Modern AI for Inverse Problems (Data Driven Inverse Problems)

Mahdi Soltanolkotabi USC Center on AI Foundations for the Sciences (AIF4S) ECE, CS, & ISE USC

> Lorentz Math Center Leiden, Netherlands August 7, 2024

Collaborator on Slides:

Collaborator on Slides:

Zalan Fabian

Motivation

Recently generative AI has achieved impressive performance

Multi-modal

Recently generative AI has achieved impressive performance

Multi-modal

Recently generative AI has achieved impressive performance

Multi-modal

What about Inverse Problems?

AI

This Tutorial: Opportunities and Challenges of AI for Inverse Problems

 $y = \mathscr{A}(x) + \varepsilon$

• Formulation

- Typically we have more unknowns than measurements

• Formulation

- Typically we have more unknowns than measurements

- Typically we have more unknowns than measurements
- Infinitely many solutions can be consistent with the observations

• Denoising

$$A = I, \qquad y = x + \varepsilon$$

• Denoising

 $A = I, \qquad y = x + \varepsilon$

Compressed sensing

- Compressed sensing
 - $A = \begin{cases} DFT + subsampling \\ Gaussian ensemble \\ Bernoulli ensemble \end{cases}$

- nice theoretical guarantees on recovery

Compressed sensing

 $A = \begin{cases} DFT + subsampling \\ Gaussian ensemble \\ Bernoulli ensemble \end{cases}$

- nice theoretical guarantees on recovery
- exploiting sparsity in transform domain

Compressed sensing

 $A = \begin{cases} DFT + subsampling \\ Gaussian ensemble \\ Bernoulli ensemble \end{cases}$

- nice theoretical guarantees on recovery
- exploiting sparsity in transform domain
- special case: MRI reconstruction

• Deconvolution

 $\mathscr{A}(x) = h^* x$

• Deconvolution

 $\mathscr{A}(x) = h^* x$

- h: blur kernel
 - if unknown: blind deconvolution

• Deconvolution

 $\mathscr{A}(x) = h^* x$

- h: blur kernel
 - if unknown: blind deconvolution

• Inpainting

$$A = S$$
 diagonal operator, with $S_{ii} = \begin{cases} 1 & \text{, if } x_i \text{ is sampled} \\ 0 & \text{, otherwise} \end{cases}$

• Inpainting

$$A = S$$
 diagonal operator, with $S_{ii} = \begin{cases} 1 & \text{, if } x_i \text{ is sampled} \\ 0 & \text{, otherwise} \end{cases}$

Damaged image

Restored image

• Phase retrieval

 $\mathscr{A}(x) = |Ax|^2$

• Phase retrieval

 $\mathscr{A}(x) = |Ax|^2$

- recover phase information from magnitude-only measurements

• Phase retrieval

 $\mathscr{A}(x) = |Ax|^2$

- recover phase information from magnitude-only measurements
- A is often DFT-like measurement matrix

• Phase retrieval

 $\mathscr{A}(x) = |Ax|^2$

- recover phase information from magnitude-only measurements
- A is often DFT-like measurement matrix

• Simplest case

- Typically: unknowns >> measurements
- No unique solution
- **Goal**: find the "best" solution that is consistent with the measurements

• Simplest case

- Typically: unknowns >> measurements
- No unique solution
- **Goal**: find the "best" solution that is consistent with the measurements

Minimum norm solution:
$$\hat{x} = A^T (AA^T)^{-1} y$$

• Simplest case

- Typically: unknowns >> measurements
- No unique solution
- **Goal**: find the "best" solution that is consistent with the measurements

Minimum norm solution: $\hat{x} = A^T (AA^T)^{-1} y$

Can we do better by leveraging side-information?

• Compressed sensing formulation

• Compressed sensing formulation

• Compressed sensing formulation

- Regularizer enforces prior knowledge on signal structure

• Compressed sensing formulation

- Regularizer enforces prior knowledge on signal structure
- Most often: sparsity in some transform domain (Fourier, Wavelet)

• Compressed sensing formulation

- Regularizer enforces prior knowledge on signal structure
- Most often: sparsity in some transform domain (Fourier, Wavelet)
- Solution: numerical, iterative algorithms

• Data-driven methods

- Data-driven methods
 - Generative prior-based methods: learn distribution of x from data

- Data-driven methods
 - Generative prior-based methods: learn distribution of x from data

- Data-driven methods
 - Generative prior-based methods: learn distribution of x from data

 $\min \mathscr{L}(AG(z), y)$ Z

- Data-driven methods
 - Generative prior-based methods: learn distribution of x from data

$$\min_{z} \mathscr{L}(AG(z), y)$$

- End-to-end methods: learn mapping from measurements to reconstruction directly

- Data-driven methods
 - Generative prior-based methods: learn distribution of x from data

$$\min_{z} \mathscr{L}(AG(z), y)$$

- End-to-end methods: learn mapping from measurements to reconstruction directly

- Data-driven methods
 - Generative prior-based methods: learn distribution of x from data

$$\min_{z} \mathscr{L}(AG(z), y)$$

- End-to-end methods: learn mapping from measurements to reconstruction directly

$$\min_{\theta} \mathscr{L}(f_{\theta}(y), x)$$

- Data-driven methods
 - Generative prior-based methods: learn distribution of x from data

$$\min_{z} \mathscr{L}(AG(z), y)$$

- End-to-end methods: learn mapping from measurements to reconstruction directly

 $\min \mathscr{L}(f_{\theta}(y), x)$

- Diffusion solvers

Forward diffusion

Backward diffusion

Deep Generative Models In Inverse Problems

Deep Generative Models In Inverse Problems

• Challenge: efficient modeling of high-dimensional distributions

- Challenge: efficient modeling of high-dimensional distributions
- Learn mapping from simple "seed" distribution to complex data distribution

- Challenge: efficient modeling of high-dimensional distributions
- Learn mapping from simple "seed" distribution to complex data distribution
- Parameterize mapping as a deep neural network

- Challenge: efficient modeling of high-dimensional distributions
- Learn mapping from simple "seed" distribution to complex data distribution
- Parameterize mapping as a deep neural network

- Challenge: efficient modeling of high-dimensional distributions
- Learn mapping from simple "seed" distribution to complex data distribution
- Parameterize mapping as a deep neural network

- Challenge: efficient modeling of high-dimensional distributions
- Learn mapping from simple "seed" distribution to complex data distribution
- Parameterize mapping as a deep neural network

• Variational Autoencoders (2013)

• Variational Autoencoders (2013)

• Generative Adversarial Networks (2014)

• Variational Autoencoders (2013)

• Generative Adversarial Networks (2014)

• Normalizing Flow Models (2015)

• Variational Autoencoders (2013)

• Generative Adversarial Networks (2014)

- Normalizing Flow Models (2015)
- Diffusion Models (2015, dominantly since 2020)

Compressed Sensing using Generative Models

Step 1: Pre-train generator on available training data

$$\min_{\theta} \quad \sum_{i=1}^n \|G_{\theta}(\mathbf{z}_i) - x_i\|_{\ell_2}^2$$
Step 1: Pre-train generator on available training data

Step 2: Leverage generative prior for reconstruction

$$\min_{z} ||AG_{\theta}(z) - y||^2$$

Step 1: Pre-train generator on available training data

Step 2: Leverage generative prior for reconstruction

$$\min_{z} ||AG_{\theta}(z) - y||^2$$

• find vector in latent space of a generator

Step 1: Pre-train generator on available training data

$$\min_{z} ||AG_{\theta}(z) - y||^2$$

- find vector in latent space of a generator
- such that corresponding sample in data space

Step 1: Pre-train generator on available training data

$$\lim_{i \to 1} \sum_{i=1}^n \|G_{\theta}(\mathbf{z}_i) - x_i\|_{\ell_2}^2$$

Step 2: Leverage generative prior for reconstruction

$$\min_{z} ||AG_{\theta}(z) - y||^2$$

- find vector in latent space of a generator
- such that corresponding sample in data space
- is consistent with the observations

Step 1: Pre-train generator on available training data

Step 2: Leverage generative prior for reconstruction

$$\min_{z} ||AG_{\theta}(z) - y||^2$$

- find vector in latent space of a generator
- such that corresponding sample in data space
- is consistent with the observations

For given MSE, 5-10x less measurements than classical sparsity-based methods!

Bora, A., Jalal, A., Price, E. and Dimakis, A.G., 2017, July. Compressed sensing using generative models. In International Conference on Machine Learning (pp. 537-546). PMLR.

DGM in Phase Retrieval

DGM in Phase Retrieval

Best performance with low # of observations

Existing Barrier to using DGM in Inverse Problems

Existing Barrier to using DGM in Inverse Problems

Existing Barrier to using DGM in Inverse Problems

• We want to solve the inverse problem

 $y = \mathscr{A}(x) + \varepsilon$

• We want to solve the inverse problem

 $y = \mathscr{A}(x) + \varepsilon$

• We have access to a large number of supervised data pairs (x, y)

• We want to solve the inverse problem

 $y = \mathscr{A}(x) + \varepsilon$

• We have access to a large number of supervised data pairs (x, y)

• Directly learn the mapping from observations to reconstructions from data

$$\min_{\theta} \mathscr{L}(f_{\theta}(y), x)$$

End-to-end methods in MRI reconstruction

• fastMRI public leaderboard

≡	AIRS-Net 11/5/2020	8x	0.0070	0.9022	38.1	0
Ξ	HUMUS-Net 3/3/2022	8x	0.0081	0.8945	37.3	S
≡	HUMUS-Net 3/4/2022	8x	0.0086	0.8936	37.0	0
≡	fastMRI Repo End-to-End VarNet 11/11/2020	8x	0.0085	0.8920	37.1	©
≡	SubtleMR 6/23/2020	8x	0.0085	0.8919	37.1	<
≡	Deneme4 10/7/2021	8x	0.0085	0.8919	37.1	0

End-to-end methods in MRI reconstruction

• fastMRI public leaderboard

≡	AIRS-Net 11/5/2020	8x	0.0070	0.9022	38.1	0
≡	HUMUS-Net 3/3/2022	8x	0.0081	0.8945	37.3	0
≡	HUMUS-Net 3/4/2022	8x	0.0086	0.8936	37.0	⊘
≡	fastMRI Repo End-to-End VarNet 11/11/2020	8x	0.0085	0.8920	37.1	Ø
≡	SubtleMR 6/23/2020	8x	0.0085	0.8919	37.1	S
≡	Deneme4 10/7/2021	8x	0.0085	0.8919	37.1	0

All end-to-end methods!

U-Net

U-Net

• Inverse problem formulation

$$\hat{x} = \arg\min_{x} \|\mathscr{A}(x) - y\|^2 + \mathscr{R}(x)$$

• Iterative solution via GD

$$x^{t+1} = x^t - \mu^t \left[\mathscr{A}^* \left(\mathscr{A}(x^t) - y \right) + \nabla \mathscr{R}(x^t) \right]$$

• Inverse problem formulation

$$\hat{x} = \arg\min_{x} \|\mathscr{A}(x) - y\|^2 + \mathscr{R}(x)$$

• Iterative solution via GD

$$x^{t+1} = x^t - \mu^t \left[\mathscr{A}^* \left(\mathscr{A}(x^t) - y \right) + \nabla \mathscr{R}(x^t) \right]$$

What is the best regularizer?

• Inverse problem formulation

$$\hat{x} = \arg\min_{x} \|\mathscr{A}(x) - y\|^2 + \mathscr{R}(x)$$

• Iterative solution via GD

$$x^{t+1} = x^t - \mu^t \left[\mathscr{A}^* \left(\mathscr{A}(x^t) - y \right) + \Phi_{\theta}(x^t) \right]$$

• Inverse problem formulation

$$\hat{x} = \arg\min_{x} \|\mathscr{A}(x) - y\|^2 + \mathscr{R}(x)$$

• Iterative solution via GD

$$x^{t+1} = x^t - \mu^t \left[\mathscr{A}^* \left(\mathscr{A}(x^t) - y \right) + \Phi_{\theta}(x^t) \right]$$

Parameterize regularizer gradient as NN!

 x_0

• Inverse problem formulation

$$\hat{x} = \arg\min_{x} \|\mathscr{A}(x) - y\|^2 + \mathscr{R}(x)$$

Iterative solution via GD

$$x^{t+1} = x^t - \mu^t \left[\mathscr{A}^* \left(\mathscr{A}(x^t) - y \right) + \Phi_{\theta}(x^t) \right]$$

• Inverse problem formulation

$$\hat{x} = \arg\min_{x} \|\mathscr{A}(x) - y\|^2 + \mathscr{R}(x)$$

Iterative solution via GD

$$x^{t+1} = x^t - \mu^t \left[\mathscr{A}^* \left(\mathscr{A}(x^t) - y \right) + \Phi_{\theta}(x^t) \right]$$

• Inverse problem formulation

$$\hat{x} = \arg\min_{x} \|\mathscr{A}(x) - y\|^2 + \mathscr{R}(x)$$

Iterative solution via GD

$$x^{t+1} = x^t - \mu^t \left[\mathscr{A}^* \left(\mathscr{A}(x^t) - y \right) + \Phi_{\theta}(x^t) \right]$$

• Inverse problem formulation

$$\hat{x} = \arg\min_{x} \|\mathscr{A}(x) - y\|^2 + \mathscr{R}(x)$$

Iterative solution via GD

$$x^{t+1} = x^t - \mu^t \left[\mathscr{A}^* \left(\mathscr{A}(x^t) - y \right) + \Phi_{\theta}(x^t) \right]$$

• Inverse problem formulation

$$\hat{x} = \arg\min_{x} \|\mathscr{A}(x) - y\|^2 + \mathscr{R}(x)$$

Iterative solution via GD

$$x^{t+1} = x^t - \mu^t \left[\mathscr{A}^* \left(\mathscr{A}(x^t) - y \right) + \Phi_{\theta}(x^t) \right]$$

• Unroll GD iterations in k-space

• Unroll GD iterations in k-space

$$x^{t+1} = x^t - \mu^t \left[\mathscr{A}^* \left(\mathscr{A}(x^t) - y \right) + \Phi_{\theta}(x^t) \right]$$

• Unroll GD iterations in k-space

$$x^{t+1} = x^t - \mu^t \left[\mathscr{A}^* \left(\mathscr{A}(x^t) - y \right) + \Phi_{\theta}(x^t) \right] \xrightarrow{\mathscr{F}}$$

Sriram, A., Zbontar, J., Murrell, T., Defazio, A., Zitnick, C. L., Yakubova, N., ... & Johnson, P. (2020). End-to-end variational networks for accelerated MRI reconstruction. In *International Conference on Medical Image Computing and Computer-Assisted Intervention* (pp. 64-73). Springer, Cham.

• Unroll GD iterations in k-space

$$x^{t+1} = x^t - \mu^t \left[\mathscr{A}^* \left(\mathscr{A}(x^t) - y \right) + \Phi_{\theta}(x^t) \right] \xrightarrow{\mathscr{F}} k^{t+1} = k^t - \mu^t M(k^t - \tilde{k}) + \Psi(k^t)$$
• Unroll GD iterations in k-space

$$x^{t+1} = x^t - \mu^t \left[\mathscr{A}^* \left(\mathscr{A}(x^t) - y \right) + \Phi_{\theta}(x^t) \right] \xrightarrow{\mathscr{F}} k^{t+1} = k^t - \mu^t M(k^t - \tilde{k}) + \Psi(k^t)$$

• Unroll GD iterations in k-space

$$x^{t+1} = x^t - \mu^t \left[\mathscr{A}^* \left(\mathscr{A}(x^t) - y \right) + \Phi_{\theta}(x^t) \right] \xrightarrow{\mathscr{F}} k^{t+1} = k^t - \mu^t M(k^t - \tilde{k}) + \Psi(k^t)$$

• Unroll GD iterations in k-space

$$x^{t+1} = x^t - \mu^t \left[\mathscr{A}^* \left(\mathscr{A}(x^t) - y \right) + \Phi_{\theta}(x^t) \right] \xrightarrow{\mathscr{F}} k^{t+1} = k^t - \mu^t M(k^t - \tilde{k}) + \Psi(k^t)$$

• Unroll GD iterations in k-space

$$x^{t+1} = x^t - \mu^t \left[\mathscr{A}^* \left(\mathscr{A}(x^t) - y \right) + \Phi_{\theta}(x^t) \right] \xrightarrow{\mathscr{F}} k^{t+1} = k^t - \mu^t M(k^t - \tilde{k}) + \Psi(k^t)$$

• Denoiser Φ_{θ} is a U-Net

• Unroll GD iterations in k-space

$$x^{t+1} = x^t - \mu^t \left[\mathscr{A}^* \left(\mathscr{A}(x^t) - y \right) + \Phi_{\theta}(x^t) \right] \xrightarrow{\mathscr{F}} k^{t+1} = k^t - \mu^t M(k^t - \tilde{k}) + \Psi(k^t)$$

• Denoiser Φ_{θ} is a U-Net

Can we do better with modern architectures?

• Benefits of Transformers

- Benefits of Transformers
 - conv kernels are content-independent

- Benefits of Transformers
 - conv kernels are content-independent
 - conv is not efficient for long-range dependency modelling

- Benefits of Transformers
 - conv kernels are content-independent
 - conv is not efficient for long-range dependency modelling

- Benefits of Transformers
 - conv kernels are content-independent
 - conv is not efficient for long-range dependency modelling

- Benefits of Transformers
 - conv kernels are content-independent
 - conv is not efficient for long-range dependency modelling

- Benefits of Transformers
 - conv kernels are content-independent
 - conv is not efficient for long-range dependency modelling

HUMUS-Net

Hybrid Unrolled Multi-scale Network Architecture for Accelerated MRI Reconstruction

Model	Test SSIM	Test PSNR

Model	Test SSIM	Test PSNR
E2E-VarNet	0.8920	37.1

Model	Test SSIM	Test PSNR
E2E-VarNet	0.8920	37.1
HUMUS-Net	0.8951	37.4

Model	Test SSIM	Test PSNR
E2E-VarNet	0.8920	37.1
HUMUS-Net	0.8951	37.4

Stanford3D multi-coil knee, 8x acceleration			
Model	Val. SSIM	Val. PSNR	

fastMRI multi-coil knee, 8x acceleration

Model	Test SSIM	Test PSNR
E2E-VarNet	0.8920	37.1
HUMUS-Net	0.8951	37.4

Stanford3D multi-coil knee, 8x acceleration

Model	Val. SSIM	Val. PSNR
E2E-VarNet	0.9432 (±0.0063)	39.99 (±0.6144)

fastMRI multi-coil knee, 8x acceleration

Model	Test SSIM	Test PSNR
E2E-VarNet	0.8920	37.1
HUMUS-Net	0.8951	37.4

Stanford3D multi-coil knee, 8x acceleration

Model	Val. SSIM	Val. PSNR
E2E-VarNet	0.9432 (±0.0063)	39.99 (±0.6144)
HUMUS-Net	0.9453 (±0.0065)	40.35 (±0.6460)

8x

8x

0.0085

0.0085

0.8919

0.8919

14)

30)

fastMRI multi-coil knee, 8x acceleration

Model	Test SSIM	Tes	t PSNR
E2E-VarNet	0.8920		37.1
HUMUS-Net	0.8951		37.4
HUMUS-Net 2/23/2022	8x	0.0086	0.8936
fastMRI Repo End-to-End Var 11/11/2020	Net 8x	0.0085	0.8920
SubtleMR			

6/23/2020

Deneme4

10/7/2021

fastMRI multi-coil knee, 8x acceleration

Model	Test SSIM	Test PSNR
E2E-VarNet	0.8920	37.1
HUMUS-Net	0.8951	37.4

Stanford3D multi-coil knee, 8x acceleration

Model	Val. SSIM	Val. PSNR
E2E-VarNet	0.9432 (±0.0063)	39.99 (±0.6144)
HUMUS-Net	0.9453 (±0.0065)	40.35 (±0.6460)

Deep Unrolling in lensless imaging

Deep Unrolling in lensless imaging

Deep unrolling in coded illumination pattern design

Kellman, M. R., Bostan, E., Repina, N. A., & Waller, L. (2019). Physics-based learned design: optimized coded-illumination for quantitative phase imaging. *IEEE Transactions on Computational Imaging*, 5(3), 344-353.

Deep unrolling in coded illumination pattern design

Kellman, M. R., Bostan, E., Repina, N. A., & Waller, L. (2019). Physics-based learned design: optimized coded-illumination for quantitative phase imaging. *IEEE Transactions on Computational Imaging*, 5(3), 344-353.

• Linear inverse problem formulation

$$\hat{x} = \arg \min_{x} ||Ax - y||^2 + \Re(x)$$
 and assume $\Re(x) = x^T R x$

• Linear inverse problem formulation

 $\hat{x} = \arg \min_{x} ||Ax - y||^2 + \Re(x)$ and assume $\Re(x) = x^T R x$

• Then the minimizer is

 $\hat{x} = (A^T A + R)^{-1} A^T y$

• Linear inverse problem formulation

 $\hat{x} = \arg \min_{x} ||Ax - y||^2 + \Re(x)$ and assume $\Re(x) = x^T R x$

• Then the minimizer is

 $\hat{x} = (A^T A + R)^{-1} A^T y$

• Neumann series expansion of inverse

$$oldsymbol{B}^{-1} = \eta \sum_{k=0}^{\infty} (oldsymbol{I} - \eta oldsymbol{B})^k$$

• Linear inverse problem formulation

 $\hat{x} = \arg \min_{x} ||Ax - y||^2 + \Re(x)$ and assume $\Re(x) = x^T R x$

• Then the minimizer is

 $\hat{x} = (A^T A + R)^{-1} A^T y$

• Neumann series expansion of inverse

$$oldsymbol{B}^{-1} = \eta \sum_{k=0}^{\infty} (oldsymbol{I} - \eta oldsymbol{B})^k$$

Gilton, D., Ongie, G. and Willett, R., 2019. Neumann networks for linear inverse problems in imaging. *IEEE Transactions on Computational Imaging*, 6, pp.328-343.

• Linear inverse problem formulation

 $\hat{x} = \arg \min_{x} ||Ax - y||^2 + \Re(x)$ and assume $\Re(x) = x^T R x$

• Then the minimizer is

 $\hat{x} = (A^T A + R)^{-1} A^T y$

• Neumann series expansion of inverse

Gilton, D., Ongie, G. and Willett, R., 2019. Neumann networks for linear inverse problems in imaging. *IEEE Transactions on Computational Imaging*, 6, pp.328-343.

Diffusion Models (Many slides stolen from Arash Vahdat and collaborators see refs at the end)

SOpenAI

l G DALL∙E 2

OpenAI

Text-to-Image Models

- What made this possible? Two key advances:
 - CLIP
 - Powerful generative models (diffusion)

 $x_0 \sim q(x)$ real data distribution

 $\label{eq:constraint} \begin{aligned} x_0 \sim q(x) \\ \text{real data distribution} \end{aligned}$

 $\label{eq:constraint} \begin{aligned} x_0 \sim q(x) \\ \text{real data distribution} \end{aligned}$

 x_{t-1}

. . .

 $\label{eq:constraint} \begin{aligned} x_0 \sim q(x) \\ \text{real data distribution} \end{aligned}$

 x_{t-1}

 X_t

 x_T noise

Forward diffusion process

$$q(x_t | x_{t-1}) = \mathcal{N}(x_t ; \sqrt{1 - \beta_t} x_{t-1}, \beta_t I) \qquad q(x_{1:T} | x_0) = \prod_{t=1}^T q(x_t | x_{t-1})$$
variance schedule: $\{\beta_t \in (0,1)\}_{t=1}^T$

 x_t

 x_T

 $x_0 \sim q(x)$

 x_{t-1}

- - x_T

• Reparametrization trick

 $q(x_t \mid x_{t-1}) = \mathcal{N}(x_t; \sqrt{1 - \beta_t} x_{t-1}, \beta_t I) \longrightarrow x_t = \sqrt{1 - \beta_t} x_{t-1} + \sqrt{\beta_t} \epsilon_{t-1}, \ \epsilon_{t-1} \sim \mathcal{N}(0, I)$

• Reparametrization trick

 $q(x_t \mid x_{t-1}) = \mathcal{N}(x_t; \sqrt{1 - \beta_t} x_{t-1}, \beta_t I) \longrightarrow x_t = \sqrt{1 - \beta_t} x_{t-1} + \sqrt{\beta_t} \epsilon_{t-1}, \ \epsilon_{t-1} \sim \mathcal{N}(0, I)$ deterministic variable

• Reparametrization trick

• Reparametrization trick

 x_T

 $x_{t} = \sqrt{1 - \beta_{t}} x_{t-1} + \sqrt{\beta_{t}} \epsilon_{t-1} := \sqrt{\alpha_{t}} x_{t-1} + \sqrt{1 - \alpha_{t}} \epsilon_{t-1}$

• Reparametrization trick

 $x_0 \sim q(x)$

 x_t

 $q(x_t \mid x_{t-1}) = \mathcal{N}(x_t; \sqrt{1 - \beta_t} x_{t-1}, \beta_t I) \longrightarrow x_t = \sqrt{1 - \beta_t} x_{t-1} + \sqrt{\beta_t} \epsilon_{t-1}, \ \epsilon_{t-1} \sim \mathcal{N}(0, I)$ aux. independent random deterministic variable variable

$$x_{t} = \sqrt{1 - \beta_{t}} x_{t-1} + \sqrt{\beta_{t}} \epsilon_{t-1} := \sqrt{\alpha_{t}} x_{t-1} + \sqrt{1 - \alpha_{t}} \epsilon_{t-1}$$
$$= \sqrt{\alpha_{t}} \sqrt{\alpha_{t-1}} x_{t-2} + \sqrt{\alpha_{t}} \sqrt{1 - \alpha_{t-1}} \epsilon_{t-2} + \sqrt{1 - \alpha_{t}} \epsilon_{t-1}$$

• Reparametrization trick

 $x_0 \sim q(x)$

 x_{t-1}

 $q(x_t \mid x_{t-1}) = \mathcal{N}(x_t; \sqrt{1 - \beta_t} x_{t-1}, \beta_t I) \longrightarrow x_t = \sqrt{1 - \beta_t} x_{t-1} + \sqrt{\beta_t} \epsilon_{t-1}, \ \epsilon_{t-1} \sim \mathcal{N}(0, I)$ aux. independent random deterministic variable variable

$$\begin{aligned} x_{t} &= \sqrt{1 - \beta_{t}} x_{t-1} + \sqrt{\beta_{t}} \epsilon_{t-1} := \sqrt{\alpha_{t}} x_{t-1} + \sqrt{1 - \alpha_{t}} \epsilon_{t-1} \\ &= \sqrt{\alpha_{t}} \sqrt{\alpha_{t-1}} x_{t-2} + \sqrt{\alpha_{t}} \sqrt{1 - \alpha_{t-1}} \epsilon_{t-2} + \sqrt{1 - \alpha_{t}} \epsilon_{t-1} \\ &= \sqrt{\alpha_{t}} \sqrt{\alpha_{t-1}} x_{t-2} + \sqrt{1 - \alpha_{t}} \alpha_{t-1} \bar{\epsilon}_{t-2} \end{aligned}$$

• Reparametrization trick

 $x_0 \sim q(x)$

 x_{t-1}

 x_T

$$\begin{aligned} x_{t} &= \sqrt{1 - \beta_{t}} x_{t-1} + \sqrt{\beta_{t}} \epsilon_{t-1} := \sqrt{\alpha_{t}} x_{t-1} + \sqrt{1 - \alpha_{t}} \epsilon_{t-1} \\ &= \sqrt{\alpha_{t}} \sqrt{\alpha_{t-1}} x_{t-2} + \sqrt{\alpha_{t}} \sqrt{1 - \alpha_{t-1}} \epsilon_{t-2} + \sqrt{1 - \alpha_{t}} \epsilon_{t-1} \\ &= \sqrt{\alpha_{t}} \sqrt{\alpha_{t-1}} x_{t-2} + \sqrt{1 - \alpha_{t}} \alpha_{t-1} \bar{\epsilon}_{t-2} = \dots = \sqrt{\alpha_{t}} \alpha_{t-1} \dots \alpha_{1} x_{0} + \sqrt{1 - \alpha_{t}} \alpha_{t-1} \dots \alpha_{1} \bar{\epsilon} \end{aligned}$$

• Reparametrization trick

 $x_0 \sim q(x)$

 x_{t-1}

 x_T

$$\begin{aligned} x_t &= \sqrt{1 - \beta_t} x_{t-1} + \sqrt{\beta_t} \epsilon_{t-1} \coloneqq \sqrt{\alpha_t} x_{t-1} + \sqrt{1 - \alpha_t} \epsilon_{t-1} \\ &= \sqrt{\alpha_t} \sqrt{\alpha_{t-1}} x_{t-2} + \sqrt{\alpha_t} \sqrt{1 - \alpha_{t-1}} \epsilon_{t-2} + \sqrt{1 - \alpha_t} \epsilon_{t-1} \\ &= \sqrt{\alpha_t} \sqrt{\alpha_{t-1}} x_{t-2} + \sqrt{1 - \alpha_t} \alpha_{t-1} \overline{\epsilon}_{t-2} = \ldots = \sqrt{\alpha_t} \alpha_{t-1} \ldots \alpha_1 x_0 + \sqrt{1 - \alpha_t} \alpha_{t-1} \ldots \alpha_1 \overline{\epsilon} \\ &\coloneqq \sqrt{\overline{\alpha_t}} x_0 + \sqrt{1 - \overline{\alpha_t}} \epsilon, \quad \epsilon \sim \mathcal{N}(0, I) \end{aligned}$$

• Reparametrization trick

 $x_0 \sim q(x)$

 x_T

$$\begin{aligned} x_t &= \sqrt{1 - \beta_t} x_{t-1} + \sqrt{\beta_t} \epsilon_{t-1} \coloneqq \sqrt{\alpha_t} x_{t-1} + \sqrt{1 - \alpha_t} \epsilon_{t-1} \\ &= \sqrt{\alpha_t} \sqrt{\alpha_{t-1}} x_{t-2} + \sqrt{\alpha_t} \sqrt{1 - \alpha_{t-1}} \epsilon_{t-2} + \sqrt{1 - \alpha_t} \epsilon_{t-1} \\ &= \sqrt{\alpha_t} \sqrt{\alpha_{t-1}} x_{t-2} + \sqrt{1 - \alpha_t} \alpha_{t-1} \overline{\epsilon}_{t-2} = \dots = \sqrt{\alpha_t} \alpha_{t-1} \dots \alpha_1 x_0 + \sqrt{1 - \alpha_t} \alpha_{t-1} \dots \alpha_1 \overline{\epsilon} \\ &\coloneqq \sqrt{\overline{\alpha_t}} x_0 + \sqrt{1 - \overline{\alpha_t}} \epsilon, \quad \epsilon \sim \mathcal{N}(0, I) \end{aligned}$$

Sampling from forward process at any t:

$$x_t = \sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, \quad \epsilon \sim \mathcal{N}(0, I)$$

"Creating noise from data is easy; creating data from noise is generative modeling."[1]

"Creating noise from data is easy; creating data from noise is generative modeling."[1]

 $x_0 \sim q(x)$

[1] Song, Y., Sohl-Dickstein, J., Kingma, D.P., Kumar, A., Ermon, S. and Poole, B., 2020. Score-based generative modeling through stochastic differential equations. arXiv preprint arXiv:2011.13456.

"Creating noise from data is easy; creating data from noise is generative modeling."[1]

"Creating noise from data is easy; creating data from noise is generative modeling."[1]

• If β_t is small, $q(x_{t-1}|x_t)$ is also Gaussian

"Creating noise from data is easy; creating data from noise is generative modeling."[1]

- If β_t is small, $q(x_{t-1}|x_t)$ is also Gaussian
- Estimating $q(x_{t-1}|x_t)$ is difficult, learn a model instead!

"Creating noise from data is easy; creating data from noise is generative modeling."[1]

- If β_t is small, $q(x_{t-1}|x_t)$ is also Gaussian
- Estimating $q(x_{t-1} | x_t)$ is difficult, learn a model instead!

Reverse diffusion process
$$p_{\theta}(x_{t-1} | x_t) = \mathcal{N}(x_{t-1}; \ \mu_{\theta}(x_t, t), \ \Sigma_{\theta}(x_t, t)) \qquad p_{\theta}(x_{0:T}) = p_{\theta}(x_T) \prod_{t=1}^{T} p_{\theta}(x_{t-1} | x_t)$$

[1] Song, Y., Sohl-Dickstein, J., Kingma, D.P., Kumar, A., Ermon, S. and Poole, B., 2020. Score-based generative modeling through stochastic differential equations. arXiv preprint arXiv:2011.13456.

"Creating noise from data is easy; creating data from noise is generative modeling."[1]

- If β_t is small, $q(x_{t-1}|x_t)$ is also Gaussian
- Estimating $q(x_{t-1} | x_t)$ is difficult, learn a model instead!

Reverse diffusion process
$$p_{\theta}(x_{t-1} | x_t) = \mathcal{N}(x_{t-1}; \ \mu_{\theta}(x_t, t), \ \Sigma_{\theta}(x_t, t)) \qquad p_{\theta}(x_{0:T}) = p_{\theta}(x_T) \prod_{t=1}^{T} p_{\theta}(x_{t-1} | x_t)$$

How to learn p_{θ} ?

[1] Song, Y., Sohl-Dickstein, J., Kingma, D.P., Kumar, A., Ermon, S. and Poole, B., 2020. Score-based generative modeling through stochastic differential equations. arXiv preprint arXiv:2011.13456.

• Reverse conditional probability is tractable

• Reverse conditional probability is tractable

• Reverse conditional probability is tractable

$$q(x_{t-1} | x_t, x_0) = \frac{q(x_t | x_{t-1}, x_0) q(x_{t-1} | x_0)}{q(x_t | x_0)}$$

• Reverse conditional probability is tractable

$$q(x_{t-1} | x_t, x_0) = \frac{q(x_t | x_{t-1}, x_0) \ q(x_{t-1} | x_0)}{q(x_t | x_0)}$$

• Reverse conditional probability is tractable

$$q(x_{t-1} | x_t, x_0) = \frac{q(x_t | x_{t-1}, x_0) q(x_{t-1} | x_0)}{q(x_t | x_0)}$$

$$q(x_{t-1} | x_t, x_0) = \mathcal{N}(x_{t-1}; \ \tilde{\mu}(x_t, x_0), \ \tilde{\beta}_t I)$$
$$\tilde{\mu}_t = \frac{1}{\sqrt{\alpha_t}} \left(x_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_t \right)$$
$$\tilde{\beta}_t = \frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_t} \beta_t$$

• Reverse conditional probability is tractable

$$q(x_{t-1} | x_t, x_0) = \frac{q(x_t | x_{t-1}, x_0) q(x_{t-1} | x_0)}{q(x_t | x_0)}$$

. . .

$$q(x_{t-1} | x_t, x_0) = \mathcal{N}(x_{t-1}; \ \tilde{\mu}(x_t, x_0), \ \tilde{\beta}_t I)$$
$$\tilde{\mu}_t = \frac{1}{\sqrt{\alpha_t}} \left(x_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_t \right)$$
$$\tilde{\beta}_t = \frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_t} \beta_t$$

• Reverse process:

$$p_{\theta}(x_{t-1} \mid x_t) = \mathcal{N}(x_{t-1}; \ \mu_{\theta}(x_t, t), \ \Sigma_{\theta}(x_t, t))$$

• Reverse conditional probability is tractable

$$q(x_{t-1} | x_t, x_0) = \frac{q(x_t | x_{t-1}, x_0) q(x_{t-1} | x_0)}{q(x_t | x_0)}$$

. . .

$$q(x_{t-1} | x_t, x_0) = \mathcal{N}(x_{t-1}; \ \tilde{\mu}(x_t, x_0), \ \tilde{\beta}_t I)$$
$$\tilde{\mu}_t = \frac{1}{\sqrt{\alpha_t}} \left(x_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_t \right)$$
$$\tilde{\beta}_t = \frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_t} \beta_t$$

• Reverse process: $p_{\theta}(x_{t-1} | x_t) = \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$

$$\mu_{\theta}(x_t, t) := \frac{1}{\sqrt{\alpha_t}} \left(x_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_{\theta}(x_t, t) \right)$$

• Training

$$L_{simple} = \mathbb{E}_{t \sim [1,T], x_0, \epsilon_t} \left[\|\epsilon_t - \epsilon_\theta \left(\sqrt{\bar{\alpha}_t} x_o + \sqrt{1 - \bar{\alpha}_t} \epsilon_t, t \right) \|^2 \right]$$

• Training

$$L_{simple} = \mathbb{E}_{t \sim [1,T], x_0, \epsilon_t} \left[\| \epsilon_t - \epsilon_\theta \left(\sqrt{\bar{\alpha}_t} x_o + \sqrt{1 - \bar{\alpha}_t} \epsilon_t, t \right) \|^2 \right]$$

• Training

$$L_{simple} = \mathbb{E}_{t \sim [1,T], x_0, \epsilon_t} \left[\| \epsilon_t - \epsilon_\theta \left(\sqrt{\bar{\alpha}_t} x_o + \sqrt{1 - \bar{\alpha}_t} \epsilon_t, t \right) \|^2 \right]$$

 $\epsilon \sim \mathcal{N}(0, I)$

• Training

$$L_{simple} = \mathbb{E}_{t \sim [1,T], x_0, \epsilon_t} \left[\| \epsilon_t - \epsilon_\theta \left(\sqrt{\bar{\alpha}_t} x_o + \sqrt{1 - \bar{\alpha}_t} \epsilon_t, t \right) \|^2 \right]$$

• Training

$$L_{simple} = \mathbb{E}_{t \sim [1,T], x_0, \epsilon_t} \left[\| \epsilon_t - \epsilon_\theta \left(\sqrt{\bar{\alpha}_t} x_o + \sqrt{1 - \bar{\alpha}_t} \epsilon_t, t \right) \|^2 \right]$$

• Training

$$L_{simple} = \mathbb{E}_{t \sim [1,T], x_0, \epsilon_t} \left[\| \epsilon_t - \epsilon_\theta \left(\sqrt{\bar{\alpha}_t} x_o + \sqrt{1 - \bar{\alpha}_t} \epsilon_t, t \right) \|^2 \right]$$

• Training

$$L_{simple} = \mathbb{E}_{t \sim [1,T], x_0, \epsilon_t} \left[\| \epsilon_t - \epsilon_\theta \left(\sqrt{\bar{\alpha}_t} x_o + \sqrt{1 - \bar{\alpha}_t} \epsilon_t, t \right) \|^2 \right]$$

• Sampling (naive)

• Sampling (naive)

• Sampling (naive)

$$p_{\theta}(x_{t-1} \mid x_t) = \mathcal{N}(x_{t-1}; \ \mu_{\theta}(x_t, t), \ \Sigma_{\theta}(x_t, t))$$
$$\mu_{\theta}(x_t, t) := \frac{1}{\sqrt{\alpha_t}} \left(x_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_{\theta}(x_t, t) \right)$$

• Sampling (naive)

$$p_{\theta}(x_{t-1} \mid x_t) = \mathcal{N}(x_{t-1}; \ \mu_{\theta}(x_t, t), \ \Sigma_{\theta}(x_t, t))$$
$$\mu_{\theta}(x_t, t) := \frac{1}{\sqrt{\alpha_t}} \left(x_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_{\theta}(x_t, t) \right)$$

Sampling (naive)

$$p_{\theta}(x_{t-1} \mid x_t) = \mathcal{N}(x_{t-1}; \ \mu_{\theta}(x_t, t), \ \Sigma_{\theta}(x_t, t))$$
$$\mu_{\theta}(x_t, t) := \frac{1}{\sqrt{\alpha_t}} \left(x_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_{\theta}(x_t, t) \right)$$

• Sampling (naive)

$$p_{\theta}(x_{t-1} \mid x_t) = \mathcal{N}(x_{t-1}; \ \mu_{\theta}(x_t, t), \ \Sigma_{\theta}(x_t, t))$$
$$\mu_{\theta}(x_t, t) := \frac{1}{\sqrt{\alpha_t}} \left(x_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_{\theta}(x_t, t) \right)$$

• Sampling (naive)

$$p_{\theta}(x_{t-1} \mid x_t) = \mathcal{N}(x_{t-1}; \ \mu_{\theta}(x_t, t), \ \Sigma_{\theta}(x_t, t))$$
$$\mu_{\theta}(x_t, t) := \frac{1}{\sqrt{\alpha_t}} \left(x_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_{\theta}(x_t, t) \right)$$

credit: Alex Nichol

credit: Alex Nichol

Diffusion Models as Score Matching

Consider the forward diffusion process again:

Data

Consider the limit of many small steps:

Consider the limit of many small steps:

Consider the limit of many small steps:

Consider the limit of many small steps:

Data

Stochastic Differential Equation (SDE) describing the diffusion in infinitesimal limit

The Generative Reverse Stochastic Differential Equation

Simulate reverse diffusion process: Data generation from random noise!

Song et al., "Score-Based Generative Modeling through Stochastic Differential Equations", ICLR, 2021

Diffusion Models in Inverse Problems

General framework

 $y = \mathscr{A}(x_0) + z$

Unconditional sampling

 $\hat{\mathbf{x}}_{t_{i-1}} = \boldsymbol{h}(\hat{\mathbf{x}}_{t_i}, \mathbf{z}_i, \boldsymbol{s}_{\boldsymbol{\theta}} * (\hat{\mathbf{x}}_{t_i}, t_i))$

General framework

 $y = \mathscr{A}(x_0) + z$

Unconditional sampling

 $\hat{\mathbf{x}}_{t_{i-1}} = \boldsymbol{h}(\hat{\mathbf{x}}_{t_i}, \mathbf{z}_i, \boldsymbol{s}_{\boldsymbol{\theta}} * (\hat{\mathbf{x}}_{t_i}, t_i))$

Measurement conditioned sampling

1) Data consistency step

 $\hat{\mathbf{x}}'_{t_i} = \boldsymbol{k}(\hat{\mathbf{x}}_{t_i}, \hat{\mathbf{y}}_{t_i}, \lambda)$

2) Unconditional diffusion step

$$\hat{\mathbf{x}}_{t_{i-1}} = \boldsymbol{h}(\hat{\mathbf{x}}'_{t_i}, \mathbf{z}_i, \boldsymbol{s}_{\boldsymbol{\theta}} * (\hat{\mathbf{x}}_{t_i}, t_i)), \quad i = N, N - 1, \cdots, 1$$

General framework

 $y = \mathscr{A}(x_0) + z$

Unconditional sampling

 $\hat{\mathbf{x}}_{t_{i-1}} = \boldsymbol{h}(\hat{\mathbf{x}}_{t_i}, \mathbf{z}_i, \boldsymbol{s}_{\boldsymbol{\theta}} * (\hat{\mathbf{x}}_{t_i}, t_i))$

Measurement conditioned sampling

1) Data consistency step

 $\hat{\mathbf{x}}_{t_i}' = \boldsymbol{k}(\hat{\mathbf{x}}_{t_i}, \hat{\mathbf{y}}_{t_i}, \lambda)$

2) Unconditional diffusion step

$$\hat{\mathbf{x}}_{t_{i-1}} = \boldsymbol{h}(\hat{\mathbf{x}}'_{t_i}, \mathbf{z}_i, \boldsymbol{s}_{\boldsymbol{\theta}} * (\hat{\mathbf{x}}_{t_i}, t_i)), \quad i = N, N - 1, \cdots, 1$$

Song, Yang, et al. "Solving inverse problems in medical imaging with score-based generative models." arXiv preprint arXiv:2111.08005 (2021).

Assume that the forward model has the form:

Assume that the forward model has the form:

Measurement conditioned sampling

1) Data consistency

$$\hat{\mathbf{x}}_{t_i}' = \boldsymbol{k}(\hat{\mathbf{x}}_{t_i}, \hat{\mathbf{y}}_{t_i}, \lambda)$$

- 2) Unconditional diffusion
 - $\hat{\mathbf{x}}_{t_{i-1}} = \boldsymbol{h}(\hat{\mathbf{x}}'_{t_i}, \mathbf{z}_i, \boldsymbol{s}_{\boldsymbol{\theta}} * (\hat{\mathbf{x}}_{t_i}, t_i)), \quad i = N, N 1, \cdots, 1$

Assume that the forward model has the form:

Measurement conditioned sampling

1) Data consistency

$$\hat{\mathbf{x}}_{t_i}' = \boldsymbol{k}(\hat{\mathbf{x}}_{t_i}, \hat{\mathbf{y}}_{t_i}, \lambda)$$

2) Unconditional diffusion

$$\hat{\mathbf{x}}_{t_{i-1}} = \boldsymbol{h}(\hat{\mathbf{x}}'_{t_i}, \mathbf{z}_i, \boldsymbol{s}_{\boldsymbol{\theta}} * (\hat{\mathbf{x}}_{t_i}, t_i)), \quad i = N, N - 1, \cdots, 1$$

Data consistency:

$$\hat{\mathbf{x}}_{t_i}' = \underset{\mathbf{z} \in \mathbb{R}^n}{\arg\min} \{ (1 - \lambda) \| \mathbf{z} - \hat{\mathbf{x}}_{t_i} \|_{\mathbf{T}}^2 + \min_{\mathbf{u} \in \mathbb{R}^n} \lambda \| \mathbf{z} - \mathbf{u} \|_{\mathbf{T}}^2 \} \quad s.t. \quad \mathbf{A}\mathbf{u} = \hat{\mathbf{y}}_{t_i}$$
Reconstruction results

PSNR: 15.32, SSIM: 0.796 PSNR: 17.79, SSIM: 0.454 PSNR: 17.60, SSIM: 0.471 PSNR: 27.88, SSIM: 0.908 PSNR: 35.57, SSIM: 0.929

Deblurring and inpainting results

Kawar, Bahjat, et al. "Denoising diffusion restoration models." arXiv preprint arXiv:2201.11793 (2022).

Intuition

Song, Yang, et al. "Solving inverse problems in medical imaging with score-based generative models." arXiv preprint arXiv:2111.08005 (2021).

Diffusion Posterior Sampling

Bayesian framework

$$oldsymbol{y} = \mathcal{A}(oldsymbol{x}) + oldsymbol{n}$$
 $p_{ heta}(oldsymbol{x}|oldsymbol{y}) \propto p_{ heta}(oldsymbol{x}) p(oldsymbol{y}|oldsymbol{x})$

solve inverse problem = sample from posterior

Diffusion Posterior Sampling

Bayesian framework

$$oldsymbol{y} = \mathcal{A}(oldsymbol{x}) + oldsymbol{n}$$
 $p_{ heta}(oldsymbol{x}|oldsymbol{y}) \propto p_{ heta}(oldsymbol{x}) p(oldsymbol{y}|oldsymbol{x})$

solve inverse problem = sample from posterior

• Hijacking the diffusion process

 $\nabla_{\boldsymbol{x}} \log p_{\theta}(\boldsymbol{x}|\boldsymbol{y}) = \nabla_{\boldsymbol{x}} \log p_{\theta}(\boldsymbol{x}) + \nabla_{\boldsymbol{x}} \log p(\boldsymbol{y}|\boldsymbol{x})$

Diffusion Posterior Sampling

Bayesian framework

$$oldsymbol{y} = \mathcal{A}(oldsymbol{x}) + oldsymbol{n}$$
 $p_{ heta}(oldsymbol{x}|oldsymbol{y}) \propto p_{ heta}(oldsymbol{x}) p(oldsymbol{y}|oldsymbol{x})$

solve inverse problem = sample from posterior

• Hijacking the diffusion process

$$\nabla_{\boldsymbol{x}} \log p_{\boldsymbol{\theta}}(\boldsymbol{x}|\boldsymbol{y}) = \nabla_{\boldsymbol{x}} \log p_{\boldsymbol{\theta}}(\boldsymbol{x}) + \nabla_{\boldsymbol{x}} \log p(\boldsymbol{y}|\boldsymbol{x})$$

or prior = pre-trained diffusion model

Diffusion posterior sampling

Chung, H., Sim, B., Ryu, D. and Ye, J.C., 2022. Improving Diffusion Models for Inverse Problems using Manifold Constraints. arXiv preprint arXiv:2206.00941.

Dirac Diffusion

Cold diffusion

Cold diffusion

Stochastic Degradation Process (SDP)

Degradation Severity

Measurement t = 1

t = 0

Property 1: \mathcal{A}_t is more severe than $\mathcal{A}_{t'}$, $\forall t > t'$

Property 2:
$$\mathcal{A}_0(\mathbf{x_0}) = \mathbf{x_0}$$

DiracDiffusion (Denoising and Incremental Reconstruction with Assured Data-Consistency)

We learn to iteratively reverse small steps of degradation, which we call **incremental reconstruction** (IR).

Experimental Results

Data-consistency

Excellent reconstruction quality

Fast sampling

	Deblurring				Inpainting			
Method	$PSNR(\uparrow)$	$SSIM(\uparrow)$	$LPIPS(\downarrow)$	$FID(\downarrow)$	$PSNR(\uparrow)$	$SSIM(\uparrow)$	$LPIPS(\downarrow)$	$FID(\downarrow)$
Dirac-PO (ours)	26.67	0.7418	0.2716	53.36	25.41	0.7595	0.2611	39.43
Dirac-DO (ours)	28.47	0.8054	0.2972	69.15	26.98	0.8435	0.2234	51.87
DPS (Chung et al., 2022a)	25.56	0.6878	0.3008	65.68	21.06	0.7238	0.2899	57.92
DDRM (Kawar et al., 2022a)	27.21	0.7671	0.2849	65.84	25.62	0.8132	0.2313	54.37
SwinIR (Liang et al., 2021)	28.53	0.8070	0.3048	72.93	24.46	0.8134	0.2660	59.94
PnP-ADMM (Chan et al., 2016)	27.02	0.7596	0.3973	74.17	12.27	0.6205	0.4471	192.36
ADMM-TV	26.03	0.7323	0.4126	89.93	11.73	0.5618	0.5042	264.62
	Deblurring				Inpainting			
		Deblu	rring			Inpair	nting	
Method	PSNR(†)	Deblu SSIM(†)	$\frac{\mathbf{rring}}{\mathrm{LPIPS}(\downarrow)}$	FID(↓)	PSNR(↑)	Inpair SSIM(†)	$\frac{\text{nting}}{\text{LPIPS}(\downarrow)}$	$FID(\downarrow)$
Method Dirac-PO (ours)	PSNR(↑) 24.68	Deblu SSIM(↑) 0.6582	rring LPIPS(↓) 0.3302	FID(↓) 53.91	PSNR(†) 26.36	Inpair SSIM(↑) 0.8087	nting LPIPS(↓) 0.2079	FID(↓) 34.33
Method Dirac-PO (ours) Dirac-DO (ours)	PSNR(†) 24.68 25.76	Deblu SSIM(↑) 0.6582 0.7085	rring LPIPS(↓) 0.3302 0.3705	FID(↓) <u>53.91</u> 83.23	PSNR(†) 26.36 28.92	Inpair SSIM(↑) 0.8087 0.8958	nting LPIPS(↓) 0.2079 0.1676	FID(↓) <u>34.33</u> 38.25
Method Dirac-PO (ours) Dirac-DO (ours) DPS (Chung et al., 2022a)	PSNR(†) 24.68 25.76 21.51	Deblu SSIM(↑) 0.6582 0.7085 0.5163	rring LPIPS(↓) 0.3302 0.3705 0.4235	FID(↓) 53.91 83.23 52.60	PSNR(↑) 26.36 28.92 22.71	Inpair SSIM(↑) 0.8087 0.8958 0.8026	nting LPIPS(↓) 0.2079 0.1676 0.1986	FID(↓) <u>34.33</u> 38.25 34.55
Method Dirac-PO (ours) Dirac-DO (ours) DPS (Chung et al., 2022a) DDRM (Kawar et al., 2022a)	PSNR(†) 24.68 25.76 21.51 24.53	Deblu SSIM(↑) 0.6582 0.7085 0.5163 0.6676	rring LPIPS(↓) 0.3302 0.3705 0.4235 0.3917	FID(↓) 53.91 83.23 52.60 61.06	PSNR(†) 26.36 28.92 22.71 25.92	Inpair SSIM(↑) 0.8087 0.8958 0.8026 0.8347	nting LPIPS(↓) 0.2079 0.1676 0.1986 0.2138	FID(↓) <u>34.33</u> 38.25 34.55 33.71
Method Dirac-PO (ours) Dirac-DO (ours) DPS (Chung et al., 2022a) DDRM (Kawar et al., 2022a) SwinIR (Liang et al., 2021)	PSNR(†) 24.68 25.76 21.51 24.53 25.07	Deblu SSIM(↑) 0.6582 0.7085 0.5163 0.6676 0.6801	rring LPIPS(↓) 0.3302 0.3705 0.4235 0.3917 0.4159	FID(↓) 53.91 83.23 52.60 61.06 84.80	PSNR(↑) 26.36 28.92 22.71 25.92 26.87	Inpair SSIM(↑) 0.8087 0.8958 0.8026 0.8347 0.8490	nting LPIPS(↓) 0.2079 0.1676 0.1986 0.2138 0.2161	FID(↓) <u>34.33</u> <u>38.25</u> <u>34.55</u> <u>33.71</u> <u>45.69</u>
Method Dirac-PO (ours) Dirac-DO (ours) DPS (Chung et al., 2022a) DDRM (Kawar et al., 2022a) SwinIR (Liang et al., 2021) PnP-ADMM (Chan et al., 2016)	PSNR(†) 24.68 25.76 21.51 24.53 25.07 25.02	Deblu SSIM(↑) 0.6582 0.7085 0.5163 0.6676 0.6801 0.6722	rring LPIPS(↓) 0.3302 0.3705 0.4235 0.3917 0.4159 0.4565	FID(↓) 53.91 83.23 52.60 61.06 84.80 98.72	PSNR(↑) 26.36 28.92 22.71 25.92 <u>26.87</u> 18.14	Inpair SSIM(↑) 0.8087 0.8958 0.8026 0.8347 0.8490 0.7901	nting LPIPS(↓) 0.2079 0.1676 0.1986 0.2138 0.2161 0.2709	FID(↓) <u>34.33</u> 38.25 34.55 33.71 45.69 101.25

Table 1. Experimental results on the FFHQ (top) and ImageNet (bottom) test splits.

Untrained methods

Future Directions

Reliability Challenge

 DL model "sees" features on reconstructions that shouldn't be present

- DL model "sees" features on reconstructions that shouldn't be present
- Hallucinated features appear real as opposed to reconstruction artifacts

- DL model "sees" features on reconstructions that shouldn't be present
- Hallucinated features appear real as opposed to reconstruction artifacts
- Can lead to critical mistakes (misdiagnosis)

Critical reconstruction errors

• 3D nano-scale imaging example

Target nano-structure

DL reconstruction

Bias

Bias

Bias

Data Scarcity Challenge

Create a Phase Retrieval DataSet

Reduce reliance on training data

Reduce reliance on training data

Reduce reliance on training data

Computational/complexity Challenge

Complexity of scientific data

High spatial resolution

 640×368

Complexity of scientific data

High spatial resolution

Large number of image channels

 640×368

Complexity of scientific data

High spatial resolution

Complex valued images

magnitude

phase

Thanks!

Funding acknowledgement

References

Deep Learning Techniques for Inverse Problems in Imaging

Gregory Ongie, Ajil Jalal, Christopher A. Metzler, Richard G. Baraniuk, Alexandros G. Dimakis, Rebecca Willett

https://arxiv.org/abs/2005.06001

Great Talk by Alex Dimakis on Generative models

https://simons.berkeley.edu/sites/default/files/docs/18458/simons-dimakis.pdf

Great Tutorial By Arash Vahdat and Collaborators on Diffusion Models

https://www.youtube.com/watch?v=cS6JQpEY9cs

https://www.youtube.com/watch?v=1d4r19GEVos

 Additional References: https://docs.google.com/spreadsheets/d/ 1e36mDqj8SY9ODT3Kz8frqSchK2QDWZdHuzVy-EKjhFo/edit?usp=sharing