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An experimental investigation of the instability of 
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The investigation of a separated shear layer was undertaken to clarify the non- 
linear mechanisms associated with instability and transition to turbulence. Such 
an investigation is of practical importance since profiles which resemble the 
separated shear layer are a common occurrence. 

A two-dimensional free shear layer was formed by separation of a laminar 
boundary layer from a rearward-facing step. The free-stream speed was approxi- 
mately 16 ft./sec. Hot-wire measurements were made in the region directly down- 
stream of the plate trailing edge. The measurements included mean velocity 
profiles, frequency spectra of the longitudinal fluctuation, and root-mean-square 
amplitude and phase distributions of various spectral components of the longi- 
tudinal fluctuation. Several measurements were designed to detect the presence 
of periodic spanwise structure. 

The most important findings were: 
(i) Significant non-linear distortion of the initial unstabIe wave occurred 

without periodic spanwise structure. 
(ii) Non-linear distortion was first manifest by the growth of a subharmonic 

oscillation, which was strongly intermittent. Numerous harmonics of the sub- 
harmonic oscillation were also present. 

(iii) Strong evidence suggests that secondary instabilities were present, which 
created still higher frequencies. 

1. Introduction 
Klebanoff, Tidstrom & Sargent (1962) have performed a very significant 

experiment dealing with the later stages of boundary-layer instability and 
transition to turbulence. They found that the most unstable wave as predicted 
by two-dimensional, linear stability theory in reality contained nearly periodic 
spanwise variations in amplitude. These amplitude variations resulted in stream- 
wise vorticity which caused instantaneous velocity profiles with inflexion points 
to form at various spanwise locations. A high-frequency breakdown was observed 
to occur at  these inflexion points. 

Benney (1961) performed a non-linear analysis, assuming the existence of both 
two-dimensional and three-dimensional waves. He showed the existence of 
streamwise vorticity and warping of spanwise profiles-features which agreed 
remarkably well with the experimental work. 
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Greenspan & Benney (1963) modelled the high-frequency breakdown with an 
unsteady, inflexion-point flow. It was concluded, in basic agreement with experi- 
ment, that the most amplified wave was approximately the one associated with 
a free shear layer of appropriate dimension, and that the wave amplitude could 
increase very rapidly. 

In  spite of these comforting correspondences between experiment and theory, 
there is a strong suspicion that transition in unbounded flows does not occur in 
the manner prescribed above. That is, three-dimensional effects appear to be far 
less important in the initial distortion of the primary oscillation. Also, the 
' bursting ' nature of the secondary breakdown in boundary-layer transition is 
not observed in the transition of wake-type flows. Some important investigations 
which led to these conclusions have been Sat0 (1956,1959,1960), Sat0 & Sakao 
(1964), Sat0 & Kuriki (1961), for the separated shear layer, the two-dimensional 
jet, and the flat-plate wake; and also Roshko (1954), Tritton (1959)) and Bloor 
(1  964), all of which were investigations of the flow behind a circular cylinder. 

Of the unbounded flows, the separated shear layer has received the least atten- 
tion experimentally. However, there is a large body of theoretical work which is 
pertinent. The simplest theoretical studies date to Rayleigh (1896). Most of the 
early theoretical work was for inviscid flow, and Foote & Lin (1950) showed that 
inviscid theory was a good approximation for unbounded flows at  large Reynolds 
numbers. Esch (1957) summarized earlier work and looked a t  a shear profile 
composed of three straight-line segments when viscosity was present. Tatsumi & 
Gotoh (1960) showed that all parallel flows with a velocity difference a t  y = 5 co 
possess no critical Reynolds number. Lessen & Fox (1955) have calculated the 
eigenvalues (at R = co) for the similarity profile produced between two parallel 
streams of different velocity. (The similar solution was determined by Locke 
(1951) and Lin (1953).) Drazin & Howard (1962) have also investigated profiles 
approximating the free shear layer. Michalke (1 964) has calculated eigenvalues 
and eigenfunctions for the hyperbolic tangent profile in the inviscid limit, and 
Betchov & Szewczyk (1963) have determined the neutral curve and curves of 
constant amplification as a function of Reynolds number. Michalke (1965) and 
Schade (1964) have considered various non-linear aspects of the wave growth. 
Most recently, Michalke (1966) has considered the spatial amplification of dis- 
turbances for a hyperbolic tangent profile; and Kelly (1965) investigated the 
problem of subharmonic resonance. 

An experimental investigation of the instability of an incompressible, sepa- 
rated shear layer (initially two-dimensional) was undertaken with the following 
specific points in mind: (a)  investigation of the region further downstream where 
non-linear effects are abundant; ( b )  the mechanism of energy transfer from a 
single frequency t o  a complete (turbulent) spectrum of frequencies; ( c )  import- 
ance of three-dimensional structure in the initial stages of non-linear growth. 

2. Description of experiment. 
The experimental work was performed in a small, open return wind tunnel 

having a contraction ratio of 36 : 1. The longitudinal turbulence level in the free 
stream measured 0.12% a t  16 ft./sec, and somewhat less a t  higher speeds. 
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The instability of a separated shear layer 283 

Observation of hot-wire traces indicated that low-frequency unsteadiness repre- 
sented the bulk of the longitudinal fluctuation. 

The free shear layer was formed by the separation of a boundary-layer flow 

Traversing mechanism allows 
x ,  y, z positioning and 
rotation about vertical axis 

' Loudspeaker 
J. 

Variable suction 

FIGURE 1. Sketch of working area for free shear layer experiments 
(not to scale). 

from a rearward-facing step, figure 1. The step completely spanned the width of 
the test section (1 ft.), and the flow should be approximately two-dimensional in 
the central 6 in. By observing the shedding frequency behind a small cylindrical 
rod placed in the stream, the velocity above the plate trailing edge was fixed a t  
15*8ft./sec. The tunnel speed fluctuated slowly over a period of time owing to 
variations in the motor r.p.m. The time variations in the main stream were kept 
within & 0.4 ft./sec by periodic adjustment. 

In  order to keep the flat-plate boundary layer free of oscillations before 
separation at the plate trailing edge, the plate length was fixed by the require- 
ment that the critical Reynolds number of the boundary layer should not be 
exceeded. To prevent separation at the leading edge (and hence transition 
on the plate), the air below the plate had to be removed with the help of suction 
(figure 1). 

Hot-wire measurements were made in the downstream region within 4in. of 
the plate trailing edge, which corresponded to about three wavelengths of the 
primary oscillation. In  this distance the shear layer had increased in thickness 
from about t in .  to about 1Qin. 
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Mean velocities were measured at several downstream stations by traversing 
the hot wire vertically through the shear layer. The frequency content of the 
longitudinal fluctuation in the range from 20 c/s to 300 CIS was determined with 
the aid of a narrow-band wave analyser. (The frequency of the primary oscilla- 
tion was 79 c/s.) The root-mean-square amplitude distributions (and, in some 
cases, the phase distributions) of various significant frequency components were 
measured as a function of the vertical co-ordinate. This provided sufficient infor- 
mation to calculate the form of the instantaneous fluctuation a t  several locations. 
Measurements to indicate three-dimensionality included the determination of 
mean velocity profiles at various spanwise stations, recording the variation of 
the longitudinal fluctuation in the spanwise direction, and a determination of the 
phase of the primary oscillation in the spanwise direction. In  most instances, an 
x-g plotter was used to obtain continuous variations. 

It is common practice, in observing instabilities in parallel flows, to fix the 
frequency and phase of the disturbance by excitation. The reason is that, by 
artificially producing a disturbance (nearly) coinciding in frequency with the dis- 
turbance which would grow ‘naturally’, one is able to ‘lock in’ the oscillation 
and obtain amplitudes which are much more steady and measurable. There is no 
a priori justification for the assumption that the instability process will be the 
same as would occur if the flow were allowed to develop naturally. Therefore, it 
is necessary to establish experimentally the relationship between the naturally 
excited flow and the externally excited flow. Two complete sets of measurements 
were made in the separated shear layer to determine the differences, if any, in the 
process of instability when excitation was present. One set of measurements was 
taken with no external excitation, and will be referred to as ‘natural instability’ 
or ‘natural transition’. A second set of measurements was taken while the shear 
layer was being excited by a loudspeaker placed a t  the rear of the test section. 
The frequency of excitation was 90 c/s-about 10 % above that frequency which 
predominated in the natural instability. The amplitude of the excitation, 
measured with a Bruel-Kiaer condenser microphone, was about 14 dB (sound 
pressure level) above the background noise. 

Several length and velocity scales are used to non-dimensionalize the results. 
The vertical co-ordinate, y (measured positive upwards from the plane of the 
plate), is non-dimensionalized by the momentum thickness 

where U, is the velocity a t  the outer edge of the shear layer. Both 8 and U, are 
functions of x. The longitudinal co-ordinate, x (measured positive downstream 
from the plate trailing edge), and the spanwise co-ordinate x ,  are measured in 
units of A, the wavelength of the forced oscillation. The experimentally deter- 
mined value is h = 1.25 & 0-25in. For the purpose of non-dimensionalizing, 
h will be taken as a constant equal to 1.25 in. Ci, refers to the tunnel speed, which 
is constant and equal to  15.8 ft./sec. 
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3. Experimental results 
3.1. The nature of the instability with and without forcing 

The first important observation is that the qualitative character of the instability 
process is the same with or without forcing. This result justifies the use of the 
forcing oscillation, which provides much more sharply defined fluctuations, to 
investigate the process of instability. The results presented here were obtained 
from data taken with forcing present; some results without forcing will also be 
included to illustrate the similarities. 

3.2. Mean velocity 

In figure 2 (a) ,  (b) ,  the mean velocity profiles are presented for nine values of 
xlh. The most interesting feature is the appearance of a small local maximum in 
the mean shear at  about x = 0.8h. At x = 3.2h the local maximum has dis- 
appeared. The generation of a second inflexion point in the mean profile was 
readily apparent, largely because of the continuous recording technique. 

Figure 3 gives the value of the maximum mean shear as a function of xlh, and 
figure 4 gives the growth of the momentum thickness and momentum-thickness 
Reynolds number with x/h. It will be seen that the maximum shear suffers a large 
decrease coincident with the appearance of the secondary inflexion point in the 
mean profile. Also, the rate of change of the momentum thickness increases 
markedly at about x = 0.8h. 

The mean velocity profiles are plotted in non-dimensional form in figure 5 (a ) ,  
(b) .  Two curves are presented for comparison. The solid curve in 5 (a) ,  (b), is the 
similarity solution calculated by Lin (1953) for incompressible flow. The dotted 
curve in 5 ( b )  is an experimental turbulent profile measured by Liepmann & 
Laufer (1947). (At each value of z, the non-dimensional profiles were shifted an 
increment in y /8  to make the point, y /8  = 0, correspond to UlU, = 0.5. Figure 6 
gives the values of yl0 which are the locus of UlU, = 0.5.) In  the early stages of 
shear-layer growth (figure 5 (a ) ) ,  the profile is changing from the boundary-layer 
flow. A similarity seems to be established at  about x = 0.M; but it is quite clear 
that the experimental profiles have larger mean shear than the laminar similar 
solution predicts. This is evidently due to the growth of the unstable oscillation(s). 
At x = 3-2A, the mean profile exhibits a tendency to depart from the previously 
established similarity, and has begun to move towards turbulent similarity. 

The discrepancy between experiment and theory at large negative values of 
yl8 is also interesting. There seems to be no reason to doubt the experimental 
values in this region. The hot wire was free from buoyancy effects above about 
0.3 ft./sec. Any errors produced by rectifying effects at  low velocities do not seem 
to be of sufficient magnitude to correct the discrepancy. The hot wire responds to 
the absolute magnitude of the velocity in the (x, y)-plane, so, strictly speaking, 
the vertical component of the mean velocity should be subtracted from the 
experimental data. However, the vertical component theoretically determined 
by Locke (1951) can be shown to produce an insignificant correction in the region 
of interest. 
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FIGURE 2. (a), ( b ) .  Mean velocity profiles at  different distances downstream 
of plate trailing edge. 
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Distance from plate trailing edge, s/h 

FIGURE 3. Maximum value of mean shear at  various downstream positions. 

0-20 

0.18 

0-16 
.i d 

0.14 
u) 3 0.12 

3 0.10 

$ 0.08 

3 0-06 

0.04 

+ 
d 

0.02 

1600 

1400 
a 

1200 $ 
L3 

1000 g 
800 $ 

2 
600 * 2 
400 

200 2 

0 1 -0 2.0 3-0 

Distance from plate trailing edge, x/h 

FIGURE 4. 0, Momentum thickness, 8; and m, momentum-thickness 
Reynolds number UO-8jv as a function of downstream position 
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FIGURE 5. Non-dimensional mean velocity profiles a t  different downstream positions. 
-, Lin (1953), laminar similarity; ---, Liepmann-Laufer (1947), turbulent experi- 
mental. (a )  0, z = 0.2h; m, z = 0.4h; 8, z = O.6h; a, z = 0.8h. ( b )  0, z = 1.2h; 
a, z = 1.6h; 8, z = 2.OA; a, z = 2.4h; m, z = 3.2h. 
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The instability of a separated shear layer 2 89 

3.3. Spectra 

Although some 45 separate spectra were recorded in the shear layer, only 
a representative portion will be reproduced. Figure 7 (a ) ,  (b) ,  and (c) presents 

220 200 180 160 140 120 100 80 60 40 20 
Frequency (c/s) 

- y = 0.090 in. 

160 140 120 100 80 60 

260 220 200 180 160 140 120 100 80 60 40 fl 
d I 

80 )2 80 60 j/140 20 
y = - 0.212 in. 

260’ 220 200 180 160 140 120 100 2p Y = - 0.363 in. 
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Frequency (o/s) 

For legend see p. 290. 
19 Fluid Mech. 26 
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FIGURE 7. Frequency spectra at different values of y (forcing frequency, 90 c/s) for 
(a)  x = 0.6h; ( b )  x = 1.2h; (c) z = 32h. 

five spectra for values of x equal to 0*6h, 1 - 2 4  and 3*2h, respectively. These 
spectra are traces of the actual, unreduced data. The amplitudes of components 
a t  different values of y cannot be compared since the hot-wire gain is not con- 
stant, but the relative amplitudes of harmonic components at the same value of y 
are (approximately) correct. 

At x = 0.6h (figure 7 ( a ) ) ,  one observes a discrete spectrum composed of the 
component at the forcing frequency, 90 c/s (henceforth called the primary oscilla- 
tion), and its two higher harmonics. At z = 1-2h (figure 7 (b ) ) ,  a remarkable effect 
is observed. The spectrum is still discrete; but, beside the primary oscillation and 
its harmonics, a subharmonic component and harmonics of the subharmonic now 
appear. In  fact, the subharmonic is present to a lesser degree at x = O.Sh, and its 
birth seems to coincide with the generation of the secondary inflexion point in 
the mean profile. (Subharmonic growth has been observed by other investigators, 
e.g. Sat0 (1959) and Wehrmann & Wille (1958).) 

It must be stressed that the appearance of the subharmonic oscillation is not 
the result of the forcing. Figure 8 (a), (b ) ,  shows spectra which were recorded when 
no forcing oscillation was present. At x = 1.2h, the naturally excited primary 
oscillation (79 CIS) is observed; and, at x = 2-4h, the subharmonic response is very 
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FIUURE 8. Frequency spectra at  different values of y (natural transition) for 
(a)  z = 1.2h; ( b )  z = 2.4h. 
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much in evidence. The peaks are not nearly as sharp as with the forcing present, 
and the process is shifted downstream; but the harmonic content is similar. The 
generation of a harmonic frequency spectrum which includes the subharmonic is 
also found a t  other tunnel speeds. Figure 9 is a single spectrum recorded in the 
shear layer a t  a tunnel speed of 24.5ft.lsec. The forcing frequency in this case is 
200 c/s. One must conclude that the generation of such a frequency spectrum is 
unquestionably an inherent part of the process of free shear-layer instability. 

620 580 540 500 460 420 380 340 300 260 220 180 140 100 60 20 
Frequency (c/s) 

FIGURE 9. Frequency spectrum at tunnel speed, U, = 24.5 ft./sec 
(forcing frequency, 200 c/s). 

Several other effects can be observed in figure 7 (a ) ,  (b) ,  and (c ) .  First is the 
tendency towards a smoothing or ‘filling in’ of the frequency spectrum as one 
proceeds downstream. This is especially obvious in figure 7 (c), where the maxima 
associated with higher harmonics have been completely obliterated at some 
values of y. A second observation is the tendency, a t  a given value of x, for the 
central and lower portions of the layer to exhibit greater irregularity than the 
upper portion (‘filling in ’ of the frequency spectrum) of the layer. This is evident 
in figure 7 (a) ,  (b) ,  and (c) but is again most obvious in (c). 

3.4. Vertical amplitude distribution of spectral components 

Figure 10 (u) to (h) gives the variation of amplitude (and phase in some cases) 
across the shear layer for the various frequency components observed to be 
significant. Here again the forced data are presented, but data taken without 
forcing were similar in all important respects. The amplitude of the root-mean- 
square longitudinal velocity fluctuation is given in ft./sec, as a function of y, for 
different values of $/A. The filled symbols represent values taken from the spectra 
measurements. These values give a good indication of the repeatability of the 
data, because the spectra were recorded with several hot wires over a period of 
days. The relative error within a single traverse is considerably smaller. No 
correction for hot-wire non-linearity was made. 

For x = 0-2h, 0*6h, and 0.8h, the phase variation of the primary oscillation is 
presented. Since only the phase change across the shear layer is important, the 
phase angle, 4, was arbitrarily taken to be zero at the point where the slope of the 
phase curve was greatest. At x = 0.2h and 0*6h, several independent phase 
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measurements give an indication of the reliability of the data. For larger values 
of x/h, where the subharmonic frequency is present, it  is felt that the phase 
measurements are not sufficiently accurate to be presented. 

One notices the large phase changes associated with the primary oscilla- 
tion (a phase change of 180 degrees indicates a reversal of the direction of the 
longitudinal fluctuation), and some symmetry of shape about the point of maxi- 
mum phase change. At x = 1.2h, the subharmonic fist appears and grows 
rapidly until it  eventually becomes the dominant component. The amplitude 
distributions spread vertically in the shear layer, so that the points of maximum 
amplitude of the primary and subharmonic components tend to move away from 
the region of high mean shear as x/h increases. Between x = 2.4h and x = 3.2h, 
there is a significant upward shift in the location of the point of maximum ampli- 
tude of the subharmonic component. A t  x = 2-4h, the maximum amplitude 
occurs at  a point where U/U,  = 0.78; while at x = 3.2h the maximum amplitude 
of the subharmonic has moved upward to O/U, = 1-0. Notice also the tendency 
for the maxima and minima of the primary and subharmonic components to be 
reflected in the amplitude distributions of the higher harmonics. 

3.5. Wave speeds 
Figure 11 gives values of the wave (phase) speeds for both the primary and the 
subharmonic components as functions of vertical position in the shear layer. 
The wave speeds, C,, were calculated from photographs of oscilloscope traces. The 
scatter in the measurements is large-especially for the subharmonic component. 
The wave speed of the primary oscillation is 

and the wavelength is 
CJU, = 0.58 f 0.11, 

h = 1.25 5 0.25in. 
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FIGURE 10. Amplitude distribution of the primary oscillation and the first harmonic a t  
( b )  x = 0.6h; (c) x = 04A.  Phase distribution of the primary oscillation. 
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For legend see p. 295. 
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FIGURE 10. (h) Amplitude distribution of primary and subharmonic oscillations at z = 3-2h. 
0, 45 c/s component; 0.90 c/s; 0, 0 ,  amplitudes determined from spectra recordings 

FIGURE 11. Wave speeds of the primary and subharmonic components at various 
vertical locations in the shear layer. 0, 90 CIS component; A, 45 c/s component. 

The most significant feature is that the wave speed of the subharmonic com- 
ponent seems to be larger in the upper portion of the shear layer than in the lower 
portion. 

3.6. Internzittency 

During the course of the experiment it was evident by observing the 
instantaneous hot-wire traces that a strong intermittency was associated with 
the growth of the subharmonic component. The subharmonic oscillation was not 
present at all times, but disappeared completely at certain times. This intermit- 
tency was definitely associated with the subharmonic growth, since it was not 
observed in the primary oscillation upstream of the point where the subharmonic 
first appeared. The intermittency was correlated in the upper and lower portions 
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of the shear layer in the following manner. Figure 12 (a) ,  ( b )  (plate 1) presents 
photographs which show the instantaneous wire voltages from two hot wires- 
one placed in the upper portion of the layer and one placed in the lower portion. 
The prevalent frequency is the 45 c/s component. A t  certain instants, the 
45-cycle component is absent in the upper portion of the shear layer, but the 
90-cycle component is present (although at a much reduced amplitude). At the 
same instant, the 45-cycle component is weak in the lower portion of the shear 
layer, and the signal is undefined. 

3.7. Bursting 

In  some portions of the shear layer, the instantaneous wave forms exhibit 
characteristics which are similar to the bursts associated with the secondary 
breakdown in boundary-layer transition. Figure 13 (plate 2 )  presents several 
photographs of this phenomenon. As a comparison, a photograph of the secondary 
breakdown observed by Klebanoff et aE. (1962) is reproduced. In  the photograph 
reproduced from Klebanoff et al. decreasing velocity is in the downward direc- 
tion; while, in the photographs taken in the shear layer, decreasing velocity is 
in the upwarddirection. The amplitudes of the bursts are much smaller, com- 
paratively, in the present investigation than in the boundary-layer flow, so it 
may be misleading to use the term ‘burst ’ when referring to the phenomenon 
observed in the shear layer. 

Whether or not the term ‘bursting’ is used, the important point is that the 
phenomenon may arise from a secondary instability. The high-frequency ‘bursts ’ 
always appear in conjunction with the subharmonic component of the primary 
oscillation and always occur a t  a definite point in the cycle. They occur in a por- 
tion of the shear layer where the subharmonic is well defined-about three wave- 
lengths downstream and a t  the upper edge of the layer. From examination of the 
photographs, the frequency of the ‘bursts ’ seems to be in the neighbourhood of 
400-700 c/s, and the vertical extent is about 0.040 in. 

3.8. Three-dimensionaEity 

The measurements which were made to indicate the existence of spanwise struc- 
ture were limited in extent. The tentative conclusion is that no significant span- 
wise structure exists whichis of comparable wave-length to the primary 
oscillation. (Periodic spanwise variations with a wavelength much longer than 
four inches would probably be difficult to detect in this investigation.) Mean 
profile traverses were recorded at  x = 0.2h and x = 1.2h, for spanwise locations, 
z = 0,0*4h, 0*8A, and lash. None of these profiles showed noticeable differences. 
The 90-cycle component of the instantaneous hot-wire voltage was recorded as 
a continuous function of z (from z = 0 to x = l.8h) for x = 0.2h, y = - 0.084 in.; 
and for x = 1.2h, y = - 0-437 in. The 45-cycle component of the instantaneous 
hot-wire voltage was recorded as a continuous function of z for several values of y 
at x = 2.4h. None of these measurements indicated any periodic spanwise 
variation. 

The spanwise phase variation of the 90-cycle component was also recorded. 
While no periodic spanwise structure was evident, there was a departure from 
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two-dimensionality at the larger values of x/h. The departure is probably a result 
of pre-existing variations in the incident stream rather than an inherent feature 
of the instability. 

4. Discussion 
4.1. Growth of disturbances 

Figure 14 shows the maximum amplitudes of various spectral components as 
a function of x/h. There is a region, at  small values of x/h, where the primary 
oscillation grows exponentially as predicted by linear stability theory. Deviation 
from exponential growth first occurs at about x = 0.4h and a t  a value of u,.,.,./Uo 
of about 5 % .  Downstream of x = 0.4h, in what could be called the non-linear 
region, the primary oscillation grows more slowly and eventually decreases. 
Other harmonic components are present in this region, but the maximum ampli- 
tudes are never more than about 11 % of the freestream velocity. This agrees 
with the notion of a limiting amplitude for such disturbances (see Stuart 1960 
and Schade 1964), although this work was performed in connexion with higher 
harmonics only. Schade (1964) has estimated a limiting amplitude for the case of 
a hyperbolic tangent profile, and has also given an estimate of the amplitude a t  
which linear theory ceases to be a good approximation. These limiting amplitude 
results, including some taken from other investigations, are summarized in the 
following table: 

Theoretical 
Boundary estimate for Circular 

2-d jet layer tanh profile cylinder 
This Sato Klebanoff et al. Schade Kovasznay 

investigation (1960) (1962) (1964) (1949) 
- Linearity limit 5 %  4 Yo 2 %  4% 

Maximum amplitude 11 Yo 10-20 yo 16 % 17 % 14 % 

4.2. The linear region 

The initial wave growth observed in this experiment agrees closely with the more 
extensive results of Sat0 (1959). Although the linear region was not the primary 
concern, a brief summary will be given for the sake of completeness. 

Using inviscid, linear stability theory, Lessen & Fox (1955) calculated the 
eigenvalues for unstable waves which could grow in a laminar shear layer between 
parallel streams. Sat0 (1959) compared the eigenvalues obtained experimentally 
with the eigenvalues calculated by Lessen & Fox. He was able to show that the 
initial oscillation which was observed to grow ‘naturally’ in the shear layer 
coincided with the theoretical oscillation having the maximum amplification rate. 
However, there was one important discrepancy. The amplitude distribution of 
the most unstable wave (obtained experimentally) was different from any of the 
calculated eigenfunctions (Sato 1959; Michalke 1964); and, furthermore, the 
distribution was difficult to reconcile with existing physical arguments (Lin 
1955). (The distribution lacks any symmetry about the point of maximum mean 
vorticity .) 
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Gaster (1965) and Michalke (1966) have shed considerable light on this dis- 
crepancy by considering, theoretically, waves with spatial amplification rather 
than temporal amplification. (The case of spatial amplification agrees more 
closely with the experimental situation.) For a hyperbolic tangent velocity profile, 
Michalke (1966) found that the wave speed and frequency of the wave with maxi- 
mum amplification was nearly identical for spatial and temporal growth; but the 
amplification rate and eigenfunction were different. There is good agreement 
between the present experimental results in the linear region and the calculations 
of Michalke (1966). 

4.3. The non-linear region 

( a )  Periodic spanwise structure 

In  the region between x = 0-4h and x = 1*2h, some interesting non-linear 
effects are observed. They include warping of the mean profile, the growth of 
harmonic components, the remarkable growth of the subharmonic component, 
and a very noticeable intermittency in the subharmonic oscillation. One effect 
which is notably absent, however, is the existence of periodic spanwise structure. 

The question of periodic spanwise structure in two-dimensional unbounded 
flows is still unsettled. Early investigators such as Roshko (1954) and Hama, 
Long & Hegarty (1957) seem to have observed such structure. Roshko observed 
spanwise periodicity of very long wavelength ( A  = 18 diameters) in the wake of a 
circular cylinder a t  low Reynoldsnumber. Hama et al. observed periodic spanwise 
structure in the flow over a rearward-facing step at low Reynolds number. On the 
other hand, many recent investigators have not observed such structure. Tritton 
(1959) observed gradual spanwise warping in the wake of a cylinder, but no 
definite periodicity. This conclusion is supported by Bloor (1964) for cylinder 
wake measurements and by Sat0 & Kuriki (1961) for measurements in the wake 
of a thin flat plate. Periodic spanwise structure was not present (or of such a long 
wavelength as to be unimportant) in this investigation-at least up to x = 1-2h. 
Whether periodic structure exists downstream of this point is not known. The 
fact remains, though, that significant non-linear behaviour is observed in a region 
where the disturbance is essentially two dimensional. 

(b )  Subharmonic growth 
Several notable features accompanied the subharmonic growth. First, the 

flow was essentially two dimensional (within the accuracy of the observations) 
before subharmonic generation. Secondly, the maximum amplitude of the 
primary oscillation decreased as the amplitude of the subharmonic oscillation 
increased (see figure 14). Thirdly, the subharmonic was noticeably intermittent; 
and, fourthly, the wave speed of the subharmonic was larger in the upper portion 
of the shear layer than in the lower portion. 

A division of the primary wave disturbance seems to be occurring in the 
initial stage of subharmonic growth. A portion of the wave train moves upward 
and is convected at a higher velocity, and a portion moves downward with a 
decrease in velocity. Whatever interaction causes this division, it is evidently 
intermittent. 
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0.01 I I I I I 1 1 

Distance from plate trailing edge, z/A 

FIGURE 14. Maximum amplitudes of various spectral components as a function of down- 
stream position. 0, Primary oscillation, 90 C I S  maximum amplitude; 0, subharmonic 
oscillation, 45 c/s maximum amplitude; A, second harmonic, 180 cis maximum amplitude; 
u, third harmonic of subharmonic, 135 c/s maximum amplitude. 

Other wake flows which appear qualitatively similar, such as the flat plate wake 
and the two-dimensional jet (at low Reynolds numbers), do not exhibit such sub- 
harmonic response. Subharmonic growth apparently requires antisymmetry of 
the mean shear about the point where the primary oscillation originates. Sub- 
harmonic response arises most frequently as a result of parametric resonance, 
which is caused by the oscillatory nature of some physical parameter (Stoker 
1950). This would lead one to suspect that another significant feature of the flow, 
with respect to subharmonic growth, is its periodic nature. 

In  a recent paper, Kelly (1965) examined the stability of a two-dimensional 
time-dependent shear flow composed of a hyperbolic tangent mean profile plus 
a finite amplitude oscillation representing the predicted primary oscillation. He 
showed that an oscillation with twice the wavelength of the original oscillatory 
flow can occur (for the case of temporal growth, at  least); and, furthermore, that 
this is the only oscillation which is significantly amplified. Kelly also predicted 
that the growth rate of the subharmonic oscillation could exceed the growth rate 
of the primary oscillation when the amplitude of the primary oscillation was about 
12 yo of the velocity difference across the shear layer. A re-examination of figure 
14 will show that this estimate is in remarkably good agreement with the present 
experimental results. 
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Another interesting conclusion is that the process of subharmonic resonance 
could reappear again in connexion with the (original) subharmonic oscillation. 
Figure 15 shows a portion of the frequency spectrum at two downstream loca- 
tions, in a region where the original subharmonic (45 c/s) is the dominant oscilla- 
tion. There is a small but unmistakable peak at 22.5 c/s. 

100 80 60 40 20 
h 

m i -  

4 
E 
I3 

100 80 60 40 20 

Frequency (c/s) 

FIGURE 15. Several frequency spectra illustrating existence of a frequency 
component a t  22.5 c/s. 

( c )  Secondary instability 

Spectra measurements ( 9 3.3) indicated that considerable irregularity was asso- 
ciated with the lower portions of the shear layer before such irregularity was 
found in the upper portions. To understand how this effect might originate, it  is 
helpful to examine an instantaneous velocity profile. Figure 16 (a), ( b ) ,  shows the 
instantaneous longitudinal velocity fluctuation a t  two downstream locations. 
These instantaneous fluctuations were determined from the measured mean- 
square amplitude and phase distributions of the primary oscillation. A t  x = 0.8h, 
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the instantaneous velocity profile, figure 17, was constructed by a superposition 
of the mean velocity and the instantaneous fluctuation. (The instantaneous 
profile is only approximately correct because harmonic components other than 
the primary oscillation were neglected in the superposition.) 

- 0,300 .i 
- 0.250 
- a 

0 - - 0.200 d 
- 5 -. 0.150 s - a3 

- w 
0 

- O l O O - &  

15 14 13 12 11 10 9 8 7 6 5 
Velocity (U ft./sec) 

FIGURE 17. Mean profile and instantaneous velocity profiles at quarter-cycle intervals for 
II: = 0.8 A. Time, t = 0, is the instant of maximum amplitude at 1~ = 0.05 in. 

A noticeable feature of the instantaneous profiles a t  x: = 0.8h is the extreme 
distortion in the region below the point of maximum mean shear. This distortion 
occurs in connexion with the rapid phase and amplitude variations of the primary 
oscillation, and produces profiles with one or more additional inflexion points. 
(Since these rapid variations are associated only with the primary oscillation a t  
x = O.Sh, the neglect of harmonic content is not expected to change the qualita- 
tive features of the instantaneous profile.) The generation of profiles which have 
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J o u r d  of Fluid Mechanics. 1'01. 26, purt  3 Plate 1 

(6) 

FIGURE 12. Instantaneous hot-wire traces illustrating correlation of intermittency of the 
subharmonic component. Top trace, hot wire a t  upper edge of shear layer; lower tracs, 
hot wire a t  lower edge of shear layer. 
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Journal of Fluid Mechanics, Vol. 26,  part 2 Plate 2 

FIGURE 13. Instantaneous hot-wire traces illustrating 2% possible swondary instability. 
Upper t,racr, hot-wire signal ; lower trace, 90-cyclc speaker oscillation. 

BROWAND 

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

66
00

12
41

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112066001241


The instability of a separated shear layer 305 

additional inff exion points and which appear roughly steady when moving with 
the wave, might be expected to produce additional instabilities just as the 
original instability was generated. The title, secondary instability, was given to 
this phenomenon by Klebanoff et al. (1962). It is not too surprising, then, that 
frequency smoothing between harmonic components and an increasing occur- 
rence of higher frequencies is first associated with this region. 

Photographic evidence was also given in figure 13 (plate 2) which suggests the 
presence of a secondary instability in the upper portion of the shear layer about 
three wavelengths downstream. In this connexion, it is interesting to notice the 
tendency for an inflexion point to form at the upper edge of the shear layer 
(figure 17, note ot = a). This tendency arises because a large change in the ampli- 
tude of the oscillation occurs in a region where the mean velocity is approaching 
the free-stream value. Apparently the maximum in the local shear produced in 
this region is not sufficient to cause an observable secondary instability. But one 
could imagine a much stronger local maximum being produced by an oscillation of 
larger amplitude moving upward into the region of constant mean velocity. This 
is exactly what occurs further downstream in connexion with the subharmonic 
component (see figure 10 (g ) ,  (h), and p. 293). Unfortunately, the instantaneous 
velocity profiles could not be determined in this region because the phase of the 
subharmonic component was not measured. However, the evidence seems to 
indicate this to be the origin of a secondary instability observed in figure 13. 

( d )  Three-dimensional effects 

It was seen in 3 4.3 (b)  that many of the features observed in the non-linear 
region could be explained by a purely two-dimensional mechanism. Obviously, if 
turbulence is to ensue, the flow must eventually become three dimensional. 
Whether the eventual three-dimensionality arises from some inherent process in 
the shear layer, or is left more or less to chance irregularities, cannot be answered 
at  present. As mentioned earlier, the preponderance of recent evidence seems to 
indicate the lack of definite spanwise structure-a view which is supported by 
this investigation. Unfortunately, none of the present results justify a more 
definite conclusion. 

However, although evidence shows that periodic spanwise structure is not 
necessary for subharmonic generation, it is possible that subharmonic growth 
produces spanwise irregularity. Remember that intermittency is observed to be 
a significant characteristic of subharmonic growth, It is unlikely that this 
intermittency is two-dimensional. Thus the mechanism which produces inter- 
mittency of the subharmonic component produces spanwise randomness (phase 
variation) as well. The high-frequency oscillations ascribed to secondary in- 
stability must be three dimensional also, simply because it is impossible to con- 
ceive that such a complicated, unsteady process could remain two dimensional. 

4.4 A summary of the instability process 

In  the region nearest the plate, the primary oscillation, predicted by linear 
stability theory, grows rapidly and is accompanied by a gradual growth of higher 
harmonics. The large amplitude and rapid phase change associated with the 

20 Fluid Mech. 26 
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primary oscillation causes additional inflexion points to be formed in the instan- 
taneous velocity profile. This behaviour indicates a strong possibility of a 
secondary instability eventually forming in the lower portion of the shear layer. 
Although this instability was not well-defined experimentally, the lower portion 
of the wake becomes irregular sooner than the upper portion. 

When the maximum amplitude of the primary oscillation has reached about 
10 yo of the free-stream velocity, the subharmonic of one-half frequency begins to 
grow, and the amplitude of the primary oscillation decreases slightly. The sub- 
harmonic growth is coincident with a warping of the mean velocity profile and 
a rapid decrease in the maximum mean shear. Subharmonic growth is also 
accompanied by the growth of harmonics of the subharmonic, so that as many 
as six discrete frequencies can be observed in this region. The subharmonic com- 
ponent is intermittent; and this intermittency is partly responsible for the 
eventual decay of the discrete spectrum. 

When the amplitude of the subharmonic (now the dominant oscillation) 
reaches about 10 yo of the free-stream velocity, a secondary instability occurs in 
the upper portion of the shear layer. The frequency of this secondary instability 
is about ten times the frequency of the subharmonic. 

No periodic spanwise structure seems to be present, although three-dimensional 
measurements were for the most part confined to the region upstream of x = 1.2h. 
The oscillations associated with the secondary instability must certainly be three 
dimensional, while the lower frequency components could develop random 
three-dimensional structure from the intermittent nature of the subharmonic 
oscillation. 

Thus the process of instability is first to increase the number of important 
frequencies, from a single frequency, by the creation of both higher and lower 
harmonics. Then the spectrum is blurred by randomizing processes, and still 
higher frequencies are generated by secondary instabilities. These developments 
are accompanied by an increasingly random spanwise structure. 

The author is most grateful to Professor Erik Mollo-Christensen for his many 
suggestions and continued encouragement. This work was supported by the 
National Aeronautics and Space Administration, Grants NsG-31-60 and 
NSG496 and by the Office of Naval Research under Grant Nonr-1841(89). 

R E F E R E N C E S  

BENNEY, D. J. 1961 J. Fluid Mech. 10, 209. 
BETCHOV, R.  & SZEWCZYK, A. 1963 Phys. Fluids 6, 1391. 
BLOOR, M. S. 1964 J. Fluid Mech. 19, 290. 
DRAZIN, P. G. & HOWARD, L. N. 1962 J. Fluid Mech. 14, 257. 
ESCH, R .  E. 1957 J. Fluid Mech. 3, 289. 
FOOTE, J. R. & LIN, C. C. 1950 Quart. Appl. Math. 8 ,  265. 
GASTER, M. 1965 J. Fluid Mech. 22, 433. 
GREENSPAN, H. P. & BENNEY, D. J. 1963 J. Fluid Mech. 15, 133. 
HAMA, F. R. ,  LONQ, J. D. & HEOARTY, J. C. 1957 J .  Appl. Phys. 28, 388. 
KELLY, R. E. 1965 Nat. Phya. Lab. Aero Rep. no. 1161. 
KLEBANOFF, P. S., TIDSTROM, K. D. & SARGENT, L. M. 1962 J. FZuid Mech. 12, 1. 

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

66
00

12
41

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112066001241


The instability of a separated shear layer 

KOVASZNAY, L. S. G. 1949 Proc. Roy. SOC. A, 198, 174. 
LESSEN, M. & Fox, J. A. 1955 50 Jahre Crenzschichtforschung, p. 122 (eds. H. Gortler and 

LIEPMANN, H. W. & LAUFER, J. 1947 NACA T N  no. 1257. 
LIN, C. C. 1953 NACA T N  no. 2887. 
LIN, C. C. 1955 The Theory of Hydrodynamic Stability. Cambridge University Press. 
LOCKE, R. C. 1951 Quart. J .  Mech. Appl. Muth. 4, pt. 1. 
MICRALKE, A. 1964 J.  Fluid Nech. 19, 543. 
MICHALKE, A. 1965 J .  Fluid Mech. 22, 371. 
MICHALICE, A. 1966 To be published. J .  Fluid Mech. 
RAYLEIGH, LORD 1896 The Theory of Sound, volume 11, 2nd ed. London: MacMillan. 
ROSHKO, A. 1954 NACA TR no. 1191. 
SATO, H. 1956 J .  Phys. SOC. Japan, 11, 702. 
SATO, H. 1959 J .  Phys. SOC. Japan 14, 1797. 
SATO, H. 1960 J .  Fluid Mech. 7, 53. 
SATO, H. & KURJEI, K. 1961 J .  Fluid Mech. 11, 321. 
SATO, H. & SAKAO, F. 1964 J .  Fluid Mech. 20, 337. 
SOHADE, H. 1964 Phys. Fluids 7, 623. 
STOKER, J. J. 1950 Nonlinear Vibrations. New York: Interscience. 
STUART, J. T. 1960 J .  Fluid Mech. 9, 353. 
TATSUMI, T. & GOTOH, K. 1960 J .  Fluid Mech. 7, 433. 
TRITTON, D. J. 1959 J .  Fluid Mech. 6, 547. 
WEHRMANN, 0. & WILLE, R. 1958 Grenzschichtforschung, IUTAM-symposium, Freiburg 

30 7 

W. Tollmien). Braunschweig : Vieweg. 

1957, p. 387. Berlin: Springer. 

20-2 

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

66
00

12
41

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112066001241

