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Abstract—A modeling approach to characterize the nonlinear
dynamic transformations of the dentate gyrus of the hippocampus
is presented and experimentally validated. The dentate gyrus is
the first region of the hippocampus which receives and integrates
sensory information via the perforant path. The perforant path
is composed of two distinct pathways: 1) the lateral path and
2) the medial perforant path. The proposed approach examines
and captures the short-term dynamic characteristics of these two
pathways using a nonparametric, third-order Poisson–Volterra
model. The nonlinear characteristics of the two pathways are
represented by Poisson–Volterra kernels, which are quantitative
descriptors of the nonlinear dynamic transformations. The kernels
were computed with experimental data from in vitro hippocampal
slices. The electrophysiological activity was measured with
custom-made multielectrode arrays, which allowed selective stim-
ulation with random impulse trains and simultaneous recordings
of extracellular field potential activity. The results demonstrate
that this mathematically rigorous approach is suitable for the
multipathway complexity of the hippocampus and yields inter-
pretable models that have excellent predictive capabilities. The
resulting models not only accurately predict previously reported
electrophysiological descriptors, such as paired pulses, but more
important, can be used to predict the electrophysiological activity
of dentate granule cells to arbitrary stimulation patterns at the
perforant path.

Index Terms—Dentate gyrus, electrophysiology, hippocampus,
Laguerre expansion, multielectrode arrays, nonlinear modeling,
perforant path, synaptic transmission, Volterra kernel.

I. INTRODUCTION

THE hippocampus is one of the most extensively studied
neuronal systems in the brain because it provides a model

system to advance our understanding of the mechanisms that
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underlie higher cognitive functions, such as learning and
memory [1]–[4]. The hippocampus receives neuronal inputs
from multiple brain regions that are involved in processing
different modalities of sensory information, and its primary
function is the formation of mnemonic labels that identify a
unified collection of features (e.g., those comprising a person’s
face) and the creation of both semantic and temporal relations
between multiple collections of features (e.g., associating a
person’s face with a given context) [5]–[7].

The hippocampus is comprised of several subsystems that
form a closed loop. The dentate gyrus is the first hippocampal
subsystem receiving the primary input of the hippocampus via
the perforant path that arises from the entorhinal cortex. It plays
a pivotal role in understanding the synaptic integration of the
hippocampus because the perforant pathway is the recipient
of most of the sensory input to the hippocampal formation.
Moreover, the two pathways of the perforant pathway (the
lateral and medial perforant paths) receive converging sensory
information (e.g., visual, auditory, and olfactory) from other
brain regions [8], [9]. The lateral perforant path (LPP) and the
medial perforant path (MPP) can be readily isolated as they
are anatomically and functionally distinct [10]–[12], exhibiting
a number of different physiological [13]–[15] and pharma-
cological [16]–[19] characteristics. Both pathways converge
to a common population of neurons in the dentate gyrus, the
granule cells.

Biologically interpretable models of the hippocampus
are essential for understanding how sensory modalities are
functionally processed and integrated. Parametric models,
often used to describe functional properties of cortical areas
[20]–[22], are not easy to scale when complex functions in
a multineuron network level are involved, since a very large
number of parameters are required to represent large numbers
of complex interconnected elements. Nonparametric models
based on the input–output relationships address the scalability
issue successfully because they are concerned with an accurate
representation of the input–output mapping without explicit
regard to the internal complexity of the system. This relieves
us from the burden of specifying the multitude of complex
interconnected elements, but also limits our scope to the ag-
gregate effect of these multiple elements and their complex
interconnectivity on the observed output of the system (in
this case, the population spike in the dentate gyrus). For this
reason, nonparametric models can be employed to provide
more compact and comprehensive functional representations of
hippocampal circuitry [23]–[28].
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In this paper, a nonparametric methodological approach
(called the Poisson–Volterra modeling approach [29]) is
presented that yields models capable of characterizing the non-
linear dynamic characteristics of the manner in which sensory
information arriving at the LPP and the MPP is integrated by
the granule cells of the dentate gyrus. The obtained model
represents a compact quantitative representation of the dentate
gyrus based on experimentally available datasets [30], [31],
and it is mathematically rigorous and scalable with predictive
capabilities [32], [33]. The predictive accuracy of this model
is quantitatively evaluated using the normalized mean-square
prediction error. This model has the ability to represent the
effect of the combined activity of all (known and unknown)
neuronal actions and interactions, without explicit knowledge
of the underlying neuronal mechanisms. This ability is due to
the Poisson–Volterra kernels of the model that are the quantita-
tive descriptors of the full nonlinear neuronal transformations
and are unique representations of the associated functional
properties.

The Poisson–Volterra model presented in this paper was ob-
tained from data recorded from in vitro hippocampal slices. The
electrophysiological activity of the dentate gyrus was measured
experimentally using multielectrode arrays [34]–[37]. Each of
the two pathways was stimulated with a random point process
(a Poisson sequence of impulses), called hereafter a random im-
pulse train (RIT), while the response of a population of granule
cells was recorded simultaneously.

The motivation for this work is provided by the need to es-
tablish the appropriate Poisson–Volterra model for this system
through the analysis of actual experimental data obtained under
conditions of random point process stimulation. To validate the
obtained results, we performed a comparison with the widely
used method of paired-pulse stimulation and its associated
measurements of paired impulse functions (PIFs). Since the
latter is defined only for a single input, we collected data with
an RIT stimulation of each pathway to estimate the requisite
Poisson–Volterra models. The extension to simultaneous stim-
ulation of the two pathways with an independent RIT will be
presented in the near future.

Several researchers have used the PIF as a tool to describe the
dynamic characteristics of the LPP and the MPP [14], [19], [38].
In this paper, we show that the PIF represents only a partial view
of the full functional characteristics of the system—the one de-
fined by pairs of stimulating impulses but not triplets or more.
We confirmed this fact by comparing the experimentally mea-
sured PIF with the PIF computed on the basis of the third-order
Poisson–Volterra model estimated with the data collected under
RIT stimulation. The latter model accounts for the dynamic in-
teractions of up to three stimulating impulses, which have an
effect on the granule cell response (as indicated by the anal-
ysis of the data). As more than two impulses appear at either
of the two pathways (LPP or MPP), the PIF fails to predict the
granule cell output with the same accuracy as the third-order
Poisson–Volterra model, since the PIF does not account (by def-
inition) for the interaction among more than two stimulating im-
pulses.

A preliminary version of this work has appeared as a confer-
ence poster [39]. The results presented in this paper show that a

third-order Poisson–Volterra model is capable of predicting ac-
curately the granule cell output at the dentate gyrus in response
to arbitrary patterns of stimulating sequences at the LPP and
MPP of the rat hippocampus.

II. MATERIALS AND METHODS

A. Preparation of Slice and Multielectrode Stimulation

Adult Sprague–Dawley male rats, 7–9 months of age, were
used in all experiments. The brain slices were acquired using the
following standard electrophysiological procedures [30]. Hip-
pocampi from both hemispheres were dissected under cold (2
C) artificial cerebro-spinal fluid (aCSF) (NaCl, 128 mM; KCl,

5 mM; NaH PO , 1.25 mM; NaHCO , 26 mM; Glucose, 10
mM; MgSO , 2 mM; ascorbic acid, 2 mM; CaCl , 2 mM) and
aerated with a mixture of 95% O and 5% CO . A standard vi-
bratome (VT1000S, Leika, Germany) was used to cut the hip-
pocampus transverse to the longitudinal axis in 400- m-thick
slices. Slices then were left to equilibrate while bathed in cold
aCSF for at least 2 h. Subsequently, each slice used for electro-
physiological analysis was carefully positioned on top of a mul-
tielectrode array, and was held down with a nylon mesh. The
slice was positioned so that stimulating electrodes covered the
inner blade of the dentate gyrus (see Fig. 1). The positioning
of the slice relative to the array was documented with the aid
of an inverted microscope (DML, DMIRB, Leika, Germany)
and a digital camera (Hitachi VK-C370, Spot Model 2.0.0).
Throughout all experiments, slices were perfused with 1 mM
MgSO aCSF at a flow rate of 15 ml/min and constantly heated
at 33 C.

A multielectrode array system was used to simultaneously
stimulate and record from multiple sites in each hippocampal
slice. The system consisted of two components: 1) a custom-de-
signed multisite electrode array to cover the appropriate subre-
gions of the dentate gyrus with 60 microelectrodes in a 3 20
configuration [17], [40] and 2) a commercially available multi-
channel stimulation-recording system (MEA60 Multi Channel
Systems, Germany) (Fig. 1). The microelectrodes were ap-
propriately arranged to allow individual stimulation of each
pathway. They were embedded in a planar glass plate, with
28- m diameter and center-to-center spacing of 50 m. The
array was positioned over the molecular layer (ML), spanning
from the fissure to the granule cell body layer.

The stimulation electrodes were chosen in the outer-ML to
stimulate the LPP and in the mid-ML to stimulate the MPP.
The selection of the stimulating electrodes for the perforant path
was confirmed by the following electrophysiological criteria: 1)
field excitatory post-synaptic potentials (fEPSPs) showed pair
pulse facilitation when the LPP was stimulated, and paired pulse
depression when the MPP was stimulated [14], [17], [41]; 2)
fEPSPs exhibited a dendritic current sink at the outer ML and a
dendritic current source at the middle ML when LPP was stim-
ulated; accordingly, when the MPP was stimulated, fEPSPs ex-
hibited a dendritic current sink at the middle ML and a den-
dritic current source at the outer ML [42]–[44]; 3) stimulation
at the MPP exhibited shorter latencies of the population spike
recorded in the granule cell layer [14], [28]. The electrode posi-
tioned right below the granule cell layer was used to record the
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Fig. 1. (a) Experimental setup. (b) Slice of the rat hippocampus and the mul-
tielectrode array. Abbreviations: PP: perforant path, DG: dentate gyrus, ML:
molecular layer, GCL: granule cell layer. Electrodes positioned at the outer
one-third of the molecular layer were chosen as candidates to stimulate the LPP
and at the middle one-third of the molecular layer to stimulate the MPP.

electrophysiological response in the form of population spikes
which reflect the synchronous activation of dentate granule cells
[45], [46].

B. Experimental Protocol and Data Acquisition

At the beginning of each experiment, input–output (I/O)
curves were measured for the LPP and the MPP separately
with a series of biphasic pulses (100 s duration) having
intensities that varied between 10 A and 140 A (in 10- A
increments, without inducing long-term potentiation). The I/O
curve for each pathway was used to determine the stimulation
intensity for the experiment as the value that evoked 50% of
the maximum population spike response in the granule cell
layer. Subsequently, five series of paired pulses (PP) with seven
different interpulse intervals (IPI) (50, 100, 200, 300, 500, 750,
and 1000 ms) were applied to each pathway. The resulting PPs
were used to compute a paired impulse function (PIF), which
is the ratio of the population spike amplitude evoked by the
second pulse over the one evoked by the first pulse at each IPI
(averaged over five PP stimulation series).

Following the PP testing, each pathway was stimulated with
an RIT stimuli. Each RIT contained 400 Poisson-distributed im-
pulses (mean interimpulse interval of 500 ms, covering the ap-
proximate range of 10–4000 ms). The use of Poisson-distributed
RITs was motivated by the desire to employ a class of stimuli
capable of testing the system with a wide variety of interimpulse

intervals over a relatively short period. This class of stimuli has
been shown to be suitable for testing the hippocampus and, fur-
thermore, supports efficient modeling of the nonlinear dynamics
of this neuronal system [23], [28]. The parameter of the Poisson
distribution that determines the average firing rate of the RIT
is consistent with the known firing rates of the respective hip-
pocampal neurons [47], [48]. The stimulation intensity used was
the same as for the PP series. The system was tested for station-
arity by measuring the I/O curves before and after RIT stimula-
tion, and only data sets that exhibited changes within % of
the baseline were included in the analysis.

Experimental data were sampled at 25 kHz per channel and
the amplitude of each population spike was extracted for data
analysis using a custom interface written in MATLAB (v6.5).
This amplitude was defined as the segment of the vertical
line between the negative peak of the spike and the tangential
straight line connecting the spike onset and offset [49].

C. Volterra Modeling of a Single-Input Single-Output
Point-Process System

The data were analyzed using a variant of the general Volterra
modeling approach, adapted for a point-process (i.e., impulse
sequence) stimulus and the corresponding output sequence of
population spikes with variable amplitude [39], [50]). This ap-
proach considers the input and the output events/spikes to be
contemporaneous (i.e., occurring in the same time bin which is
set to 10 ms so that it exceeds the maximum output latency of
7.4 ms observed in our experiments). This modeling approach,
called the Poisson–Volterra approach, is applicable to all sys-
tems with contemporaneous point-process inputs and outputs.
It employs a general model of the system response to a
point-process stimulus [29], [51]

(1)

where denotes the time of a stimulus event (impulse),
is the amplitude of the population spike at the same discrete
time, and is the time of occurrence of any th stimulus event
within the time window of (system memory) prior to . The
functions , and are the first-, second-, and third-order
Poisson–Volterra kernels and represent the key descriptors of
the nonlinear dynamics of this third-order system. Note that
the output at all other times is zero. The first-order kernel
represents the amplitude of the population spike attributed to
each stimulating impulse alone (i.e., in the absence of any other
input impulses within the memory extent , which was found
to be about 1 s for this system). The second-order kernel rep-
resents the change(s) in the population spike amplitude caused
by interactions between the present stimulus impulse and each
of the past stimulus impulses within the memory extent .
Finally, the third-order kernel represents the change(s) in the
population spike amplitude caused by interactions between
the present stimulus impulse and any two preceding stimulus
impulses within the memory extent , not accounted for by the
second-order model.
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In order to reduce the number of free parameters required
for kernel representation and estimation, the kernels were ex-
panded on a Laguerre basis (i.e., they were approximated with
linear combinations of exponentially decaying Laguerre func-
tions [32]). The unknown Laguerre expansion coefficients were
estimated from the data using least-squares fitting methods, as
detailed in [32]. The kernels can be reconstructed using the re-
spective estimated expansion coefficients.

The predictive accuracy of the obtained Poisson–Volterra
model (that contains the estimated kernels) was evaluated
using the normalized mean square error (NMSE) of the model
prediction versus the system actual output, defined as

(2)

where is the predicted amplitude of the population spikes
and is the recorded amplitude of the population spikes.
The value of the NMSE cannot become zero, even for a per-
fect model, due to the inevitable presence of measurement errors
and noise in the data. Therefore, interpretation of the numerical
values of the computed NMSE must be made in the context of
the noise conditions and possible measurement errors in each
case. Typically, NMSE values of less than 0.1 are deemed to
indicate satisfactory predictive capability of the model that val-
idates its specific form.

The kernel estimation procedure and the nonlinear modeling/
analysis of the LPP and MPP systems were performed with the
use of a specialized software package (LYSIS) that has been de-
veloped by the Biomedical Simulations Resource at the Univer-
sity of Southern California and is distributed to the biomedical
community free of charge [52]. The statistical significance of the
obtained estimates of the Laguerre expansion coefficients (from
which the kernels and the Poisson–Volterra model predictions
are constructed) was evaluated by applying the Student’s -test
at the significance level of .

D. Comparison Between PP and RIT Analysis

The descriptor widely used for PP characterization/evalua-
tion has been the paired impulse function (PIF) [14], [19], [42].
The measured PIF is defined as the ratio of the amplitude
of the second pulse (test response) over the amplitude of the
first pulse (conditioning) resulting from stimulation with paired
pulses with a given interpulse interval (IPI) ,
where is the time of occurrence of the first pulse and is
the time of occurrence of the second pulse

(3)

Note that the PIF values are non-negative and depend on the IPI.
For a given IPI, PIF values of greater than 1 indicate PP facilita-
tion, while PIF values of less than 1 indicate PP depression. In
the context of the proposed approach, the estimated kernels can
be used to compute the first and second responses due to a PP
stimulus with any IPI, equivalent to the one measured in the PP
experiments. For instance, the test response can be computed
by use of the Poisson–Volterra model of (1) as follows:

(4)

where is the IPI between the two stimulus impulses. Since
the first-order kernel represents the amplitude of the population
spike attributed to an isolated impulse stimulus, it defines the
conditioning response and we can obtain an estimate PÎF of the
PIF from a series of PP experiments as

(5)

The estimated PÎF will be a close approximation of the
measured PIF if, and only if, the employed third-order
Poisson–Volterra model is an adequate model for the subject
system. To examine the adequacy of the employed model,
we compared the measured PIFs with the estimated PÎFs for
all experimental preparations, and quantified the degree of
agreement by computing their correlation.

III. RESULTS

In this study, five experiments with RIT stimulation were
performed in vitro for each of the two pathways—LPP and
MPP—selected according to standard electrophysiolog-
ical criteria [14], [17], [25], [41], [42], [44]. A third-order
Poisson–Volterra model was used to analyze the RIT data
[29], [30], [39], [50], [51]. Three Laguerre basis functions were
found to be appropriate as a tradeoff between model complexity
and prediction accuracy. The optimal values of the Laguerre
parameter were found to vary slightly among experiments:

for the LPP, and for the
MPP. Note that there are ten free parameters in each estimated
third-order Poisson–Volterra model.

Over the five experiments analyzed for both inputs, the mean
and standard deviation of the first-order kernel were 127.79

V V for the LPP and 244.27 V V for the
MPP. The mean values of the estimated second - and third

-order kernels over the five experiments are shown in Fig. 2
for the LPP and in Fig. 3 for the MPP, after normalization (di-
vision) by .

In Fig. 2(A), the mean values of the estimated exhibit
a gradually declining inhibitory characteristic up to 500 ms.
Fig. 2(B) shows the mean values of the estimated that exhibit
an early facilitatory phase, rapidly declining and crossing into a
shallow inhibitory phase shortly after 50 ms. The latter relaxes
to zero values around 400 ms. Fig. 2(C) shows the mean values
of plus one standard deviation, and Fig. 2(D) shows the mean
values of minus one standard deviation. The results in the
MPP case are shown in Fig. 3 in the same sequence. Fig. 3(A)
shows the mean to exhibit an early facilitatory phase, rapidly
declining and crossing into an inhibitory phase around 100 ms
that relaxes back to zero values around 1000 ms. Fig. 3(B) shows
the mean to exhibit an early inhibitory phase, rapidly de-
clining to a slower inhibitory phase around 100 ms. The latter
relaxes back to zero around 500 ms. Fig. 3(C) and (D) show the
mean values of plus and minus one standard deviation, re-
spectively.

A. Comparison Between the Paired Pulse (PP) and RIT
Analysis

In order to compare the two main approaches of stimulation
and analysis for the study of neuronal nonlinearities (facilitation
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Fig. 2. (A) Mean values of the normalized second-order kernels (k ) over five
different experiments in the LPP case. The dotted lines mark � one standard
deviation. This kernel exhibits a gradually declining inhibitory characteristic up
to about 500 ms. (B) The mean values of the normalized third-order kernels (k )
over the five experiments. This third-order kernel exhibits an early facilitatory
phase that rapidly declines and crosses into a shallow inhibitory phase shortly
after 50 ms, relaxing back to zero values around 400 ms. (C) The mean values of
k plus one standard deviation. (D) The mean values of k minus one standard
deviation.

Fig. 3. (A) The mean values of the normalized second-order kernels (k ) over
five different experiments in the MPP case. The dotted lines mark � one stan-
dard deviation. This kernel exhibits an early facilitatory phase, rapidly declining
and crossing into an inhibitory phase around 100 ms that relaxes back to zero
values around 1000 ms. (B) The mean values of the normalized third-order ker-
nels (k ) over the five MPP experiments. This third-order kernel exhibits an
early inhibitory phase that rapidly declines into a slower inhibitory phase around
100 ms and relaxes back to zero values around 500 ms. (C) The mean values of
k plus one standard deviation. (D) The mean values of k minus one standard
deviation.

and depression), we use the measured and the estimated PIF for
the two pathways, following the methodology described in the
previous section. These measurements can be used to assess the
ability of the advocated Poisson–Volterra model to reproduce
the functional characteristics (i.e., the PIF) studied through the
PP approach. Note that a PIF value of greater than 1 indicates
that the population spike amplitude due to the second pulse is
greater than the one due to the first pulse (facilitation), while the
reverse is true for PIF less than 1 (depression). The results are
compared in Fig. 4 (averages over five experiments with PP and
RIT stimulation applied the same preparation).

We see that the estimated PÎF from the RIT data closely tracks
the measured PIF from the PP data. The only slight deviation

Fig. 4. The measured PIF (obtained through PP stimulation) and the estimated
PÎF (obtained through RIT stimulation and Poisson–Volterra analysis) for LPP
(A) and MPP (B) using a third-order Poisson-Volterra model, and for LPP (C)
and MPP (D) using a second-order Poisson–Volterra model. The dotted lines
show� one standard deviation for the RIT case and the bars show the standard
deviation range for the PP case.

is observed in the MPP case for ms. We surmise
that this is due to the third-order dynamics of the system in this
case (see Discussion). These findings indicate that the proposed
third-order Poisson-Volterra model is adequate for representing
the PP results and, in fact, reveals additional information about
the system dynamics of order higher than second (when they
exist, as in the MPP case for ms) that is not obtain-
able with PP stimulation. To examine this point further, we com-
pared the estimated PÎF using a second-order Poisson–Volterra
model with the measured PIF. As shown in Fig. 4(C) and (D),
the estimated PIF using the second-order model fails to closely
track the measured PIF using PP stimulation, demonstrating
the inadequacy of the second-order model or, in other words,
demonstrating the fact that there are significant third-order in-
teractions in the system.

B. Predictive Capabilities Using the PP and RIT Analysis

In addition to providing a quantitative description of the non-
linear characteristics in the form of kernels or PIF, the proposed
Poisson–Volterra model has predictive capabilities for arbitrary
stimulus patterns, as illustrated in Fig. 5 for the LPP case and in
Fig. 6 for the MPP case. A comparison between the predicted re-
sponses using the third-order Poisson–Volterra model and using
the measured PIF suggests that the Poisson–Volterra model can
predict the population spike amplitudes evoked by RITs better
than the measured PIF. The NMSE value for the model predic-
tion was % % in the LPP case, and % %
in the MPP case. Using the measured PIF, the associated pre-
diction NMSE value was % % in the LPP case and

% % in the MPP case. The NMSE values for both the
LPP and the MPP cases were significantly lower for
the Poisson–Volterra model than the respective measured PIF
model. This is probably due to the fact that our model takes
into consideration the entire history of the stimulus impulses and
third-order interactions, whereas the PIF model uses the current
and only one previous stimulus impulse.

The predictive power of the Poisson–Volterra model can
be further validated using out-of-sample predictions, where
the system output is predicted for an arbitrary stimulus using
kernels obtained from a different input–output dataset (segment
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Fig. 5. Actual response (A) and model predictions using the measured PIF
model. (B) Third-order Poisson-Volterra model (C) in the LPP case.

Fig. 6. Actual response (A) and model predictions using the measured PIF
model (B) and the third order Poisson-Volterra model (C) in the MPP case.

shown in Fig. 7). Visual assessment and the computed NMSE
values demonstrate the out-of-sample predictive power of
the Poisson–Volterra model. For the example of Fig. 7, the

Fig. 7. Actual system responses [panels (a)] and the Poisson–Volterra model
predictions [panels (b)] for an out-of-sample dataset in the LPP case (A), and
the MPP case (B).

insample NMSE is 5.22% and the out-of-sample NMSE is
6.37% for the LPP case, while the respective NMSE values for
the MPP case are 3.54% and 4.34%.

IV. DISCUSSION

We have presented and experimentally validated a nonpara-
metric, third-order Poisson–Volterra model that describes the
dynamic characteristics of the LPP and the MPP of the dentate
gyrus of the rat hippocampus. Experimental data were obtained
by stimulating the afferents of each pathway with RITs and si-
multaneously recording the activity of the granule cells at the
dentate gyrus (population spikes). In the advocated approach,
the functional properties of the two pathways are fully repre-
sented by Poisson–Volterra kernels. The performance of this
modeling approach was compared with the widely used method
of paired pulses (PP) in terms of predictive capability to arbi-
trary stimulus patterns and the corresponding paired impulse
functions (PIFs) obtained with the two approaches.

The results of this study show that the proposed
Poisson–Volterra model has superior predictive capabilities and
its kernels exhibit consistent waveforms across all experiments
that are distinctive for each pathway and describe uniquely
the LPP and the MPP neuronal transformations. This model
exhibits better predictive capabilities than the predictions pro-
vided by the measured PIF of the widely used PP approach, as
illustrated in Figs. 5 and 6. The superior predictive capability of
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the Poisson–Volterra model is probably due to the fact that this
model takes the interactions among multiple stimulus impulses
into consideration (i.e., triplets in this case, including the
current/reference impulse) possibly found within the memory
epoch of the system (about 1 s) in the course of the random
stimulation of the system with an RIT. This is, of course,
in addition to the effects of single stimulus impulses found
within the memory epoch of the system (i.e., pairs of stimulus
impulses when the current/reference impulse is included).
These two types of nonlinear dynamic interaction of the
current impulse with a single preceding impulse (second-order
interactions) and with a pair of preceding impulses (third-order
interactions) are quantified separately by the second-order and
third-order Poisson-Volterra kernels, respectively. On the other
hand, the PIF measurement of the PP approach is based only
on the effects of a single preceding stimulus impulse (i.e.,
only second-order interactions). The predictive power of the
proposed model was demonstrated using insample predictions
(Figs. 5 and 6) and out-of-sample predictions (Fig. 7).

Although second-order Poisson–Volterra models have been
used previously to model the dentate gyrus [25], [39] and the
CA1 area of the hippocampus [30], a third-order model was
found to be necessary in this study in order to fully charac-
terize the nonlinear dynamics of the LPP and the MPP neu-
ronal transformations. Specifically, the NMSE value dropped
to % for the third-order model relative to the NMSE
value of % when the second-order model was used,
a drop that was found to be statistically significant .
The fact that the inclusion of the third-order term enhances the
capability of the model to closely track the recorded response
(i.e., the population spike amplitudes) is further illustrated in
Fig. 8 for an arbitrary dataset in the LPP case. Another piece of
evidence that corroborates the validity of the third-order model
is the fact that the computed PÎF using the second-order model
fails to closely track the measured PIF using PP stimulation,
while the PÎF computed from the third-order model follows the
measured PIF closely (see Fig. 4).

One issue not addressed by the presented model is in refer-
ence to the possible dynamic interactions between the LPP and
MPP in influencing the neuronal activity at the dentate gyrus
during simultaneous stimulation of both pathways. Future re-
search will extend the model to include a quantitative represen-
tation of these dynamic (and nonlinear) interactions and will
evaluate their combined effect in improving model prediction
accuracy.

The use of RIT experimental stimuli in the context of the
Poisson–Volterra modeling approach is premised on the re-
quirement of employing the correct model order (third, in
this case). Therefore, if any comparison of performance is
attempted with other approaches (e.g., PP stimulation), it has
to be with the correct model order. Any comparisons with a
truncated Poisson–Volterra model (e.g., of second order) are
not appropriate or meaningful. The comparison with the PP
approach (which is confined by the definition of second-order
interactions) is made in this paper only because the latter has
been widely used, and not because it is necessarily appropriate
for this system that has been shown to exhibit third-order
interactions as well. Thus, the main point conveyed by this

Fig. 8. Actual system response (A) and the predicted responses using the
second-order (B) and the third-order (C) Poisson–Volterra model in the LPP
case. It is evident that the population spike amplitudes are predicted better by
the third-order model than by the second-order model.

comparison is that this system exhibits third-order interactions
and, consequently, the proper tool to study its full dynamics
is a third-order Poisson–Volterra model (not the PP approach
which is confined by definition to second-order interactions).

The application of the RIT stimulation in the context of
Poisson–Volterra modeling requires greater computational
effort. However, this incremental difference in computational
effort is gradually diminishing as the computational means
improve. In our opinion, the level of computational effort
(within reason) should not be a critical determinant when the
validity of the obtained results is at stake.

We now turn to the important (and perennial) question of the
physiological significance of these findings and the interpreta-
tion of the shapes of the obtained Poisson–Volterra kernels in a
manner that advances our scientific understanding of the system.
Let us begin by making the semantic distinction between the
terms “inhibition” and “depression.” The former denotes an ac-
tion that results in a negative electrophysiological effect (e.g.,
hyperpolarization) and the latter denotes a modulatory action
that results in the reduction of a variable of interest. In this sense,
when the effect of a preceding pulse is to reduce the response
to the current pulse (relative to what it would have been in the
absence of the preceding pulse) then we consider this to be de-
pressive. The opposite of a depressive action is called “facilita-
tory,” while the opposite of inhibitory is termed excitatory. With
regard to the granule cells, three regions of lags (i.e., the time
difference between the preceding pulse and the present) with
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distinctive response characteristics have been reported in the lit-
erature: an early depressive region (less than 40 ms), a middle
facilitatory region (from 40 ms to about 200 ms), and a late de-
pressive region (from about 200 ms to about 2 000 ms). These
depressive regions are often called inhibitory in the early liter-
ature.

Specifically, the early depressive characteristics of the
granule cells (for lags less than 40 ms) have been attributed to
GABA-mediated IPSPs [53] and a GABA-mediated increase in
chlorium conductance that reduces the excitability of granule
cells [54]. Also, early negative values indicating depressive
characteristics (up to lags of 100 ms) have been attributed to the
recurrent (feedback) activation of the GABAergic basket cells
[28], [46], [55]–[57]. Other studies have reported that this early
depressive phase may be regulated by presynaptic metabotropic
receptors [58], [59].

Such early negative values (representing depressive effects)
are seen in the LPP second-order kernel and in the MPP third-
order kernel (see Figs. 2 and 3). The ability to estimate reli-
able kernels that quantify these characteristics offers the attrac-
tive prospect of measuring the precise quantitative effects of
chemical blocking in order to delineate the individual protag-
onists in this regard. Note that the third-order LPP kernel and
the second-order MPP kernel exhibit positive values in these
early lags (up to 100 ms), indicative of facilitation that may be
attributed to NMDA-mediated synaptic events. Similar facili-
tation characteristics are observed at intermediate lags of the
third-order LPP kernel and may be attributed to augmentation
of excitatory transmitter release [60], [61] or presynaptic inhi-
bition of GABA release [62]–[64]. This is consistent with the
reported facilitation in the region of intermediate lags. This is
also evident in the PIF values measured through PP stimulation
or computed from the third-order Poisson–Volterra model of the
LPP, but it is not seen in the PIF values of the MPP (see Fig. 4).

At longer lags (200–1000 ms), the obtained kernels have neg-
ative values in agreement with the depressive characteristics of
granule cells reported previously [28], [38], [65], which may
be due to a voltage-dependent and/or calcium-activated potas-
sium conductance [66]–[68]. These effects are quantitatively re-
flected on the estimated kernel values and the measured PIF
values for both pathways. However, we note that the PIF does
not provide satisfactory predictions for triple-pulse stimulation
(i.e., it does not capture the third-order interactions that have
been shown to exist in this system) and does not separate the
second-order from the third-order effects that are clearly delin-
eated by the opposite polarity (facilitation versus depression) of
the second- and third-order kernels for both pathways. This ini-
tial interpretation of the obtained kernels is only a small first
step and a far greater effort will be required before a complete
physiological interpretation can be achieved and the full scien-
tific benefit of this analysis can be realized. We plan to exert this
effort in our future work and hope that others will join us to ac-
celerate this process.

We finally note that the neuronal dynamics in the brain are
generally nonstationary. The specific form of nonstationarity
varies widely depending on the context and timing of each type
of electrophysiological activity. In many cases of interest, one
may find intervals of time within which the nonstationarity is

small and approximate stationarity can be assumed in order to
facilitate the analysis of the data. Although our group has pio-
neered several methods of nonstationary analysis, the stationary
analysis still offers significant practical advantages and remains
as more accessible to the peer community. This is the ratio-
nale for selecting the “stationary data records” in this study and
employing stationary analysis as an initial step. The next step
may be to extend our study to the nonstationary analysis of this
system. For similar practical reasons of facilitating the analysis
of the data for the nonlinear modeling of this system, we have
“synchronized” the input/ouput point processes (by suppressing
the short-response latency and introducing the “reduced form”
of the Poisson–Volterra kernels). Obviously, both of these con-
ditions limit the general applicability of this approach in the
aforementioned cases.

To summarize, the modeling approach presented in this
paper defines a general framework that can be used to advance
our understanding of how distinct sensory modalities are
being processed and integrated within different regions of the
hippocampus. In this sense, its potential extends beyond the
specific results and the effect of LPP and MPP stimulation on
the granule cell output is presented herein and can be readily
applied to modeling other parts of the nervous system.
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