Subprotocol: Rivet Bonding of Parylene MEAs

Description: This subprotocol is for bonding Parylene polymer microelectrode arrays (pMEAs) to a rigid PCB substrate where the electrode face is not in direct contact with the pads on the PCB substrate. At the pad sites, Au balls are ultrasonically bonded through rivet/vias in the pMEA to interconnect different metal layers. This is expected to form permanent bonds at low temperature (60 °C) while reducing bonding area [1].

Note: Standard equipment and materials (e.g. tweezers, microscopes, DI water, cleanroom wipes, N_2 gun, scale, etc.) are not listed in materials lists.

Table of Contents

1	Introduction3				
2	PCB and pMEA Preparation3				
2	2.1	PCB Requirements	3		
2	2.2	Device Design	3		
3					
Э	3.1	Ball Bonding	4		
Э	3.2	Underfill	5		
Арј	Appendices				
A	A. N∕	laterial Sources	6		
E	3. Eo	quipment Models	6		
Ref	References				

1 INTRODUCTION

Ball bonding through vias is accomplished in three main steps: aligning, ball bonding, and underfill (Figure 1.1).

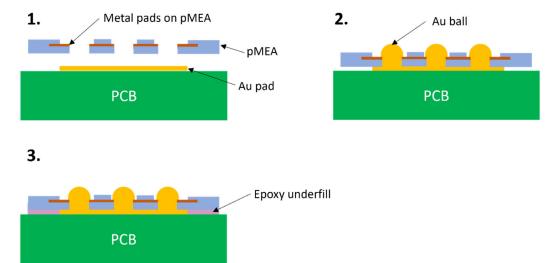


Figure 1.1. Schematic of the major steps of ball bonding: align pMEA pads to PCB pads (1), ball bond through pMEA vias (2), underfill (3).

2 PCB AND PMEA PREPARATION

2.1 PCB REQUIREMENTS

- 1. FR-4 board base material.
- 2. Surface finish of pads of 20-30 microinches of ENIG.

2.2 DEVICE DESIGN

Materials: Dowel pins

Low–friction tape

To facilitate bonding, features on the PCB and/or pMEA for alignment (i.e., holes) and for underfill (i.e., ports) are suggested. Figure 2.1a shows a 2D CAD model for a pMEA with alignment holes and underfill ports. Figure 2.1b zooms into a metal contact pad of the pMEA with three vias per pad.

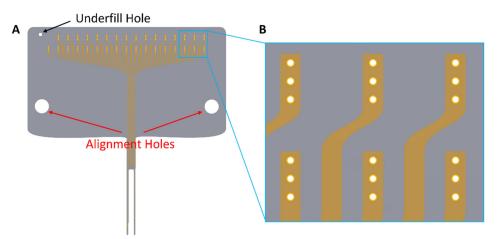


Figure 2.1. (A) CAD model of ball bonded probe with alignment holes and underfill ports. (B) Zoomed-in view of pads with three 60 μm vias/pad.

Figure 2.2 shows the dimensions of the rivet design that resulted in best performance after initial validation for Au balls of 75-80 μ m in diameter (achieved with parameters described in table below).

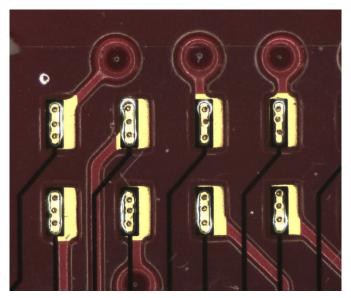
- 1. The size of the vias/rivets should be 10-15 μ m smaller than the diameter of the bonded ball.
 - a. The recipe described below results in Au balls of 75-80 μm in diameter. The diameter of the vias in the pMEA is designed to be 60 $\mu m.$
- 2. The alignment holes (Figure 2.1) are designed to have a diameter of 1.26 mm, which comprises a clearance fit for a dowel pin of 3/64" (1.19 mm) diameter.
 - a. For simpler devices, manual alignment with temporary low-friction tape may also be used.
- 3. Placement of alignment holes or tape around the bonding area ensures that the entire pad region remains flat during the bonding process.
- 4. The underfill ports (Figure 2) are 250 μm squares, but the size here is only critical insofar as the operator can contact the chip surface with underfill epoxy.

3 BALL BONDING STEPS

3.1 BALL BONDING

Materials: Au wire Equipment: Ball Bonder

The purpose of this step is to place gold (Au) balls on the PCB pads through the vias (Figure 1.2).


- 1. Place and clamp PCB on the ball bonder workstage.
- 2. Adjust bonding parameters according to Table 1.

	Bond 1
Ultrasonic	120 mW
Time	180 ms
Force	14 g

EFO	20 (pwr)
Temperature	60 °C
Tail length	30
Pull length	02
Loop height	010

Table 1. Parameters for Au ball bonding on PCB with 20-30 microinches soft bondable gold surface finish

- 3. Place three balls per rivet/via to increase yield):
 - a. Figure 3.1 shows successful results of Au balls bonded to a PCB pad with 30 microinches of soft bondable Au (ENIG) pads through rectangular rivets 50 μ m wide, manually aligned to a PCB substrate.

Figure 3.1. Ball bonding through 50 μm wide rivets in a Parylene MEA. *Scale bar is 200* μm.

3.2 UNDERFILL

Materials: EpoTek MED 301

Equipment: Toothpick/fine gauge syringe tip

The purpose of this step is to glue together the pMEA to the PCB after a secure bond has been created at the pads location via PUB bonding to provide additional safety to the overall assembly (Figure 1.3).

- 1. Prepare EpoTek MED 301 using a scale for accuracy:
 - a. Two-part epoxy (Part A, Part B).
 - b. Mix ratio by weight 4 (Part A): 1 (Part B)
- 2. Degas for 1 hour in a desiccator.
- 3. Using a toothpick or fine gauge syringe tip, apply a droplet of epoxy at the underfill port or edge of the pMEA between the substrate and Parylene MEA, allowing epoxy to fill the gap via capillary action.
 - a. To avoid creating bubbles, place epoxy on only one entry point and let epoxy flow.
- 4. Once epoxy has underfilled the bonding area, cure overnight at room temperature.

APPENDICES

A. MATERIAL SOURCES

Note: Standard materials (e.g. acetone, DI water, cleanroom wipes, etc.) are not listed

Material	Supplier
EPO-TEK MED-301	Epoxy Technology, Billerica, MA
3/64" dowel pins	McMaster-CARR, Elmhurst, IL
Low-friction tape (Catalog #76025A713)	McMaster-CARR, Elmhurst, IL
Au wire	California Fine Wire Company, Grover Beach, CA

B. EQUIPMENT MODELS

Note: Standard equipment (e.g. tweezers, microscopes, N2 gun, scale, etc.) are not listed

Equipment	Model #	Supplier
Sonicating bath	1510	Branson, Brookfield, CT
Ball bonder	626	Hybond, Escondido, CA

REFERENCES

[1] Y. Wang, et al., "Flexible multichannel electrodes for acute recording in nonhuman primates," *Microsyst. Nanoeng.*, July 2023, doi: 10.1038/s41378-023-00550-y.