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Vortex pairing : the mechanism of turbulent mixing- 
layer growth at moderate Reynolds number 

By C. D. WINANT? AND F. K. BROWAND 
Division of Engineering and Applied Mechanics, University of Southern California, 

Los Angeles, California 90007 

(Received 25 June 1973) 

A mixing layer is formed by bringing two streams of water, moving at different 
velocities, together in a lucite-walled channel. The Reynolds number, based on 
the velocity difference and the thickness of the shear layer, varies from about 
45, where the shear layer originates, to about 850 at a distance of 50 cm. Dye is 
injected between the two streams just before they are brought together, marking 
the vorticity-carrying fluid. Unstable waves grow, and fluid is observed to roll 
up into discrete two-dimensional vortical structures. These turbulent vortices 
interact by rolling around each other, and a single vortical structure, with 
approximately twice the spacing of the former vortices, is formed. This pairing 
process is observed to occur repeatedly, controlling the growth of the mixing 
layer. A simple model of the mixing layer contains, as the important elements 
controlling growth, the degree of non-uniformity in the vortex train and the 
' lumpiness ' of the vorticity field. 

1. Introduction 
The region between two parallel streams moving at  different speeds is probably 

the simplest free shear flow which can be considered, since the driving velocity 
difference across the layer is maintained everywhere. The shear layer is ugually 
in a turbulent state, which is to say that as a function of time the velocity a t  
a fixed point undergoes large fluctuations of random phase in a broad frequency 
band. It is the random properties of the turbulent field which render the 
theoretical problem extremely difficult and, in spite of the numerous important 
contributions, there is at present no deterministic theory predicting the detailed 
flow field. 

Existing knowledge is concentrated in two distinct areas. The first concerns 
the growth of small disturbances near the origin of the laminar shear layer. 
Comprehensive reviews of this topic have recently been given by Michalke (1970) 
and by Stuart (1971). On the other hand, considerable experimental evidence is 
available concerning fully turbulent mixing layers. There have been three recent 
investigations which complement one another and the classical work of Liepmann 
& Laufer (1947). Wygnanski & Fiedler (1970) have repeated many of the previous 

t Present address : Soripps Institution of Oceanography, University of California at 
San Diego, La Jolb, California 92037. 
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statistical measurements using conditional sampling techniques to define tur- 
bulent and non-turbulent zone averages. Reynolds numbers, based upon the 
mean velocity difference and the mixing-layer thickness, varied between 2400 
and 74000 over a downstream distance of O.6m. Spencer & Jones (1971) have 
examined the mixing layer between two streams moving a t  different velocities 
for various values of the velocity ratio. Reynolds numbers were in the range 
6000-150000 over a measurement distance of 1-6 m. Brown & Roshko (1971) have 
investigated the effect of a density difference upon the spreading rate of a two- 
dimensional mixing layer. Their apparatus was pressurized to obtain Reynolds 
numbers in the range 7000-240000 over a downstream working distance of 15 em. 

There remains a gap between the results of the work pertaining to the linear 
instability of shear layers and the descriptions of turbulent mixing layers reported 
above. The present investigation is undertaken in the hope of furnishing clues 
helpful to bridging this gap by following the development of a shear layer from 
its inception into the fully turbulent regime. Reynolds numbers based upon 
shear-layer thickness vary from 45 to 850 over a 50cm downstream distance. 
In  terms of the wavelength of the initial unstable wave, the flow field examined 
is roughly 70 wavelengths in extent. Flow visualization has been used, together 
with hot-film measurements of conventional mean properties, and statistical 
measurements aimed at defining ensemble-averaged properties of the structures 
observed in the visual studies. 

2. Experimental apparatus 
The flow field is generated in a continuously operating channel, see figure 1, 

in which two layers of fluid of different velocity are brought together. Briefly, 
each layer is gravity fed from a reservoir 6 ft above the level of the channel. The 
mass flow in each layer is controlled by a diaphragm valve and monitored with 
a flowmeter. Flow velocities in the test section can be varied from 1 to 15 cm/s. The 
flow passes through a stilling section containing stacked straws and screens, and 
then through a 9 : 1 contraction to the channel. The two layers are separated by a 
splitter plate in the stilling section and contraction. The splitter plate terminates 
at  a fine mesh screen, which effectively removes the previous boundary-layer 
growth. The plate wake is thus very thin, and is in fact undetectable lcm 
downstream of the origin. Slight flow non-uniformities of the order of 5 %  of 
the local mean velocity are introduced by this screen, but disappear within a few 
centimetres of the origin. The free-stream turbulence level is typically 0.5 % of 
the local mean velocity. Dye can be injected through the upper side of the splitter 
plate just upstream of the screen. In  addition, dye can be introduced into the 
main streams just ahead of the screen by the use of two small tubes which extend, 
respectively, through the top and bottom of the channel. 

The test section, 10 x 10 em and 1.5 m long, has a free surface so that probes 
may be introduced into the flow field. A carriage supported on air bearings rides 
above the channel and can be towed along the test section a t  variable speed. 
The carriage is used for two purposes: in the 00w visualization experiments 
a camera is mounted on the side of the platform facing the test section, and is 
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FIGURE I. Schematic diagram of apparatus. (Not t o  scale.) 

towed a t  the mean flow velocity; the carriage is also used to calibrate the hot-film 
probes, which are towed a t  known speeds through still water. The carriage supports 
a motor-driven probe drive with two degrees of freedom. The probe drive is 
programmed to move vertically (or horizontally) at  a set rate and to stop a t  
selected locations. A voltage proportional to the probe position is also provided. 

For this experiment, the velocity of the upper layer is 1.44 cmls and that of the 
lower layer is 4-06 cmls: these figures correspond to a mean velocity a of 2.75 cm/s 
and a velocity difference AU of 2.62 cmls. The Reynolds number, based on the 
velocity difference and the momentum thickness 3 of the shear layer, varies 
from 8 near the origin (where 8 is of the order of 0.03 cm) to 150, some 50 cm 
downstream. 

3. Mean flow measurements 
Quantitative measurements of mean velocity profiles, mixing-layer growth 

and the distribution of velocity fluctuations are obtained by traversing the flow 
field with a hot-film probe in the vertical (y) direction at fifteen unequally spaced 
2 stations between 0.25 cm and 50 cm from the mixing-layer origin. The hot- 
film probe is traversed down continuously over 6 cm a t  a velocity of 0-0075 cmls. 
Both the anemometer output and the probe position are recorded on tape for 
computer processing. 

The data from a traverse are sampled at  50 ms intervals, resulting in 16 000 
samples for each traverse. After the outputs have been converted into a velocity 
ui and a position yi, the 16000 samples are sorted into 80 consecutive sets of 
200 samples. For each set the average velocity and the average of the square of 
the velocity are found by evaluating 

1 200 - 1 200 

200 i-1 200&1 
U ( y )  = - c ui, u y y )  = - U f .  
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FIGURE 2. Mixing-layer momentum thickness 0 as a function of downstream distance. 

The root-mean-square fluctuation is then 

while the position corresponding to  each set is 

I 200 

The momentum thickness 0, defined in the usual way, is 

The growth of the momentum thickness with distance from the shear-layer 
origin is shown in figure 2. Distinct growth is evident in both the laminar region 
and the turbulent region. The laminar region in the present experiment extends 
some 10 cm from the shear-layer origin, and the momentum thickness grows as 
the square root of the downstream distance. In  the turbulent region the shear 
layer grows linearly with the downstream distance. The measured growth rate 

Non-dimensional velocity profiles in the laminar region are presented in 
figure 3. The vertical position y/B has been shifted in each case so that the abscissa 
variable 2(u(y) - g)/AU is zero for all profiles at y/8 = 0. Two profiles calcuhted 
by Lock (1961) for AUlD = 2 and AUlO = 0.666 are also shown for comparison. 
There is very little difference between the two computations. The correlation 
between the present data (for which A U / D  = 0.95) and these profilesis excellent. 
Velocity profiles for the turbulent region are presented in figure 4, where the 
solid curve represents the experimental turbulent profile measured by Liepmann 
& Laufer (1947). The agreement between this curve and the results of the present 
experimental investigation is quite good. 

Finally, some representative distributions of the root-mean-square velocity 

is d S p x  = 0.011. 
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I 

B I 

FIGURE 3. Non-dimensional mean velocity profiles in the laminar regionlDistances down- 
stream of the shear-layer origin: x ,  0.25 cm; 0, 1.25 cm; ., 2.5 cm; in, 3.75 cm; 
A, 54cm;  0, 6.35cm; 4, 9.53 cm. Theory from Lock (1951): - , AUlB = 2.0; 
_ _ - -  , AUlU = 8.  

0 

Q 

FIGURE 4. Non-dimensional mean velocity profiles in the turbulent region. Downstream 
distances: x ,12.7 cm; 0,15.9 cm; 0 , l g . O  cm; a, 25.4 cm.--,experimental,Liepmann 
& Laufer (1947). 
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I \ 

FIGURE 5. Distribution of longitudinal velocity fluctuation at three downstream locations. 

fluctuation u'(y)  are shown in figure 5. The first distribution, measured 1-25 cm 
downstream of the splitter plate, resembles, qualitatively a t  least, the amplitude 
distribution of the velocity fluctuation measured by Freymuth (1966) and 
Browand (1966) (and predicted on theoretical grounds by Michalke 19653), with 
a large maximum near the centre of the shear layer and a second smaller maximum 
on the slower moving side. The distribution measured 9.5 cm downstream of the 
origin shows this secondary hump to be less emphasized, while the amplitude 
of the larger maximum increases. The distribution measured 30 cm downstream 
shows a single broad maximum, and is typical of the distribution measured in 
fully turbulent mixing layers, The maximum disturbance amplitude is 12 yo 
of AU. Liepmann & Laufer (1947) measured 17.6 %, and Spencer & Jones (1971) 
measured 19 %. These differences have never been explained satisfactorily, but 
may be due in part to Reynolds number differences. 

4. The large-scale structure : flow visualization 
The preceding time-averaged measurements reveal, even at  these modest 

Reynoldsnumbers, a turbulent structure which is similar to the structure recorded 
by others. If the flow is observed visually, by introducing dye into the sheared 
region, a remarkably different impression of the turbulent layer emerges. 

The growth of the shear layer is displayed in figure 6 (plates 1 and 2). These 
sequences were filmed in a moving reference frame by towing the camera carriage 
at the mean speed v. Plow is from left to right with the lower layer having the 
higher velocity. The distance from the origin to the centre of each frame is shown 
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Vortex pairing 243 

on the right-hand side. The shear layer itself is the heavily coloured region 
resulting from dye introduced on the splitter plate. The upper dye trace is from 
a tube placed slightly above the splitter plate. 

Small waves, which characterize the linear instability region, are evident on 
the left-hand side of the first four photographs (the screen marking the origin 
of the shear layer is also visible). After two or three wavelengths, the dye marking 
the fluid with vorticity becomes concentrated into a periodic train of vortex 
structures often referred to, simply, as vortices. These large-scale structures 
are observed to be two-dimensional. That is, the vortical structures extend 
across the entire width of the channel, with no noticeable, consistent spanwise 
variation. The aspect ratio, defined as 

A = channel width/wavelength, 

is here about 10-12 and is smaller further downstream. 
Between 10 and 15cm from the screen, neighbouring pairs of vortices are 

seen to roll around each other. Viscous diffusion smears out the identities of 
individual vortices to leave a single, larger vortex where originally there were 
two. Preymuth (1966), Browand (1966), Miksad (1972) and others have already 
noted this pairing and associated it with the generation of subharmonic fre- 
quencies characteristic of nonlinear growth. (Pairing has also been observed 
in an axisymmetric jet by Becker & Massaro (1968), and in a planar jet by Rock- 
well & Nicholls (1972).) None of these observers reported more than one pairing 
occurring,j- perhaps because of the geometry of their apparatus or the short 
lifetime of the marker. 

That the pairing process continues, however, is clearly evident from the 
succeeding pictures in figure 6. The history of the structure in the centre of the 
last photograph can be traced back and shown to be the result of four such 
pairings. In  fact, the pairing of neighbouring vortices continues until the mixing- 
layer thickness has grown to the order of the channel height, at  which time the 
top and bottom boundaries inhibit the process. (In our case, this is four pairings.) 
A considerable increase in smaller scale fluctuations is seen to occur at  about the 
time of the second pairing, but the large structure remains aligned across the 
stream, appearing two-dimensional in the mean. The sequence presented in 
figure 6 is in every way typical of observations extending over tens of hours, and 
the conclusion is that the turbulent mixing layer grows through the combination 
of the large-scale vortical structures. 

The relative motion of two pairing vortices may be determined by measuring 
the vertical and horizontal distance separating them in succeeding frames. 
Figure 7 shows a typical path, obtained by tracing the relative position of the 
vortices shown pairing in frames 7-12 of figure 6, just left of the centre. The 
time, in seconds, since the beginning of the pairing process, is shown on the 
lower side beside each position. The horizontal and vertical scales are made non- 
dimensional by division by the initial wavelength ( A ,  = 4.25 em). The diameter 
of the vortices in the early frame is roughly 1.1 ern while the resulting paired 

t Rockwell & Nicholls (1972) note a ‘triplet’ formation in the developing region of 
a planar jet. 
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Wd %I @ 3 4  
t = O  1.7 

8 

L 
FIGURE 7. Relative positions of the centres of two pairing vortices. Time t ,  in seconds, is 
indicated. Scales are made non-dimensional by the initial spacing between the vortices. 

vortex is approximately 3.4 em in diameter. The distance travelled by the camera 
between frames 7-12 is 27-5cm, so that the 'growth rate' of the shear layer, if 
imagined to be the change in diameter relative to the distance travelled, is 0.08. 
This number is very close to the growth rate of the maximum slope thickness k,  
given by Spencer & Jones as 

where h is defined as 

dh/dx = O*OSlAV/D, 

h = AU/(dii/dy)max. 

An interesting aspect of the pairing process is the deformation of the vortices. 
While they roll around each other, they become elongated in the flow direction, 
assuming a more-or-less elliptic shape with a major-to-minor axis ratio of 2. 
This deformation indicates that the pairing is more than a simple solid-body 
rotation of the vortices around each other: the induced velocities must generate 
strains which deform the vorticity distribution. 

5. The large-scale structure : ensemble average 
The flow visualization studies reported in the previous section emphasize the 

importance of the large-scale vortical structures in determining the growth of 
the mixing layer. The properties of the structures have been determined by 
ensemble averaging over a sufficiently large number of structures. This procedure 
essentially filters out the effects of small-scale turbulence and intermittency. 
In  order to compute such an ensemble average it is necessary to define an event 
characteristic of the structures to be determined. Far away from the mixing- 
layer centre, where small-scale fluctuations are absent, potential fluctuations 
due to the large-scale turbulent structure can be measured. A convenient 
characteristic event is thus chosen to be the time at  which the velocity fluctuation 
some distance away from the mixing-layer centre equals a given (constant)value, 
with a positive (or negative) slope. Two hot-film sensors are set in the same cross- 
flow plane. The first, the reference probe, is set at a fixed distance from the centre 
of the shear layer, while the second is placed at a number of different vertical 
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FIGURE 8. Frequencies observed by the reference probe. Total fractional 
portion which lies in the range f - 0-0077 < f < f + 0.0077 Hz. 

positions across the shear layer. For each position, ensemble-average properties 
are then calculated by standard methods. Measurement's are made in a cross-flow 
plane 15.25 em downstream of the shear-layer origin. The station is in a region 
where turbulent growth rates are observed; it is close to the origin so that, for 
a given measurement time, as many structures as possible will pass by the probe: 
and finally, the structures observed a t  the station are typical of those observed 
elsewhere in the channel. The momentum thickness at  the measurement station 
is 0.2 em, and the Reynolds number based on this thickness is 52. The reference 
probe is placed at  a position 1.5 cm above the centre of the shear layer. Velocity 
fluctuations are recorded by the second anemometer for 15 minute segments at 
thirteen y positions. The total length of time for which the signal from the 
reference probe was recorded was 3 hr 30 min. In  this time, over 6000 fluctuation 
periods occurred. The histogram of the frequency of the reference signal is 
shown in figure 8, where n( f) is the number of frequencies recorded between 
fi and fi-l relative to the total number of frequencies examined N = 6000. 
The mode of the histogram is f = f o  = 0.6Hz. This corresponds to a Strouhal 
number St = 2 d f , , / ~  of 0.274. n is l le  times its maximum value for 

I f  -fol = 0 . 2 H ~ .  

The sampled velocity fluctuations are ensemble averaged and shown in 
figure 9. The ordinate represents the ensemble-averaged velocity, denoted by 
(~ (y ,  t ) ) ,  relative to the mean velocity U(y)  at that position. Curves for different 
y positions are offset in the vertical direction; they position is noted on the right- 
hand side by the zero mark for each profile. The time scale on the abscissa is 
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FIGURE 9. Ensemble-averaged longitudinal velocity fluctuation. The vertical position in 
the mixing layer is noted next to each zero-amplitude horizontal line. The horizontal scale 
indicates time in fractions of the total period as observed by the reference probe a t  the 
position y = 1.5 cm. 

referred to  the moment when the velocity fluctuation sensed by the trigger probe 
crosses through zero with a positive slope. 

The ensemble-averaged velocity variations reveal several important aspects 
of the flow field associated with the large-scale structures. First, this flow field 
is coherent across the mixing layer with a distinctly different phase on either 
side. The phase on the high speed side is shifted forward in time by roughly 130". 
Second, the phase change across the mixing layer is a continuous one, and the 
amplitude of the velocity fluctuations is large near the middle of the shear layer. 
These facts indicate that the large-scale structure must be composed of more 
than a, train of single vortices, since a single vortex structure would result in 
a sharp 180' phase change and zero amplitude along a line connecting the centres. 
Finally, the velocity fluctuations near the centre of the shear layer distinctly 
show a second hump, indicating the presence of two vortices offset in y, within 
the large-scale structure. This picture is consistent with the visual observations. 

6. A summary of shear-layer transition 
On the basis of the results of $5  4 and 5, the following mechanism for mixing- 

layer growth is proposed: in the very early stages the flow field is laminar and 
small waves are formed, as predicted by the linear instability theory. In  cases 
where the instability is mechanically forced, the frequency of the wave is fixed 
by the frequency a t  which the forcing mechanism is driven. In  the present case, 
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with no forcing, the wavelength of the disturbance is that of the most unstable 
wave of the system (so long as the background noise shows no dominant peaks, 
i.e. is a reasonably ‘white noise’ spectrum). In  either case, the result of the 
instability is the generation of a wavelike disturbance of some wavelength and 
amplitude. Naturally, when the flow is forced, the train of growing waves is 
more uniform than for the case of random excitation. In  the region which follows 
the small amplitude regime, the waves are seen to grow into discrete vortices. 
This roll-up constitutes the earliest stage of nonlinear interaction. In  the third 
region, which extends as far downstream as mea,surements can be made, the 
turbulent vortices are seen to interact by rolling around each other. 

So far, the growth by pairing has been viewed as completely deterministic. 
In  fact, the shear layer gradually loses knowledge of its origin, and the increased 
forgetfulness with increasing downstream distance is associated, for the larger 
scales at least, with the intermittent manner in which pairing is initiated. Pairing 
is a result of the instability of the row of finite amplitude vortical structures. 
Because pairing is promoted by small variations in the strength and spacing of 
the original row of vortical structures, its initiation does not always occur a t  
the same point in space. Small spatial and temporal irregularities in the vortex 
structure are amplified by the progression of pairings. Also, the pairing of 
vortices may frequently occur in such a way as to leave an odd vortex between 
two pairs. These ‘drop outs ’, which are swallowed in later pairing, increase the 
variations in the length scale and strengths of the vortical lumps (see figure 10, 
plate 3). (It is interesting to note that forcing the unstable laminar shear layer 
by introducing a disturbance of controlled frequency and amplitude is observed 
significantly to delay vortex pairing and hence, the establishment of a fully 
turbulent mixing layer. The reason is clear from the preceding discussion.) 

When averaged over long times, the intermittency resulting from pairing is 
manifested as a considerable increase in the observed randomness. This is mis- 
leading, however, because one tends to miss the underlying spatial coherency by 
long-time averaging (e.g. compare figures 6 and 8). Spectra of the time-averaged 
signal at different vertical locations in the mixing layer are shown in figure 11. 
Most of the energy is contained in one of two frequency bands: one centred 
about 0.5 Hz, which corresponds to the convection of the large-scale structures 
downstream, and the other centred about lHz, which corresponds to the dis- 
turbance generated by the interaction of individual vortices within the large- 
scale structure. The peaks in the spectra shift in a peculiar way towards lower 
frequencies on the low velocity side of the shear layer. This is more easily seen by 
looking along the edge of figure 11. Changes in the spectra with vertical position 
are attributed to Doppler shifting due to the intermittency, and serve to illus- 
trate the complications introduced by time averaging of what is, conceptually 
at least, a simple process. The adjective intermittent might be preferred to random, 
to describe a structure which varies in time at a fked position, but has spatial 
coherence over lengths comprising several of the large vortical structures at any 
instant. 

Smaller scale disturbances are identifiable in the photographs in figure 6, and 
seem to appear some time after the first pairing has begun. Measurements of the 
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1 I 1 I I 1 
0 0 5  I 4 i i  7-0 2.5 

f (Hz) 

FIQURE 11. Frequency spectra of the time-averaged longitudinal fluctuation 
a t  various vertical positions in the mixing layer. 

r.m.s. fluctuation amplitude, filtered to remove the low frequency components, 
suggest that a gradual increase in the high frequency content begins at  the same 
place. There is some evidence to indicate that smaller scale disturbances are 
produced a t  certain phases of the pairing, but further work is required to establish 
this result. 

One visualizes, then, large-scale turbulent vortical lumps which are continually 
in the process of rotating around one another in pairs. Non-turbulent fluid is 
absorbed or entrained, not so much by the lateral spreading of the turbulent 
interface, but by the engulfment of irrotational fluid trapped between the pairing 
structures. Figure 12(a) (plate 4) shows the entrapment of dyed fluid placed 
above and below the mixing layer. The sequence begins a t  a point 24 cm from the 
origin, where the third pairing is in progress. The centre of each succeeding frame 
is displaced approximately 6-4crn downstream. It is helpful t o  visualize not just 
the Auid marked by the dye lines, but also the fluid contained between the two 
lines. All this fluid is in the process of being ingested by the vortical lumps. The 
motion induced by the localized regions of vorticity causes a periodic fattening 
and thinning of the fluid region contained between the dye lines, This is very 
similar to the original process of instability (see 9 7 ) .  Fluid to be entrained is 
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L '? Vortical corcs 
/ 

- Fluid to be entrained 
0, 

FIGURE 13. Schematic diagram of entrainment process as a function of downstream dis- 
tance, or alternatively, as a function of time while riding with the mean speed. 

actually transported to the opposite side of the mixing layer before being rolled 
up into the turbulent core. There it is trapped and homogenized by the smaller 
scales. There is no qualitative difference between entrainment on the high speed 
side (bottom) and the low speed side (top). The second sequence (figure 12(b ) ,  
plate 5) shows entrainment near a 'drop out'. Conditions are the same as for 
the first sequence. The vortical lump just to the left of centre in the first frame 
is an odd one between two pairing structures. It is eventually swallowed by the 
pair to the right. A schematic diagram of the entrainment is shown in figure 13. 
The left-to-right sequence can be viewed as an idealized instantaneous picture 
of the mixing layer, or alternatively as a progression in time while riding with 
the mean speed. 

7. A model for mixing-layer growth 
The initial nonlinear region 

The vortical lumps which form initially from the roll-up of the most unstable 
wave can be explained in a physical way by an extension of the work of Holmboe 
(1962), who considered the inviscid instability of a constant-vorticity layer 
between two parallel streams. The small amplitude wave, which grows initially, 
distorts the boundaries of the region containing the vorticity, see figure 14(a), 
as suggested by Holmboe; This picture can be directly extrapolated in time 
(Browand & Winant 1973). The perturbations in the boundaries of the constant- 
vorticity region are easily shown to induce vertical velocities which cause the 
perturbations to grow. In  figure 14 ( b )  the vorticity-containing region becomes 
periodically fatter and thinner, and in figure 14 (c) the vortical areas are on the 
verge of pinching off. I n  figure 14 (d), the vorticity is shown as discrete lumps. 
This somewhat simplistic picture is in good overall agreement with observations 
and with the results of calculations performed by Michalke (1965a) using a non- 
linear theory due to Stuart (1961). 

The region of vortex pairing 

The result of the initial nonlinear growth is a row of vortical structures containing 
most of the vorticity originally distributed in the steady shear layer. It would be 
difficult to reconcile this picture with the notion of finite amplitude waves. These 
structures are not waves, although hot-wire traces may show the unsteady 
velocity to be roughly sinusoidal and roughly periodic. It is precisely the 
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(" 

FIGURE 14. Schematic diagram of the initial instability of the shear 
layer, and the roll-up into discrete vortices. 

departures from periodicity which are important. The pairing process results from 
the mutual interaction of neighbouring vortices and this, in turn, depends upon 
slight imperfections in the vortex spacing and strength. 

It has long been recognized (e.g., Lamb 1945,s 156) that aninfinite row of point 
vortices of the same sign and strength is a solution to the inviscid equations which 
is unstable to small disturbances. Stuart (1967) has found a solution having 
distributed vorticity which describes an infinite row of vortices with spacing h 
and circulation I?. The stream function $(z, y) and the vorticity distribution 
Q(x, y) are given by 

$(x, y) = f In (cosh 
47r 

- 

r(i --a21 
Q(x' ') = [cosh (27ry/h) - a cos ( 27rz/A)l2' 

The parameter a indicates how concentrated the vorticity is. a = 0 corresponds 
to uniform vorticity on lines of constant y, while a = 1 corresponds to the solution 
for a row of point vortices (Lamb 1945, 3 156). 

A model of turbulent shear-layer growth based on vortex pairing has been 
developed by Winant (1972). The mixing layer is considered to be a double row 
of Stuart vortices swept downstream at the mean velocity D. The rows are 
vertically offset by eh, where h represents the horizontal distance between 
vortices in either row (see figure 15) and e is a small parameter. The circulation 
around each vortex is 

r = ~ A U A .  (7.3) 

Calculations show that adjoining pairs of vortices, one from each row, do 
rotate around one another and draw closer. A measure of the corresponding 
growth rate y of the mixing layer is defined to be the increased distance between 
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Y 

I 

I-- A o - w  

- I \ -  
FIGURE 15. Geometry for model of vortex pairing. 

0.2 

y 0.1 

/ 

I 1 

0.05 0.1 

6 

FIGURE 16. Mixing-layer spreading rate us. initial perturbation in vortex spacing for 
various values of the vorticity concentration. (a )  a = 1.0, ( b )  a = 0.75, (c) a = 0.5, 
(d) a! = 0.25. 

the vortex rows divided by the downstream distance travelled (at the mean 
velocity 0) in the time required to rotate the vortices through 90". Then, 

(7.4) 

where f(c, a) is a function of E and a only. The predicted growth rate does not 
depend upon the original vortex spacing. Equation (7.4) is of the same form as 
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0 

xlh 

FIUURE 17. Path of vortex centre during the process of pairing. Curves: (a)  tc = 1.0, 
(b) a = 0.75, (c )  a: = 0.5, (d )  a = 0.25. Symbols represent data taken from figure 7 .  

0 0.2 0.4 O.G 0.8 1.0 

X P  

FIGURE 18. Longitudinal velocity fluctuation calculated from the vortex pairing model 
with a = 0.5. The calculation corresponds to  the two rows of vortices separated vertically 
by 0.072A and horizontally by 0.396h, giving a total phase changc across the layer of 
approximately 130'. 

the relation proposed by Spencer & Jones for the growth of the maximum slope 
thickness. 

Figure 16 shows calculated values of y as a function of the initial E for several 
values of a. Clearly, the larger e (corresponding in a sense to a more irregular 
initial distribution of vortices) the faster the growth of the shear layer, while 
larger values of a (corresponding t o  more concentrated vorticity distributions) 
also lead to larger shear-layer growth rates. Paths described by a pairing vortex 
with respect to a co-ordinate system moving with the mean velocity are shown 
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in figure 17, for a different value of the parameter a. In  each case the value of 6 

chosen for the calculation corresponds to a y of 0.08, which is, roughly, the 
measured value. Paths calculated for several other values of e did not vary 
markedly from those shown. Measured positions of vortices during pairing are 
also shown (these values are taken from figure 7) and there is reasonable agree- 
ment between measured and calculated paths, the best correlation being obtained 
for a = 0.5. Finally, velocity fluctuations as a function of x/h have been cal- 
culated for a = 0-5 and for a total phase shift of approximately 130” across the 
mixing layer. Results are shown in figure 18 for a number of vertical locations. 

These calculated fluctuations are comparable, a t  least qualitatively, with the 
experimentally determined large-scale fluctuations shown in figure 9. Although 
the measured amplitudes are smaller, the gradual phase change across the shear 
layer, the finite fluctuation amplitude a t  the centre and the appearance of the 
double hump are noticeable in both figures. 

8. Concluding remarks 
The most important conclusion of the present investigation is that the turbulent 

mixing layer, at moderate Reynolds numbers, consists of large-scale vortical 
structures with axes perpendicular to the direction of the mean flow. Although 
the details of the energetics remain to be studied, it seems clear that these 
structures derive energy directly from the velocity difference between the two 
streams. In  simplest terms one might think of the vortical lumps being rolled 
along by the difference in velocity across the mixing layer. The turbulent mixing 
layer grows by a repetition of the process termed ‘vortex pairing’, whereby two 
adjoining vortices interact to form a, single, larger vortex. 

We a,re inclined t o  think that the large-scale motions in the turbulent mixing 
layer will behave in a similar way a t  higher Reynolds numbers. It must be noted, 
however, that the presence of finer scales of motion will increase the diffusivity 
of vorticity, and in that sense, could compete with the large-scale motion tending 
to  maintain the lumpiness of the vorticity field. Further experimental work is 
needed to resolve this point. The most convincing available evidence of the form 
of the large-scale structure at higher Reynolds numbers is found in the visual 
observations of Brown & Roshko (1971). Here also the ‘big eddies’, observed 
with schlieren apparatus, lie across the stream and have vorticity in the direction 
of the mean vorticity. Much he-scale structure is present and the means of 
visualization is different, but the overall resemblence of the flow field to the 
vortex structure produced at  lower Reynolds numbers is striking. 

Both Wygnanski & Fiedler (1970) and Spencer & Jones (1971) have noted 
peaks in the one-dimensional energy spectra, In our case, the (lowest) peak in 
the spectrum of the longitudinal velocity fluctuation is associated with the 
passage of the paired vortical lumps. Figure 19 gives values of the non-dimensional 
frequency of the spectral peak in the longitudinal velocity fluctuation for the 
three experiments as a function of the local Reynolds number based upon mixing- 
layer thickness. A value of about 1.2 is obtained for the Strouhal number, 
independent of Reynolds number. Wygnanski & Fiedler have also presented 
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1 -6 I I I I I 1 1 1 1  I I I I I 1 1 1 1  I I I I I I l l  

AUh/v 

FIGURE 19. Strouhal number corresponding to the peak in the longitudinal velocity 
fluctuation for various experiments as a function of Reynolds number. 0 ,  present ex- 
periments, AUlB = 0.95; A ,  Spencer & Jones, AUlO = 0.5; A, Spencer & Jones, 
A U l a  = 1.08; m, Wygnanski & Fiedler, AUlD = 2-0. Bars indicate approximate con- 
fidence limits. 

point-averaged velocity measurements, conditioned on the passage of the 
turbulent interface, which indicate that the large turbulent structures are, 
roughly speaking, in rigid-body rotation. These results suggest struct,ure similar 
to that observed in the present investigation. 

It is suggested here that the vortex structures discussed above, and vortex 
pairing, are fundamental to the turbulent mixing layer. Vortex pairing may 
be important in another context. Recently there has been an effort to relate the 
organized structure observed in the developing region of jets to the production 
of acoustic noise. Crow & Champagne (1971) have noted the formation of vortex 
ring structures in the developing region of an axisymmetric jet  at Reynolds 
numbers of about 80000 (based on nozzle diameter). The rings seem to come in 
groups which were described as ‘puffs ’ by Crow & Champagne. Laufer, Kaplan & 
Chu (1973) have made indirect observations of vortex-ring pairing in an axi- 
symmetric jet at Reynolds numbers of order 160000. They have noted the dis- 
appearance of peaks in the instantaneous pressure signals recorded just outside 
the developing region of the jet, and attributed this periodic loss to vortex 
pairing. It is, in fact, proposed that pairing of the vortex rings is the primary 
mechanism responsible for the production of jet noise. 

The authors are indebted to Professor John Laufer, whose support, and 
interest were a constant source of encouragement. Thanks are also due to 
Professor Blackwelder, Professor Kaplan and Professor Troesch of U.S.C. and 
Professor Kelly of U.C.L.A. for enlightening conversations. The support of the 
Office of Naval Research, under contract N00014-67-A-0269-0015, is gratefully 
acknowledged. 
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( b )  

Platr 2 

63.5 

I’rc:urt~ 6. Sequence of photograplis showing vortcx pairing. Heavy dye line marlis (the. 
cctitrc of) the shear layer. Upper line is dye injected just above thc shear laycr. Camarn. 
is moving with the incan speed 0. Downstroam distance t o  the centrc of each frame is 
itidicat,cd to tlic right. Background grid spaciiig : horizontal lines, 0.5 em; vertical lines, 
2.54 cm. 
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Journal of Fluid Mechanics, Vol. 63, part 2 Plate 3 

FIGURE 10. (a )  The occurrence of an unpaired vortex between two paired structures. A t  
later times, the unpaired vortex either ( b )  combines in a triad or (c) becomes stretched 
between two pairs. Background grid spacing : horizontal lines, 0.5 em; verticad lines, 2.5cm. 

WINANT AND RROWAND 

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

74
00

11
21

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112074001121


Journal of Fluid Mechanics, Vol. 63, part 2 

FIGTTRE 12(n ) .  For legend see plate 5 .  

WINANT A N D  BROWAND 

Plate 4 
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( b )  

Plate 5 

FIGTJRE 12. (a )  Photographic sequence showing entrainment of the fluid between t,lir 
uppermost and lowermost dye lines into the regions of high vorticity (marked by the dyed 
fluid in the core). ( b )  Variation of the basic entrainment process in the rreighbonrhood of 
a ‘drop out’. Camera is moving at  the mean speed u. Cerrtro of first frame in (a )  and ( b )  
is 24 em downstream. Each succeeding frame is displaced 6.4 cm dowtistream. Ba,ckgroiind 
grid spacing : liorizorital lines, 0.5 cm; vertical lirios, 2.54 a n .  
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