing requirements; and (c) the physiological in- 
terpretation of  high-order (2nd and 3rd) kernels. We must 
note that these limitations have been receding gradually 
with the advent of  new methodological and technologi- 
cal advances. 

This paper addresses the important  practical issue of 
how to obtain accurate results (kernels) in the presence 
of  noise f rom short experimental data-records. Notable 
advances on the same issue have been recently reported 
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(3,4) and constitute, along with the method presented 
herein, powerful tools in resolving one of the critical prob- 
lems in the application of  the Volterra-Wiener approach. 
The advocated approach employs the orthonormal basis 
of  discrete-time Laguerre functions to expand the kernels 
and reduce the number of  unknown parameters that need 
be estimated, relative to the traditional discrete-time rep- 
resentation of  the kernels. This approach was first sug- 
gested by Wiener in his pivotal monograph (16) and was 
first implemented by Watanabe and Stark (15). More re- 
cently, Ogura (9) provided an insightful treatment of this 
approach and its actual application to real data. Ogura's 
method utilizes time-averages of covariance samples (be- 
tween the system output  and the respectiive Laguerre fil- 
ter outputs) to obtain estimates of the unknown expansion 
coefficients. This requires strict whiteness of  the system 
input. The implementation proposed in this paper utilizes, 
instead, least-squares estimation of the unknown expan- 
sion coefficients. This leads to increased estimation accu- 
racy in the presence of noise and reduces the requirements 
in terms of  length of experimental data-records. It also 
allows accurate kernel estimation when the experimental 
stimulus deviates from the theoretical requirement of  
whiteness, as long as the stimulus remains sufficiently 
broadband and all significant kernels are included in the 
estimated model. Caution must be exercised in the case 
of  non-white stimuli, because biases in the obtained ker- 
nel estimates may be caused by lack of orthogonality of  
possible high order functionals not included in the esti- 
mated model. Furthermore, the implementation presented 
herein provides for proper selection of  the intrinsic La- 
guerre parameter "e?', an important practical issue that 
was not addressed in previous work. 

The purpose of  this paper is to draw attention to this 
promising approach and provide sufficient technical de- 
tail and illustrative examples in order to allow its expanded 
use by interested investigators. This may address the con- 
fining issues of  limited experimental data and/or  non- 
white broadband experimental stimuli encountered in 
certain biomedical studies. The methodological approach 
is presented in the Discrete-Time Laguerre Expansion 
Method section and some illustrative examples from com- 
puter simulations are given in the Illustrative Examples 
of  Kernel Estimation section. Application of this method 
to actual experimental data is currently under way in a 
variety of biomedical systems (neural, renal, respiratory). 

DISCRETE-TIME LAGUERRE EXPANSION METHOD 

The Volterra-Wiener approach to nonlinear system 
identification utilizes a functional expansion of  the sys- 
tem response signal in terms of  the stimulus signal. De- 
tails of  this approach and its various extensions can be 

found in numerous publications (e.g. [1,6,7,10,11]). The 
background necessary for the specific objectives of  this 
paper is summarized below. 

For the general nonlinear time-invariant continuous 
system, the response signal y ( t)  can be expressed in terms 
of  a series of  functionals (Voltmra series) that represent 
multiple convolutions of  the stimulus signal x ( t ) :  

 _o io fo ~ 

y ( t )  = ~_a . . .  k . ( r l  . . . . .  r n ) x ( t -  r l )  

. . . X ( t  -- r . )  d r  l . . . d r .  . (1) 

The multiple convolution integrals of the Volterra se- 
ries involve high-order kernel functions [ k ,  ( r l  . . . . .  rn)] 
which constitute the descriptors of  the system nonlinear 
dynamics (Volterra kernels). Consequently, the system 
identification task is to obtain estimates of these kernels 
from stimulus-response data. These kernel functions are 
symmetric with respect to their arguments, i.e., attain the 
same value for any permutation of  given ( r l , . . .  , r , )  

values. 
In order to facilitate the estimation of the system 

kernels, Wiener suggested the orthogonalization of the 
Volterra functionals for a Gaussian white noise (GWN) 
stimulus. The functional terms of the Wiener series are 
constructed on the basis of  a Gram-Schmidt orthogonal- 
ization procedure requiring that the covariance between 
any two Wiener functionals { G ,  ( t )]  be zero. The result- 
ing Wiener series expansion takes the form: 

y ( t )  = ) ]  G , [ h , ; x ( t ' ) , t '  <_ t] 
n=0 

k In/Z] ( _ _ l ) m n [ p m  

= ~]  ( n  2 m ) ! m ! 2  m n=O m=O 
o 

X . . . h n ( 7 " l ,  . �9 �9 , T n - - 2 m ,  

X1,XI . . . . .  X~,Xm) 

x x ( t  - r l ) . . . x ( t  - r n - z m )  

• d r 1 . . ,  d y n _ 2 m d ~  1 . . . d ~ k  m (2) 

where In/2] is the integer part of  n / 2  and P is the power 
level of the GWN stimulus. The set of Wiener kernels 
I h ,  J is, in general, different from the set of Volterra ker- 
nels I k ,  I. Specific relations, however, exist between the 
two sets of  kernels (6). 

Clearly, the Wiener kernels depend on the GWN stim- 
ulus power level whereas the Volterra kernels are inde- 
pendent of  any stimulus characteristics. This is due to the 
fact that the Wiener kernels are associated with an orthog- 
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onal functional expansion (when the input is GWN of 
some power level P)  whereas the Volterra kernels are as- 
sociated with an analytic functional expansion that does 
not depend on any input characteristics. Both sets of  ker- 
nels can be used to predict the system response to any 
given stimulus, provided these sets are complete. 

The orthogonality of  the Wiener series allows the esti- 
mat ion of Wiener kernels f rom input-output data in the 
general case, as described below. Since the orthogonality 
of  the Wiener terms is independent of  the specific kernel 
functions involved, "instrumental" Wiener functionals 
can be used to isolate each term in a series and subse- 
quently obtain the corresponding kernel. For instance, if 
a m th order instrumental functional Qm [qm ; x ( t ' ) ,  t" <_ t ] 

is used then: 

E [ y ( t ) Q m ( t ) ]  = ~ E [ G , ( t ) Q m ( t ) ]  
n=0 

= E [ G m ( t ) Q m ( t ) ]  

fo i = m I P  m . . .  h m ( r l  . . . . .  rm) 
0 

X q ~ ( r l  . . . . .  r m ) d r l  . . . . .  drm (3) 

where the "instrumental" kernel qm(71 . . . .  ,7m) can be 
arbitrarily chosen. Since qm is known, the left-hand-side 
of  Eq. 3 can be evaluated f rom input-output data. In or- 
der to evaluate the unknown kernel h m (71 . . . . .  rm) on 
the right-hand-side, judicious choice of  the instrumental 
kernel qm is necessary to facilitate the solution of  Eq. 3. 
Wiener suggested the use of  any suitable multidimensional 
orthonormal basis for this purpose, and the Laguerre basis 
in particular for reasons explained below. So, if [bj(r)} 
is a complete or thonormal  (CON) basis over the range 
of  the system memory #, then instrumental kernels of  the 
form: 

Note that in this case: 

Q m ( t ; j l  . . . . .  Jm) 

[m/2] ( _ l ) k P k m I  
= Z  

*=0 (m - 2k) Ik!2  k 

X V j l ( t ) . . .  Vjm_2k(t)~Jj,,_zk+,,j m 2k+2"" "~)Jm--l,Jm (7) 

where 

v j ( t )  = b j ( r ) x ( t  - r)  dr  (8) 

and 6 denotes the Kronecker delta. The importance of this 
observation lies in the fact that the functions v 9 ( t )  are 
independent Gaussian random processes with zero mean 
and variance P, and the instrumental functionals [Qm ] 

can be seen as orthogonal (Hermite) polynomials in the 
variables (v l  . . . . .  Vm), when x ( t )  is GWN. For the gen- 
eral causal system, Wiener proposed the use of  Laguerre 
functions for the CON set [bj  (7)1 since they are defined 
over the interval r E [0,oo) and can be generated easily 
in analog f o r m - a  fashionable mode at that t i m e - b y  
a simple RC ladder network. Furthermore,  they have a 
"built-in" exponential which makes them suitable for ker- 
nels of  exponential asymptotic values, as in most physi- 
cal systems. 

Lee and Schetzen (5) proposed a different implemen- 
tation of Wiener's original ideas for kernel estimation that 
has been widely used because of its relative simplicity. The 
Lee and Schetzen technique is based on the observation 
that the product  of  m time-shifted versions of  the GWN 
input can be written in the form of  the leading term of  
an instrumental functional Qm using a product of  delta 
functions for the instrumental kernel. They were able to 
show that use of  this instrumental functional allows ker- 
nel estimation through input-output crosscorrelation: 

qm(71 . . . . .  7m;Jl . . . . .  Jm) ---- bjl(71).- .b jm(Tm)  (4) h m ( 7 1 , .  . . , rm)  

can be used to obtain the expansion coefficients [ cj, . . . . .  Jm ] 
of  the unknown kernel over the specified CON basis as: 

1 
m ! P  m E [ y m ( t ) x ( t  - 7 1 ) . . . x ( t  - rm)] (9) 

1 
Cjl . . . . .  Jm m ! p m  E [ y ( t ) Q m ( t ; j l  . . . . .  J m ) ]  (5 )  

where 

where Ym ( t )  represents the mth  order response residual 

m--I  

y m ( t )  = y ( t )  - ~_a G , ( t )  . (10) 
n=O 

hm( l . . . . .  = Z ' ' ' Z C J ,  . . . . .  jmbj,(7 )...bjm(Tm) �9 
Jl Jm 

(6) 

The simplicity and elegance of  the crosscorrelation 
technique led to many applications, particularly in the 
area of  physiological systems (for partial review, see 
[6,7,8]). 
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The use of  the crosscorrelation technique revealed 
certain practical limitations of this approach. The most 
important ones are the following: (a) the stringent require- 
ment of a band-limited white-noise stimulus (that covers 
the entire system bandwidth); and (b) the considerable es- 
timation variance of the kernels (especially of order higher 
than first) obtained from finite length input-output data- 
records. The latter limitation is an inevitable consequence 
of the stochastic nature of the employed stimulus and the 
fact that the crosscorrelation estimates converge to the 
true values at a rate proportional to the square-root of  
the record length. This limitation is also incumbent on 
the Ogura implementation of the Laguerre expansion ap- 
proach, since the unknown expansion coefficients are es- 
timated by time-averaging computation of the covariance 
shown in Eq. 5. Thus, long data-records are often required 
to obtain estimates of satisfactory accuracy, resulting also 
in increased computational burden. This has prompted 
the use of specially designed stimuli, such as pseudo- 
random m-sequences (13) and sum-of-sinusoids of in- 
commensurate frequencies (14), as well as stochastic 
approximation methods (2). These efforts have yielded 
improved results in certain cases but still present the user 
with a set of confining trade-offs. The most effective so- 
lution to date has been offered by the exact orthogonal- 
ization method of Korenberg (4), which overcomes the 
problem of  estimation variance by orthogonalizing the 
discrete-time form of the functional series with respect 
to the particular stimulus data-record used in the experi- 
ment. This approach also alleviates the need for strict 
whiteness of the stimulus, even though broad-band spec- 
tral characteristics are still required and caution must be 
exercised in interpreting the obtained kernel estimates, 
since they may deviate from the Wiener :set if the stimu- 
lus is non-white and higher order system nonlinearities 
exist above and beyond the ones represented by the esti- 
mated kernels. 

The implementation of the Laguerre expansion ap- 
proach presented in this paper exhibit,; strengths and 
weaknesses akin to Korenberg's method. It overcomes the 
problem of  estimation variance by performing a least- 
squares fit of  the actual data and relaxes the whiteness 
requirements of  the experimental stimulus (with the ca- 
veat mentioned above). The main difference between the 
two methods is that the representation ~z,f the kernels in 
Laguerre expansion form, instead of  discrete-time form, 
may yield more compact kernel representations which may 
result in higher estimation accuracy and reduced compu- 
tational burden, especially in high-order kernel estima- 
tion. This is illustrated in the next section, where accurate 
estimates of 2nd- and 3rd-order kernels from short data- 
records are presented. We must note that the relative ef- 
ficacy of these two methods will depend, in general, on 
the specific kernel characteristics. 

The proposed method is cast in discrete-time. The 
kernels are expanded on the orthonormal set of  discrete- 
time Laguerre functions as indicated in Eq. 6, where the 
7's assume discrete non-negative values and [bj(r)} de- 
notes the j t h  order discrete-time orthonormal Laguerre 
function: 

bj(r) = c z ~  - -  Or) 1/2 

• ~] ( - 1 ) x ( ; ) ( k )  ~  (T_>0, 

(11) 

where oe is the discrete-time Laguerre parameter (0 < 
o~ < 1) which determines the rate of exponential asymp- 
totic decline of these functions. The key variables [ vj(t)} 
are the discrete-time convolutions of the discrete-time 
stimulus x ( t )  with {bj(r)}: 

M 

v j ( t )  = T ~]  b j ( r ) x ( t  - r )  (12) 
~-=0 

where Tis the sampling interval, Mis  the kernel memory 
extent in number of  lags (/, = M T ) ,  and t assumes dis- 
crete-time values (t  = 0, 1 . . . . .  N); where R = NTis  the 
record length. 

The sought kernel expansion coefficients {@, ..... Jm} 
can be estimated by time-averaging implementation of the 
ensemble averaging operation indicated in Eq. 5, if x ( t )  
is GWN (as suggested previously by Wiener and Ogura). 
However, as we indicated previously, more accurate es- 
timates result from a least-squares regression of  the dis- 
crete-time response data y (t)  on the computed functional 
terms [Qm (t;jl . . . . .  j m ) } .  This also alleviates the strict 
requirement of stimulus whiteness, if all significant terms 
are included in the model. These computations would be 
rather burdensome, if it were not for the following two 
key observations: (a) the Laguerre expansion of  kernels 
typically results in significant reduction of  the number of  
estimated coefficients, as illustrated in the following sec- 
tion; and (b) the computation of the variables {vj(t)} 
can he accelerated significantly by use of  the recursive 
relation: 

v j ( t )  = , [ ~ v j ( t -  1) + x / ~ v j _ l ( t )  - v j _ l ( t  - 1) (13) 

which is due to the particular form of  the discrete-time 
Laguerre functions. Computation of this recursive rela- 
tion must be initialized by the following recursive equa- 
tion that yields V o ( t )  for given stimulus x ( t ) :  

V o ( t )  = x / ~ v o ( t  - 1) + T j 1  - ~ x ( t )  . (14) 
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These computat ions can be preformed rather fast, for 
t = 0,1 . . . . .  N a n d j  = 0,1 . . . . .  L - 1 ; where L is the total 
number of  Laguerre functions used in the kernel expan- 
sion. The choice of  the Laguerre parameter  ~ is rather 
critical in achieving efficient kernel expansions (and, con- 
sequently, fast and accurate kernel estimation) and its 
judicious selection is discussed in the following section. 

ILLUSTRATIVE EXAMPLES OF 
KERNEL ESTIMATION 

In this section, the use of  discrete-time Laguerre ex- 
pansions for kernel estimation is illustrated and certain 
important  properties of  this method are discussed. 

We begin by illustrating certain basic properties of  the 
discrete-time Laguerre functions (LF). The first 5 LFs for 

= 0.2 are shown in Fig. 1 (T = 1). We note that the num- 
ber of  zero-crossings (roots) of  each LF equals its order. 
Furthermore,  the higher the order the longer the signifi- 
cant values of  a LF spread over time, and the time sepa- 
ration between zero-crossings increases. This is further 
illustrated in Fig. 2, where the LFs of order 4, 8, 12, and 
16 are shown for c~ = 0.2. An interesting illustration of 

the first 50 LFs for c~ = 0.2 is given in Fig. 3, plotted as 
a square matrix over 50 time untis (0-49 lag) in 3-D per- 
spective (top display) and contour plot (bot tom display). 
We note the symmetry of this matrix and the fact that 
higher order LFs are increasingly "delayed" in their sig- 
nificant values. This observation implies that kernels with 
a pure delay may require higher order LFs for their accu- 
rate representation. Nonetheless, their accurate estima- 
tion is still possible and the number of  required LFs can 
be potentially reduced by use of  "associated Laguerre 
functions" of  appropriate order (9). 

In the frequency domain, the FFT magnitude of all LFs 
for given o~ is identical, as illustrated in Fig. 4 for the 
5 LFs of Fig. 1. The FFT phase, however, of  these LFs 
is different, as illustrated in Fig. 5. We note that the n th  
order LF exhibits a maximum phase shift of  (nTr), with 
the odd-order ones commencing at 7r radians and the even- 
order ones commencing at 0 radians (at zero frequency). 
Thus, the minimum-phase LF is always for order zero. 

In order to examine the effect of  a on the form of the 
LFs, we show in Fig. 6 the 4th order LF for c~ = 0.1, 0.2, 
and 0.4. We observe that increasing a results in longer 
spread of significant values and zero-crossings. Thus ker- 
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FIGURE 1. Discrete-time Laguerre functions (LFs) of order 0 (solid), 1 (dotted), 2 (dashed), 3 (dot-dash), 4 (dot-dot-dot-dash) for a = 0 .2 ,  
plotted over the first 25  lags. 
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FIGURE 2. Discrete-time Laguerre functions (,LFs) of order 4 (sol id), 8 (dot ted) ,  12 (dashed),  16 (dot-dash) for a = 0.2,  plotted over the 
first 25 lags. 

nels with longer memory  may require a larger o~ for effi- 
cient representation. In the frequency ,domain, the FFT 
magnitudes and phases of  the LFs of  Fig. 6 are shown 
in Figs. 7 and 8, respectively. We observe that for larger 
a ,  the lower frequencies are emphasized more (Fig. 7) and 
the phase lags faster (Fig. 8) although the total phase shift 
is the same (4 7r for all 4th order LFs). A more complete 
illustration of  the effect of  a is given in Fig. 9, where the 
matrix of  the first 50 LFs for a = 0.1 is plotted in the same 
fashion as in Fig. 3 (for o~ = 0.2). It is clear f rom these 
figures that increasing o~ increases the separation of the 
zero crossings (ripple in 3-D perspective plots) and broad- 
ens the " fan"  formation evident in the contour plots. 
These observations can guide us in selecting the proper 
value of  a for given kernel memory  (M)  and number  of  
LFs (L).  Specifically, we select the value of  a for which 
the kernel memory  is covered by significant values of  LFs 
while, at the same time, the LF values are diminished for 
T >> M (in order to secure their orthogonality). In other 
words, for given values (M, L),  o~ must be chosen so that 
the point (M,L) in the contour plane be near the edge 
of  the " fan"  formation but outside this " fan ."  

We now demonstrate the use of  LF expansions for ker- 
nel estimation. Consider first a second-order nonlinear 
system with the l st- and 2nd-order kernels shown in 
Figs. 10 and 11, respectively. This system is simulated for 
a GWN stimulus of  512 data points, and the kernels are 
estimated using both the Lee-Schetzen crosscorrelation 
(LSC) technique and the proposed Laguerre expansion 
of  kernels (LEK) technique. The lst-order kernel esti- 
mates are shown in Fig. 12 along with the exact kernel 
(solid line), where the LEK estimate is plotted with dot- 
ted line (almost exactly superimposed on the solid line) 
and the LSC estimate is plotted with dashed line. The 2nd- 
order kernel estimates are shown in Fig. 13 for LEK and 
Fig. 14 for LSC. The superiority of  the LEK estimates 
is evident. 

These LEK estimates were obtained by use of  10 LFs 
and o~ = 0.1. The required computing time on a VAX 
Workstation was 6 s. The obtained Laguerre coefficients 
(LC) in this case are shown in Figs. 15 and 16 for lst- and 
2nd-order kernels, respectively. Note that the 2nd-order 
LCs are plotted as a complete (symmetric) matrix, even 
though only the entries of  one triangular region are esti- 



Kernel Estimation with Laguerre Expansions 579 

x-mln= 0.0000 y-min = 0.0000 
x max 49.0000 y-max = 49 0000 

z - m i n =  - 0 . 5 6 0 0 S + 0 0  
z - m a x =  0 . 8 9 4 4 E + 0 0  

Dat• file: LM2 ConUnc. Cont.lines Data-set  
0.1454 0.8944 0.8944 Max 

L-FNS MATRIX (A=0.2) -0 .5600  -0 .5600  Min 

o 

Z 
I, 

I,I 
ry 
ry o 
bJ 

(_9 
<( 
J 

b_ 
o 

ry 
i,i 

ry 

o 
C~ 

Q 

0 I 0 20 3,3 40 

TIME UNITE; 

FIGURE 3, The first 50  LFs for ~ = 0 .2 ,  plotted from 0 to 49  lags in 3-D perspective plot (top dispiay) and contour plot (bottom display). 
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mated. Thus, in general, the number of LCs estimated 
using "L" LFs for kernel expansion is: [L(L + 1)/2]  for 
the 2nd-order kernel and L for the 1st-order kernel. It is 
evident from Figs. 15 and 16 that an adequate estimation 

of these kernels can also be accomplished with L = 8 (due 
to the very small values of the coefficients for the 9th and 
10th LFs), which demonstrates the significant reduction 
in kernel representation accomplished by the Laguerre 
expansion. 

It must be noted that the number L of required La- 
guerre functions for accurate representation of the ker- 
nels of a given system critically affects the computational 
burden associated with this method. In general, the total 
number of  resulting expansion coefficients for a system 
of  order K is: (L + K) ? / (L ?K? ). Note that this number 
includes all kernels up to order K and takes into account 
the well-known symmetries in high-order kernels. The re- 
quired L in a given application can be practically deter- 
mined by estimating the lst-order kernel for a large L, 
and then inspect the resulting coefficient estimates to se- 
lect the minimum number that corresponds to significant 
values. For instance, in the example of Fig. 15, estima- 
tion of coefficients beyond the plotted ones would yield 
negligible values. The same reasoning can be applied to 
high-order kernels (e.g., the 2nd-order coefficients shown 
in Fig. 16). Selection of the required maximum kernel or- 
der K is based on the adequacy of the output prediction 
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accuracy of  the model of  a given order, as in all previous 
applications of  the Volterra-Wiener approach.  

We now examine the effect of  noise on the obtained 
kernel estimates by adding independent GWN to the re- 
sponse signal for a signal-to-noise ratio of  10 dB. The lst- 
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FIGURE 7. FFT magnitude of 4th-order LFs shown in Fig. 6. T race  1 : 
a = 0 .1 ;  Trace 2: ~ = 0 .2 ;  Trace 3: a = 0 .4 .  

order kernel estimates obtained by the LEK and LSC 
techniques are shown in Fig. 17 in the following manner: 
LEK in solid line and LSC in dotted line. The correspond- 
ing 2nd-order kernel estimates are shown in Fig. 18 for 
LEK and Fig. 19 for LSC. Comparison with the exact ker- 
nels shown in Figs. 10-11 indicates the superiority of  the 
LEK technique under these conditions. Note that the LEK 
estimates in this demonstrat ion were computed with L = 
8, which resulted also in shorter computing time, i.e., 
4 s. The fact that kernel estimates of  this quality can be 
obtained f rom such short records of  data  (512 data 
points), even in cases with significant noise (SNR = 10 
dB), can have important  implications in actual applica- 
tions of  the Volterra-Wiener approach.  

Another important  issue in actual applications is the 
effect of  higher order nonlinearities on the obtained lower 
order kernel estimates. Since most applications limit them- 
selve,; to the first two kernels, the presence of higher-order 
(>2) terms acts as a source of "correlated noise" which 
is dependent on the input. To illustrate this effect, we add 
3rd- and 4th-order nonlinearities to the previous system 
and recompute the kernel estimates. Note that the simu- 
lated system is a simple cascade of a linear filter followed 
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by a static nonlinearity of  the form: y --= z + Z 2 (for the 
2nd-order system) and y = z + z 2 + z 3 / 3  + z4 /4  (for the 
4th-order system) where z ( t )  is the output of  the linear 
filter. Thus the exact 1 st- and 2nd-orde~r Wiener kernels 
of  this 4th-order system do not change in waveform but 
only in scale. The obtained lst-order kernels are shown 
in Fig. 20: the exact kernel is plotted with solid line, the 
LEK estimate with dotted line, and the LSC estimate with 
dashed line. The LEK estimate is better than its LSC coun- 
terpart,  but it exhibits certain deviations f rom the exact 
kernel due to the presence of the 3rd- and 4th-order terms. 
The exact 2rid-order kernel of  the 4th-order system has 
the same form as in Fig. 11 but scaled by a factor of  2.23. 
The 2nd-order kernel estimates obtained via LEK and 
LSC techniques are shown in Figs. 21 and 22, respectively. 
Clearly, the LEK estimate is better than its LSC counter- 
part,  and closely resembles the exact kernel in form and 
size. 

Another important attribute of the proposed technique 
is its ability to yield accurate kernel estimates even when 
the stimulus deviates from the theoretically required white 
noise. This is critically important  in experimental studies 

where a white-noise stimulus cannot be practically se- 
cured. As an illustrative example, consider the previous 
2nd-order system being simulated for a non-white (broad- 
band) stimulus that has the spectrum shown in Fig. 23. 
The 1 st-order kernel estimates obtained via LEK and LSC 
are shown in Fig. 24, along with the exact kernel. The LEK 
estimate (dotted line) is closely superimposed on the ex- 
act kernel (solid line), while the LSC estimate shows the 
effects of  the non-white stimulus in terms of  estimation 
bias (in addition to the anticipated estimation variance). 
The 2nd-order kernel estimates obtained via LEK and 
LSC are shown in Figs. 25 and 26, respectively. Clearly, 
the LEK estimates are far superior, and they are not af- 
fected by the non-whiteness of  the employed stimulus. 
Note, however, that these LEK estimates will be affected 
by the non-white stimulus in the presence of higher order 
nonlinearities. This is illustrated by simulating the previ- 
ous 4th-order system with the non-white stimulus. The 
obtained lst-order kernel estimates via LEK and LSC are 
shown in Fig. 27, along with the exact kernel. The LEK 
estimate is affected more than before, when a white stim- 
ulus was used for the 4th-order system (see Fig. 20), but, 



Kernel Estimation with Laguerre Expansions 583 

x-min= 0.0000 y-min = 0.0000 
-mA~= 49_0000 v-max= 49.0000 

z-min= -0.7589E+00 
- = 0 9487E+00 z max 

Data file: LM1 Cant.Inc. Cant.lines Da ta -se t  
0.1708 0.9487 0.9487 Max 

L-F'NS MATRIX (A=O. 1) - 0 . 7 5 8 9  - 0 . 7 5 8 9  Min 

o 

Z 
I, 

Ld 
rY 

ILl ,e 

"t 
h 
o o 

rY 
ILl 
rm 
n,- 
0 

t m  

0 I 0 20 30 4-0 

TIME UNITS; 

FIGURE 9. The first 50 LFs for ~ = 0.1,  plotted from 0 to 49 lags in 3-D perspective plot (top display) and contour plot (bottom display). 
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FIGURE 10. Exact 1st-order kernel of simulated system. 

still, much less than its LSC counterpart. The same is true 
for the 2nd-order kernel estimates shown in Fig. 28 for 
LEK and Fig. 29 for LSC. It is interesting to note that 
the form of the LSC 2nd-order estimates for the non-white 
stimulus (Figs. 26 and 29) is not affected much by the 
presence of higher order terms, even though they are 
rather poor in both cases. 

These results demonstrate the fact that the proposed 
LEK technique yields very accurate kernel estimates from 
short experimental data-records, even for non-white (but 
broadband) stimuli, when there are no significant higher 
order nonlinearities (higher than the estimated ones). 
However, these kernel estimates may be seriously affected 
when the experimental stimulus is non-white and signifi- 
cant higher order nonlinearities exist. This is due to the 
fact that the corresponding Wiener functionals are no lon- 
ger orthogonal when the stimulus is non-white, resulting 
in certain estimation bias owing to "projections" from 
these higher order terms. Of course, this problem is alle- 
viated when all significant nonlinearities (kernels) are 

estimated. For this reason, the Laguerre expansion tech- 
nique was extended to 3rd-order kernel estimation, as il- 
lustrated below. 

The accurate estimation of  3rd-order kernels from 
short data-records is made possible by the ability of  the 
LEK technique to reduce (in most cases) the number of 
required parameters for kernel representation. Although 
this is not guaranteed in every possible situation, the 
structure of  the Laguerre functions (i.e., exponentially 
weighted polynomials) makes it likely for most physical 
or physiological systems whose kernels usually exhibit 
asymptotically exponential structure. As an illustrative 
example, consider the previously simulated system extend- 
ing to the 3rd-order nonlinearity receiving a GWN input 
(1,024 data points). The resulting 3rd-order kernel esti- 
mate via the LEK technique was rather accurate. This is 
demonstrated in Fig. 30, where the 3rd-order kernel esti- 
mate for r3 = 4 is shown as a 3-D function (note that 
visualization of 3rd-order kernels requires taking 2-D 
"cuts" for specific values of r3). Comparison with the ex- 
act 3rd-order kernel "cut" at 73 = 4 ,  shown in Fig. 31, 
indicates the efficacy of  the LEK technique. Results of  
similar quality were obtained for all other values of r3. 
To demonstrate the superiority of the proposed technique 
over the traditional crosscorrelation technique, the cor- 
responding LSC estimate (for r3 = 4) is shown in Fig. 32. 
The ability of the proposed technique to make the esti- 
mation of  3rd-order kernels practical and accurate from 
short data-records creates a host of exciting possibilities 
for the actual identification and analysis of 3rd-order 
nonlinearities in biological systems with odd-order (e.g., 
sigmoid-type) nonlinearities that are rather common in 
biology and have gained increasing prominence in neuro- 
science in recent years. 

These results illustrate the efficacy of  the proposed ker- 
nel estimation technique and demonstrate some of its im- 
portant properties. Similar results have been obtained 
from numerous other simulations. The technique is cur- 
rently applied to the analysis of actual experimental data. 

x- ra in  = 0 . 0 0 0 0  
x - raax  = 15 .0000  
y- ra in  = 0 . 0 0 0 0  
y - raax  = 15 .0000  
z - ra in  = - 0 . 1 0 1 9 E + 0 0  
z - m a x  = 0.5076E+00 

FIGURE 1 1. Exact 2nd-order kernel of simulated system. 

CONCLUSIONS 

The use of discrete-time Laguerre expansions for ker- 
nel estimation via least-squares fitting offers certain prac- 
tical advantages over existing techniques in applications 
of  the Volterra-Wiener approach. These advantages re- 
sult from the ability of Laguerre expansions to yield com- 
pact kernel representations in many cases of  practical 
interest. Specifically, accurate kernel estimates (up to 3rd- 
order) can be obtained from short experimental data- 
records, even if the experimental stimulus deviates from 
white noise (provided that it remains sufficiently broad- 
band and all significant kernels are included in the esti- 
mated model). Furthermore, the proposed technique is 
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FIGURE 12. 1st-order kernel estimates obtained via LEK: Laguerre expansion of kernels (dotted) and LSC: Lee-Schetzen crosscorrelation 
(dashed). The exact kernel is plotted with solid line and it is nearly superiimposed on the LEK estimate. 

remarkably robust in the presence of data-contaminat- 
ing noise and does not require long computing time. 

The efficacy of the proposed technique and its afore- 
mentioned advantages have been demonstrated (up to 3rd- 
order kernel estimation) with computer simulations. It is 

hoped that use of this technique will enhance and broaden 
the applicability of the Volterra-Wiener approach in cases 
where only short data-records (possibly noisy) are avail- 
able and/or the experimental stimulus deviates from white 
noise. 

x - m i n  = 0 , 0 0 0 0  x - m i n  = 0 . 0 0 0 0  
x - m a x  = 15 .0000  x - m a x  = 15 .0000  

/ ~  y - m i n  = 0 . 0 0 0 0  ~ y - m i n  = 0 . 0 0 0 0  
y - m a x  = 1 5 . 0 0 0 0  ] ~  y - m a x  = 15 .0000  
z - m i n  = - 0 . 1 0 1 3 E + 0 0  ] I \  z - m i n  = - 0 . 1 4 6 4 E + 0 0  

FIGURE 13. 2nd-order kernel estimated obtained via LEK technique. FIGURE 14. 2nd-order kernel estimated obtained via LSC technique. 
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FIGURE 18. 2nd-order kernel estimate via LEK for noisy data. 
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FIGURE 16. Estimates of the Laguerre expansion coefficients (order 
0 to 9 in each dimension) for the 2nd-order kernel, plotted as a sym- FIGURE 19. 2nd-order kernel estimate via LSC for noisy data. 
metric 2-D array (total number of distinct coefficients is 55). 
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FIGURE 21. 2nd-order kernel estimate for 4th-order simulated sys- 
tem obtained via LEK. 
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FIGURE 22. 2nd-order kernel estimate for the 4th-order simulated 
system obtained via LSC. 
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FIGURE 25. 2rid-order kernel estimate for non-white stimulus ob- 
tained via LEK. 
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FIGURE 23. Spectrum of non-white stimulus used in simulation. 
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FIGURE 26. 2nd-order kernel estimate for non-white stimulus ob- 
tained via LSC. 
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FIGURE 27. 1st-order kernel estimates for non-white stimulus and 
4th-order system obtained via LEK (dotted) and LSC (dashed). The 
exact kernel is plotted with solid line. 

FIGURE 30.  3rd-order kernel estimate (2-D " c u t "  at 1 3 = 4 )  ob- 
tained via LEK. 
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FIGURE 28.  2nd-order kernel estimate for non-white stimulus and 
4th-order system obtained via LEK. 
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FIGURE 31. Exact 3rd-order kernel " cu t "  at r 3 = 4. 
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FIGURE 29.  2nd-order kernel estimate for non-white stimulus and FIGURE 32.  3rd-order kernel estimate (2-D "cut"  at f 3 = 4) ob- 
4th-order system obtained via LSC, tained via LSC, 
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