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Abstract
The successful development of neural prostheses requires an understanding of the neurobiological
bases of cognitive processes, i.e., how the collective activity of populations of neurons results in a
higher level process not predictable based on knowledge of the individual neurons and/or synapses
alone. We have been studying and applying novel methods for representing nonlinear
transformations of multiple spike train inputs (multiple time series of pulse train inputs) produced
by synaptic and field interactions among multiple subclasses of neurons arrayed in multiple layers
of incompletely connected units. We have been applying our methods to study of the
hippocampus, a cortical brain structure that has been demonstrated, in humans and in animals, to
perform the cognitive function of encoding new long-term (declarative) memories. Without their
hippocampi, animals and humans retain a short-term memory (memory lasting approximately 1
min), and long-term memory for information learned prior to loss of hippocampal function.
Results of more than 20 years of studies have demonstrated that both individual hippocampal
neurons, and populations of hippocampal cells, e.g., the neurons comprising one of the three
principal subsystems of the hippocampus, induce strong, higher order, nonlinear transformations
of hippocampal inputs into hippocampal outputs. For one synaptic input or for a population of
synchronously active synaptic inputs, such a transformation is represented by a sequence of action
potential inputs being changed into a different sequence of action potential outputs. In other
words, an incoming temporal pattern is transformed into a different, outgoing temporal pattern.
For multiple, asynchronous synaptic inputs, such a transformation is represented by a
spatiotemporal pattern of action potential inputs being changed into a different spatiotemporal
pattern of action potential outputs. Our primary thesis is that the encoding of short-term memories
into new, long-term memories represents the collective set of nonlinearities induced by the three
or four principal subsystems of the hippocampus, i.e., entorhinal cortex-to-dentate gyrus, dentate
gyrus-to-CA3 pyramidal cell region, CA3-to-CA1 pyramidal cell region, and CA1-to-subicular
cortex. This hypothesis will be supported by studies using in vivo hippocampal multineuron
recordings from animals performing memory tasks that require hippocampal function. The
implications for this hypothesis will be discussed in the context of “cognitive prostheses”—neural
prostheses for cortical brain regions believed to support cognitive functions, and that often are
subject to damage due to stroke, epilepsy, dementia, and closed head trauma.
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I. INTRODUCTION
Cognitive functions such as language, abstract reasoning, and learning and memory have
long been held to represent the most complex operations of the brain. Thus, it is not
surprising that cognitive functions also have been the most difficult of brain operations to
define in terms of underlying neural function and neural mechanisms. Cognition most often
is defined in terms of theoretical constructs, for example, “information” or “recognition,”
and operations on those constructs, such as “information processing.” Theoretical
approaches to cognition, although often successful at the level of inferred cognitive
operations and behavior, have difficulty in bridging the gap to neuronal functions (e.g.,
postsynaptic potentials, or PSPs; action potentials, or APs or “spikes”) and especially in
bridging the gap to mechanisms underlying neuronal function (e.g., presynaptic calcium
channel kinetics and neurotransmitter release, receptor-channel kinetics, membrane
biophysics, synaptic plasticity, etc.). Without common points of registry for the conceptual
hierarchies of a neurobiological framework and any theoretical framework for cognition, it
becomes difficult if not impossible, to understand a cognitive process in terms of a
corresponding neurobiological process, and vice versa. Although fMRI and other imaging
methods hold promise for contributing to the solution of this problem, neither the spatial-
temporal resolution, nor the generalizability of these technologies are yet at a level to
provide the bridge required.

We propose an operational definition of the neurobiological basis of cognition using a
combined experimental/theoretical approach designed to measure cognitive processes
directly, and to describe them mathematically. Our approach is based on principles of
nonlinear systems identification, first developed in the field of engineering [1]–[3]. We and
our colleagues have spent much of the last 30 years adapting these principles to
neurobiological systems, and specifically to the hippocampus, a brain region responsible for
long-term memory formation [4]. In our approach, each neuron is considered the
fundamental operating unit of a given neural system, consistent with the “neuron doctrine”
of Ramon y Cajal in the early part of the 20th century [5]. Neurons generate output signals
in the form of all-or-none APs that propagate to other neurons (typically tens to hundreds of
other neurons) along “axons” that end in specialized contacts known as “synapses” (Fig. 1).
Each AP input (a neuron may receive hundreds to thousands of such inputs) generates a
synaptic response that can be depolarizing (excitatory postsynaptic current, EPSC, or
potential, EPSP) or hyperpolarizing (inhibitory postsynaptic current, IPSC, or potential,
IPSP). If inputs to a neuron cause the resting membrane potential (typically −70 mV relative
to the extracellular fluid) to depolarize to −55 mV or more, a “threshold” is crossed which
results in the generation of an output AP (this number for threshold varies considerably from
neuron to neuron, and should be considered very “approximate”).

All of these concepts deserve much more detailed consideration for an understanding of the
biophysical properties of neurons and/or fundamental principles of synaptic transmission
[6], [7]. In this paper, however, we will focus on a few elemental concepts that derive from
essential properties of neurons and neural networks, and that are key in determining the
theoretical and experimental approach used in our research and described here. We wish to
first identify these concepts, and then explain how they have shaped our approach to
studying neural function at synaptic, neuron, and network levels of organization. We
propose that experimental measurements and mathematical modeling of network function,
using the formalisms identified, provide the best available direct observation of high-level
neural system function, and thus, a real, definable, and available neural counterpart to
“cognitive processes.”
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A. Neurons and Neural Networks as Hierarchically Organized, Dynamical Systems
Among these elemental concepts is that of “dynamics,” in other words, the fact that the
EPSC and EPSP shown in Fig. 1 do not have a single value amplitude, but instead, have an
amplitude that evolves over time. EPSPs reflect EPSCs flowing across the resistance and
capacitance of the cell membrane. The amplitude–time course of the EPSCs reflect the
probabilistic opening and closing of large numbers of channels in the postsynaptic region of
the cell membrane; the channels are activated by neurotransmitter released by vesicles of the
presynaptic element, and the binding of that neurotransmitter to the postsynaptic receptor.
The dynamics of the relation between receptor binding and channel state are typically
described with kinetic models. Because the probability of channel opening is large initially,
and then gradually decreases, the EPSC and the subsequent EPSP have the shape that they
do: a sharp rise followed by an exponential decay. What also is crucial to an understanding
of brain function, however, is that any biological neural network consists of a hierarchical
organization of dynamical systems [8]–[12]. The dynamics of molecular interactions of
receptor and channel subunits determine the dynamics of EPSCs; dynamics of EPSCs
determine the dynamics of EPSPs. Within each layer of the hierarchy, elements can be
“triggered” or “activated,” but the activity of a given element then evolves largely according
to its own internal dynamics.

There also can be interactions between levels in the hierarchy, however. “Internal dynamics”
strongly influence the response of a mechanism like an AMPA receptor-channel to an
external input; AMPA receptor-channel kinetics are unlikely to change substantially unless
there is a genetic mutation of one of its subunits [7]. However, the kinetics of other receptor-
channel complexes like the NMDA type, include elements that are voltage-dependent (the
voltage-dependent blockade of the NMDA channel by Mg2+ must be relieved by
depolarization of the local membrane), and thus, are influenced by a property of the next
higher level in the hierarchy, i.e., the neuron. The transmembrane voltages induced by other
inputs surrounding any one NMDA receptor-channel are integrated by the postsynaptic
neuron to determine the local membrane voltage. This local voltage at the level of the
neuron is the source of a feedback to the lower level of synapses, to shape the amplitude–
time course of the NMDA-mediated EPSC (see [8], [9], [13], for a formalism to describe the
neural hierarchy).

B. Neurons and Neural Networks as Hierarchically Organized, Nonlinear Dynamical
Systems

Another key concept to understanding brain function underlying cognition is the
“nonlinearity” of virtually all synaptic and neural mechanisms. What is meant by
nonlinearity is straightforward to define, though not so straightforward to measure, and to
measure accurately. The definition of nonlinearity, in the context of neural synaptic
transmission, is that the response of a postsynaptic neuron to the second of two successive
presynaptic stimuli is not predictable by the principle of superposition. Consider the
hypothetical examples shown in Fig. 2. The input pulse, when delivered alone (xa),
generates an output response, (ya) that exhibits a relatively rapid rise and an exponential
decay typical of EPSP-like waveforms. In the second case, (xb, yb), two pulses are delivered
with an inter-impulse interval such that the second pulse is delivered before the response to
the first pulse is completed. This results in postsynaptic responses that are partially
overlapping, and notably, the resulting compound EPSP is not equivalent to a simple
summation of the two individual EPSPs. Any such deviation from “superposition” is
identified as a “nonlinearity.” In this hypothetical example, the resulting response is more
than the summation predicted by superposition, i.e., a “facilitative” second-order
nonlinearity; a response less than that predicted by superposition is identified as a
“suppressive” second-order nonlinearity. Importantly, observable overlap between responses
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to successive inputs is not required for the generation of nonlinearities. The observable
response to a given input may be completed (i.e., the response returns to baseline), but that
input event may also have initiated, for example, unobservable activation of biochemical
second messenger systems intrinsic to the postsynaptic neuron, and/or excitation of local
interneurons that provide feedback to the target cell from which recordings are obtained.
The effects of these secondary inputs may not be observable until expressed in the context of
another direct synaptic input (see Fig. 2, and [14]).

The first two examples (second and third pairs of panels) of nonlinearities considered in Fig.
2 are second-order nonlinearities: deviations from linear summation of responses to single
impulses. We also can consider summation of second-order nonlinearities, i.e., summation
of two responses where: 1) each response is elicited by the second of a pair of stimulations
and 2) the response to at least one pair includes a nonlinearity. This possibility is shown in
Fig. 2, the bottom three pairs of panels. Panels xb, yb and xc, yc each demonstrate a
significant nonlinearity in response to two different interimpulse intervals. When these two
facilitative nonlinearities are combined into a triplet, however, any expected summation of
the two facilitations instead is revealed as a strong suppression, expressed (xd, yd). We have
observed this in our own studies of synaptic transmission in intrinsic hippocampal pathways,
though we have yet to conclusively identify the explanation. We hypothesize that the first
two pulses of the triplet activate a second messenger system which, in turn, hyperpolarizes
the cell membrane, e.g., through activation of a Ca2+-activated K+ conductance.

1) Formal Definition of Nonlinearities—Before this discussion proceeds much further,
we should pause to provide a mathematical framework useful for defining and quantitatively
measuring nonlinearities. To be brief (see [1], [2], and [15], for more complete discussions
of the fundamentals related to nonlinearities of biological systems), the work of Volterra
[16], Wiener [17], Marmarelis [1], [2], and others (see Marmarelis reviews [1], [2]) has
established that for any nonlinear, time-invariant (stationary) system with finite memory, the
system output y can be represented as a functional power series of the input x, as in the
single-input, single-output, discrete-time case

(1)

In this formulation, the system dynamics are expressed by the temporal convolutions of the
input and the Volterra kernel functions k; the system nonlinearity is expressed in the form of
multiple convolutions of the input and the higher order (above first order) kernel functions.
Kernel functions k thus represent the input–output nonlinear dynamics of the system. The
zeroth-order kernel, k0, is the value of the output when the input is absent, i.e., spontaneous
activity. The first-order kernel, k1, describes the linear dynamic relation between the input
and the output, as a function of the time interval (τ) between the present time and past time.
The second-order kernel, k2, describes the second-order pairwise nonlinear dynamic relation
between x and y. The third-order kernel, k3, describes the third-order triplet-wise nonlinear
dynamic relation between x and y, and so on. Higher order kernels, e.g., the fourth-order
kernel, are not shown in this equation. The formal relation between the Volterra kernels and
the single-pulse, paired-pulse, triple-pulse responses shown in Fig. 2 will be described more
fully in Section II [(30), (31)].
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2) Relation Between Nonlinearities and Cellular Mechanisms—Cellular
mechanisms exhibiting second- and third-order nonlinearities are common throughout the
nervous system. It is fair to state that the great majority of mechanisms underlying nervous
system functionality exhibit strong second-order nonlinearities, with third and higher order
nonlinearities being common rather than rare. Examples of second- and third-order
nonlinearities for hippocampal EPSP recordings already have been shown in Fig. 2. Note
that the strong facilitation of EPSP amplitude to the second pulse of the triplet almost
certainly reflects residual calcium accumulation presynaptically [18]. The first pulse
activates voltage-dependent calcium channels located presynaptically; the resulting calcium
entry binds with a family of presynaptic molecules to initiate integration of
neurotransmitter-containing vesicles to the presynaptic membrane, and the subsequent
release of neurotransmitter into the presynaptic cleft. The time course for removal of free
calcium from the presynaptic, intracellular space is approximately 50 ms [19]. If a second
pulse activates the same presynaptic fibers within that time period, the calcium entry caused
by the second pulse will sum with the residual calcium from the first pulse, resulting in a
larger amount of neurotransmitter released and thus a larger postsynaptic response.

Note that in Fig. 2, the suppression of the response to the third pulse of the triplet does not
represent a “ceiling effect” (or saturation): the response amplitude to the third pulse in the
triplet is substantially less than the large amplitude response to the second pulse. Instead, the
first two pulses of the triplet initiate intracellular mechanisms and/or feedback circuitry that
actively suppress the glutamate-induced depolarization [20], [21]. In intracellular studies
conducted previously [22]–[24], it was demonstrated experimentally that the majority of the
second-order suppression is induced by GABA-mediated inhibition acting through type A
and type B receptor subtypes.

Many of the electrical stimulation protocols that are commonly used to elicit characteristic
response profiles from target cells, or to reveal particular currents, provide additional
insights into the mechanisms underlying non-linearities. For example, T-type calcium
currents are sometimes studied by slightly hyperpolarizing the neuron cell membrane (to
bring the majority of channels out of inactivation) and, while in that hyperpolarized state,
delivering a depolarization (approximately 10 mV) [25]. These requirements for activating
T-type channels would suggest third-order nonlinearities emerging from the requirements of
excitatory input delivered following previous excitation; the first excitation must be
sufficient to induce GABAergic inhibitory feedback, and the second excitatory barrage must
occur within a specific time window to avoid desensitization of the T-type channels. Other
calcium channels, e.g., the N-type and the L-type, require different conditions for their
activation. Near-selective activation of L-type channels requires a period (e.g., 50 ms) of
depolarization (from rest, −75 mV to approximately 0 mV), followed by an additional
depolarization (e.g., to +20 mV). L-type calcium current then will continue to flow provided
the depolarization remains, given that L-type calcium channels exhibit little-to-no
desensitization. It is difficult to estimate a priori the degree of nonlinearity associated with
L-type calcium channel dynamics, but it certainly would be at least of third order, and may
extend across two or more orders of nonlinearity. N-type calcium channel dynamics will lie
somewhere between those of the T-type and the L-type.

From these examples, we hope that at least some principles have become clear. Namely,
kernels and input–output models in general, provide a different arsenal of measures for
looking at the same neurobiological mechanisms examined with other analytical tools used
in the neurosciences [14], [26], [27]. Most of the other methods and approaches, which we
will term here “mechanistic,” emphasize products of the reductionist approach: analysis and
properties of a single mechanism, studied while isolated from the myriad of other
mechanisms with which that target mechanism usually interacts. Kernel functions and the
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class of input–output models discussed here emphasize interactions between mechanisms.
Given that cognitive processes must derive from systems-level dynamics, we would argue
that input–output modeling is an essential component of any attempt to link cognition to
neurobiological mechanisms.

Finally, input–output modeling has sometimes been called a “black box” approach, based on
an assumption that practitioners of the approach do not know the box contents, i.e., the
neurobiological mechanisms underlying the dynamics being modeled. This assumption is
ludicrous on its face, of course. Our input–output modeling of hippocampus, and input–
output modeling of other systems like the retina [28], have been accomplished with the same
knowledge of the underlying circuitry, synaptic organization, and pharmacology as studies
done on the same systems with mechanistic approaches. In fact, our studies of the role of
GABAergic interneurons in second- and third-order nonlinearities of hippocampal dentate
granule cells were guided by pharmacologically induced changes in intracellularly recorded
membrane potentials [22]–[24]. Changes in the kernel functions occurred in response to
interstimulus intervals and pairs of interstimulus intervals matching the time constants of
GABAA and GABAB receptor kinetics, with drug-induced changes being specific for
GABAergic receptor agonists and antagonists—in other words, the input–output studies
used techniques, procedures and criteria nearly identical with mechanistic analyses. In the
end, however, kernel analyses reveal more about the total system functionality, both because
of the effects of broad-band input stimulation (activates many more mechanisms than
traditional single-pulse, paired-pulse, or constant frequency stimulation), and because the
formalism itself forces data interpretation and problem specification in terms of a neural
network or neural systems level of analysis. For example, Fig. 3(a) shows a box diagram of
the dentate gyrus in the intact rat, making explicit the relation between dentate granule cells
(the principal neurons of the dentate), and many of the known pathways providing
feedforward and feedback regulation of granule cells in response to excitation of input from
the entorhinal cortex (similar feedback pathways for CA3 and CA1 are not shown). In the
context of a continuous (average interimpulse interval: 500 ms), random interval (interval
range: 1–5000 ms) impulse train stimulation of excitatory entorhinal input, it can be seen
that granule cells will be activated monosynaptically, but also will be stimulated
multisynaptically through the commissural, GABAergic, and other feedforward and
feedback pathways intrinsic to the dentate. An equivalent representation for the pathways
included in the hippocampal slice is shown in Fig. 3(b); the system can be reduced further
with pharmacological blockade of GABAergic receptors. In this manner, the underlying
anatomical pathways that contribute to dentate granule cell nonlinear dynamics can be
readily identified, and used for interpretation of associated input-output models. Thus,
input–output modeling is only as “black box,” or uninterpretable, as the user. Recently, the
relation between input–output models and mechanistic models has been formalized, and we
have shown how both approaches can be used in a complementary manner [20], [21], [29].

C. Neurons and Neural Networks as Hierarchically Organized, Nonstationary, Nonlinear
Dynamical Systems

The range of different dynamics found in the nervous system, and the magnitude and higher
orders of nonlinearity found for those mechanisms studied to date, provide for considerable
complexity of temporal pattern encoding. The degree of complexity increases even further
when we consider that the dynamics being discussed to this point are not always constant,
but instead, can change over time, or are “nonstationary.” The learning and adaptive
capabilities of the vertebrate and invertebrate nervous systems are well established. In
addition, the last four decades of neuroscience research have seen experimental
identification of a wealth of long-term, permanent changes in cellular and synaptic
mechanisms that are induced by the learning process. All of this evidence has shown that
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learning and memory do not involve “out of the ordinary” mechanisms that are reserved
only for learning and memory, and that remain hidden and unexploited until environmental
circumstances demand their amalgamation and use. In general, the mechanisms involved in
learning and memory are the same mechanisms that underlie the biophysics and synaptic
transmission of neurons in day-today circumstances: learning and memory simply require
more of mechanism x or less of mechanism y. Given that the effects of mechanisms x and y
are captured by, and contribute to, the kernels under nonlearning conditions, we should
expect to see a relatively smooth change in system dynamics during the course of learning,
i.e., there should not be a sudden and abrupt incorporation into the system of a radically
different set of mechanisms, which would be reflected by a sudden and abrupt change in
system nonlinearities. Although not an optimal test of this hypothesis, the above is precisely
what we observed with the induction of long-term potentiation (LTP). The induction of LTP
was accompanied by a smooth and gradual change in pre-LTP second- and third-order
nonlinearities [30]. With regard to the Volterra kernel expressions introduced earlier, it thus
is reasonable to incorporate cellular plasticity and learning and memory, or nonstationarities,
simply by having the kernel expressions become a function of time, t, in addition to
remaining a function of τ, the time since a prior input pulse

(2)

Of course, there are more neurobiological processes than those underlying learning and
memory that change as a function of time, and thus, would be reflected by nonstationarity of
neural system kernels. Both the noradrenergic and the serotonergic neurotransmitter systems
provide a widely dispersed input to much of the forebrain, thalamus, brainstem, and spinal
cord. Both of these systems also change their levels of activity markedly during the sleep–
wake cycle, with experiments demonstrating that the actions of norepinephrine and
serotonin can significantly alter the responsiveness of recipient neurons to other,
nonnoradrenergic and nonserotonergic afferents. For example, we have shown previously
that large magnitude changes in noradrenergic levels in hippocampus are associated acutely
with substantial changes in second- and third-order nonlinear responsiveness of dentate
granule cells to excitatory, glutamatergic input from the perforant path, and inhibitory,
GABAergic, input from inhibitory interneurons internal to the dentate gyrus [31].

Other processes having the longest time constants are likely to be those involved in
development of the nervous system. Like changes in kernels representing learning, those
representing development will not follow a pattern of deviating from a baseline of system
characteristics, and then returning to that standard some predictable period of time later, as
should be observed in the case of the dynamics of diurnal cycles. Instead, in the case of
development, we would expect nonlinear system characteristics that slowly evolve into
progressively richer, more stable, and more different (than the original) sets of system
properties. This also allows for the exciting possibility that abnormal developmental and
aging states that are difficult to diagnose (e.g., autism, schizophrenia, Alzheimer’s disease)
might be identified and differentiated with the new and varied set of quantifiable descriptors
represented by the kernels, and which we propose to be capable of reflecting “system
properties” of the neural circuitry underlying cognition.
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D. Information Representation in the Ensemble Firing of Populations of Neurons
It has been demonstrated, particularly in cortical systems, that key information guiding
trained, intentional behavior is represented in the “ensemble” firing of populations of
neurons [32]–[39], i.e., spatiotemporal patterns of electrophysiological activity. The advent
of multi-channel single-cell recording has provided the capability for simultaneously
observing the firing of tens to hundreds of neurons, so that higher level analyses of the
collective relations among subpopulations of neurons can be conducted [32], [40]–[42]. This
has allowed confirmation of earlier suggestions of collective, ensemble activity in results
from single cell recording studies [43].

How should this collective activity of subpopulations of neurons be interpreted in terms of
cognitive processing? Clearly, when a subpopulation of neurons achieves and maintains a
given spatiotemporal pattern, or a given “relatedness in activity,” and which as a
consequence allows for the identification of a relation between that pattern and an external
event, it is reasonable to define that spatiotemporal pattern as a “representation” [44].
Representations are transient because neuron firing typically is maintained in one
spatiotemporal pattern for only hundreds to thousands of milliseconds (restated, the duration
of an identifiable spatiotemporal pattern is typically hundreds to thousands of milliseconds),
unless we consider pathological conditions, e.g., rhythmic, cyclical firing characteristic of
epilepsy. The latter and physiological rhythmicities, e.g., alpha rhythm, are indicative of
“states” rather than the identities of specific external events.

With regard to hippocampus, such representations, or temporarily stable spatiotemporal
patterns, could readily map onto individual memories, possibly even individual components
of a memory. As the contents of a memory process, temporarily stable spatiotemporal
patterns of activity within areas that provide input to hippocampus could constitute “short-
term memories.” With representations as “content,” input–output transformations could be
considered “process.” Neural systems and brain regions process information by transforming
incoming spatiotemporal patterns into different, outgoing spatiotemporal patterns. This
statement is not a claim—there simply is no other reasonable interpretation of the basic
phenomenology. Thus, information processing underlying cognition involves
transformations of neural representations that are dynamic, nonlinear, and often
nonstationary (time-varying). While recent advances in multielectrode technology have
made it possible to record the simultaneous activities of populations of neurons in behaving
animals, modeling such complex system behavior still remains one of the most challenging
tasks in computational neuroscience [45]. It is in response to this need that we have invested
over 20 years in the development and refinement of a combined experimental-theoretical
strategy for quantitatively characterizing, and then modeling, neural systems typical of those
routinely found in the mammalian brain.

II. EXPERIMENTAL-THEORETICAL STRATEGY FOR MODELING BRAIN
COGNITIVE FUNCTIONS

We formulate here a three-step strategy to model the cognitive function of brain regions in
general, and the hippocampus, in particular. In this strategy, we define the cognitive
operation of a brain region as the transformation from its input activities to its output
activities. Therefore, understanding the cognitive function of a brain region is equivalent to
identifying its input–output transfer function S. Since in brain regions, input–output signals
are manifested in the form of spatiotemporal patterns of neural spikes, i.e., all-or-none
electrical events recorded from individual neurons, all parameters of the transfer function
should be derived from the timings of the input/output spikes. The first two steps deal with
the stationary and nonstationary aspects of the transfer function, respectively (Fig. 4 left,
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middle). For the nonstationary case, the third step seeks to identify the “learning rule”
underlying the nonstationarity of the transfer function (Fig. 4 right).

A. Stationary Modeling of Brain Regions
During performance of asymptotically learned behavior, a brain region is modeled as a time-
invariant system. Its transformational property is modeled as a stationary process. A time-
invariant (stationary) system is one whose transfer function does not depend on time. The
modeling goal in this step then is to identify the time-invariant transformation S from
multiple input spike trains X to the multiple output spike trains Y (3). Since the mechanisms
underlying synaptic transmission and generation of spikes in neurons are inherently
nonlinear and dynamical, the stationary model has to be a multiple-input, multiple-output
(MIMO) nonlinear dynamical model

(3)

In our approach, the MIMO model is decomposed into a series multiple-input, single-output
(MISO) models (Fig. 5). Each MISO model is then formulated to have both parametric (i.e.,
mechanistic) and nonparametric (i.e., descriptive) components [46], [47]. First, the overall
model structure is parameterized to be “neuron-like.” It captures the stereotypical features of
spiking neurons and explicitly includes variables that can be interpreted as the principal
cellular processes such as the postsynaptic potential, the spike-triggered after-potential, the
pre-threshold noise, and the spike-generating threshold. This configuration partitions the
system nonlinear dynamics in a physiologically realistic manner, and thus facilitates
comparison with intracellular recording results. The more versatile features of spiking
neurons, i.e., the transformation from the input spikes to postsynaptic potentials and the
transformation from the output spike to the after-potential, on the other hand, are modeled
nonparametrically with the Volterra series, taking advantages of its flexibility in capturing
nonlinear dynamics.

1) Model Configuration—The MISO model structure consists of five components (Fig.
5): 1) a feedforward block K transforming the input spike trains x to a continuous hidden
variable u that can be interpreted as the postsynaptic potential; 2) a feedback block H
transforming the preceding output spikes to a continuous hidden variable a that can be
interpreted as the after-potential; 3) a noise term ε that captures the system uncertainty
caused by both the intrinsic neuronal noise and the unobserved inputs; 4) an adder
generating a continuous hidden variable w that can be interpreted as a prethreshold potential;
and 5) a threshold function generating output spikes when the value of w crosses θ. The
model can be expressed by the following equations:

(4)

(5)

K takes the form of a Volterra model, in which u is expressed in terms of the inputs x by
means of the Volterra series expansion as
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(6)

The zeroth-order kernel, k0, is the value of u when the input is absent, for example, when

there is spontaneous variations in membrane potential first-order kernels, , describe the
linear relation between the nth input xn and u, as functions of the time intervals (τ) between
the present time and the past time. In other words, for each of the multiple inputs to the
system, first-order kernels account for the effects of a single input event (a spike, or action
potential) on the system membrane potential output, u, regardless of when those single input
events may have occurred in the past, and thus, regardless of any other inputs that may have
occurred between the past time designated by a particular (τ) and the present time. Second-

order self-kernels  describe the second-order nonlinear relation between the nth input, xn,
and u, as functions of the two time intervals (τ1, τ2) between the present time and the two
respective past times. Thus, second-order kernels account for the modulatory effects of an
input event occurring in the past on the system membrane potential output, u, evoked by a
second input event occurring in the present, when both events occur on the same input. The
previous input pulse may increase the response evoked by the present input, i.e., cause
facilitation, or may reduce the response evoked by the present input, i.e., cause suppression.

Second-order cross-kernels  describe the second-order nonlinear interactions between
each unique pair of input events (xn1 and xn2) as they affect u, when each of those pulse
events occurs on different inputs. N is the number of inputs. Mk denotes the memory length
of the feedforward process. Higher order kernels, e.g., third-and fourth-order kernels, are not
shown in this equation, but should be obvious by extension from the explanations above.

Similarly, H takes the form of a first-order Volterra model as in

(7)

where h is the linear feedback kernel. Mh is the memory length of the feedback process (note
τ starts from 1 instead of 0 to avoid predicting the current output with itself). The noise term
ε is modeled as a Gaussian white noise with standard deviation σ.

In summary, what the Volterra representation states is that subthreshold variation in
membrane potential for any one neuron can be accounted for by variation in the temporal
pattern of past action potentials for any one input, or, variation in the spatiotemporal pattern
of past action potentials for a population of inputs to that neuron. In total, with all of its
components, the model states that, for a population of neurons (input) that provide synaptic
input to a second population of neurons (output), variation in the spatiotemporal pattern of
past action potentials for the input neurons predicts the spatiotemporal pattern of action
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potentials for the output population of neurons. We know from what are now tenants of
fundamental neuroscience that, in general, such an input–output relation must be true.
Outstanding issues relate more to whether or not such a relationship can be quantified or
modeled, and whether or not experimental evidence supports such a model to the extent that
it can be used to predict the effects of arbitrary input patterns. We report here that both of
the latter questions can be answered in the affirmative.

2) Model Estimation—With the model structure defined as above, the next step is to
estimate all model parameters, i.e., feedforward kernels k, feedback kernels h, prethreshold
noise standard deviation σ, and threshold θ, from the timings of the input/output spikes. The
biggest challenges in Volterra modeling is the large number of open parameters
(coefficients) to be estimated, especially in the cases of high dimensional input and high
order model. To solve this problem, Laguerre expansion of the Volterra kernels (LEV) and
statistical model selection techniques are employed [46], [47].

With LEV, Volterra kernels (k and h) are expanded with orthonormal Laguerre basis
functions b [20], [48], [49]. Equations (6) and (7) are rewritten into

(8)

(9)

where v are the convolution of input–output spike trains (x and y) and Laguerre basis
functions b

(10-11)

, and ch are the sought Laguerre expansion coefficients of , and
h, respectively (c0 is equal to k0). The number of basis functions (L) is typically much
smaller than the memory length (Mk and Mh), so the total number of coefficients is greatly
reduced [46], [47].

All model parameters can be estimated using a maximum-likelihood method. The negative
log-likelihood function L is

(12)

where T is the data length, and P is the probability of generating the recorded output y
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(13)

Since ε is assumed to be Gaussian, the conditional firing probability intensity function Pf
(the conditional probability of generating a spike, i.e., Prob(w ≥ θ|x, k, h, σ, θ) in (13)) at
time t can be calculated with the Gaussian error function (integral of Gaussian function) erf

(14)

where

(15)

P at time t then can be calculated as

(16)

or,

(17)

Model coefficients c then can be estimated by minimizing the negative log-likelihood
function L

(18)

It is shown that this model is equivalent to a generalized linear model (GLM) [50], [51] with
inputs and preceding output structured with Volterra models [46], [47]. For this reason, this
model can be termed as generalized Volterra model (GVM) [47], [52]. Note that u, a, and n
are dimensionless variables, so without loss of generality, σ and θ can be set to 1 in
estimation, and later restored from the estimated coefficients.

The second step of model estimation involves the selection of optimal subsets of model
coefficients. Mathematically, this step is necessary for further reducing the number of model
coefficients to avoid overfitting. More importantly, this step identifies the significant inputs
(represented by the first- and second-order self-kernels) and nonlinear interactions between
inputs (represented by the second-order cross-kernels) of each output neuron and results in
more interpretable models [47]. For a given output neuron, the selected input neurons are the
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ones that have functional connections to the output neuron; the selected (second) cross-
kernels indicate the pairs of inputs that exhibit nonlinear summations in the synaptic
potential (u) of the output neuron. The statistical model selection procedure involves a
forward step-wise model selection method [53] and a cross-validation method that have
been described previously [47].

3) Kernel Reconstruction and Interpretation—The model coefficients ĉ and σ ̂ can be
obtained from the estimated Laguerre expansion coefficients, c,̃ as in

(19-24)

Feedforward and feedback kernels are then reconstructed as

(25-29)

Threshold θ is equal to one.

The normalized kernels provide an intuitive representation of the system input–output
nonlinear dynamics. Single-pulse and paired-pulse response functions (r1 and r2) of each
input can be derived as [20], [47]

(30-31)

 is simply the PSP elicited by a single spike from the nth input neuron;  describes the
nonlinear effect of pairs of spikes from the nth input neuron that is different from the simple

summation of their single PSPs, i.e., .  represents the nonlinear
effect of pairs of spikes with one spike from neuron n1 and one spike neuron n2. h represents
the output spike-triggered after-potential (Fig. 6).

4) Model Validation and Prediction—The cross-validation procedure in model
selection guarantees the resulting model to have predictive power over novel datasets since
the out-of-sample likelihood function has to be decreased during model selection [47].
Selected inputs/cross-terms and estimated parameters/coefficients can be readily used to
make further inferences about the functional connectivity and neuronal dynamics as shown
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in the previous section. However, one also needs to evaluate quantitatively the goodness-of-
fit of the model. One way of doing this is to evaluate the continuous firing probability
intensity predicted by the model with the recorded output spike train. According to the time-
rescaling theorem, an accurate model should generate a conditional firing intensity function
Pf that can rescale the recorded output spike train into a Poisson process with unit rate [54].
By further variable conversion, interspike intervals should be rescaled into independent
uniform random variables on the interval (0, 1). The model goodness-of-fit then can be
assessed with a Kolmogorov-Smirnov (KS) test. If the model is correct, all points should lie
closely to (e.g., within the 95% confidence bounds) the 45-degree line of the KS plot.
Another way is to quantify the similarity between the recorded output spike train y and the
predicted output spike train ŷ after a smoothing process. First, ŷ is realized through
simulation. Secondly, ŷ and y are convolved with a Gaussian kernel and then compared by
calculating their correlation coefficient [46].

5) Application to Hippocampal CA3-CA1 Dynamics—This method has been
successfully implemented in the modeling of hippocampal CA3-CA1 dynamics [46], [47].
In the hippocampus, CA1 pyramidal neurons are primarily driven by CA3 pyramidal cells.
Output of the CA1 region thus can be considered a nonlinear transformation of the CA3
spike trains. In Drs. Sam Deadwyler and Hampson’s laboratories at Wake Forest University,
rats are trained to perform a memory-dependent behavioral task—delayed nonmatch-to-
sample task. CA3 and CA1 spike trains are simultaneously recorded when the rats are
performing the task, and then used to build the MIMO model (Fig. 7). Results show that the
MIMO model can be reliably estimated from the CA3 and CA1 spike trains. The model: a)
accurately (but stochastically) predicts the CA1 spatiotemporal pattern based on the CA3
spatiotemporal pattern (Fig. 8); b) provides intuitive representations of the CA3-CA1
transfer function in means of feedforward kernels, feedback kernels, noise standard
deviation; and c) reveals the functional CA3-CA1 connectivity with its significant model
terms (see [46], [47] for more details).

B. Nonstationary Modeling of Brain Regions
Our modeling approach also must deal with the non-stationarities of hippocampal regions. In
a nonstationary (time-varying) system, the input–output transfer function depends also on
time (32). The modeling goal is to track the emergence and evolution of the MIMO
nonlinear dynamics during learning and memory formation.

(32)

1) Estimating a Time-Varying MIMO Model—We have formulated a nonstationary
modeling methodology for the above-described model structure using a point-process
adaptive filtering framework [55]. In this approach, model coefficients (c) are taken as state
variables while the input–output spikes are taken as observable variables. Using adaptive
filtering methods, state variables can be recursively updated as the observable variables
unfold in time. The underlying change of system input–output properties then is represented
by the time-varying Volterra kernels (k(t) and h(t)) reconstructed with the time-varying
coefficients (c(t)).

Firstly, the probability of observing an output spike at time t, i.e., Pf (t), is predicted by the
GVM at time t − 1 based on the inputs up to t and output before t (14). Secondly, the
difference between Pf (t) and the new observation of output y(t) is used to correct the GVM
model coefficients. Using the stochastic state point process filtering algorithm [56],
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coefficient vector C(t) and its covariance matrix W(t) are both updated iteratively at each
time step t

(33)

(34)

where Q is the coefficient noise covariance matrix. Including W as the “learning rate” allows
reliable and rapid tracking of the model coefficients C representing the system nonlinear
dynamics.

2) Simulation Studies—We have intensively tested this nonstationary algorithm with
synthetic input–output spike train data obtained through simulations [55]. The tested
systems have various model structures involving different model orders, e.g., first and
second order (including self-and cross-kernels). The number of system inputs ranges from
moderate to larger scale (e.g., 32-input), which matches the maximal number of available
units in a typical experimental dataset. The system nonstationarity to be tracked takes a
variety of forms such as: a) step (jump) change; b) linear change; and c) LTP/LTD-like
changes. Results show that the nonstationary algorithm can reliably and accurately track the
underlying system nonstationarities and represents them in the time-varying Volterra kernels
(see Fig. 9 for a second-order, two-input, step-change example). In all cases, the estimated
kernels converge rapidly (with a 10–100 s timescale) to the target kernels without interfering
each other.

C. Identification of the Learning Rule
The nonstationarity in the transfer function of a given brain region is determined by the
experiences of the animal. In the brain region, the experiences are internally represented as
the flow of the input/output spatiotemporal patterns of spike trains. A fundamental question
to ask is whether it is possible to reconstruct the nonstationarity of the transfer function of a
brain region, which is characterized in Step 2, using its input–output spike trains and a
learning rule defining how to modify the transfer function based on the input–output spike
trains (Fig. 4 right). Such a learning rule is critical for understanding the underlying
mechanisms of cognition processes, e.g., Hebbian-like synaptic modification during learning
and memory formation

(35)

We postulate to conduct mathematical analyses and computer simulations of neuronal
network nonlinear, nonstationary dynamics to identify such potential learning rules. As a
first step, a neuronal network model can be built and initialized based on the MIMO
nonlinear dynamics identified from naïve animals. The functional connections between input
and output neurons will be determined based on the feedforward kernels. The spike-
dependent intrinsic properties of the output neurons will be determined by the feedback
kernels. In the next step, learning processes in the brain region will be simulated by feeding
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the network model with the input sequence recorded from the modeled brain region during
learning. The input–output transfer function S(t) will be updated by the input and output
patterns following a learning rule L. Finally, the learning rule is substantiated through
mathematical analyses, and the associated parameters are optimized so that the emergence
and changes of the transfer function characterized in Step 2 can be replicated in the
simulation. The candidate learning rules include the following.

1. Input/output frequency-dependent learning. This learning rule mimics the classical
Bienenstock-Cooper-Munro (BCM) form of synaptic modification rules, in which
the changes of the transfer function depend only on the frequencies of the input/
output spike trains [57].

2. Input/output timing-dependent learning. This learning rule mimics the spike-
timing-dependent plasticity. Changes of the transfer function depend on the timings
of both input and output spikes [58].

3. Input/output pattern-dependent learning. This will be a general form of learning
rule, in which changes in the transfer function are determined by the spatiotemporal
patterns of the input/output spikes [59]. Interactions between multiple input/output
spikes will be explicitly included and analyzed.

We expect the final outcome of this step to be a generative model of the identified
nonstationarities of the hippocampal population nonlinear dynamics.

III. CONCLUSIONS AND DISCUSSION
In this paper, we have dealt with the issue of the neurobiological bases of cognition. More
specifically, we have argued that nonlinear input–output properties of populations of
neurons are potential neurobiological indices of cognitive processing. We have
demonstrated both here and previously [14], [20], [21], [23], [24], [26], [27], [46], [47], [60]
that nonlinear input–output properties of single neurons and populations of neurons can be
measured experimentally (electrophysiologically), and for mathematical modeling, can be
readily incorporated within a theoretical framework of nonlinear systems identification. We
also have presented here some of the most recent methodological advances in nonlinear
systems modeling that provide the critical capabilities for achieving systems-level
descriptors of neural function—systems-level descriptors that can be proposed and
investigated as potential correlates of cognitive function. These new methodologies allow
input–output properties to be defined in the context of high-order nonlinearities,
nonstationarities (synaptic plasticity) of nonlinearities, and population, ensemble coding of
neural information.

Before discussing these concepts and approaches in the context of the cognitive function of
the hippocampus, it is important to state some assumptions. First, we assume that cognitive
functions reflect the highest levels of neural function, i.e., neural operations that involve
entire systems of neurons. For example, the cognitive function of creating new long-term
memories from existing short-term memories is performed by the hippocampal formation,
which is a collection of cortical neural structures consisting of the entorhinal cortex, the
dentate gyrus, the CA3 pyramidal cell region (the regio inferior of the hippocampus), the
CA1 pyramidal cell region (the regio superior of the hippocampus), and the subiculum [5],
[61]. The hippocampus proper—dentate, CA3, and CA1—is considered the “intrinsic
trisynaptic pathway” of the hippocampus, and is the minimum circuitry involved in the
short-term memory to long-term memory transformation. Second, we assume that the
collective functional properties of the dentate, CA3, and CA1, when combined together, are
equivalent to the cognitive function of “long-term memory formation.” Third, we assume
that the functional properties of the components of the hippocampus proper identified above,
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and for that matter most any brain region, can be assessed as “input–output properties,” i.e.,
the manner in which incoming signals are processed into different, outgoing signals. At a
neural level, the composite input–output properties of the major, intrinsic pathways of a
brain region are its function. When the kernels are estimated accurately for the appropriate
order nonlinearity, and for neural data generated under “natural” conditions, the kernels: 1)
describe how the neural system, at each one of its major layers or subsystems, responds to
the range of input signals associated with the set of behaviors and/or cognitive states of
interest; 2) describe how neural correlates of the behavior of interest (#1) are transformed
from the system input to the system output, and at each of its major layers or subsystems;
and 3) allow prediction of system and subsystem output for a wide range of activity
conditions.

Clinical studies conducted over the last 60 years have clarified that the hippocampal
formation is responsible for long-term memory formation [4], [62], [63]. The hippocampal
system does not store memories itself, but instead, re-encode short-term memory so that
information is compatible with existing long-term memory. Precisely what “compatibility”
means remains unknown, but as an example, compatibility might mean that appropriate
first-order associations for a given episodic memory had been identified. Long-term memory
is stored in a distributed manner, probably throughout neocortex. With the hippocampus
defined as the set of brain systems above, “long-term memory formation” must be
equivalent to the total re-encoding process performed as inputs propagate from the dentate
gyrus to the CA1 region. How can this “re-encoding process” be assessed and understood?
As stated above, and as demonstrated in previous sections of this paper, we assume that the
functional properties of any network of neurons (or for that matter, any neuron, or any
neuron component, e.g., channel, etc.) can be represented in terms of its input–output
properties, or in this case, its nonlinear multiple-input, multiple-output properties. Given the
arguments made earlier, and from data described above, it is our position that neurons
should be conceived of as nonlinear dynamical processing elements. Because of the inherent
nonlinear properties of hippocampal neurons and the nonlinearities inherent in the processes
of synaptic transmission, input spatiotemporal patterns of spike train activity are
transformed into different, output spatiotemporal patterns of spike train activity. The nature
and degree of nonlinear transformation will almost certainly vary as a function of
hippocampal region because of differences in principal cell morphology, and/or intrinsic
conductances (e.g., distribution, type of active channels), and/or local circuitry. Nonetheless,
as activity propagates from the entorhinal cortex to the subiculum, each layer of the
hippocampus (dentate gyrus, CA3, and CA1) progressively reencodes short-term memory
representations into long-term memory representations.

The total re-encoding process whereby short-term memories become long-term memories
can be assessed experimentally, and modeled mathematically, in the manner demonstrated
previously with regard to multi-input, multioutput properties of the CA3-CA1 hippocampal
system. If the same analyses were performed for the entorhinal-dentate and the dentate-CA3
subsystems of the hippocampus, then computer simulations of the functioning of all three
subsystems of the hippocampus would be attainable. We have investigated previously the
possibility of analytical solutions to the combination of subsystem nonlinear
characterizations to achieve larger nonlinear system input–output models, and vice versa for
system decomposition, but these studies were of single-input, single-output cases only [64]–
[66]. Experimental verification of such a simulated model of the functioning of the intrinsic,
hippocampal “trisynaptic pathway,” though difficult, is possible (the requirement would be
simultaneous recordings of neural activity from two sites in the hippocampal formation
separated by two or more synapses, e.g., layer II of the entorhinal cortex and the CA1
pyramidal cell region).
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Considering all of the above, we believe it is experimentally and theoretically feasible to
characterize each of the subregions of the hippocampus: dentate, CA3, CA1, and then to
integrate the dynamics of each layer into a model of the intrinsic, trisynaptic pathway of the
hippocampal system, though we are a long way from demonstrating this. The nonlinear
transformations of the entire circuit should be equal to the total nonlinear transformations
required to convert short-term memory into long-term memory—though this also is an
example of an hypothesis that should be tested by such a combined theoretical-experimental
approach. The meaning of the transformations of any one layer is unknown, and again, this
identifies an important area of future study. Clinical and experimental animal studies have
provided compelling clues as to the function of the entire hippocampus, but we have only a
few hypotheses as the functional role of each hippocampal subsystem. Input–output studies
of each individual component of the hippocampus will provide quantifications of the
properties of each of the dentate, CA3, and CA1 fields, and in the process, also provide hints
as to subsystem function to which we previously have not had access. The major point,
however, is that a combined theoretical-experimental path can be defined for achieving a
biologically based, animal model of a highly important cognitive function—long-term
memory formation.

The relevance of this approach to neural prostheses is that it follows from the positions
argued here that it may be possible for the complexities of higher brain processing related to
concept formation, representations, hierarchically organized associations, etc., and
potentially even consciousness, i.e., the brain functions least understood in neural terms at
present, and most difficult to repair following brain damage, to be represented
mathematically as a set of kernels. We have presented an example of such a characterization
with modeling of the CA3-CA1 transformation contribution to long-term memory. Such a
set of kernels could even be parameterized for context, for example, for the sleep-wake
cycle, and as we have shown in previous work, can be reduced to hardware circuitry. What
is remarkable about a kernel-based model, in addition to the attributes identified above, is
the degree of “compactness” of the input–output relation: all of the mechanisms underlying
the highly nonlinear behavior of hippocampal (or other class) neurons, including the
contribution of interneurons, and notably, the contribution of unknown mechanisms yet to
be discovered, are included in the model, and as shown here, the model in turn can
accurately predict system output to arbitrary input patterns. This is a major advantage of our
approach compared to, for example, linear or low-order nonlinear models that are the bases
of neural prostheses to replace lost upper extremity functionality. We are in the process of
testing the hypothesis that kernel functions for the hippocampus can interact with the
endogenous tissue to reinstate normal long-term memory capability after hippocampal
dysfunction has been induced experimentally. If successful, this experimental-modeling
work will lay the foundation for a general strategy to develop neural pros-theses for any one
of multiple cognitive functions. Given the availability of such models, additional research
investigating the nonlinear transformations of a given brain region with the purported
cognitive functions of the same neural system could provide substantial insights into the
relations between neural and cognitive dynamics.
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Fig. 1.
Intracellularly filled hippocampal dentate granule cell, providing visualization of most of the
anatomical components of a granule cell neuron. Labels identify major aspects of granule
cell anatomy. Right: example intracellularly recorded responses showing an excitatory
postsynaptic current (EPSC), an excitatory postsynaptic potential (EPSP), and an action
potential (AP) generated when magnitude of the EPSP exceeded threshold. See text for more
explanation.
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Fig. 2.
Hypothetical (based on many, real biological experiments) illustrating typical nonlinear
interactions between two and three pulses delivered to excitatory synaptic inputs to
hippocampal granule and pyramidal neurons. First (top) trace: single pulse stimulation (xa)
and evoked EPSP (ya). Second trace: two pulses delivered such that the second pulse is
delivered before the response to the first pulse is complete. The dashed EPSP demonstrates
the amplitude–time course of the EPSP that would have occurred if the input–output system
xb, yb had been linear. Because the system is nonlinear, however, a strong facilitation
occurs, much larger than predicted based on superposition, with the response to the second
pulse being 3–4 times larger than that elicited by the first pulse. The third panel, xc, yc,
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shows another pair of pulses, with a longer interstimulus interval, that nonetheless also
produces facilitation. The fourth (bottom) panel, xd, xd illustrates the consequences of
combining both pairs of intervals. Again, the dashed line shows the expected response if the
two second-order nonlinearities combine in a linear manner. Instead, a strong suppression
occurs, revealing a negative third-order nonlinearity. Corresponding applications of
quadruplets and quintuplets would uncover an even wider scope of nonlinearities, translating
into a rich differential sensitivity to temporal patterns.

Berger et al. Page 29

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2010 August 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
Block diagram of most, known anatomical pathways that provide feedforward and feedback
regulation of granule cells in response to excitation of input from the entorhinal cortex, and
thus are the source of some of the nonlinearities of granule cells, the output neurons of the
dentate. (a) Feedforward and feedback pathways in the intact animal. (b) Equivalent
representation for the pathways included in the hippocampal slice.
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Fig. 4.
Schematic diagram of the three-step modeling strategy. X: input sequences; Y: output
sequences; S: transfer functions; L: learning rule for S. In Step 1, S is not a function of time.
In Step 2 and 3, S varies with time. During learning, S evolved as a result of input and
output activities following the learning rule. Colored boxes indicate the functions need to be
identified in each step.

Berger et al. Page 31

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2010 August 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 5.
MIMO model for population neural dynamics. (a) Schematic diagram of spike train
propagation between two brain regions. (b) MIMO model as a series of multiple-input
single-output (MISO) models. (c) Structure of a MISO model.
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Fig. 6.

Interpretations of the feedforward and feedback kernels.  is the response in u elicited by a

single spike from the ith input neuron;  describes the joint nonlinear effect of pairs of
spikes from the ith input neuron in addition to the linear summation of their first-order

responses.  represents the joint nonlinear effect of pairs of spikes from neuron i and j. h
represents the output spike-triggered after-potential on u. Black areas: effect of each kernel
on u.
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Fig. 7.
A stationary multi-input single-output (MISO) model of hippocampal CA3-CA1. r1 are the
single-pulse response functions; k2 s are the paired-pulse response functions for the same
input neurons. k2x are the cross-kernels for pairs of neurons. This particular MISO model
has six r1, six r2x, and one k2x.
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Fig. 8.
Model prediction with MISO and MIMO models. (a) Actual output spike train (top panel)
and output spike train predicted by a MISO model (bottom panel). (b) Output spatiotemporal
pattern predicted by a MIMO model. (a) and (b) are both out-of-sample results.
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Fig. 9.
A second-order, two-input-single-output system tracked with the nonstationary algorithm.
First-order kernels (k1) and second-order self-kernels (k2s) have step changes at 4000 s.
Zeroth-order kernel (k0), second-order cross-kernels (k2x) and feedback kernel (h) remain
constant. Delay time expand (τ) is 500 ms for k1, k2s, and k2x, 1000 ms for h. The amplitude
of kernel is indicated by the color. Only diagonal values of second-order kernels are plotted
for simplicity. A: actual kernels; E: estimated kernels.
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