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Abstract

Background:
The association between diabetes and abnormalities in autonomic function is well-known, but it is not 
clear if this association can be extended to subjects with prediabetic impaired glucose metabolism (IGM).  
Sleep-disordered breathing (SDB), which commonly occurs in this population, is often overlooked. We sought 
to determine how autonomic function, monitored in an overnight sleep study setting, may be impaired in 
subjects with IGM and/or SDB.

Methods:
Polysomnograms (PSGs) selected from the Cleveland Family Study database were categorized into four groups: 
normal, SDB (respiratory disturbance index > 5/h), IGM, and both SDB and IGM. Impaired glucose metabolism 
was defined as an oral glucose tolerance test (OGTT) level > 140 mg/dl. Time-domain and frequency-domain 
indices of heart rate variability were used to quantify autonomic impairment. Baroreflex sensitivity determined 
using pulse transit time (BRSPTT), an indirect measure of baroreflex sensitivity based on spontaneous pulse 
transit time fluctuations, was used as a surrogate measure of baroreflex sensitivity.

Results:
Based on 31 PSGs from subjects (16 males, 15 females) ages 20.8–61.2 years, both SDNN and BRSPTT were found 
to be 20-25% lower in SDB and ~40% lower in IGM and SDB + IGM as compared to subjects without either 
condition. In analyses of continuous measures, mean standard deviation of 5 min R–R intervals (SDNN) and 
BRSPTT were found to be negatively correlated with OGTT following adjustment for age and body mass index. 
Oral glucose tolerance test and age were the two most significant factors for predicting SDNN and BRSPTT.

Conclusions:
Our analyses suggest that cardiac autonomic control is impaired in IGM, regardless of whether SDB is present. 
The abnormal autonomic function involves degradation of baroreflex regulation.
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Introduction

The association between diabetes and cardiovascular 
disease, in particular, coronary heart disease and stroke,  
has been demonstrated in many epidemiological studies.1 
Type 2 diabetes is also associated with cardiac autonomic 
dysfunction, detected via stress tests or using heart rate 
variability (HRV).2–4 These findings therefore underscore  
the need to determine whether subjects who are prediabetic 
or who are at high risk for developing diabetes show 
early signs of autonomic impairment. Establishing such 
an association would also be clinically significant in 
suggesting that one could use noninvasive autonomic 
biomarkers to monitor nonintrusively the long-term 
progression of metabolic dysfunction in high-risk 
individuals. However, the existence of an association 
between prediabetic impaired glucose metabolism (IGM) 
and reduced HRV remains unclear because there are 
studies that support and some that refute this notion.5,6 
Limitations of prior work include the lack of adequate 
control for the effect of overweight or obesity as well 
as the use of different measures of abnormal glucose 
metabolism. Another limitation has been the lack 
of consideration of possible confounding influences 
associated with the presence of occult sleep-disordered 
breathing (SDB) in subjects with IGM, because obesity 
or overweight is a risk factor for both disease entities. 
Sleep-disordered breathing has been shown to be an 
independent risk factor for development of IGM,7–15 
with a report that treatment of SDB improves metabolic 
function.16 Several studies have demonstrated an 
association between reduced HRV and SDB,17–19 but the 
concurrent presence of IGM in the subjects with SDB was 
not tested. In this study, we report on the contribution 
of SDB to alterations in cardiac autonomic function  
in subjects who have normal or impaired glucose 
tolerance (IGT).

Due to the ubiquity of instrumentation and software for 
monitoring heart rate or pulse interval, HRV has been 
employed extensively as a means of quantifying cardiac 
autonomic function. However, there are important 
limitations with HRV that are often overlooked. One is  
the potential “contamination” of the high-frequency 
components of HRV with variations in ventilatory pattern.20 
Delineating sympathetic from vagal contributions to 
cardiac control using indices derived from HRV remains 
a controversial issue.21,22 Similar problems arise when 
the low-frequency power of blood pressure variability 

is blindly employed as a marker of sympathetic tone.23 
Some of these limitations can be circumvented by 
employing baroreflex sensitivity, the gain with which 
the baroreflexes translate changes in blood pressure into 
changes in heart rate, in addition to HRV to assess cardiac 
autonomic control. On the other hand, determination 
of baroreflex sensitivity in the clinical setting requires 
noninvasive measurement of continuous blood pressure, 
which is highly expensive and not practicable for 
deployment in large-scale clinical studies. However, 
pulse plethysmography is routinely measured. The speed 
at which the arterial pressure pulse travels is directly 
proportional to blood pressure, assuming constant 
elasticity of the arterial wall. As such, pulse transit time 
(PTT) variability has been shown to be correlated with 
blood pressure variability.24 In this study, we introduce 
a surrogate measure of baroreflex sensitivity, (baroreflex 
sensitivity determined using pulse transit time [BRSPTT]), 
in which PTT variability is used in place of blood 
pressure variability. BRSPTT is employed alongside the 
conventional indices of HRV to assess cardiovascular 
autonomic function, as well as to provide complementary 
knowledge about the potential mechanisms that may be 
responsible for abnormalities in HRV. In this study, we 
sought to determine how BRSPTT and other accepted 
measures of HRV during wakefulness and various stages  
of sleep are altered by IGM and SDB. 

Methods

Data Source
Polysomnogram (PSG) data were selected from the 
Cleveland Family Study (CFS) database, representing 
standardized PSG studies on well-phenotyped subjects. 
A detailed description of cohort assembly is provided 
elsewhere.25 In brief, the cohort consists of probands 
with known sleep apnea, their family members, and 
neighborhood controls. In the last examination, subjects 
were studied with detailed metabolic and cardiovascular 
examination. Polysomnogram data were collected using a 
14-channel monitor in a dedicated clinical research facility, 
along with measures of blood pressure, anthropometry, 
and glucose testing performed after an overnight fast  
and after a 2 h glucose challenge test. All PSG recordings 
were at least 6 h in duration, with typical signal channels 
as nasal/oral thermistry, chest wall impedance, finger 
pulse oximetry, and electrocardiogram (ECG).
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Respiratory events, such as hypopnea or apnea, were 
defined as partial reductions or complete cessations in 
airflow or chest wall impedance of duration ≥ 10, with 
associated drop in oxygen saturation ≥ 3% from baseline 
(referred to the plateau saturation level at the beginning 
of the hypopnea/apnea). The severity of SDB was 
quantified in terms of the respiratory disturbance index 
(RDI), defined as the total number of respiratory events 
divided by total sleep duration (hours).

The detailed description of the experimental procedures 
for measuring blood glucose and carrying out the oral 
glucose tolerance tests (OGTTs) is given in Sulit and 
coauthors.26 Briefly, for each patient, fasting blood glucose 
(FBG) was sampled and OGTT was performed in the 
morning following PSG. Fasting blood glucose was 
measured by venipuncture around 7:00 am. The OGTT  
was conducted right after the FBG, in which 75 g 
anhydrous glucose was orally administered with 
venipuncture performed 2 h later for the OGTT value.

Height and weight were measured in stocking feet using 
calibrated stadiometers and scales. Body mass index 
(BMI) was computed as the ratio of weight to the square 
of the height (kg/m2).

Polysomnography
From the CFS database of adult subjects (>18 years) 
who were not on treatment with continuous positive 
airway pressure, 60 overnight recordings were found 
to be eligible for detailed analysis after subjecting 
all PSGs to a rigorous screening process based on 
medical background and signal quality. The following 
inclusionary criteria were applied: subjects had to have 
(1) a photoplethysmograph (PLETH) channel in the PSG 
recording, (2) relatively large segments of data with good 
quality signals (>50% of total recording duration or  
>4 h) in both ECG and PLETH channels, (3) all sleep 
stages were represented in the good-quality segments,  
(4) no previous diagnosis of chronic cardiac or pulmonary 
disease, or (5) other exclusionary criteria as listed in 
Table 1, including known diabetes and hypertension. 
From the 60 PSGs that were deemed eligible for further 
analysis, 31 PSGs were selected for analysis to produce 
4 subgroups (“disease status”; see Statistical Analysis 
section) of similar sizes and roughly matched for age, 
BMI, and gender composition for comparison.

For each subject, the PSG was recorded from a single-
night sleep study in a sleep laboratory and later scored 
for wake/sleep stage [W, wakefulness; N1, N2, light sleep; 

N3, deep sleep; R, rapid eye movement (REM) sleep], and 
severity of SDB quantified by the RDI, the number of 
apnea or hypopnea events per hour overnight. A bipolar 
ECG and finger photoplethysmogram from the PSG were 
used for further analysis. 

Heart Rate Variability Measures
Mean R–R interval (mRRI) and the power spectrum of 
the fluctuations of RRIaround the mean were derived 
from successive 5 min segments of the ECG signal 
over the entire duration of each PSG. Spectral analysis 
was performed using the Welch method with Hanning 
windowing.27 The areas in the low-frequency (0.04–0.15 Hz)  
and high-frequency (0.15–0.4 Hz) bands of each HRV 
spectrum were calculated to obtain low-frequency 
power of R–R interval variability (RRILF) and high-
frequency power of R–R interval variability (RRIHF), 
respectively.28 From RRILF and RRIHF, the ratio of 
low-frequency power to high-frequency power of R–R 
interval variability (RRILHR) was also computed for 
each segment. Since RRILHR contains information about 
RRILF, we will only report values of RRIHF and RRILHR 
here.22 As well, two time-domain HRV measures, mean 
standard deviation of 5 min R–R intervals (SDNN) 
and standard deviation of the average R–R intervals 
calculated over 5 min periods (SDANN), were calculated. 
SDNN is the mean standard deviation of 5 min  
normal-to-normal intervals, corresponding to the HRV 
within 5 min, and is equivalent to the square root of the 
total HRV power.28 SDANN is the standard deviation of 
the average normal-to-normal intervals calculated over 
5 min periods, reflecting the overnight heart rate cycles 
longer than 5 min.

Table 1.
Exclusionary Criteria of Cardiovascular, 
Respiratory, and Metabolic Conditions

Participants are excluded if they have

•	 Ever been diagnosed with myocardial infarction
•	 Ever been diagnosed with diabetes
•	 Ever been diagnosed with angina pectoris
•	 Ever had coronary bypass surgery
•	 Ever had coronary angioplasty
•	 Ever been diagnosed with congestive heart failure
•	 Ever had implant of cardiac pacemaker
•	 Ever been diagnosed with other heart disease
•	 Ever been diagnosed with stroke (cerebrovascular accident)
•	 Ever been diagnosed with carotid surgery (endarterectomy)
•	 Ever been diagnosed with transient ischemic attack
•	 Ever been diagnosed with asthma
•	 Ever been diagnosed with chronic bronchitis
•	 Ever been diagnosed with emphysema
•	 Ever been diagnosed with pneumonia
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Pulse Transit Time Variability Measures
Pulse transit time is the duration taken for a pulse 
wave to travel between two arterial sites. Assuming the 
constant elasticity of arterial wall, the speed at which the 
arterial pressure pulse travels is directly proportional to 
blood pressure and can be used as an indirect measure 
of blood pressure.29 As a simple inverse of the pulse 
travel velocity, PTT was also proposed to be an indicator 
of arterial blood pressure.30 The ideal measure of PTT 
(or the velocity) requires two monitoring sites located at 
the same artery. However, implementation of this way of 
measuring PTT is confounded by sensitivity to motion 
artifacts and the extremely short intervals. A modified 
version of PTT, also known as pulse arrival time, was 
proposed to overcome these disadvantages by taking 
the apex of R-wave of ECG as the starting reference 
point.31 Despite its advantages, the authors suggested 

that this R-triggered PTT reflects a sum effect from both 
the pre-ejection period of a cardiac cycle and the true 
PTT. The relationship between PTT and arterial blood 
pressure is no longer linear under certain situations 
such as nonisovolumic pre-ejection. The PLETH channel 
recorded using pulse oximetry was used to obtain 
the ending reference. The ending reference of PTT is 
conventionally set at the baseline of PLETH cycle or 
the 25% point of the maximum amplitude; nonetheless, 
in situations that do not permit frequent calibration, it 
is nearly impractical to obtain, such as in long-term 
monitoring and overnight sleep recording. In contrast, 
rather than use the PTT value itself, the PTT variability 
can be calculated and derived using the peak of PLETH 
as the ending point. The corresponding derivations of 
PTT and RRI are shown in Figure 1. For each 5 min 
segment of PTT, the spectrum of the fluctuations of PTT 

Figure 1. Derivation of RRI and PTT during 5 se. RRIi, the ith R–R interval, is defined as the interval between ti and ti + 1, also the  
interval between the ith and (i + 1)th R waves. PTTi, the ith PTT, is defined as the interval between the ith R peak and ith peak of PLETH.  
QC, quality control.
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around its mean was calculated. The areas in the low-
frequency (0.04–0.15 Hz) and high-frequency (0.15–0.4 Hz)  
bands of each PTT spectrum were calculated.

Pulse-Transit-Time-Based Surrogate Measure of 
Baroreflex Sensitivity 
Baroreflex sensitivity is generally estimated using the 
spontaneous beat-by-beat fluctuations in systolic arterial 
blood pressure and RRI through either the sequence 
method32 or the spectral method.33 Both methods 
have been shown in humans to produce estimates of 
baroreflex sensitivity that are quantitatively similar and 
strongly correlated to one another.34 For computational 
simplicity, we selected the spectral method of baroreflex 
slope estimation. However, instead of using spontaneous 
fluctuations in systolic blood pressure, we used 
spontaneous fluctuations in PTT. The surrogate measure 
of BRSPTT was defined as

BRSPTT = 
RRILF
PTTLF

.

Note that BRSPTT is unitless because both RRILF and 
low-frequency PTT have same the unit (ms2).

Sleep-Stage-Adjusted Indices
Scoring of sleep stage was carried out in consecutive 
epochs of 30 s each [wakefulness (W), REM sleep, light 
non-REM sleep consisting of stage 1 and stage 2 (N1, N2),  
and deep non-REM sleep (N3)]. Because each 5 min 
segment of the PSG channel was used to produce values 
for PTT and HRV, the segment was divided into equal-
length 30 s segments bearing the identical spectral index. 
For each sleep stage, an overnight median value of 
spectral indices was deduced according to the frequency-
weighting algorithm. Figure 2 shows an illustrative 
example of the computations used to derive the median 
RRILHR representative of each sleep stage in each 
individual subject. Employing the same method, each 
of the other indices was represented by the median of 
all the overnight 5 min segment values for each stage. 
Medians were adopted instead of means in order to 
minimize the effect of outlier values. Although the quiet 

Figure 2. Schematic illustration of the method used to compute the median value of the index representative of each sleep–wake state.
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wakefulness prior to sleep onset might represent “true 
wakefulness,” several recordings start with sleep stages, 
which led us to use nocturnal wakefulness to calculate 
the stage-specific index. In other words, the wakefulness 
stage in phase I of the study represents not only the 
waking period before the sleep onset, but also the 
nocturnal wakefulness. Damaged 5 min segments, either 
from the original ECG or RRI, were excluded from index 
derivation. A similar stage-adjusting algorithm has been 
successfully implemented in HRV analysis of the Sleep 
Heart Health Study data.19

Blood Glucose Measures
According to the American Diabetes Association diagnostic 
criteria, impaired fasting glucose (IFG) is defined as a FBG 
level ≥ 100 but < 126 mg/dl. Impaired glucose tolerance 
is defined as an OGTT result ≥ 140 and < 200 mg/dl. 
Subjects with IFG tend to have elevated hepatic glucose 
output and a defect in early insulin secretion, whereas 
those with IGT have peripheral insulin resistance.35 
Previous studies have also found a greater incidence 
of altered cardiac autonomic function in subjects with 
IGT but not isolated IFG.36 Thus, for purposes of this 
study, we used the OGTT measurements as a continuous 
measure of the degree of IGM. Impaired glucose 
metabolism was defined as an OGTT level higher than 
140 mg/dl in our data set.

Statistical Analysis
The subjects studied were divided into four “disease 
status” categories based on severity of SDB (no SDB;  
RDI <5 h-1 versus SDB; RDI ≥ 5 h-1) and degree of 
impairment of glucose metabolism (normal glucose 
metabolism; OGTT <140 mg/dl versus IGM; OGTT ≥ 140). 
The IGM category included three subjects with OGTT 
slightly higher than 200 (≤213) mg/dl. Thus the four 

“disease status” categories were (a) control (RDI <5 h-1,  
OGTT <140 mg/dl); (b) SDB only (RDI ≥5 h-1,  
OGTT <140 mg/dl); (c) IGM only (RDI < 5 h-1, 
OGTT ≥140 mg/dl), and (d) SDB + IGM (RDI ≥ 5 h-1,  
OGTT ≥140 mg/dl). Except for sex (which was taken 
as a binary variable), age, BMI, RDI, and OGTT were 
considered as continuous variables. All variables used in 
the statistical analyses were first checked for normality 
and were log transformed if found to be not normally 
distributed. A scatterplot showing the distribution of 
the individual subjects across these four “disease status” 
groups is displayed in Figure 3. 

Two-way repeated measures analysis of variance 
(ANOVA) with interaction was performed on each of the 

Figure 3. Scatter plot of subject distribution across RDI and OGTT  
(n = 31).

autonomic indices (SDNN, SDANN, RRIHF, RRILHR, 
mRRI, and BRSPTT) with “disease status” (SDB, IGM) as 
the independent variable and sleep–wake stage as the 
repeated variable. 

The relationships between each of the autonomic indices 
and the potential explanatory variables (sex, age, BMI, 
RDI, and OGTT), following stratification for sleep stage, 
were explored further using multiple linear regression 
analysis. Four models were tested, in which the 
independent variables were

(a)	model A: sex, age, RDI

(b)	model B: sex, age, OGTT

(c)	 model C: sex, age, RDI, OGTT

(d)	model D: sex, age, RDI, OGTT, BMI

Comparison of goodness of fit among the models was 
carried out using the adjusted r2 statistic (R2

adj). The relative 
strength of each explanatory variable on the dependent 
variable (autonomic index) was quantified using the 
standardized regression coefficient corresponding to 
that independent variable. The standardized regression 
coefficient βi for the ith explanatory variable is defined as 
βi = bi(SDi/SDy), where bi is the ith regression coefficient 
estimated from the multiple regression analysis, SDi is 
the standard deviation of the ith explanatory variable, 
and SDy is the standard deviation of the dependent 
variable y.37 We also performed a power analysis using 
G*Power, version 3.0.10.38 The analysis showed that,  
with a sample size of 30, the multiple regression model 
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with five explanatory variables was capable of detecting 
a partial r2 of 0.35 with a power of 80% and significance 
level of 0.05. However, with the sample size employed 
in the study, we were probably underpowered to detect 
more modest associations.

The default significance level for all tests was 0.05.  
All statistical procedures were conducted using SigmaPlot® 
version 11.0 (Systat Software, Inc., Chicago, IL).

Results
The characteristics of the subjects in this analytical sample, 
and in subgroups defined by “disease status,” are 
displayed in Table 2. One-way ANOVA identified no 
significant difference in sex, age, BMI, PSG percentage 
(percentage of PSG recording usable for analysis), and 
total PSG duration among the four disease status 
categories (Table 2). As expected, both the SDB and 
SDB + IGM groups had significantly higher RDI levels 
compared with the non-SDB groups (p < .001). The IGM 
and SDB + IGM groups had significantly higher OGTT 
and higher levels of FBG than the groups who had 
normal glucose tolerance (p < .003). However, because 
there was a strong correlation between OGTT and 
FBG among subjects (p < .001), and due to our a priori 
hypothesis, only OGTT was used to represent the severity 
of IGM in subsequent analyses.

The results of the two-way repeated measures ANOVA 
(disease condition versus sleep stage) for all six 
autonomic indices that were tested are shown in Table 3.  
The values of each of these autonomic parameters across 
the various “disease status” categories and across 
sleep–wake states are displayed graphically in Figure 4.  
This analysis along with post hoc tests (Holm–Sidak) 
showed that BRSPTT in the IGM and SDB + IGM groups 
were significantly lower relative to the control group in  
all sleep stages. BRSPTT in the SDB group was lower than 

Table 2.
Summary of Subject Characteristics (n = 31)a

Control SDB IGM SDB + IGM
P valueb

(n = 10) (n = 8) (n = 8) (n = 5)

Sex, male:female 5:5 5:3 4:4 2:3 0.89

Age, years 35.6 ± 12.9 42.6 ± 15.2 40.4 ± 9.4 48.9 ± 11.3 0.29

(20.8–54.7) (20.8–65.2) (29.6–54.9) (33.0–61.2)

BMI, kg/m2 29.1 ± 6.7 35.4 ± 5.8 37.1 ± 11.0 34.7 ± 5.8 0.17

(20.0–45.3) (28.4–42.2) (26.0–55.4) (26.3–42.5)

RDI, h-1 1.6 ± 1.6 24.4 ± 16.6c 2.1 ± 1.5 16.6 ± 10.0c <0.001

(0.0–4.4) (6.1–45.7) (0.2–4.1) (5.1–28.3)

OGTT, mg/dl 100.3 ± 25.1 111.3 ± 21.4 182.9 ± 25.1c 166.8 ± 23.5c <0.001

(44–122) (80–136) (152–213) (153–200)

FBG, mg/dl 85.4 ± 6.7 94.1 ± 5.6 100.6 ± 11.9c 98.4 ± 5.6c 0.003

PSG percentage 58.9 ± 15.6 62.6 ± 12.3 66.0 ± 3.9 58.1 ± 8.3 0.54

PSG total, h 5.7 ± 1.7 6.5 ± 1.5 6.4 ± 0.6 5.5 ± 1.0 0.42
a Values are counts for sex, mean ± standard deviation, with ranges in parentheses for continuous data. PSG percentage, percentage of 

PSG recording that was usable for analysis; PSG total, total duration of PSG recording. P values are shown in bold if <0.05.
b P values from one-way ANOVA. 
c P < critical level from pairwise comparison versus control group (Holm–Sidak).

Table 3.
Associations between Autonomic Indices and 
Disease Status and Sleep Stage: P Values from 
Two-Way Repeated Measures ANOVA on 
Autonomic Indices with Disease Status as the 
Unrepeated Factor and Sleep Stage as Repeated 
Factor (n = 31)a

Autonomic index Disease status Sleep stage Interaction

SDNN <0.001 <0.001 0.351

SDANN 0.016 0.062 0.625

RRIHF 0.007 0.028 0.613

RRILHR 0.625 <0.001 0.977

mRRI 0.045 <0.001 0.243

BRSPTT <0.001 0.010 0.347
a P values are shown in bold if <0.05 or italics if 0.05 ≤ p < .1.
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Figure 4. Grouped bar charts of SDNN, SDANN, RRIHF, RRILHR, mRRI, and BRSPTT across SDB/IGM categories and sleep stages (n = 31).  
Note that p values are from a Holm–Sidak post hoc test comparing with normal group (overall significant level 0.05).
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control in W and R stages only. When averaged over 
sleep stage, BRSPTT was ~20% lower in SDB and ~40% 
lower in IGM and SDB + IGM relative to control (control,  
4.90 ± 0.29; SDB, 3.97 ± 0.32; IGM, 2.91 ± 0.32; SDB + IGM, 
2.67 ± 0.41). The SDNN was also lower in SDB, IGM,  
and SDB + IGM versus control in all sleep stages, except 
in R stage, where SDNN in SDB was not different from 
control. Averaged over sleep stages, SDNN was ~25% lower 
in SDB and over 40% lower in IGM and SDB + IGM 
versus control (control, 68.5 ± 4.1 ms; SDB, 50.0 ± 4.6 ms; 
IGM, 38.9 ± 4.6 ms; SDB + IGM, 36.2 ± 5.8 ms). RRIHF 
varied similarly, except that SDB was not significantly 
different from control in all sleep stages. The differences 
between the disease groups and control were less clear 
when autonomic function was quantified using mRRI 
and SDANN. There were no apparent differences across 
disease status when RRILHR was employed. 

Table 4 displays the results of the comparison among 
the four multiple linear regression models (A, B, C, and 
D) after stratification for sleep–wake stage. The results 
displayed are limited to the three autonomic indices 
that were most sensitive to disease status, based on the 
two-way repeated measures ANOVA described earlier; 

these are RRIHF, BRSPTT, and SDNN. R2
adj was roughly 

twofold larger when OGTT was used as the third 
explanatory variable (after including sex and age as the 
first two) compared with RDI (model B versus model A).  
Moreover, even in model A, where RDI was forced to be 
the third explanatory variable, the associated coefficient 
never attained statistical significance in any of the cases  
considered. Including both RDI and OGTT as explanatory 
variables (model C) produced little change in R2

adj 
compared with model B. Finally, including BMI in 
addition to RDI and OGTT as explanatory variables 
(model D) led to a small increment in R2

adj in most but  
not all of the cases. In this sample, where matched 
groups were selected, RDI was not significantly correlated 
with BMI (r = 0.296, p = .105) but displayed a weak 
correlation with OGTT that was marginally significant 
(r = 0.352, p = .052). In virtually all cases displayed in 
Table 4, the regression coefficients corresponding to age 
and OGTT were statistically significant, whereas none of 
the autonomic indices displayed any dependence on RDI. 
The standardized regression coefficients associated with 
model 5 are displayed along with their corresponding 
p values in Table 5. Overall, for each of the three 
autonomic indices considered, OGTT and age each are 

Table 4.
Results of Multiple Linear Regression Analysis Using the Four Models

Dependent 
variable

Sleep–wake 
state

Models

A (sex, age, RDI) B (sex, age, OGTT) C (sex, age, RDI, OGTT) D (sex, age, RDI, OGTT, 
BMI)

R2
adj

a
Significant 
explanatory 
variablesa

R2
adj

Significant 
explanatory 

variables
R2

adj

Significant 
explanatory 

variables
R2

adj

Significant 
explanatory 

variables

ln(RRIHF) W 0.084 Age 0.115 Age 0.124 Age 0.238 Age, BMI

12 0.107 Age 0.349 Age, OGTT 0.349 Age, OGTT 0.374 Age, OGTT

34 0.027 Age 0.301 Age, OGTT 0.278 Age, OGTT 0.311 Age, OGTT

  R 0.226 Age, sex 0.386 Age, OGTT 0.375 Age, OGTT 0.372 Age, OGTT

ln(BRSPTT) W 0.222 Age 0.413 Age, OGTT 0.413 Age, OGTT 0.552 Age, RDI, OGTT, 
BMI

12 0.218 Age 0.500 Age, OGTT 0.495 Age, OGTT 0.580 Age, OGTT, BMI

34 0.180 Age 0.326 Age, OGTT 0.330 Age, OGTT 0.423 Age, OGTT, BMI

  R 0.295 Age 0.405 Age, OGTT 0.390 Age, OGTT 0.376 Age, OGTT

ln(SDNN) W 0.151 Age 0.238 Age, OGTT 0.299 Age, OGTT 0.329 Age, OGTT

12 0.134 Age 0.497 Age, OGTT 0.490 Age, OGTT 0.537 Age, OGTT

34 0.005 — 0.395 Age, OGTT 0.373 Age, OGTT 0.426 Age, OGTT

  R 0.190 Sex 0.476 Age, sex, OGTT 0.462 Age, sex, OGTT 0.443 Age, OGTT
a The table entries include R2

adj (adjusted R squared) and the names of the regression coefficients that were found to be statistically 
significant (p < .05).
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associated with the dependent variable by roughly the 
same degree. In some of the cases, BMI also exerts some 
influence, although less compared with OGTT and age. 
The signs of all the standardized regression coefficients 
for age, OGTT, and BMI are negative, implying that each 
autonomic index decreases with increases in each of the 
explanatory variables, consistent with our understanding  
of the underlying physiology. R2

adj was always lowest in 
all the models tested when RRIHF was selected to be the 
autonomic index, compared with the cases where either 
BRSPTT or SDNN were employed.

Discussion
In this study, we derived cardiac autonomic indices in 
the various sleep–wake stages, using measurements of 
HRV from overnight PSGs in subjects who had varying 
degrees of SDB and IGM. We also introduced a novel 
surrogate measure of baroreflex sensitivity, BRSPTT, that 
is derived from measurements of HRV and PTT 
variability and provides information that complements 
the results derived from HRV alone; in particular, this 
index provides an indication as to whether the detected 
differences in HRV could be the result of alterations 
in baroreflex function. The baroreceptors are known to 
exert a continuous inhibitory influence on sympathetic 
efferent activity; thus impaired baroreflex function can 
lead to sympathetic overactivity, elevated blood pressure, 

Table 5.
Standardized Regression Coefficients and P Values (Displayed within Parentheses) from Multiple Linear 
Regression Analysis on Stage-Specific Autonomic Indices with All Five Covariates: Male Gender, Age, BMI, 
RDI, and OGTT (n = 31)a

Log-transformed 
index Stage Sex Age BMI RDI OGTT R2

adj

RRIHF W -0.220 (0.185) -0.449 (0.013) -0.431 (0.053) -0.060 (0.817) -0.188 (0.264) 0.247

N1,N2 -0.149 (0.328) -0.484 (<0.001) -0.284 (0.031) 0.229 (0.107) -0.426 (0.046) 0.430

N3 -0.190 (0.248) -0.416 (0.005) -0.290 (0.045) 0.163 (0.262) -0.442 (0.042) 0.355

R 0.044 (0.885) -0.540 (<0.001) -0.172 (0.109) 0.169 (0.207) -0.360 (0.090) 0.428

BRSPTT W -0.156 (0.214) -1.363 (<0.001) -0.469 (0.037) 0.035 (0.845) -0.343 (0.002) 0.569

N1,N2 -0.024 (0.802) -0.555 (<0.001) -0.379 (0.032) 0.257 (0.061) -0.441 (0.002) 0.586

N3 -0.004 (0.960) -0.521 (0.002) -0.403 (0.071) -0.010 (0.894) -0.315 (0.039) 0.410

  R 0.204 (0.300) -0.528 (0.001) -0.119 (0.319) 0.126 (0.360) -0.302 (0.105) 0.392

SDNN W 0.140 (0.465) -0.464 (0.009) -0.282 (0.271) -0.178 (0.269) -0.340 (0.036) 0.326

N1,N2 -0.182 (0.281) -0.526 (<0.001) -0.303 (0.051) 0.219 (0.132) -0.520 (0.003) 0.528

N3 -0.182 (0.306) -0.463 (0.003) -0.325 (0.062) 0.087 (0.572) -0.487 (0.009) 0.426

  R 0.286 (0.071) -0.355 (0.010) -0.055 (0.443) 0.098 (0.524) -0.503 (0.007) 0.460

a P values are shown in bold if <0.05 or italics if 0.05 ≤ p <.1.

and increased blood pressure variability.39 In a separate 
study, we have shown that BRSPTT correlates strongly 
with corresponding measures of spontaneous baroreflex 
sensitivity derived from noninvasive continuous 
measurement of arterial blood pressure.40 Initial statistical 
analysis revealed substantial differences in SDNN and 
RRIHF (both HRV indices) as well as BRSPTT in patients 
with SDB and/or IGM compared with normal controls, 
after adjusting for sleep–wake stage (Figure 4). However, 
further analysis using multiple linear regression showed 
that, after adjusting for sex, age, and BMI, SDNN and 
BRSPTT were each significantly associated with OGTT 
(used as a continuous measure of IGM severity) but not 
with RDI (used as a continuous measure of SDB). This was  
the case for all sleep–wake stages except for REM sleep 
in BRSPTT. Similar findings were obtained with RRIHF 
as the index representing autonomic function; however, 
there tended to be substantially more variability in 
the RRIHF estimates compared with SDNN and 
BRSPTT. Taken together, our findings suggest that  
(1) cardiovascular autonomic function is substantially 
more sensitive to IGM than to the presence of SDB without 
IGM and (2) impaired baroreflex function is associated 
with and may be responsible in part for the reduction in 
HRV in IGM.

Autonomic nervous system dysfunction, including 
sympathetic overactivity, reduced parasympathetic drive, 
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and impaired baroreflex sensitivity, is known to be 
important in the pathogenesis of hypertension and 
cardiovascular disease. Subjects with SDB, who are 
subjected to repetitive episodes of nocturnal intermittent 
hypoxia and transient arousal from sleep, have been 
shown in numerous studies to display abnormalities in 
autonomic function, as represented by reduced HRV or 
autonomic stress tests,17–20,41–43 as well blunted baroreflex 
sensitivity.44–48 However, there have been studies that 
have reported negative findings; for example, in a study 
involving PSGs from 61 male obstructive sleep apnea 
subjects and 43 controls, Coughlin and associates10 did 
not find any significant association between baroreflex 
sensitivity and RDI. At the same time, other studies 
have reported finding reduced HRV and impaired 
baroreflex function in subjects with abnormal fasting 
glucose levels5 and IGT.4,36,49 Thus a major limitation in 
all these previous studies is that the subjects with SDB 
were not tested for IGM, while the studies that focused 
on HRV in IGM did not test the subjects for occult SDB. 
One exception is the study by Peltier and coworkers50 
that found that there were no significant differences in 
autonomic function, as determined through stress tests, 
between subjects with SDB and subjects without SDB; 
however, when the same pool of subjects was divided 
into those who had IGM versus those who had normal 
glucose metabolism, the IGM subjects demonstrated 
impaired autonomic responses. These results are consistent 
with the conclusion from our present study that 
autonomic function appears to be more sensitive to IGM 
than to the direct effects of SDB per se. 

Since SDB itself may be an independent risk factor for 
IGM, as several studies7–10,13,14 suggest, it may be argued 
that the direct effect of SDB on the HRV indices and 
BRSPTT may have been masked by the association of SDB 
with IGM. However, in our study, we included several 
subjects who had SDB with normal glucose metabolism,  
and in this group of subjects, RDI was, on average,  
higher than RDI in the subjects with SDB + IGM. Indeed, 
RDI was not correlated with OGTT in our study. On the 
other hand, our study population included only a few 
subjects with severe SDB (RDI > 30 h-1). Thus it is possible 
that including more subjects with severe SDB could affect 
our conclusion that autonomic function is more strongly 
linked to IGM than SDB. Another potential limitation 
of our study is that the vast majority of the subjects 
studied were overweight to obese (BMI > 25 kg/m2).  
Therefore, it is possible that the relationship between 
autonomic function and IGM (with or without SDB) may 
be different in subjects who are not overweight. Indeed, 
in the subject pool studied here, there was a weak but 

almost significant correlation between BMI and OGTT. 
A third limitation of this study is that the total number 
of subjects studied was relatively small. This constraint 
was offset to some extent by the fact that the screening 
procedure that we had applied to arrive at the pool of 
data sets that were ultimately analyzed was rigorous, 
thus assuring that the quality of the data we studied 
was high.

The strong association between the indices of autonomic 
function, SDNN, BRSPTT, and OGTT suggests that 
the former measures may be useful, from a practical 
standpoint, as markers of IGM. We have conducted 
preliminary analyses to test this conjecture. Figure 5 
displays the OGTT values for all 31 subjects plotted 
against their corresponding values of BRSPTT, measured 
during wakefulness (Figure 5, left panel) and light non-
REM sleep (Figure 5, right panel). Using a cutoff BRSPTT 
value of 4.2, we find that the sensitivity of using BRSPTT 
to detect IGM is 92% in both wakefulness and light sleep. 
The corresponding specificity is, however, less than 70% 
in both cases. On the other hand, the negative predictive 
value is 92% in both cases, indicating that subjects with 
high BRSPTT are unlikely to have IGM. These results 
suggest that SDNN and BRSPTT, derived in patients who 
have been referred for polysomnography or 24 h Holter 
monitoring, may be useful in providing complementary 
information about potential metabolic dysfunction. 
The ability of these indices to predict progression of 
metabolic dysfunction will require further evaluation in 
longitudinal large-cohort studies, such as the MONICA/
KORA Augsburg Cohort Study.51

Conclusions
In summary, we derived noninvasive measures of 
autonomic function from overnight recordings of 
spontaneous fluctuations in heart rate and finger pulse 
plethysmogram in 31 overweight subjects who had 
various degrees of SDB and IGM and all of whom had 
participated in an OGTT. The measures of autonomic 
function included time-domain and frequency-domain 
indices of HRV, as well as BRSPTT, a surrogate index of 
cardiac baroreflex sensitivity based on measurements 
of PTT instead of blood pressure. Following statistical 
adjustment for age, BMI, and sex, we found that SDNN, 
one of the HRV indices, and BRSPTT were correlated with 
the degree of IGM but not with the severity of SDB in all 
sleep stages. Our findings suggest that the impairment 
of cardiac autonomic function that has been reported 
in subjects with SDB is due more to the IGM that 
accompanies SDB than to direct effects of respiratory 
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disturbances. Moreover, the abnormal autonomic 
function involves degradation of baroreflex regulation. 
We further speculate that SDNN and BRSPTT may be 
useful as complementary noninvasive and nonintrusive 
markers for the early detection of metabolic syndrome 
in patients who have been referred for PSG or 24 h  
Holter monitoring.
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