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Elegant and inviscid analytical theory can predict the induced drag on lifting wings of finite span. The theoretical

prediction is then often modified by multiplication with a dimensionless coefficient for which the departure from a

value of 1 is used as a way to incorporate realistic and necessary departures from the idealizedmodel. Unfortunately,

there are conflicting definitions of these dimensionless coefficients, often known as span efficiencies, so that even if

numerical values are assigned in a clear and transparent fashion, their application andvalidity remain unclear.Here,

the differences between two commonly used definitions of span efficiency are identified and it is shown that for the

case of airfoil sections and finite wings at chordwise Reynolds numbers less than 105, neither one has values close to

those commonly assumed in the aeronautics literature. The cause of these significant viscousmodifications to inviscid

theory is traced to themovement of separation points from the trailing edge of real airfoils. Amodified nomenclature

is suggested to reduce the likelihood of confusion, and appropriate formulations for the drag of streamlined bodies in

viscous flows at moderate Reynolds number are considered, with application to small-scale flying devices, both

natural and engineered.

Nomenclature

A = drag-polar fitting coefficient
AR = aspect ratio
a0 = offset in general quadratic curve fit
a2 = coefficient for quadratic polar fit
B = drag-polar fitting coefficient
b = wingspan
CD = total drag coefficient on a finite wing
CD;i = induced drag coefficient on a finite wing
CD;0 = minimum total drag coefficient on a finite wing
Cd = section drag coefficient
Cd;0 = minimum section drag coefficient
CL = lift coefficient for finite wing
CL� = lift slope for finite wing
Cl = section lift coefficient
Cl� = sectional lift slope of Cl���
Cl;0 = minimum section lift coefficient
c = mean wing chord
D = drag force (opposed to U)
Di = induced drag
e = Oswald or span efficiency
ei = inviscid span efficiency
ev = viscous span efficiency
k = fitting coefficient for section polar Cd�Cl�
k = induced-power factor
ki = inviscid power factor (1=ei)
kv = viscous power factor (1=ev)
L = total lift
q = dynamic pressure
Re = Reynolds number
S = wing planform area
Sd = actuator disk area
U = mean flight speed
u0 = rms fluctuating velocity

W = weight
� = geometric angle of attack
�i = increase in angle of attack due to induced drag
�0 = angle of attack (difference from � at L� 0)
� = power-law exponent
� = boundary-layer thickness
� = small parameter for inviscid wing efficiency
� = kinematic viscosity

I. Introduction

T HE foundations of aeronautics are laid on steady flows around
fixed bodies at moderately high values of Reynolds number

(Re�Uc=�, where U is a mean flight speed, c is a mean flightwise
chord length, and � is the kinematic viscosity). Reynolds numbers
for various aircraft components (wings, tail, and fuselage) are given
in [1], for example, and on aerodynamic surfaces, range from
approximately 2 � 106 (vertical tail of the Cessna Stationair 7 at
sea level, flaps down) to 80 � 106 (wing of the Boeing 747-200B,
at maximum cruise speed, 10 km height). At these Reynolds
numbers, the boundary-layer thickness � is on the order of 10 mm
(�=c� 3 � 10�4), and at low angles of attack �, the elegant analyses
of thin-airfoil theory apply very well, in which various geometric
approximations and the prescription of zero normal velocity to the
surface, together with the Kutta condition at the trailing edge, lead to
closed-form solutions for circulation distributions on thin airfoils and
simple numerical solutions for arbitrarily shaped bodies.

II. List and Drag of Finite Wings

A. Lifting Line and the Drag of Finite Aspect Ratio Wings

Of course, inviscid models also predict that the drag D� 0, at
least in two-dimensional flows. Much effort has been put into the
empirical compilation and verification of drag polars, plots of the
sectional lift vs sectional drag coefficient for two-dimensional (2-D)
airfoils, or section profiles. For wings of finite span, one can also
show that there is an inviscid source of drag, the induced drag, which
can be written in coefficient form,

CD;i �
C2
L

�AR
(1)

for the special case of an elliptically loaded wing. The induced drag
coefficient CD;i �Di=qS is normalized by the planform area S and
dynamic pressure q� �U2=2, where � is the air density. Similarly,
the lift coefficientCL � L=qS, where L is the lift force normal to the
direction of mean flight speed U. (Sectional, or 2-D, coefficients of
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lift and drag are denoted asCl andCd, respectively, and nowL andD
are normalized by qc, rather than qS, and so their coefficients
have units of normalized force per unit span.) In Eq. (1), AR is the
aspect ratio, defined either as AR� b2=S or b=c. The experimental
verification of the variation of CD;i with 1=AR was provided by
Prandtl [2]. For wings that are not elliptically loaded, Eq. (1) may be
written [3]

CD;i �
C2
L

�AR
�1� �� (2)

where � is a small number that measures the departure of the loading
distribution from elliptic. It can be estimated numerically from a sum
of the Fourier coefficients describing the wing circulation
distribution. Equation (2) is often expressed as

CD;i �
C2
L

�ARe
(3)

and e� 1=�1� �� is called the span efficiency factor. It measures the
departure of the loading from its elliptic optimum for the inviscid
induced drag of a finite wing, when e� 1. The condition for e� 1 is
only that the circulation distribution along the span be elliptic, which,
for a wing with constant profile shape, can come from planform
geometry or from wing twist. The effects of aspect ratio are not
included in e, which also does not have any contributions from other
sources of drag than induced drag.

The remaining sources of drag, other than Eq. (3), are all due in
some way to viscosity and cannot be predicted in inviscid models.
Instead, drag polars are compiled for various two-dimensional
profiles and for various wing shapes, and a sketch is shown in Fig. 1
for a two-dimensional section profile and for a wing of finite
aspect ratio. For the 2-D airfoil, aCl�Cd� polar is derived by changing
the geometric angle of attack �. For the general asymmetric case, the
drag is a minimum at some (usually positive) �, when Cl will also
have some finite value (as shown in Fig. 1). For � different from this
value, then the variation of Cl with Cd can be described by

Cd � Cd;0 � k�Cl � Cl;0�2 (4)

where Cd;0 and Cl;0 are the drag and lift values at minimum drag (so
Cd;0 � Cd;min). Then the total drag of a wing of finite span can be
written

CD � CD;0 � kC2
L �

C2
L

�AR
�1� �� (5)

The third term on the right-hand side derives from Eq. (3); it is the
induced drag multiplied by the correction for nonelliptic loading.
The first term on the right-hand side is a minimum constant drag
and its value is usually indistinguishable from the two-dimensional
equivalent (see Fig. 1), and so we may set CD;0 � Cd;0. The second
term has k from Eq. (4), which gives the quadratic rise in Cd with
Cl � Cl;0. Two simplifying assumptions are made in Eq. (5): first,
that Cl � Cl � Cl;0, and second, that the same k can be used for 2-D
and 3-D wings. This is equivalent to requiring that the reduction in �
due to induced drag is small, so that �� � � �i. BecauseC2

L appears
in the last two terms in Eq. (5), one can also find this equation in the
literature (e.g., [1,4]) expressed as

CD � CD;0 �
C2
L

�ARe
(6)

where

e� 1=�1� �� k�AR� (7)

This e may be referred to as the Oswald efficiency factor, or
sometimes as the span efficiency, even though it is not the same ase in
Eq. (3), because it contains corrections not only fromdepartures from
elliptical loading �, but also from finite AR and from the presumed
parabolic shape of the section lift–drag polar k.

Alternatively, the total drag of a wing can also bewritten correctly
(e.g., [5]) using Eq. (3) as

CD � Cd �
C2
L

�ARe
(8)

which is quite different fromEq. (6). Here, e is only the correction for
nonelliptic loading, as introduced in Eq. (3), and it does not contain
any implicit information about the variation of Cd with Cl. Instead,
the value of Cd is read from drag polars for the appropriate �, which
should be corrected for �i. Von Mises [6] introduced an apparently
similar formulation as

CD � A�
C2
L

B
(9)

noting that A depends mainly on the shape of the profile, and B
depends mainly on aspect ratio. However, A is identified as a
minimum in the Cd�Cl� polar, and so B in Eq. (9) contains both AR
and � and any variation of Cd with C

2
l , much as for the e factor in

Eq. (6).
To add to the confusion, the first term of either Eq. (6) or Eq. (8) or

Eq. (9) may be referred to as the profile drag or the parasite drag of
either the wing system or of the whole airplane. The C2

L term is also
commonly called drag due to lift, which is only partly true in Eq. (8),
in which, in fact, the first term has the basic variation of Cd with Cl
for the equivalent 2-D wing. It is also identified as the induced drag,
which is true for Eq. (8), but only partly for Eqs. (6) and (9), in which
it includes all viscous drag that varies with Cl.

B. Actuator Disc Theory

The actuator disc model is used as a quick calculation method for
helicopter and propeller analysis [7] and one can find expressions
for the induced-power requirement of an actuator disc model of disk
area Sd:

Pi �
kW2

2�SdU
(10)

where the factor k accounts for tip losses and nonuniformities over
the ideal actuator disc. This formulation is also used [8] in applying
the actuator disc model to the flight of birds. Because Pi �UDi and
Sd � �b2=4,

Di �
kW2

q�b2
(11)

and in coefficient form,

CD;i �
kW2

q2S�b2
(12)

We may write b2 � �bc�b=c� SAR, and so, in steady, level flight,
when L�W,

CD;i �
kL2

q2S2�AR
� kC2

L

�AR
(13)

Equation (13) agrees with Eq. (3) for the lifting-line model of the
fixed wing, if k� 1=e as it is used there. This is the usual inter-

Cd, CD

Cl,
CL

Cd,min

Fig. 1 Hypothetical drag polars for 2-D profile [Cl�Cd�, continuous
line] and finite wing [CL�CD�, dashed line].
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pretation of k as introduced in Eq. (10). The effect of a fixed wing of
span b is exactly the same as that of an ideal actuator disc of diameter
b. Both devices affect a circle of air with diameter equal to the wing
span, or twice the propeller radius, regardless of whether the wing
elements move or not. Note carefully, however, that the common
nomenclature k in Eq. (13) is not the same as k in Eqs. (4) and (5),
in which it is a fitting constant for the variation of viscous drag with
C2
L such as drawn in Fig. 1. Formulations such as Eq. (13) must be

accompanied by another source for taking into account the variation
of viscous drag with � or Cl, such as is done in Eq. (8).

C. Practical Calculations

Most engineering and academic institutions will have their own
successful way of combining the various drag terms ([9] for example,
distinguished between “inviscid“ and “viscous“ Oswald or span
efficiencies ) without obvious error, but it is clear that there is
potential for confusion and one should not assume that the particular
definitions in use are either obvious or are, in fact, correctly
described.

Typically, k as used in Eq. (13) is a number slightly above 1, just as
e is a number slightly below 1. Glauert [3], in originally tabulating
values of � for various taper ratios of wings with AR� 2�, had
0:049 � � � 0:016 for taper ratios (tip cord/root chord) between 1
and 0.25, which gives 0:95 � e � 0:98, or 1:05 � k � 1:02. These
numerical values account only for departures from elliptical loading,
and practical values of e and k are then adjusted based on empirical
data, so that [4] related that e [in the sense of Eq. (7)] for an entire
plane is typically 0.6 for a low-wing plane and 0.8 for a high-wing
configuration. Reference [1] gave a table of e values for 15 entire
planes ranging from 0.73 for the Cessna C-310 to 0.93 for the
GulfstreamG-II (both low-wing), and [7] suggests commonvalues of
k between 1.15 and 1.25 for estimating helicopter rotor power
requirements. These e values include the parabolic variation of
Cd�Cl�, as in Eq. (7), and it ismost likely that the estimates in [7] for k
effectively do the same thing.

Because the final e and k used for aircraft performance analysis are
mostly influenced by viscous departures from ideal conditions, their
correct calculation will be of increasing importance as the vehicle
size and flight speed (hence Reynolds number) decrease. Such
performance calculations have yet to become commonplace inmicro
air vehicle applications, but k or equivalent correction factors are
used in the animal-flight literature, when the actuator disc models
are often inspired by the actuator disc modeling in helicopter aero-
dynamics. Thus, k values are often asserted to take similar values: [8]
used values of 1.1 for gliding flight calculations and k� 1:2 for
flapping flight, without further explanation. If k� 1:2, then
1=k� e� 0:83, which is close to the preceding values given for
whole planes, but the bird-flight models contain independent
expressions for, or assumptions about, profile drag and its variation
with �. References [10,11] used a combined modified (pulsed)
actuator disc and vortex theory to give temporal and spatial
corrections for which the combined effect leads to k� 1:15. These
corrections are therefore in the spirit of the original Eq. (13) and
also do not include theCd�Cl� variation. The downwash distribution
close to the trailing edge of the hind wing of a flapping locust at
middownstroke has been measured [12] and the departure from the
constant value that would be produced by an elliptic loading was
used to estimate a value for k, duly reported to be 1.12. Because this
value of k attempts to measure only the difference from the ideal
elliptic loading, it too falls into the category of k� 1=e, where
e� 1=�1� ��. Thegeneral values of k arrived at via variousmethods
in animal-flight studies appear to have values that mimic those in the
aeronautics literature, which include the parabolicCl�Cd� correction,
but their derivation and formulation do not include this. It is therefore
difficult to evaluate their likelihood of correctness.

The original lifting-line theory gives a perfectly precise definition
of e [Eq. (3)], but it is clear that what actually gets used in practical
aeronautics is a distant relation only and that between formulation
and numerical value there is much empiricism that is rarely clearly
detailed.

D. Objectives

Small variations in dimensionless numbers e and k close to 1 may
be of minor importance, but their estimation and definition at low
Reynolds numbers, when they can have much larger variation, is of
much greater import. Furthermore, formulations of e that incorporate
the presumed parabolic relationship between CD and CL really only
hold at moderately high Re > 5 � 106 [1]. Here, we make some
estimates of e and k for real wings and airfoil sections at moderate
Reynolds numbers. The section profile is the Eppler 387, which is
famously sensitive to small changes in geometry and angle of attack,
with abrupt jumps in Cl�Cd� polars when used below its design
Reynolds number [13]. Although it is possible to find airfoils that do
not behave this way, many do, and it is also not the abrupt jumps
themselves that are of major importance here, but rather the steady
reduction in L=D that occurs with declining Reynolds number and
that is common to all shapes. Then the validity of the preceding
formulations given will be reexamined.

III. Experiments

The lift and drag of an Eppler 387 wing with an aspect ratio of 6
were measured in a low-turbulence wind tunnel, where u0=U�
0:025% for U� 10 m=s from hot-wire surveys of the test section
with the wing and support removed. The wing span (21 cm) was
small comparedwith the octagonal test sectionwidth (1.37m) and no
special tunnel corrections were applied to the data. The wing was
milled on a computer-controlled mill with 0.0125 mm resolution,
then sanded and painted flat black. The planform was rectangular,
with no rounding of the edges at the tip. Two-dimensional experi-
ments were conducted by enclosing the samewing between two end
plates suspended by thin cables and with less than 0.3 mm between
thewing and the plate. The end plates were aligned carefully with the
mean flow and checked for alignment by observing particle traces
when the flow was seeded for particle image velocimetry (PIV)
experiments. We denote the end-plate condition as 2-D (the basic
mean flow configuration is two-dimensional) and the finite aspect
ratio case as AR6.

Lift and drag forces were measured with a custom cruciform-
shaped force balance that was loaded with four strain gauges on each
of the four arms. The measurements were averages of a long time
signal (up to 8 s), and the random additive electrical noise in the
system allows the effective number of bits in an average mea-
surement to be increased (the 12-bit analog-to-digital converters
have an effective number of bits� 18:5 through oversampling of the
noisy data) so that forces of 0.05 mN could be resolved. The balance
was damped with a parallel dashpot arrangement so that high-
frequency mechanical vibrations were not significant, and static
calibrations were performed from 0 to 40 mN in 4 mN steps, with a
precision of 0.01 mN. At the lowest Re� 104, one may anticipate
drag forces from 0.8 to 5 mN for 0 deg � � � 20 deg, and so the
direct calibration data are sparse. Because there was no evidence of
nonlinearity over the calibration curve, a linear interpolation back to
the origin was used to determine the smallest forces.

The geometric angle of attack �was varied between�10 to 20 deg
in steps of 1 deg. Tests were performed for increasing and decreasing
�. Repeatability checks were conducted over different days, with
new calibrations between days. In the subset of data shown here,
the uncertainty of each measurement, as measured by the standard
deviation of repeated tests, is approximately given by the symbol size
in the graphics. The Reynolds number was varied by changing the
tunnel flow speed U. Separate tests, not discussed here, checked the
same Reynolds number from different combinations of wing chord
c and flow speed U. Reynolds numbers shown here are Re�
10 � 103, 20 � 103, 30 � 103, and 60 � 103.

More detailed and extensive results from PIVexperiments will be
discussed elsewhere, but selected velocity and spanwise vorticity
fields will be shown, taken from vertical slices aligned parallel with
the mean flow and intersecting the wing at midspan. The velocity
fields were estimated using algorithms [14,15] that have been
shown to give accurate reconstructions of gradient quantities, and
the spanwise vorticity is used to show the flow structure. In these
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experiments, the physical configuration is simple, and trials were
repeated until both particle seeding properties (density, size, and
brightness of particle images) and PIV exposure time (between
successive frames) were close to optimal. Then the uncertainty of
velocity gradient estimates is likelywithin 5%of the localmaximum.

IV. Results

A. Approximating Lift-Drag Polars at Low Reynolds Numbers

The lift–drag polars of the E387 (in common with many other
smooth airfoils) are quite well known for the appearance of unusual
features when Re < 105 [13,16]. These features are usually docu-
mented as Reynolds number falls from higher values, but it is also
instructive to view the polars with Reynolds number increasing from
below. Figure 2 shows the lift–drag polars for Reynolds number
increasing from 10 � 103 to 60 � 103 for 2-D and AR6 cases. In the
figure, the range of angle of attack � varies slightly from series to
series, but is nominally from �10 to 20 deg in increments of 1 deg.
Each angle has two data points for increasing and decreasing �.
Each Reynolds number is represented by only one series of data
points, but the symbol size has been chosen to represent one-half of
the maximum standard deviation of repeated independent experi-
ments over one week. For Re� 10 � 103 and 20 � 103, Cl�Cd�,
curves in Fig. 2a have a c shape, but Cl;max is less than 0.8, about
half of a typical value of Cl;max for moderately thick airfoils at
Re 	 5 � 105 (see [4,5,13,17] for numerous examples). For
Re� 30 � 103, Cl jumps abruptly at �� 10 deg, rising from about
0.7 to 1.2, with no accompanying change in Cd. Cl then remains

approximately constant. whereas Cd increases from 0.1 to 0.15. The
elevatedCl is gradually lost again for � > 14 deg, and by �� 18 deg
the data have returned to the lower Reynolds number curves. In the
jump itself, there is hysteresis, as the curves for increasing and
decreasing � differ slightly, but repeatably. For Re� 60 � 103, the
increase inCl occurs at lower�� 6:5 deg and lasts for a longer range
of �, up to �� 19:5 deg.

As Reynolds number increases, the Cl�Cd� polars shift left: the
sameCl is achievedwith lowerCd, and the increase inCd withCl for
Cl > 0 is slower. ByRe� 60 � 103, the initial abrupt increase inCd,
which occurs before the increase inCl, is seen over a smaller range of
� than for Re� 30 � 103. With further increases in Reynolds
number, the c-shaped curves are recovered, occupying the upper
envelope seen in Fig. 2a.

The curves for AR6wings in Fig. 2b are qualitatively similar to the
2-D case,with two principal differences; the hysteresis has gone from
the Re� 30 � 103 case, and the decrease in CD for small CL > 0
with increasing Reynolds number is much more noticeable. At
moderate CL � 0:4, CD � 0:019 for Re� 60 � 103 and 0.075 for
Re� 10 � 103. The difference is almost a factor of 4.

The form of curves in Fig. 2 will clearly pose some problems
if they are to be modeled as quadratic functions as prescribed, for
example, in Eq. (4) and after, or in Eq. (9). Even if such a functional
form is appropriate, the shape varies with Reynolds number, and no
simple function will successfully capture the sudden increases in Cl
or CL seen in both 2-D and AR6 data.

The success (or lack thereof) of insisting upon a quadratic
functional fit to the polar data can be seen by seeking a least-squares
fit of Cd on Cl, with the form

Cd � a0 � a2C2
l (14)

where the associations a0 � Cd;0 and a2 � k can be seen in Eq. (5).
Figure 3 showsfits of the quadratic function Eq. (14)withCd�Cl� and
CD�CL� for 2-D and AR6 wings in the left and right columns,
respectively. Because the original data curves are not often simple
functions, a second fit is performed in which a particular subset of
data points (shown in open symbols) are omitted. These points are
associated with the sudden reattachment of the boundary layer and
formation of a separation bubble. They are identified by hand and
the resulting fit is the dashed line in Fig. 3. The curve fits are least-
squares solutions, but no attempt has beenmade to improve the rather
indifferent performance at high Reynolds numbers. The left column
of Fig. 3 shows that this fit is not greatly successful at any Reynolds
number, with significant differences between the data and the fit
curves for almost all practical values of �, where Cl > 0. The right
column shows that the same result holds for the AR6 wing.

Attempting to fit the entire polar, or even an edited version of it, is
difficult. Therefore, one can instead plot Cd�C2

l � (or CD�C2
L�) and

look for parts close to Cl � 0 that can be approximated with a linear
fit. Figure 4 shows the result, in which linear least-squares fits are
made for the filled symbols at small �. The fit appears moderately
successful at Re� 10 � 103 and 20 � 103, but less so at higher
Reynolds numbers, when the slope is quite sensitive to subjective
choices of data range and uncertainties in the data.

B. Values of e and k at Low Reynolds Number

Even though the curve-fitting exercise is not satisfactory at the
higher Reynolds numbers, it is worth calculating the fitting constants
as best one can at lowerReynolds numbers to have at least an estimate
of the various span efficiency factors. Equations (4–7)may be used as
an example of how the drag is estimated froman equation thatmodels
the drag through a quadratic variation of Cd with Cl [Eq. (4)] with
fitting constant k, and then assumes that k can take the same value for
CL�CD�. Table 1 shows the values of the fitting constants for Eq. (14)
as shown by the dashed lines in Fig. 3. The correct procedure is
to take the fitting constant k� a2 from the 2-D case (which has no
aspect-ratio effect included) and then to insert that k value into an
equation that has a separate correction for AR, as in Eqs. (5–7). The
fit coefficients are only reasonable for Re� 10 � 103 and 20 � 103

when k� 0:24 from Table 1.
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Using Eq. (7) to calculate e, the Oswald efficiency factor, note that
�
 1 and �
 k�AR, and so � may be neglected, and thus for
AR� 6,

e� 1

1� �6 � 0:24��� 0:22

This value of e is very much lower than any commonly quoted in
aeronautics texts, and their example values therefore cannot be
applied to low, or moderate, Reynolds number aerodynamics
problems.

A similar calculationmay bemade for the value of e in the sense of
Eqs. (3) and (8), when it measures only the departure of the wing
loading distribution from the elliptical ideal. Equation (5) can be
written as

CD � CD;0 �
�
k� 1

�ARe

�
C2
L (15)

and the k in brackets is equal to a2 in Eq. (14). An equivalent
quadratic fit for the 3-D AR6 wing gives the whole expression in
brackets, and so

a2;3D � a2;2D � 1=�ARe (16)

Taking a2;3D � 0:34 and a2;2D � 0:24 from Table 1, both for
Re� 20 � 103, then e� 10=��AR� � 0:53. This is much lower
than the inviscid result in which �� 0:046 and e� 0:96 for a
rectangular nonswept wing of AR� 6. It is also lower than
commonly reported for higher Reynolds number aeronautical
applications. Its inverse, the induced-power factor in actuator disc
models, is 1.9, which is considerably higher than commonly
assumed values of about 1.2.

One may object that such fits are unduly influenced by rather poor
fits through data at higher �, when they are not well approximated by
a simple quadratic. Then the procedure can be repeated for the linear
fits toCd�C2

l � for low � shown in Fig. 4. Table 2 shows these results.
Again using the Re� 10 � 103 example, the value of e from
Eq. (7) uses the fitting constant k� 0:14 from Table 2, which gives
e� 0:27. The difference between coefficients in AR6 and 2-D cases
is 0.07, and then the value of e in the sense of Eqs. (3), (8), and (16) is
0.76. These values of e are closer to one than the previous estimates,
but are still very low compared with the usual higher Reynolds
number examples.

Inspection of Table 2 shows that subtracting 2-D from 3-D fitting
coefficients is difficult to do at low Reynolds numbers (one subtracts
two numbers for which the difference is comparable with the
experimental uncertainty) and completely impractical at higher
Reynolds numbers, when the result can be negative. An alternative
method for selecting the inviscid part of the e calculation is to take the
entire Cd��� curve and shift it by CD;i � C2

L=��ARe�, as in Eq. (8).
Figure 5 shows the result for a range of plausible values of e from 0.5
to 1. Thefit depends onlyweakly on eover this range. The reasonable
agreement between the measured AR6 data and the 2-D data
incremented byCDi suggests that themajor difficulty in deducing the
inviscid part of e is in estimating it from approximate curve fits with
low k in the original Cl�Cd� polars.

C. Effects of Viscosity

TheOswald efficiency factor of wings at lowReynolds numbers is
low because the drag increases faster as a function of lift than at
higher Reynolds numbers. It does so because viscosity is more
dominant. Friction and pressure drags must always be estimated
empirically, even at high Reynolds numbers, and so if the abrupt
changes in Cl�Cd� are ignored for the moment, comparatively little
changes: the correction coefficients simply have higher or lower
values. Although there is no simple analytical theory for the viscous
drag coefficients of an arbitrary airfoil section, there are well-
established analytical results for the lift, which is basically inviscid.
It is therefore of some interest to see whether the lift result alone
varies with Reynolds number.

For thin airfoils, the sectional lift coefficient is a linear function
of angle of attack, with slope

dCl
d�
� Cl� � 2� (17)

From lifting-line theory, an untwisted wing with elliptic loading
distribution has a lift coefficient slope that varies systematically with
aspect ratio:

CL� � 2�

�
AR

AR� 2

�
(18)

CL� becomes a smaller fraction of Cl� as AR decreases. This
expression is well-corroborated by experiment until AR< 4, when
the Helmbold equation,

CL� � 2�

�
AR

2�
������������������
4� AR2
p

�
(19)

is a closer fit, as explained in [4,5]. Figure 6 showsCl��0� for the 2-D
case andCL��0� for the AR6wing, where �0 is the difference in angle
of attack from the zero lift angle, and so

�0 � � � �L�0

At Re� 60 � 103, Cl� is close to 2�, but it clearly decreases with
decreasing Reynolds number. In Fig. 6b, the AR6 case is similar,

Table 1 Coefficients for least-squares quadratic fits of Cd

on Cl for 2-D E387 and for CD on CL for the AR6 wing

2-D AR6

Re (�103) a0 a2 a0 a2

10 0.06 0.24 0.05 0.34
20 0.05 0.24 0.05 0.30
30 0.05 0.22 0.06 0.14
60 0.04 0.09 0.07 0.05

Table 2 Coefficients for linear fit of Cd�C
2
l
� (2-D)

and CD�C
2
L� (AR6) for small � in Fig. 4

Re (�103) 2-D AR6

10 0.14 0.21
20 0.13 0.17
30 0.08 0.09
60 0.05 0.03
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Fig. 5 Plots of 2-D measured Cd (circles), 3-D AR6 measured CD

(squares) and predicted 3-D CD for range of e (small circles joined by

straight line).
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where CL� decreases systematically as Reynolds number decreases.
At Re� 60 � 103, the result is close to that given in Eq. (19), which
is shown by the dashed line.

Figure 7 shows the variation of lift coefficient slopewith Reynolds
number, plotted as a fraction of 2�, which is the 2-D inviscid,

analytical result [Eq. (17)]. The dependence on Reynolds number is
similar for 2-D and AR6 wings, and power-law fits of Cl� � 2�Re�

to the data (there are only four data points) have exponents �� 0:19
and 0.18 for the 2-D and AR6 wing, respectively. The Reynolds
number dependence shows that viscous effects are measurable, even
at small �. This is because flow separation begins at the trailing
edge of the airfoil/wing, even at small �. Figure 8 shows a time
series of spanwise vorticity distributions over and behind the 2-D
E387 at�� 7 deg, which iswhenL=D� �L=D�max � 5:4. The time
between successive images is 0.1 s, and the shedding frequency is
approximately 300 Hz, and so successive images are uncorrelated in
time. It is clear that the conditions at the trailing edge are unsteady.
Vortex shedding begins at x=c locations that vary with time, but
on average are forward of the trailing edge. The mean separation
location moves forward as � increases, and at Re� 10 � 103 and
20 � 103, the flow does not reattach. The abrupt performance jumps,
where Cl increases and Cd can decrease, occur at higher Reynolds
numbers [30 � 103 and 60 � 103 (see Figs. 2a and 2b)] when the
separatedflowdoes reattach. Note that reattachment and the presence
of a separation bubble are associated with a large increase in Cl=Cd.

V. Discussion

For the E387 wing in the range ofRe� 10–20 � 103, e� 0:27 or
0.76, depending on whether it is defined to include variations in AR
and Cl�Cd� [Eq. (7)] or whether it is only the inviscid-model
departure from an ideal, elliptically loaded, wing [Eq. (3)]. The
associated values of the induced-power correction factor in actuator
disc theory are 3.7 and 1.3, respectively. These values are much
further from 1 than in any example in the aeronautics literature or
used in the animal-flight literature. This is because no example has
hitherto been based on data at low Reynolds numbers. In fact, the
shapes of the Cl�Cd� and CL�CD� polars for 2-D airfoils and fixed-
wings are not well approximated by the parabolic shape demanded
by theory at these Reynolds numbers, and for the two higher
Reynolds numbers included in this study, Re� 30 � 103 and
60 � 103, it is hardly worth trying to fit the curves with simple
parabolas.

Themutually contradictory definitions of the span efficiency e that
appear in the technical literature make it difficult to trace the context
of reported values of k and e, which are often given without detailed
reasoning or supporting evidence, partly because, even in simple
aircraft, there are many empirical contributions and approximations
contained in the final sum. For clarity, it is proposed that the two
common definitions be distinguished through subscripts, so that

ei � 1=�1� �� (20)

is the inviscid span efficiency. It is determined only by the small
parameter � that comes exclusively from departures of the wing
loading distribution from elliptical. Then ki � 1=ei is an induced-
power factor that can be used in the sense of Eq. (13). Likely inviscid
departures of ei and ki from 1 are comparatively small, as they do not
include effects of finite span or practical lift–drag-polar shapes. The
second definition of span efficiency might be as used in Eq. (7),
repeated here for convenience:

ev � 1=�1� �� k�AR� (21)

By inspection, ev contains both the effect of aspect ratio and the
approximate shape of the lift–drag polar in the form of fitting
constant k. This may be termed a wing efficiency factor and its
inverse is kv � 1=ev. Values of ev may be much less than 1.

It is really only useful to use the second form of efficiency factor ev
if the section lift–drag polar can be approximated by a simple
quadratic equation, as written in Eqs. (4) and (5). If such a fit is not
adequate, as is the case for the airfoils andwings reported here, then it
is better to use ei as themeasure of inviscid distribution efficiency and
to retain some more complete empirical Cl�Cd� relation. This would
be a lookup table of polars such as Fig. 2a, and then the appropriate
expression for a total drag coefficient would be of the form of Eq. (8),
in which the viscous and inviscid parts are kept separate. This
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requires an accurate knowledge ofCl�Cd� for thewing sections at the
correct Reynolds number, and such reliable data are not yet common
for Re < 105.

The failure of standard aeronautical methods to account for the
low Reynolds number performance is due to the sensitivity of the
airfoil or wing performance to separation location [18]. Although
only the particular case of the E387 has been examined here, the

lift–drag polar is not atypical of smooth airfoil sections at such low
Reynolds numbers. For example, a collection of data specifically
targeted at the aeromodeling community at low Reynolds numbers
[19] shows qualitatively similar profiles for the Clark-Y, N60R, Go
790 series, NACA 4412, E374 and E205, among others. Moreover,
as noted in the Introduction, it is not the possibly large variations in
Cl�Cd� that cause the very large values of k (or small values of e),
which are derived from smooth curve fits that ignore such features.
The small e and large k come from the systematic boundary-layer
separation forward of the trailing edge, which causes not only the
relatively large drag coefficients, but also the systematic departures
in lift coefficient from the inviscid prediction.

The results here show that estimations of induced or total drag
coefficients that involve nominally small corrections may not work
very well when Re < 105. By contrast, the lift of various flat-
plate planforms has been found [20] to depart very little from
inviscid theory for 8 � 103 � Re � 24 � 103. However, thewings in
question had a very low AR� 2, and the finite span and associated
velocity field induced at the tip will have dominated the performance
measurement. Here, the Reynolds number dependence is clear for
AR� 6, which is not very different from classes of small-scaleflying
devices that would include practical micro air vehicles, birds, and
bats.

In any extrapolation of these results to animal flight in particular,
we should note that even in gliding flight, animal wings show
considerable variation in section profile geometry and local twist
along the span. The wings also flex according to the aerodynamic
loads and may be partly porous, and the planform can be varied with
flight speed and ambient conditions. It is not yet known which of
these many complications and subtleties are important, but it is quite
unlikely that a one-parameter model fit will do the physics justice.
Furthermore, because the rather high effective values of k will send
the bird-flight model predictions far from observational data, one
might argue that the existing reasonable fit with much lower, more
standard, values of k implies that the real bird wing has a much better
control of the boundary-layer separation than does a fixed-wing
model at these Reynolds numbers. This argument applies equally to
bird and bat wings in both gliding and flapping flight.

VI. Conclusions

When corrections to a basic model are on the order of 10% or
less, they do not necessarily subvert the model basis itself, and
uncertainties in the values of the corrections themselves may not be
of great concern. Here, we see that for fixed-wings operating at
Re < 105, not only can the corrections be large in magnitude, but
there is uncertainty in the formulation of the corrections themselves.
This is perhaps a sign that new theoretical models are required for
airfoils in which viscosity cannot be neglected, even at low angles
of attack. Such theories could at first be empirically based, if the
supporting high-quality data were available. In the long term, more
fundamental improvements in formulations that predict both lift
and drag would be highly desirable. These advances would have
immediate impact in application to the flight performance of various
small-scale flying devices.
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