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Abstract

One of the more novel recent innovations in the logistics world, both in theory and in practice,
is the use of small autonomous vehicles to facilitate last-mile delivery. One particular scheme that
has received considerable recent attention is the “sidekick” scheme, in which a large cargo truck
acts as a mobile “host” that deploys smaller vehicles, such as aerial drones or unmanned ground
vehicles (UGVs). In this paper, we develop a continuous approximation model that estimates the
improvements to total completion time that such a system provides, in the asymptotic limit as
many demand points are drawn from a continuous probability distribution in the plane. Our key
finding is that sidekick systems can be beneficial even when the sidekicks are slower than the host,
provided there are sufficiently many of them.

1 Introduction

One logistical paradigm that has received considerable attention in recent years is the sidekick routing
scheme. A sidekick routing scheme is a logistical framework in which a large “host” vehicle, such as a
truck or van, serves as a mobile base for a fleet of small vehicles (the “sidekicks”), such as unmanned
ground vehicles (UGVs) or unmanned aerial vehicles (UAVs). The sidekicks alternate between visiting
the truck to pick up items and visiting the customers, and the overall objective is to determine a
coordinated set of routes for all vehicles in order to optimize system efficiency, such as minimizing the
time to completion, the vehicle miles travelled (VMT), or some other measure. A sketch of such a
system is shown in Figure 1. The same model applies if we think of the sidekicks as picking up items
from the customers, but for consistent, brief terminology we will place ourselves in the delivery setting
throughout this work.

Until recently, the use of sidekick routing schemes was restricted to conceptual prototypes, such
as the Amazon patent [10] and a pilot project by UPS [27]. However, the FAA Reauthorization Act of
2024 and subsequent regulatory progress toward standardized Beyond Visual Line of Sight (BVLOS)
operations have created a more favorable climate for commercial drone delivery, with Transportation
Secretary Duffy signaling imminent rules to expand drone deliveries [1] and Canada amending its
Aviation Regulations to ease BVLOS restrictions for certain operations beginning November 2025
[29]. In the context of material handling in a warehouse, 6 River Systems has deployed a system
called “Chuck”, in which human order pickers and AGVs work collaboratively, although the problem
attributes are somewhat distinct from those studied in this paper [22]. The issues in deploying sidekick
systems appear to stem from a combination of regulatory hurdles as well as the practical difficulty
in having physical coordinated interactions between different transportation modes; for example, the
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Chuck system coordinates humans with AGVs in a way that requires fine-tuned interaction beyond
the scope of existing autonomous sytems. At present, current mainstream drone delivery operations
focus more on centralized systems in which drones fly directly from a central depot or warehouse
to individual customers [24], i.e. without being deployed from a mobile truck. These non-sidekick
systems feature simpler logistics and do not require coordination between a truck and drones. While
there has been extensive academic research on truck-drone routing problems in recent years, as we
discuss in our literature review, the practical implementation of these systems has been more limited,
with hardware development outpacing operational deployment. From the perspective of routing these
systems pose an exceptionally difficult challenge due to the need to synchronize multiple vehicles that
can all be traveling at the same time and at different speeds. We cannot consider vehicles’ routes
separately as we must include the possibility of vehicles carrying other vehicles for periods of time and
the need for intermittent meetings of vehicles at the same position at the same point in time. Thus
we see that individual vehicles’ routes are highly interdependent, and any reasonable objective will be
impacted by this interdependence, making the optimization very hard. Furthermore, the high-level
attributes of these systems are not at all clear: how much more efficient can they be? When are they
useful? What are the trade-offs inherent in such a scheme? We employ a continuous approximation
analysis as a means of helping to answer these questions.

This paper is organized as follows. In Section 2 we provide an overview of related work. In Section
3 we formally define the sidekick routing problem. In Section 4 we introduce preliminary results
that will be of use in our analysis. In Section 5 we derive our main result concerning the asymptotic
behavior of the sidekick routing problem; our key finding is that sidekick systems can be beneficial even
when the sidekicks are slower than the host, provided there are sufficiently many of them. In Section
6 we summarize the operational implications of this result. In particular, we consider how much
improvement in efficiency can be gained by switching to the sidekick system and the tradeoffs that
must be weighed in implementing the system. Finally, in Section 7 we consider the scaling behavior,
and dependence on the configuration of the sidekicks, that our result tells us we should expect. We
empirically demonstrate that actual tour times, obtained by heuristically solving the sidekick problem
on simulated sets of customer points, corroborate our expectations.

1.1 Remark on notational conventions

When it is necessary to specify that a map is injective, we use ↪→. For optimization problems we use
sans serif problem names to denote the optimal objective value of the problem, e.g. the length of the
optimal TSP tour is denoted TSP. We use the notation a ∝ b to denote linear proportionality between
a and b with an unspecified proportionality constant.

2 Related work

In 2018 Otto et al. compiled a comprehensive review, [19], of work on optimization approaches to
systems employing drones for a wide range of applications, to include package delivery and specifically
package delivery using drones as sidekicks for trucks. More recent surveys have focused exclusively on
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Figure 1: The figure on the left shows a travelling salesman tour of a set of client destinations and a
central depot, that is, the shortest tour that visits a collection of points and starts and ends at the
central depot. The figure on the right shows a solution to a “sidekick” problem in which the truck
has a sidekick (such as a robot or a drone) that alternates between visiting the truck and visiting
the customer locations with the goal of minimizing the completion time of the tour.

the routing problem for drone-aided systems; see Khoufi et al. [13] from 2019 and Macrina et. al. [15]
from 2020. Viloria et al. [23] from 2020 and Moshref-Javadi and Winkenbach [17] from 2021 surveyed
work on a broader class of routing problems with drones to include sidekick routing. Chung et al.’s
[9] review from 2020 covers optimization problems for truck-drone coordinated systems to include
delivery.

We are primarily interested in prior work in the area of continuous approximation and theoretical
results bounding the objective or characterizing the improvement due to sidekick introduction. For
work on solving sidekick problems we concern ourselves principally with these papers’ formulations of
the problem and focus on papers that contribute new model elements. There are many variants, each
differing in the assumptions that are made about the delivery system. Three critical questions, the
answers to which change from model to model, that need to be posed are given below.

• Does the truck also deliver packages or are packages only delivered by the sidekicks?

• Can the truck carry multiple sidekicks capable of making simultaneous deliveries?

• Are the sidekick launch and pickup locations restricted to customer points, or otherwise to a
discrete set of points that is specified a priori?

We can see that our formulation has the least restrictive answers to these questions and thus addresses
the problem in the greatest generality. That is, in our model we have the following.

• We allow for both the case that deliveries must be made by sidekicks and the case that the truck
can also make deliveries.

• There can be any number of sidekicks on the truck and they are free to be launched and picked
up in any order.

• The sidekick launch and pickup locations can be any point in the plane.
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Other factors that distinguish the models surveyed here are the treatment of a restricted drone range
and the way that the objective, be it completion time or cost or some measure of energy consumed,
is determined. This work assumes unlimited drone range and that drones make a single delivery per
trip from the truck. We take as our objective completion time. We assume that the time spent
actually dropping a package at a customer node as well as the time spent capturing a sidekick and
preparing it for relaunch are negligible. Both the truck and the sidekicks travel at fixed speeds along
Euclidean distances. The specification of their relative speeds does however allow one to build some
knowledge of the underlying network into the objective. One additional assumption that adds to the
robustness of our formulation is that the sidekicks are allowed to be slower than the truck. We are thus
able to accurately model systems like the truck-UGV schemes discussed in the introduction, whereas
some papers surveyed require that the sidekicks be faster. For an in depth consideration of modeling
concerns for drone routing problems see [20].

As this paper is concerned with theoretical analysis of sidekick problems, we deliberately narrow
our focus, omitting a broader discussion of algorithmic approaches – whether exact or heuristic –
in the interest of brevity. Wang et al. [30] consider the Vehicle Routing Problem with Drones in
which multiple vehicles each carry multiple drones. They derive upper bounds on the improvement
in completion time to be gained over the optimal TSP and VRP solutions without drones as well as
the improvement to be gained by introducing faster drones. Poikonen et al. [21] extend the model of
[30]. A battery life (time limit) is imposed on the drones; the possibility of using different distance
metrics for the truck and drone and the possibility of using cost rather than time based objectives are
considered; and there is an extension to the close-enough vehicle routing problem. Their results are
bounds on improvement due to introduction of drones and due to different drone configurations.

Agatz et al. [2] produce a result that is a generalization of the results of [30] when applied to the
TSP-D. That is, they give an upper bound on the improvement in completion time over just-truck
routing allowing different distance metrics to be used for the truck and drone distances. The authors
further give a lower bound to the TSP-D and an approximation algorithm using minimum spanning
trees.

Campbell et al. [7] study a continuous approximation model for a sidekick problem with a truck
carrying multiple drones. Demand is modeled as a continuous spatial density. Customer points are
visited in rectangular swaths. The authors provide the expected cost of delivery in terms of the
customer density and the truck and drone per-unit-distance and dropoff costs. Comparison is made to
the expected cost without drones. Unlike in our model, drone launch and pickup locations are limited
to customer points, and the sequence of deliveries is fixed to a truck delivery at which all drones are
launched followed by another truck delivery at which all drones are picked up and relaunched.

Zhang [32] employs continuous approximation to characterize cost and emissions of truck-only,
drone-only and truck-drone tandem delivery. Demand is modeled as a continuous spatial density.
For the truck-drone tandem the truck carries a single drone which it launches at a truck-delivered
customer point and retrieves and relaunches at its next truck delivery point. Thus the tour alternates
truck and drone deliveries. The expected travel distances for a truck-drone route that visits customers
in rectangular swaths is then determined and used to compute expected costs. Zhang’s analysis and
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classification of multiple drone energy consumption models then informs modeling of drone emissions.
This allows for computation of expected emissions for the different delivery systems. Zhang presents
comparison, in cost and emissions, of the different delivery systems as well as comparison to the
utilization of multiple systems for different subregions of the service region. Zhang shows how cost
and emissions performance depend on drone and truck characteristics as well as the delivery density.
Finally, an analysis of the tradeoff between cost and emissions is conducted.

In [8] Carlsson and Song consider the sidekick problem as formulated in this paper except restricted
to only one sidekick and assuming that the sidekick is faster than the truck. Using a continuous ap-
proximation model that assumes a smooth demand distribution they are able to derive the asymptotic
behavior of the optimal tour as the number of customers goes to infinity. This then yields a character-
ization of the improvement to be gained by introducing a sidekick and how this improvement depends
on the relative speeds of the truck and sidekick.

3 Problem definitions

We begin by formally defining the problem of sidekick routing with multiple sidekicks. We assume
that a single, uncapacitated truck must provide service to a collection of n customers in the plane,
using the assistance of k sidekicks having unit capacity, and that the goal is to minimize the time to
completion. To simplify exposition, we will first formulate our problem with an additional constraint
that the truck itself is not permitted to visit any customers:

Definition 1. Let p1, . . . , pn be a collection of points in the plane. Let k denote the number of
sidekicks. Let ϕ0 denote the speed of the truck, and let ϕ1 denote the speed of each sidekick (ϕ1 can
be greater or less than ϕ0). Let variables x1, . . . , xn be the launch points for the sidekicks, and let
variables y1, . . . , yn be the pickup points for the sidekicks. That is, point pi is visited by a sidekick
that is launched at point xi and is retrieved at point yi. Note that multiple launch/pickup events
could occur at the same location, e.g. xi = yj .

Let variables zj , j ∈ {1, . . . , 2n}, be the location of the jth sidekick launch or pickup event, and
let variables tj , j ∈ {1, . . . , 2n}, be the time of the jth sidekick launch or pickup event. The zj ’s
take the same values as the xi’s and the yi’s; we introduce them only to make indexing easier in the
formulation. We let z0 be the initial position of the truck and let z2n+1 be its final position. We
require that the truck’s tour be a loop, i.e. z2n+1 = z0. We let t0, equaling zero, be the time at which
the truck starts its loop and let t2n+1 be the time at which the truck completes its loop.

Let σ : {1, . . . , n} ↪→ {1, . . . , 2n} map customer index i to the place of that customer’s sidekick
launch event in the ordering of all launch and pickup events. Similarly let π : {1, . . . , n} ↪→ {1, . . . , 2n}
map customer index i to the place of that customer’s sidekick pickup event in the ordering of all launch
and pickup events. That is if σ(3) = 5 and π(3) = 8, customer 3 is serviced by a sidekick whose launch
is the 5th launch/pickup event and whose pickup is the 8th launch/pickup event. Let F be the set of
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all pairs of mappings (σ, π) that induce a valid sidekick tour. The conditions for inclusion in F are

σ(i) < π(i) ∀i ∈ {1, . . . , n} (launches occur before corresponding pickups)

|{i : σ(i) < j}| − |{i : π(i) < j}| ≤ k ∀j (never more than k sidekicks in use)

σ, π are injective (a launch and a pickup for each customer)

σ(i) ̸= π(i′) ∀i, i′ ∈ {1, . . . , n}. (one event per place in the ordering)

The second condition says that at any time there have been at most k more launch events than
there have been pickup events, ensuring that we are never making use of more than k sidekicks at a
time. The last two conditions say that the maps σ and π have to jointly form a bijection between
{1, . . . , n} and {1, . . . , 2n} (to be precise, the two maps actually form a bijection between the multiset
{1, . . . , n} ⊎ {1, . . . , n} and {1, . . . , 2n}, where ⊎ denotes the multiset union [14]).

The sidekick problem problem is then given by

minimize
x,y,z,t,σ,π

t2n+1 s.t. (SK1)

tj ≥ tj−1 + 1
ϕ0

∥zj − zj−1∥ ∀j ∈ {1, . . . , 2n + 1} (1)

tπ(i) ≥ tσ(i) + 1
ϕ1

∥xi − pi∥ + 1
ϕ1

∥pi − yi∥ ∀i ∈ {1, . . . , n} (2)

zσ(i) = xi ∀i ∈ {1, . . . , n}

zπ(i) = yi ∀i ∈ {1, . . . , n}

t0 = 0

z2n+1 = z0

(σ, π) ∈ F ,

where the objective value is the time at which the truck completes its loop, (1) captures the time
needed for the truck to travel between launch and pickup points, and (2) captures the time needed for
a sidekick to travel from its launch point, to a customer, and then to its pickup point.

To extend (SK1) to the case where the truck is permitted to visit customers, some additional
notation is required:

Definition 2. We partition the set of customers into two sets S ⊆ {1, . . . , n}, representing those
customers visited by a sidekick, and its complement T = S̄, representing those customers visited by
the truck (these sets are optimization variables because we can choose which customers are visited by
the truck). The number of events is now equal to m := 2|S| + |T | because a truck visiting a customer
counts as only one event. This necessitates a third map θ : T ↪→ {1, . . . , m}, in addition to the maps
σ, π : S ↪→ {1, . . . , m}. Let F be the set of all (σ, π, θ) that induce a valid sidekick tour. We have the
same conditions as in the previous problem that ensure σ and π do not pickup before launching or use
more than k sidekicks. In addition, in this case we must require that each sidekick-visited customer
has a launch and a pickup event and each truck-visited customer has a truck visit event, with each of
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Figure 2: Solutions to the sidekick problem for n = 30 customers, k = 3 sidekicks, and a sidekick
speed, ϕ1, that is twice the speed, ϕ0, of the truck. The solid line is the truck tour; each sidekick’s
route has its own dashed/dotted line style; the square represents the starting and finishing point of
the truck. In the figure on the left all deliveries are made by the sidekicks (Problem SK1). In the
figure on the right the truck is also allowed to make deliveries (Problem SK2).

these events being mapped to a unique place in the ordering of events. That is,

σ, π :S ↪→ {1, . . . , m}

θ :T ↪→ {1, . . . , m}

σ(S), π(S), θ(T ) are pairwise disjoint.

Put another way, the maps σ, π, and θ have to jointly form a bijection between S ∪ T and {1, . . . , m}
(to be precise, the three maps actually form a bijection between the multiset S ⊎S ∪T and {1, . . . , m}).
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The extension to (SK1) is then a natural one:

minimize
x,y,z,t,σ,π,θ

tm+1 s.t. (SK2)

tj+1 ≥ tj + 1
ϕ0

∥zj+1 − zj∥ ∀j ∈ {1, . . . , m} (3)

tπ(i) ≥ tσ(i) + 1
ϕ1

(∥xi − pi∥ + ∥pi − yi∥) ∀i ∈ S (4)

zσ(i) = xi ∀i ∈ S

zπ(i) = yi ∀i ∈ S

zθ(i) = pi ∀i ∈ T

t0 = 0

zm+1 = z0

(σ, π, θ) ∈ F ,

where S is defined as the domain of variables σ and π and T is the domain of variable θ.
Figure 2 shows examples of solutions to the problems defined above for 30 customers with multiple

sidekicks that are faster than the truck.

4 Preliminaries

Having defined two variants of sidekick routing, we now turn to some preliminary results that will be
useful in our analysis of these problems. This section presents existing results from prior work as well
as some additional analysis of our own.

4.1 Existing results from related work

The concept of a subadditive Euclidean functional was introduced in [25], which provides a key insight
that we will use in this paper:

Definition 3. A function L(·) from the set of finite subsets of R2 to the non-negative real numbers is
said to be a monotone subadditive Euclidean functional on R2 if it satisfies the following properties:

1. L(∅) = 0.

2. Homogeneity: L(αx1, . . . , αxn) = αL(x1, . . . , xn) for all real α > 0.

3. Translation invariance: L(x1 + x, . . . , xn + x) = L(x1, . . . , xn) for all x ∈ R2.

4. Monotonicity: L(x ∪ A) ≥ L(A) for any x ∈ R2 and finite subset A ⊂ R2.

5. Geometric subadditivity: There exists a constant C > 0, such that for all positive integers m, n
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and {x1, . . . , xn} ∈ [0, 1]2, we have

L(x1, . . . , xn) ≤
m2∑
i=1

L({x1, . . . , xn} ∩ Qi) + Cm

where {Qi}, 1 ≤ i ≤ m2 is the partition of [0, 1]2 into squares of edge length 1/m.

Examples of subadditive Euclidean functionals include the TSP tour and the Steiner tree. The mini-
mum spanning tree, the minimum matching, and the nearest neighbor graph are all “close” to being
subadditive Euclidean functionals, but violate the monotonicity requirement (though it turns out that
this can easily be overcome for all relevant applications). The monographs [26, 31] are devoted to
more general settings for Theorem 5, with the most prominent generalization being the following:

Theorem 4 (basic theorem of subadditive Euclidean functionals). Suppose L is a monotone sub-
additive Euclidean functional defined on R2. If the random variables {Xi} are independent with the
uniform distribution on [0, 1]2, then with probability one, we have

L(X1, . . . , Xn)√
n

→ βL

as n → ∞, where βL ≥ 0 is a constant.

The above is a generalization of the following classical theorem, originally stated in [5] and further
developed in [25, 26], is one of the fundamental results of the continuous approximation paradigm;
it relates the length of a TSP tour of a sequence of points to the distribution from which they were
sampled:

Theorem 5 (BHH Theorem). Suppose that X1, X2, . . . is a sequence of random points i.i.d. according
to an absolutely continuous probability density function f defined on a compact planar region R. Then
with probability one, the length TSP(X1, . . . , Xn) of the optimal travelling salesman tour through all
Xi’s satisfies

lim
n→∞

TSP(X1, . . . , Xn)√
n

= βTSP

x

R

√
f(x) dx

where βTSP is a positive constant.

Although the exact value of βTSP is unknown, it has been shown that 0.6277 ≤ βTSP ≤ 0.9204; see
[3, 5, 11].

We conclude with some additional problem definitions and convergence results that will also prove
key to our analysis:

Definition 6 (Medians Problem). Given a collection of points x1, . . . , xn in R2 and a positive integer
p, the the p-medians problem is given by

PMed(x1, . . . , xn; p) := min
S⊂{1,...,n}:|S|≤p

n∑
i=1

min
j∈S

∥xi − xj∥ ;
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that is, the problem of selecting a subset S ⊂ {1, . . . , n} of median points such that |S| ≤ p, that
minimizes the sum of the distances from all points to their nearest median.

Definition 7 (Balanced Medians Problem). The balanced medians problem BMed(x1, . . . , xn; d) is a
further-constrained variation of the p-medians problem. We can equivalently express p-medians as the
problem of selecting a set of medians S ⊂ {1, . . . , n} and an assignment of the points xi to medians
such that the sum of the distances from the points to their assigned medians is minimized. With no
constraint on our assignment selection we have that in the p-medians problem the optimal assignment
for any median set is simply to assign a point to its nearest median. The balanced medians problem
imposes an additional constraint on the assignment selection, namely median xj ∈ S can have at most
d ≥ 2 non-median points assigned to it. It is further required that each median is assigned to itself.

That is,

BMed(x1, . . . , xn; d) := min
S⊂{1,...,n}: |S|=p

µ:{1,...,n}7→S

n∑
i=1

∥xi − xµ(i)∥, (5)

where
p =

⌈ n

d + 1
⌉
,

xµ(i) is the median assigned to point xi, and for all j such that j ∈ S, xµ(j) = xj and xµ(i) = xj for at
most d of the i ̸= j.

The following result is due to [16]:

Theorem 8 (Asymptotic convergence of the balanced medians problem). The balanced medians prob-
lem satisfies the same convergence as in Theorem 4; that is, if X1, X2, . . . is a sequence of random
points i.i.d. according to an absolutely continuous probability density function f defined on a compact
planar region R and d ≥ 2 is fixed, then with probability one, the cost BMed(X1, . . . , Xn; d) satisfies

lim
n→∞

BMed(X1, . . . , Xn; d)√
n

= βBMed(d)
x

R

√
f(x) dx

where βBMed(d) depends only on d.

4.2 Further notes on Theorem 8

This section describes a lower bound on the function βBMed(d) from Theorem 8.

Theorem 9. The function βBMed(d) satisfies

βBMed(d) ≥
√

2d(d!)1/(2d)
√

πe(d + 1)(2d+1)/(2d) .

That is, with probability one,

lim
n→∞

BMed(X1, . . . , Xn; d)√
n

≥
√

2d(d!)1/(2d)
√

πe(d + 1)(2d+1)/(2d)

x

R

√
f(x) dx.
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Proof. See Section A of the Online supplement.

Remark 10. Using Stirling’s approximation to simplify the factorial and taking logarithms, it is routine
to verify that the lower bound above satisfies

√
2d(d!)1/(2d)

√
πe(d + 1)(2d+1)/(2d) ≥ 0.2886

√
d

for d ≥ 100 (the choice of 100 is merely an arbitrary “large number”).

5 A continuous approximation analysis

This section describes a continuous approximation analysis of the sidekick routing problems (SK1)
and (SK2).

5.1 Naive asymptotic analysis

Relying solely on Theorem 4, we can obtain the following partial characterization of the asymptotic
behavior of both problems (SK1) and (SK2).

Claim 11. For fixed values of k, ϕ0, and ϕ1, let T (p1, . . . , pn) denote the optimal objective value of
problem (SK1). Then if the customer points pi consist of random samples Pi independently drawn
from a uniform distribution on the unit square, then there exists a non-negative constant cSK1 =
cSK1(k, ϕ0, ϕ1) such that

T (P1, . . . , Pn)√
n

→ cSK1

with probability one as n → ∞. The same statement holds when T (·) is the optimal objective value
of problem (SK2), with a different constant cSK2 ≤ cSK1.

Proof. This follows immediately from Theorem 4 because T (·) is a monotone subadditive Euclidean
functional as defined in Definition 3. We verify that T (·) meets the definition.

1. Clearly T (∅) = 0.

2. Given α > 0 scaling all customer point locations by α scales all travel times by α and thus the
optimal solution to problems SK1 and SK2 remains the same up to scaling and the total travel
time for the solution scales by α.

3. It is clear that translating all customer locations by the same x will not impact the solution to
either sidekick problem.

4. Adding a customer that must be visited cannot reduce the total time of the route.

5. Finally, suppose we have solutions to the sidekick problem for the customer points within each
square Qi in {Qi}, 1 ≤ i ≤ m2, a partition of [0, 1]2 into squares of edge length 1/m. Then
we can stitch together these solutions to obtain a feasible solution on all points {x1, . . . , xn} in
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[0, 1]2. For each square we simply perform the in-square route, then have the truck drive from
the truck starting and ending location for the square to the truck starting and ending location
for the adjacent square. Note that the truck has all the sidekicks on it at the starting and ending
locations, so this yields a valid tour. The objective value (i.e. the makespan) of our solution will
be the sum of the in-square travel times T ({x1, . . . , xn} ∩ Qi) plus the between-square driving
time, which is at most the number of squares times 2

√
2/(mϕ0). That is, the objective value is

less than or equal to T ({x1, . . . , xn} ∩ Qi) + 2
√

2m/ϕ0. The optimal solution on {x1, . . . , xn}
must have objective value less than this feasible solution.

Claim 11 describes the scaling behavior of our problem as n → ∞, namely that the objective value
scales proportionally to

√
n, but it tells us nothing about cSK1 (or cSK2). For example, it is obvious that

both are non-increasing with respect to the three fixed parameters ϕ0, ϕ1, and k (since making things
faster or increasing the number of sidekicks cannot possibly make the process slower), and routine
scaling arguments establish that cSK1(k, ϕ0, ϕ1) = ϕ0cSK1(k, 1, ϕ1/ϕ0) for all k, ϕ0, ϕ1 (and similarly for
cSK2). We devote the remainder of this section to a more precise analysis of cSK1 and cSK2.

5.2 A lower bound for (SK2)

Of course, problem (SK2) is itself a lower bound of (SK1) by construction, so it will suffice to consider
(SK2) only. This bound is of course poor when ϕ1 ≪ ϕ0, because slow sidekicks will result in more
work imposed on the host vehicle, ceteris paribus. We derive a lower bound for (SK2) in terms of the
Traveling Salesman tour and solution to a balanced medians problem on the pi.

Lemma 12. Let Tn denote the optimal objective value for Problem (SK2). We have

1. TSP(p1, . . . , pn) ≤ (ϕ0 + kϕ1)Tn

2. BMed(p1, . . . , pn; d) ≤ (dϕ0 + kϕ1)Tn for all d ≥ 2.

Proof. For the first claim, we can construct a TSP solution from the (SK2) solution as follows. Consider
an optimal solution (x, y, z, t, σ, π, θ, S, T ) to (SK2). For each i ∈ S, the set of customers visited by
the sidekicks, let

ui := argmin
u∈{xi,yi}

||u − pi||,

that is ui is the closer to the customer of its sidekick launch and pickup points. For each i ∈ T let

ui := pi.

We then construct a TSP tour of the points as follows. Let the tour follow the path of the truck,
visiting the customers in T along the tour. Whenever we reach one of the ui for i ∈ S, let the tour
travel from ui to pi and back, then continue along the truck path. It is clear that the length added to
our TSP tour coming from the truck’s route is less than or equal to ϕ0Tn, the truck’s speed times the
total time for our sidekick tour.

12



To bound the length from visiting points in S we let Pj be the set of points visited by sidekick j.
Then

Tn ≥ 1
ϕ1

∑
i:pi∈Pj

||xi − pi|| + ||pi − yi|| ∀j ∈ {1, . . . , k}.

That is the total sidekick tour time exceeds the time any given sidekick travels. Dividing the above
by k and summing over all j yields

Tn ≥ 1
kϕ1

∑
i∈S

||xi − pi|| + ||pi − yi||

≥ 2
kϕ1

∑
i∈S

||ui − pi||.

Twice the sum of the ||ui − pi|| is precisely what we add to our TSP tour to visit S. Thus the
contribution of this part of our TSP tour is bounded by kϕ1Tn. Adding together our truck and
sidekick pieces of the TSP tour and applying the triangle inequality gives the result.

For the second bound we can construct a balanced median solution from the (SK2) solution as
follows. Think of the truck as completing a tour on our ui defined as above. Group every d + 1 of the
customer points associated with the ui along this tour and choose as their median the point which is
closest to the tour. This construction is pictured in Figure 4. By the triangle inequality, the distance
from a point to its assigned median is less than or equal to the distance of traveling from that point
to its corresponding ui, then traveling along the truck tour to the median’s corresponding ui, then
traveling out to the assigned median. The cost of this balanced medians solution, i.e. sum of these
distances, is then less than or equal to the sum of the distances from the non-median points to their
corresponding ui, plus d times the length of the tour of the ui, plus the sum, over all medians, of d

times the distance from the median’s corresponding u to the median. By our selection of the medians
it is clear that this last sum is less than or equal to the sum of all of the distances from non-median
points to their corresponding u. Then, noting once again that

ϕ0Tn ≥ truck tour of the ui,

and

kϕ1
2 · Tn ≥

∑
i∈S

||ui − pi||

=
n∑

i=1
||ui − pi||, (ui = pi for i ∈ T )

the length of the balanced medians solution is less than or equal to(
kϕ1
2 + dϕ0 + kϕ1

2

)
Tn.

13



Figure 3: Constructing a TSP solution from a solution to problem (SK2). The horizontal line
represents the tour of the ui (the closer of the launch and pickup points for sidekick-visited customers
and the pi for truck-visited customers) in the (SK2) solution. We follow the tour, traveling from ui

to pi and back for each i ∈ S. If Tn is the objective value of the problem (SK2) solution then the
total cost of the resulting TSP solution is less than or equal to (ϕ0 + kϕ1)Tn.

Figure 4: Constructing a balanced medians solution from a solution to problem (SK2). The horizontal
line represents the tour of the ui (the closer of the launch and pickup points for sidekick-visited
customers and the pi for truck-visited customers) in the (SK2) solution. Here we choose d = 4 and
group every 5 points along the tour. We choose as the median for these 5 points the point which is
closest to the tour. Using the paths pictured, it is clear that to connect all points to their medians
we need travel at most d times the length of the truck tour plus twice the total distance from the
points to their ui. If Tn is the objective value of the problem (SK2) solution then the total cost of
the resulting Bounded Medians solution is less than or equal to (dϕ0 + kϕ1) Tn.

14



(a) Input

h

(b) Output

Figure 5: The tour described in Lemma 13, assuming k = 3.

5.3 An upper bound for (SK1)

To bound the objective value of (SK1), we describe a simple “zig-zagging” heuristic in the unit square:

Lemma 13. For fixed ϕ0, ϕ1, and k and points p1, . . . , pn lying in the unit square, there exists a
routing strategy for problem (SK1) whose time to completion T (p1, . . . , pn) satisfies

T (p1, . . . , pn) ≤ 2
√

3√
ϕ0ϕ1k

·
√

n + C

where C is a constant that depends only on ϕ0, ϕ1, and k.

Proof. Divide the unit square into strips of height h =
√

3ϕ1k/(ϕ0n) (there may be one strip whose
height is less than this due to rounding). There are m =

⌈√
ϕ0n/(3ϕ1k)

⌉
≤
√

ϕ0n/(3ϕ1k) + 1 such
strips. Further subdivide each strip into rectangles so that each rectangle (except possibly the right-
most in each strip) contains k points. There are at most m+n/k rectangles in total. Finally, construct
a tour for the truck and all sidekicks by traversing each rectangle three times, releasing the sidekicks
on the first traversal and retrieving the sidekicks on the third traversal, as illustrated in Figure 5.

It is easy to see that for a rectangle having width w (and height h), it is possible to perform three
horizontal traversals and release and retrieve the sidekicks in at most 3w/ϕ0 + h/ϕ1 time units. We
release the sidekicks when vertically aligned with a customer on the first left-to-right traversal, make a
right-to-left traversal and then, when the sidekicks have all returned to the middle line, make another
left-to-right traversal to retrieve them and continue on to the next rectangle. It is also easy to see that
the only remaining time needed is for the truck to perform vertical moves to move from one strip to
the next, which is a constant amount of 1/ϕ0 time units, plus whatever time is needed for the truck
to return to its point of origin, which is also at most

√
2/ϕ0 time units. Hence, if we let wi denote the

15



(a) yo (b) yo

Figure 6: The tour described in Lemma 14; it consists of the same kind of tour as in Figure 5, but
“scaled” with respect to the probability distribution that is indicated by shading.

width of rectangle i, then the total amount of time to complete this tour is at most

(1 +
√

2)/ϕ0 +
∑

i

(3wi/ϕ0 + h/ϕ1) ≤ (1 +
√

2)/ϕ0 + 3
ϕ0

∑
i

wi︸ ︷︷ ︸
=m

+(m + n/k)h/ϕ1

≤ (1 +
√

2)/ϕ0 + 3
ϕ0

(√
ϕ0n

3ϕ1k
+ 1

)
+ 1

ϕ1

(√
ϕ0n

3ϕ1k
+ 1 + n/k

)√
3ϕ1k

ϕ0n

= 2
√

3√
ϕ0ϕ1k

·
√

n +
√

3k

ϕ0ϕ1n
+ 1

ϕ1
+ (4 +

√
2)/ϕ0

as desired.

Lemma 13 is deterministic, but also implies the following:

Lemma 14. Let ϕ0, ϕ1, and k be fixed and let P1, . . . , Pn be independent samples from an abso-
lutely continuous probability density f with compact support R. The optimal time to completion
T (P1, . . . , Pn) for problem (SK1) satisfies

lim sup
n→∞

T (P1, . . . , Pn)√
n

≤ 3.47√
ϕ0ϕ1k

·
x

R

√
f(x) dx

with probability one.

Proof. This is a routine scaling argument, together with the law of large numbers and the fact T (·)
is a subadditive Euclidean functional (see Claim 11); see Section B of the Online Supplement for
details.

Remark 15. Another routing strategy is to subdivide the rectangles as before, but to release all side-
kicks simultaneously at one end of the rectangle, perform only one horizontal traversal, and rendezvous

16



h

wi
Figure 7: Using the alternate routing strategy from Remark 15, the truck traverses each rectangle
only one time (in this case from left to right as indicated by the arrows), releasing the k sidekicks at
one end of the rectangle and retrieving them at the other.

with the sidekicks at the other end of the rectangle, as shown in Figure 7. It is obvious that the amount
of time to cover each rectangle is at most

max
{

wi

ϕ0
,
wi + h

ϕ1

}
≤ wi

ϕ0
+ wi + h

ϕ1
,

and it is routine to verify that under this policy, we have

lim sup
n→∞

T (P1, . . . , Pn)√
n

≤ 2
√

ϕ0 + ϕ1
ϕ0ϕ2

1k
·
x

R

√
f(x) dx

as opposed to the coefficient 3.47/
√

ϕ0ϕ1k of Lemma 14. This policy is preferable whenever ϕ0 < 2ϕ1

(without any assumptions on k), and approaches 2/
√

ϕ0ϕ1k (i.e. a 57% reduction from our original
bound) when ϕ1 ≫ ϕ0.

5.4 Convergence analysis for (SK1) and (SK2)

We have now collected enough supporting evidence for our main claim:

Theorem 16. Let ϕ0, ϕ1, and k be fixed. Let Tn denote the optimal objective value to problem (SK1),
where input points P1, . . . , Pn are independent uniform samples in the unit square. Then there exists
a constant βSK1 satisfying 0.1368 < βSK1 < 3.47 such that

Tn√
n

→ βSK1√
ϕ0 max{ϕ0, ϕ1k}

(6)

with probability one as n → ∞. Moreover, the same statement holds for a different constant βSK2 ≤
βSK1 when Tn is the optimal objective value to problem (SK2), which also satisfies 0.1368 < βSK2 <

3.47. Finally, when the points P1, . . . , Pn are independent samples from an absolutely continuous
probability density f with compact support R, we have

0.1368c ≤ lim inf Tn√
n

≤ lim sup Tn√
n

≤ 3.47c

17



with probability one as n → ∞, where Tn is the optimal objective value to either problem (SK1) or
(SK2), and

c =
s

R
√

f(x) dx√
ϕ0 max{ϕ0, ϕ1k}

.

Proof. To simplify notation, we introduce the parameter t defined as

t = ϕ1k/ϕ0

throughout this proof, and rewrite the desired result (6) equivalently as

ϕ0

√
max{1, t} · Tn√

n
→ βSK1 .

The existence of βSK1 and βSK2 was already established in Claim 11 (set βSK1 = cSK1
√

ϕ0 max{ϕ0, ϕ1k}
and so forth); the real work lies in computing the bounds on these constants. Since βSK2 ≤ βSK1, it
will suffice to show that 0.1368 < βSK2 and that βSK1 < 3.47. To show that 0.1368 < βSK2, Lemma 12
says that

Tn ≥ TSP(P1, . . . , Pn)
ϕ0 + tϕ0

(7)

=⇒ lim
n→∞

Tn√
n

≥ lim
n→∞

TSP(P1, . . . , Pn)
ϕ0(1 + t)

√
n

= βTSP

ϕ0(1 + t) (8)

=⇒ ϕ0

√
max{1, t} · lim

n→∞
Tn√

n
≥ ϕ0

√
max{1, t} · βTSP

ϕ0(1 + t) ≥ 0.6277
√

max{1, t}
1 + t

=⇒ βSK2 ≥ 0.6277
√

max{1, t}
1 + t

> 0.1368 whenever t < 19, (9)

where in (8) we are justified in taking limits as we have seen such limits exist for problem (SK2)
(Claim 11) and for the TSP (Theorem 5).

In addition Lemma 12 tells us that, provided t ≥ 2,

Tn ≥ BMed(P1, . . . Pn; ⌊t⌋)
⌊t⌋ϕ0 + tϕ0

(10)

=⇒ lim
n→∞

Tn√
n

≥ lim
n→∞

BMed(P1, . . . Pn; ⌊t⌋)
ϕ0(⌊t⌋ + t)

√
n

= βBMed(⌊t⌋)
⌊t⌋ + t

(11)

=⇒ ϕ0

√
max{1, t} · lim

n→∞
Tn√

n
≥ ϕ0βBMed(⌊t⌋)

√
max{1, t}

ϕ0(⌊t⌋ + t) ≥
√

2⌊t⌋(⌊t⌋!)1/(2⌊t⌋)√max{1, t}√
πe(⌊t⌋ + 1)(2⌊t⌋+1)/(2⌊t⌋)(⌊t⌋ + t)

(12)

=⇒ βSK2 ≥
√

2⌊t⌋(⌊t⌋!)1/(2⌊t⌋)√max{1, t}√
πe(⌊t⌋ + 1)(2⌊t⌋+1)/(2⌊t⌋)(⌊t⌋ + t)

> 0.1368 whenever t ≥ 19, (13)

where in (11) we are justified in taking limits as we have seen such limits exists for problem (SK2)
(Claim 11) and for the balanced medians problem (Theorem 8), and in (12) we have applied Theorem
9.
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The upper bound βSK1 < 3.47 is very simple. From Lemma 13, we have

Tn ≤ 2
√

3
ϕ0

√
t

·
√

n + C (14)

=⇒ ϕ0

√
max{1, t} · lim

n→∞
Tn√

n
≤ ϕ0

√
max{1, t} · lim

n→∞

(
2
√

3
ϕ0

√
t

+ C√
n

)
=⇒ βSK1 ≤ 2

√
3 < 3.47 for t ≥ 1,

and for t < 1, we simply eschew the sidekicks altogether and visit all of the Pi’s with the truck (to be
precise, since the truck is not allowed to visit any points in (SK1), we bring the truck within arbitrarily
small distance ϵ from each Pi and release and retrieve one of the sidekicks):

lim
n→∞

ϕ0Tn√
n

≤ βTSP

=⇒ ϕ0

√
max{1, t} · lim

n→∞
Tn√

n
≤ ϕ0

√
max{1, t} · βTSP

ϕ0
= βTSP

=⇒ βSK1 ≤ βTSP ≤ 0.9204 for t < 1

as desired. This completes the proof of the uniform case of Theorem 16.
The non-uniform case of Theorem 16 follows the exact same logic; the only distinction is that we are

no longer guaranteed that Tn/
√

n has a limit, so we merely replace all instances of “limn→∞ Tn/
√

n”
with either a “lim infn→∞” or a “lim supn→∞” depending on whether we are bounding from above or
below. For example, the lower bound (7) becomes

Tn ≥ TSP(P1, . . . , Pn)
ϕ0 + tϕ0

=⇒ lim inf
n→∞

Tn√
n

≥ lim
n→∞

TSP(P1, . . . , Pn)
ϕ0(1 + t)

√
n

=
βTSP

s
R
√

f(x) dx

ϕ0(1 + t) ≥
0.6277

s
R
√

f(x) dx

ϕ0(1 + t)

=⇒ ϕ0

√
max{1, t} · lim inf

n→∞
Tn√

n
≥ ϕ00.6277

√
max{1, t}

ϕ0(1 + t)

x

R

√
f(x) dx > 0.1368

x

R

√
f(x) dx whenever t < 19

=⇒ lim inf
n→∞

Tn√
n

≥ 0.1368c whenever t < 19.

The same reasoning is applied for the balanced-medians-derived lower bound for t ≥ 19.
The upper bound that lim sup Tn/

√
n ≤ 3.47c is also immediate; we already proved this for t ≥ 1

in Lemma 14, and when t < 1, we again eschew the sidekicks altogether and use the truck:

lim sup
n→∞

Tn√
n

≤ βTSP

ϕ0

x

R

√
f(x) dx ≤ 0.9204

ϕ0

x

R

√
f(x) dx < 3.47c ,

which completes the proof.
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6 Remarks

Informally, Theorem 16 says that the time to completion of a sidekick routing problem satisfies

Time With Sidekicks ∝
√

n√
ϕ0 max{ϕ0, ϕ1k}

,

whereas when no sidekicks are present, the time without sidekicks is simply the duration of the TSP
tour, which satisfies

Time Without Sidekicks = TSP
ϕ0

∝
√

n

ϕ0
.

Thus, we claim that the amount of improvement due to using sidekicks is

Time Without Sidekicks
Time With Sidekicks ∝

√
n/ϕ0√

n/
√

ϕ0 max{ϕ0, ϕ1k}
= max{1,

√
ϕ1k/ϕ0}. (15)

We note that all of the above remarks hold in both the uniform and non-uniform cases because, as we
have also seen in Theorem 16, the difference between these two cases merely amounts to multiplication
by a factor of

s
R
√

f(x) dx. In order to estimate the duration of a tour with sidekicks, we therefore
propose the formula

Time With Sidekicks = c

(
ϕ1
ϕ0

, k

)
· min

{
1,

√
ϕ0
ϕ1k

}
· (Time Without Sidekicks) (16)

where c(ϕ1/ϕ0, k) is a proportionality constant that depends on the ratio ϕ1/ϕ0 (as opposed to ϕ0 and
ϕ1, which would be redundant by scaling) and k. The fact that 0.1368 < βSK1 < 3.47 (and similarly
for βSK2) indicates that

0.192 ≤ c(ϕ1/ϕ0, k) ≤ 4.863

because
Time Without Sidekicks ∼

√
n · βTSP

x

R

√
f(x) dx

and
Time With Sidekicks ∼

√
n · βSK1√

ϕ0 max{ϕ0, ϕ1k}

x

R

√
f(x) dx

as n → ∞, and therefore

c

(
ϕ1
ϕ0

, k

)
= Time With Sidekicks

min
{

1,
√

ϕ0
ϕ1k

}
· (Time Without Sidekicks)

=

√
n · βSK1√

ϕ0 max{ϕ0,ϕ1k}

s
R
√

f(x) dx

min
{

1,
√

ϕ0
ϕ1k

}
·
√

n · βTSP
ϕ0

s
R
√

f(x) dx
= βSK1

βTSP
,

and the result follows by using the standard estimate βTSP ≈ 0.7124 [3]. We also know that c(ϕ1/ϕ0, k) →
1 as ϕ1/ϕ0 → 0 for k fixed, beccause sidekicks are no longer useful under this assumption. By applying
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Remark 15, we find that c(ϕ1/ϕ0, k) ≤ 2.808 when ϕ1 ≫ ϕ0 by substitutiting the improved bound for
βSK1.

6.1 Battery life constraints

In real-world applications, one must contend with battery life constraints on the sidekicks, which is
equivalent to restricting the total amount of distance that each sidekick traverses. Our upper and
lower bounds from Sections 5.2 and 5.3 can be generalized to address this additional constraint. For
brevity’s sake, we will only consider the impact of battery constraints on problem (SK2).

6.1.1 A lower bound for (SK2) with a battery constraint

Suppose that battery life constraints are present, so that each sidekick can travel a distance of at most
ω. We can bound problem (SK2) from below, subject to this new condition, by adding the constraint
that ∑

i∈S
∥xi − pi∥ + ∥pi − yi∥ ≤ kω . (17)

This is a lower bound and not a feasible solution, because it imposes an aggregate constraint on the
distance traversed by all sidekicks, as opposed to an individual constraint on each sidekick. This is
because (SK2) does not single out individual vehicles, but is sufficient for our purposes. We have:

Lemma 17. Let ℓ denote the total distance traversed by the truck in any feasible solution to (SK2),
i.e.

ℓ =
2n+1∑
j=2

∥zj − zj−1∥ ,

subject to the additional constraint (17). We have

1. TSP(p1, . . . , pn) ≤ ℓ + 2kω

2. BMed(p1, . . . , pn; d) ≤ dℓ + kω/2 for all d ≥ 2.

Proof. The argument is identical to Lemma 12; the only difference is that is expressed in terms of the
variables ℓ and ω.

If we re-scale by setting kω = a
√

n and ℓ = b
√

n and taking a limit as n → ∞, then the above lemma
says that the truck distance coefficient b (representing the scaled distance that the truck traverses)
satisfies the lower bounds

1. b ≥ βTSP − 2a

2. b ≥ supd≥2,d∈Z
βBMed(d)−a/2

d

with probability one, as shown in Figure 8. Note that, per Remark 10, we see that (setting c = 0.2886)

b ≥ sup
d≥100,d∈Z

c
√

d − a/2
d

∼ c
√

d − a/2
d

∣∣∣∣∣
d=a2/c2

= c2

2a
. (18)

We will next derive an upper bound with similar relationships.
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Figure 8: Upper and lower bounds for the truck length coefficient b, in terms of the sidekick bound
coefficient a. The function φ(a) lies within these bounds.

Figure 9: A zig-zag tour with certain customer points visited by the truck, such as the upper left
cell and the center cell in the bottom (among others).

6.1.2 An upper bound for (SK2) with a battery constraint

Our upper bounding strategy closely follows the “zig-zag” strategy of Section 5.3. However, in order to
accommodate the battery life constraint, we also allow for the possibility of the truck visiting certain
customers directly via vertical trips, as shown in Figure 9. We construct a “zig-zag” tour as follows,
ignoring rounding for notational convenience:

• If kω ≤
√

3n, then divide the region into rectangles of height h =
√

3/n. In addition to traversing
these rectangles in the same way as in Section 5.3, also visit an arbitrary fraction p = 1−kω/

√
3n

of customer points directly with the truck using vertical trips as in Figure 9. Up to an additive
constant, the length ℓ of the truck’s tour is at most

3
h

+ phn = 2
√

3n − kω
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and by our selection of p, the aggregate length of all sidekick trips does not exceed kω.

• If kω >
√

3n, then divide the region into rectangles of height h = kω/n and perform a standard
zig-zag tour with no additional vertical trips made by the truck. Up to an additive constant,
the length ℓ of the truck’s tour is n/(kω) and the aggregate length of all sidekick trips does not
exceed kω.

We again re-scale by setting kω = a
√

n and ℓ = b
√

n. For large n, it is routine to construct feasible
individual sidekick tours for the two strategies described above, using the fact that the aggregate
lengths are at most kω and that the vertical distances between customer points and the zig-zag tour
follow a uniform distribution. Taking a limit as n → ∞, the truck distance coefficient b satisfies the
upper bounds

b ≤


√

12 − a if a ≤
√

3
3
a otherwise

as shown in Figure 8.

6.1.3 Asymptotic behavior

Regarded as a function b = φ(a), the upper and lower bounds that we just established are both of the
form

φ(a) =

ξ − ηa for a ≤ ā

ζ
a otherwise

for positive coefficients ξ, η, and ζ and a threshold ā, and are within a constant factor of one another.
Based on the preceding analysis and some geometric intuition, we propose the following approximation:

φ(a) = ζ0
a + ζ0/βTSP

, (19)

with ζ0 = 1.10 and βTSP ≈ 0.7124; see [3] for the latter. Figure 8 shows that φ(a) lies within our
bounds. We obtained the value of ζ0 by numerical simulations using Google OR-tools, by solving
the following simplification of (SK2) that disregards the temporal interaction between sidekicks and
the truck, and merely minimizes the length of the truck tour subject to a constraint on the distance
traversed by the sidekicks:

minimize
x

TSP(x1, . . . , xn) s.t. (SK-simple)
n∑

i=1
∥xi − pi∥ ≤ kω .

This estimation process is as follows: fix n = 100, and solve (SK-simple) for various values of kω and
points pi sampled uniformly at random in the unit square. For each value of kω, let ℓ∗ denote the
objective value, so that we can estimate â = kω/

√
n and b̂ = ℓ∗/

√
n. Given a large collection of such

estimates, we estimate ζ0 via standard regression techniques.
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6.1.4 Approximation formulas with battery life constraints

The analysis in sections 6.1.1-6.1.3 characterizes a Pareto frontier between the distance ℓ traversed
by the truck and the cumulative distance traversed by all the sidekicks. Given speeds ϕ0, ϕ1 and a
constraint that each of the k sidekicks can travel a total distance ω, we see that the total makespan
is at least max{ℓ/ϕ0, kω/ϕ1}, so a valid lower bounding continuous approximation formula relating
battery life and makespan is the solution to the problem

minimize
s,t

max
{

s

kϕ1
,

t

ϕ0

}
s.t. (20)

s ≤ a

t ≥ φ(s) ,

where s represents sidekick travel distance and t represents truck travel distance, and both have been
scaled by

√
n as we have done previously. It is easy to see that the solution (s∗, t∗) to this problem

always satisfies t∗ = φ(s∗), and so, when the battery life constraint is binding, the optimal solution
has s∗ = a and t∗ = φ(a), resulting in a makespan that is at least

t∗

ϕ0
= φ(a)

ϕ0
= ζ0

ϕ0(a + ζ0/βTSP) .

Thus, when each sidekick is constrained to traverse a distance of at most ω, then when the battery
constraint is binding, we find (by substituting a = kω/

√
n and ℓ∗ = t∗√

n) that the makespan Tn must
be at least

Tn ?
ζ0n

ϕ0(kω + ζ0
√

n/βTSP) (21)

for large n.
Note that the objective function of (21) was derived by bounding the makespan from below,

because it is merely the maximum of the truck’s time and the average time of the sidekicks.. It is
straightforward to derive an objective function based on bounding the makespan above, with the same
proportionality, by using the zig-zag argument from Section 6.1.2; we omit it here for the sake of
brevity.

6.2 A budget constraint

This paper has thus far been concerned with minimizing time to completion, although it is also a
challenging and important problem to minimize overall costs; see for instance [28]. We can accomplish
this using much of the same machinery as in Section 6.1; the only distinction is that Section 6.1
imposes a hard constraint on the distance covered by sidekicks, whereas cost minimization penalizes
both distances at different rates. In particular, we use the same relationship φ established in (19),
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although now the counterpart to problem (20) becomes

minimize
s,t

max
{

s

kϕ1
,

t

ϕ0

}
s.t. (22)

α0t + α1s ≤ ξ

t ≥ φ(s) ;

the only change is that we have replaced the drone battery life constraint s ≤ a with a linear constraint,
where α0 and α1 are unit costs for the truck and sidekicks respectively, and ξ is an overall budget.
Again, we find that t∗ = φ(s∗) at optimality, and so when the budget constraint is binding, we have
α0φ(s∗) + α1s∗ = ξ. This is solvable as a quadratic in s∗, and the resultant (scaled) makespan t/ϕ0

turns out to be

1
ϕ0

· 2α1βTSPζ0

βTSPξ + α1ζ0 −
√

β2
TSPξ2 + α2

1ζ2
0 − 2(2 α0α1β2

TSP − α1βTSPξ)ζ0
.

6.3 Launch and retrieval times

A further important complication is to model the amount of time needed to launch or retrieve a
sidekick. If each sidekick launch and retrieval requires a fixed duration δ, then it is routine to verify
that both of the lower bounds from Section 5.2 increase by at least 2δn; this is because the relevant
inequalities from Lemma 12 merely become

1. TSP(p1, . . . , pn) ≤ (ϕ0 + kϕ1)Tn − 2δn

2. BMed(p1, . . . , pn; d) ≤ (dϕ0 + kϕ1)Tn − 2δn for all d ≥ 2.

by carrying the proof out under this assumption. The zig-zag upper bound of Section 5.3 also increases
by at most 2δn; this is because the amount of time to service a rectangle with width w and height h

is now at most 3w/ϕ0 + h/ϕ1 + 2δk, as opposed to only 3w/ϕ0 + h/ϕ1 as in the proof of Lemma 13.
Note, however, that although the lower and upper bounds are affected additively in the same way

(by adding 2δn), the proportionality is now different, because Theorem 16 says that the makespan is
proportional to

√
n, and fixed costs are (for obvious reasons) linear in n. Thus, in order to extend

Theorem 16 to this case, it becomes necessary to assume that δ ∼ 1/
√

n. In particular, we now find
that if δ = τ/

√
n for some constant τ , then Theorem 16 says that

Tn√
n

→ βSK1√
ϕ0 max{ϕ0, ϕ1k}

+ 2τ .

7 Computational results

This section describes two computational experiments. The first consists of uniform samples in the
unit square with Euclidean distances, and the second consists of samples taken around the Los Angeles
Metropolitan area with respect to a road network. For both experiments, we sampled n = 100 points
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Figure 10: A solution to problem (SK2) as obtained via the LKH-3 heuristic, for ϕ1 = 0.5 and k = 5.

and considered k ∈ {1, 2, 3, 4, 5, 6}, and conducted 10 experiments for each scenario. Both sections
consider problem (SK2), so that the truck is permitted to visit customer demand points.

In order to solve the problem instances, we implemented a penalty function for the LKH-3 heuristic
solver, as has been done previously for many variants of VRP [12]; see Section C of the Online
Supplement. As our problem allows for continuous placement of launch sites (the variables x, y, and
z in the original formulation (SK2)), but LKH-3 requires discrete inputs, for both problem instances we
discretized the set of possible launch sites into a 12×12 grid. The goal of this section is to estimate the
proportionality constant c(ϕ1/ϕ0, k), as expressed in equation (16); recall that we already established
that 0.192 ≤ c(ϕ1/ϕ0, k) ≤ 4.863 in Section 6, so the experiments will ideally tighten these bounds
(non-rigorously) and give some insight into the extent to which c(ϕ1/ϕ0, k) varies.

7.1 Uniformly distributed demand with Euclidean travel

In our first experiment, we sampled n = 100 points in the unit square plus a “depot” centered
at (0.5, 0.5), and assume ϕ0 = 1 without loss of generality. We computed the TSP tour of these
demand points with Euclidean distances, which we then compare with the solution to problem (SK2)
as determined from LKH-3; see Figure 10 for an example. The objective values for the sidekick tours,
and the resulting estimates of c(ϕ1/ϕ0, k), are shown in Tables 1 and 2.

Overall, the ratios shown in Table 2 indicate that 0.9 ≤ c(ϕ1/ϕ0, k) ≤ 2, with c(ϕ1/ϕ0, k) increasing
in k and ϕ1. The entries where c(ϕ1/ϕ0, k) < 1 are unsurprising, as they mostly occur when ϕ0/(ϕ1k) <

1, in which case the entry min{1,
√

ϕ0/(ϕ1k)} in (16) is simply 1, and the prediction is that the tour
duration is simply

c

(
ϕ1
ϕ0

, k

)
· (Time Without Sidekicks) .
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Objective values of (SK2)
ϕ1 =0.3 7.364 7.184 7.049 6.736 6.728 6.561

0.5 7.226 6.938 6.923 6.641 6.326 6.132
0.875 6.880 6.544 6.083 5.72 5.702 5.642
1.25 6.541 5.996 5.495 4.890 4.776 4.476

1.625 6.199 5.650 5.17 4.604 4.224 4.222
2 6.152 5.629 4.927 4.333 4.082 4.06
3 6.121 5.442 4.838 4.201 3.895 3.54

k = 1 2 3 4 5 6

Table 1: Makespans of sidekick-assisted TSPs (i.e. the optimal objective value to problem (SK2)),
for ϕ0 = 1 and varying values of ϕ1 and k.

Estimates of c(ϕ1/ϕ0, k)
ϕ1 =0.3 0.9728 0.9497 0.9311 0.9756 1.0889 1.1632

0.5 0.9551 0.9166 1.1206 1.2412 1.3219 1.4035
0.875 0.9091 1.1442 1.3024 1.4142 1.5768 1.7085
1.25 0.9662 1.2528 1.4061 1.4449 1.5780 1.6202

1.625 1.0443 1.3461 1.5088 1.5513 1.5911 1.7422
2 1.1498 1.4877 1.5949 1.6194 1.7059 1.8587
3 1.4011 1.7615 1.9179 1.9231 1.9936 1.9845

k = 1 2 3 4 5 6

Table 2: Estimates of c(ϕ1/ϕ0, k), determined by comparing the values in Table 1 to the length of a
standard TSP tour and the correction factor min{1,

√
ϕ0/(ϕ1k)} from (16).
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Objective values of (SK2) (in minutes)
457 440 424 406 404 380

k = 1 2 3 4 5 6

Table 3: Makespans of sidekick-assisted TSPs (i.e. the optimal objective value to problem (SK2)),
for ϕ0 = 1 and varying values of ϕ1 and k.

When ϕ0/(ϕ1k) is very small, the sidekicks provide minimal benefit and the problem effectively
reduces to a standard TSP. However, in the transitional region where ϕ0/(ϕ1k) is moderately below 1,
sidekicks can still provide some benefit, though this improvement is not fully captured by our current
analytical framework. This explains why we observe ratios below 1 in these cases, but we would expect
these ratios to approach 1 as the sidekicks become progressively slower.

7.2 A road network

In our second experiment, we sampled n = 100 points in the Los Angeles metropolitan region plus a
“depot” centered at the University of Southern California. Since the focus of this paper has been on
the case where the sidekicks are slower than the truck, we assume that the sidekick speed is equal to
the bicycling speed from one point to the next, as opposed to driving; see Figure 11 for an example
of a solution. The process for modelling the difference in speeds requires more nuance, as none of the
vehicles travels at a constant speed. We therefore estimate the duration of the sidekick tour as follows:

1. Compute the duration T1 of a TSP tour of the n points with respect to driving time on a road
network, as computed via a locally-hosted OSRM server [18].

2. Compute the duration T2 of the same tour as in step 1 with respect to bicycling time, again
using OSRM. The ratio between speeds, ϕ1/ϕ0, is T1/T2.

3. Compute c(ϕ1/ϕ0, k) according to (16).

Figure 11 shows an example of a solution determined with LKH-3. Our experiments found that
ϕ1/ϕ0 = 0.346, and the results are shown in Table 3. The best comparison between these results and
those from the preceding section are obtained by comparing them to the top row of Table 1, in which
ϕ1/ϕ0 = 0.3 and 0.9728 ≤ ϕ1/ϕ0 ≤ 1.1632, as opposed to ϕ1/ϕ0 = 0.346 and 0.9690 ≤ ϕ1/ϕ0 ≤ 1.1896
in our present analysis. The consistency of these values across both experimental settings offers some
validation for our theoretical framework and suggests that the proportionality constant exhibits similar
behavior regardless of whether travel occurs in Euclidean space or on a road network.

8 Conclusions

We have studied the limiting behavior of sidekick-assisted routing problems in the Euclidean plane
and found that the improvements introduced by adding sidekicks can be predicted based on the
relationship between

√
ϕ0 and

√
ϕ1k. Our model at present does not fully capture the improvements
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Figure 11: A solution to problem (SK2) as obtained via the LKH-3 heuristic for demand locations
in Los Angeles with k = 3 sidekicks, whose speed is equivalent to that of a bicycle. Dashed lines
correspond to sidekick routes and the blue line indicates the vehicle tour. Although our experiments
used n = 100, this picture uses n = 30 for visual clarity.

Estimates of c(ϕ1/ϕ0, k)
0.9690 0.9320 0.9398 1.0390 1.1566 1.1896
k = 1 2 3 4 5 6

Table 4: Estimates of c(ϕ1/ϕ0, k), determined by comparing the values in Table 3 to the length of a
standard TSP tour and the correction factor min{1,

√
ϕ0/(ϕ1k)} from (16).
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that are, somewhat surprisingly, realized when k and ϕ1 are simultaneously both small, but is within a
sufficiently small margin of error to still serve a useful purpose. The main contributions of this paper
are threefold: First, we provide a rigorous asymptotic analysis of sidekick routing problems with
multiple sidekicks, establishing upper and lower bounds that characterize the fundamental scaling
behavior of the problem. Second, we demonstrate that sidekick systems can be beneficial even when
the sidekicks are slower than the host vehicle, provided there are sufficiently many of them, which
contradicts the conventional wisdom that sidekicks must be faster to be useful. Third, we develop a
practical formula (16), with an empirically validated proportionality constant c(ϕ1/ϕ0, k) estimated in
Section 7, that allows practitioners to estimate the potential benefits of adopting a sidekick system.

There remain many open questions: for example, what happens when sidekicks are able to visit
more than one customer node before returning to the truck? What happens when the truck is itself
capacitated and must make returns to the depot? What happens when sidekick battery life consid-
erations come into play? Additional promising research directions include tightening the theoretical
bounds through space-filling curve approaches [4, 6], investigating heterogeneous fleets with varying
sidekick speeds, and analyzing the impact of time-dependent travel speeds on routing decisions. Be-
cause of the slow rate of adoption of such systems in real-world deployment – likely due to practical
considerations, as discussed in the introduction of this paper – it is difficult at present to determine
the full extent to which our predictions hold, but we believe this work provides a solid foundation for
future algorithmic and theoretical developments.
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Online supplement to “Coordinated logistics
with a truck and multiple sidekicks”

A Proof of Theorem 9

The following three lemmas are textbook-level results that we state without proof:

Lemma 18 (Stirling’s approximation). The gamma function Γ(x) satisfies

log Γ(x + 1) = x log x − x + 1
2 log x + 1

2 log 2 + 1
2 log π + O(1/x).

Lemma 19. Let f : R 7→ R be a real-valued function and let Bd(r) ⊂ Rd be the ball of radius r centered
about the origin. We have ∫

Bd(r)
f(∥x∥)dx =

∫ r

0
Sd−1(t)f(t)dt,

where Sd−1(t) is the surface area of a (d − 1)-sphere of radius t, which is given by

Sd−1(t) = 2πd/2

Γ(d/2) td−1.

Lemma 20. The volume of a d-dimensional ball of radius r is πd/2rd/Γ(d/2 + 1).

Lemma 21. Let l > 0 and let D ⊂ R2n denote the set of all n-tuples (u1, . . . , un) of points in R2 such
that

n∑
i=1

∥ui∥ < l.

The volume of D, Vol(D), satisfies

Vol(D) = (2π)n

Γ(2n + 1) · l2n.

Proof. This is just the integral∫
B2(ℓ)

∫
B2(ℓ−∥un∥)

· · ·
∫

B2(ℓ−
∑n

i=3 ∥ui∥)

∫
B2(ℓ−

∑n

i=2 ∥ui∥)
1 du1 du2 · · · dun−1 dun ,

which we can compute by induction. For n = 1,

∫
B2(ℓ)

1du1 = πℓ2 = (2π)1

Γ(2(1) + 1)ℓ2(1). (Lemma 20)

Suppose the relation holds for all ℓ′ for the set of all (n − 1)-tuples such that
∑n−1

i=1 ∥ui∥ ≤ ℓ′ . Then
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if D is the set of all n-tuples (u1, . . . , un) of points in R2 such that
∑n

i=1 ∥ui∥ ≤ ℓ , we have

Vol(D) =
∫

B2(ℓ)

∫
B2(ℓ−∥un∥)

· · ·
∫

B2(ℓ−
∑n

i=3 ∥ui∥)

∫
B2(ℓ−

∑n

i=2 ∥ui∥)
1 du1 du2 · · · dun−1 dun

=
∫

B2(ℓ)

(2π)n−1

Γ(2(n − 1) + 1)(ℓ − ||un||)2(n−1)dun (induction hypothesis)

=
∫ ℓ

0
2πt

(2π)n−1

Γ(2(n − 1) + 1)(ℓ − t)2(n−1)dt (Lemma 19)

= (2π)n

Γ(2(n − 1) + 1)

∫ ℓ

0
t(ℓ − t)2(n−1)dt

= (2π)n

Γ(2n − 1) · ℓ2n

2n(2n − 1)

= (2π)n

Γ(2n + 1)ℓ2n.

We are now ready to prove Theorem 9:

Proof of theorem 9. As βBMed(d) is independent of the demand distribution, we can arrive at a lower
bound by first assuming we are in the case that the Xi are i.i.d. Unif([0, 1]2). We employ the union
bound.

P(BMed(X1, . . . , Xn; d) < l) = P(some selection of, and assignment to, medians is of cost < l)

≤ sum over all selections and assignments of P(cost of selection, assignment < l)

= (# ways select medians)(# ways assign points)P(cost of arbitrary choice < l)

=
(

n

p

)
(n − p)!

(d!)p
P(cost of arbitrary selection and assignment < l),

where for our asymptotic results we are justified in disregarding the ceiling and assuming d+1 divides
n. To obtain an upper bound on the probability that an arbitrary selection and assignment has cost
less than l we fix our median indices, S, and our assignment map µ and first recall that Xµ(i) is the
median assigned to point Xi. Because we can reorder and adjust µ and S accordingly, we may assume
without loss of generality that the Xi are ordered such that the medians we have selected are the last
p points, Xn−p+1, . . . , Xn. We then have the cost of a particular selection and assignment is given by∑n−p

i=1 ∥Xi − Xµ(i)∥. Let

E(l) :=
{

x1, . . . , xn−p ∈ R2 :
n−p∑
i=1

∥xi − xµ(i)∥ < l

}
.
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Then recalling that the Xi are drawn uniformly from the unit square we have,

P
(n−p∑

i=1
∥Xi − Xµ(i)∥ < l

)
= P((X1, . . . , Xn−p) ∈ E(l))

= Vol(E(l) ∩ [0, 1]2)

≤ Vol(E(l)).

To compute this volume we make the volume preserving transformation ui := xi − xµ(i) (that is,
translate each median point to the origin and move its assigned set commensurately) and consider

E ′(l) :=
{

u1, . . . , un−p ∈ R2 :
n−p∑
i=1

∥ui∥ < l

}
.

Then Vol(E(l)) = Vol(E ′(l)). By Lemma 21 we have

Vol(E ′(l)) = (2π)n−p

Γ(2(n − p) + 1) · l2(n−p).

Thus for all selections of S and µ,

P
(n−p∑

i=1
∥Xi − Xµ(i)∥ < l

)
≤ Vol(E ′(l))

= (2π)n−p

Γ(2(n − p) + 1) · l2(n−p).

Combining the above

P(BMed(X1, . . . , Xn; d) < l) ≤
(

n

p

)
(n − p)!

(d!)p
· (2π)n−p

Γ(2(n − p) + 1) · l2(n−p).

Taking logarithms then yields

logP(BMed(X1, . . . , Xn; d) < l) ≤ log
((

n

p

)
(n − p)!

(d!)p
· (2π)n−p

Γ(2(n − p) + 1) · (l)2(n−p)
)

= log
(

Γ(n + 1)
Γ(p + 1)Γ(n − p + 1)

Γ(n − p + 1)
Γ(d + 1)p

· (2π)n−p

Γ(2(n − p) + 1) · l2(n−p)
)

=
[ (

1 − (d + 1)−1
)

log (2) +
(
1 − (d + 1)−1

)
log (π)

+
(
2 − 2 (d + 1)−1

)
log (l) + log (n) + 1 − 1

d + 1 log
(

n

d + 1

)

− (d + 1)−1 − log (d!)
d + 1 −

(
2 − 2 (d + 1)−1

)
log

(
2n − 2 n

d + 1

)]
n

− 1/2 log (2) − 1/2 log (π) + O(1/n),
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where we have employed Lemma 18. It is clear that this upper bound goes to negative infinity as n

goes to infinity if and only if the coefficient of n is negative. We then have as n → ∞,

P(BMed(X1, . . . , Xn; d) < l) → 0

⇑(
1 − (d + 1)−1

)
log (2) +

(
1 − (d + 1)−1

)
log (π)

+
(
2 − 2 (d + 1)−1

)
log (l) + log (n) + 1 − 1

d + 1 log
(

n

d + 1

)
− (d + 1)−1 − log (d!)

d + 1 −
(
2 − 2 (d + 1)−1

)
log

(
2n − 2 n

d + 1

)
< 0

⇕

l <

√
2d(d!)1/(2d)

√
πe(d + 1)(2d+1)/(2d) ·

√
n.

The result then follows easily from the almost sure convergence to βBMed.

B Proof of Lemma 14

If f is absolutely continuous, then it can be approximated arbitrarily well with finitely many step
functions on R, and we therefore assume without loss of generality that f takes precisely this form. To
be more specific, we assume that f(x) =

∑m
i=1 fiδi(x), where δi(x) is an indicator function representing

membership in a square grid cell i. Let ϵ denote the area of each grid cell, so that
s

R f(x) dx =∑m
i=1 ϵfi = 1, and let Ni denote the number of samples of {P1, . . . , Pn} that belong to cell i (so that∑m
i=1 Ni = n).

It is clear that we can construct a feasible tour by applying Lemma 13 to each grid cell and then
“stitching” the tours within each grid cell together. Certainly, the amount of time needed to visit all
Ni points in grid cell i is at most

√
ϵ

(
2
√

3√
ϕ0ϕ1k

·
√

Ni + Ci

)

for some constant Ci, and the amount of additional time needed to “stitch” all of the tours together
is a constant C0 that does not depend on n. Summing all of these together and letting C =

∑m
i=0 Ci,

we have

T (P1, . . . , Pn) ≤
√

ϵ
m∑

i=1

(
2
√

3√
ϕ0ϕ1k

·
√

Ni + Ci

)
+ C0

=⇒ T (P1, . . . , Pn)√
n

≤
√

ϵ
m∑

i=1

 2
√

3√
ϕ0ϕ1k

·

√
Ni

n

+ C√
n
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and since Ni/n → ϵfi with probability one, we see that

lim sup
n→∞

T (P1, . . . , Pn)√
n

≤
√

ϵ
m∑

i=1

2
√

3√
ϕ0ϕ1k

·
√

ϵfi = 2
√

3√
ϕ0ϕ1k

m∑
i=1

ϵ
√

fi = 2
√

3√
ϕ0ϕ1k

x

R

√
f(x) dx

as desired.

C Penalty function for LKH-3 for sidekick routing

The code below replaces the file Penalty_1_PDTSP.c in LKH-3; we use the built-in attribute Node->Color

to identify different customer nodes; a customer is “satisfied” if a node with their corresponding color
has been visited twice (a launch and a retrieval), or if the customer node has been visited directly by
the vehicle.

#include "LKH.h"

#include "Segment.h"

#define COLOR_COUNT 100

#define Pen1 100000 // 1000000 no ’revisiting a launch or retrieval node’

#define Pen2 100000 // 10000 drone number for each route

#define Pen3 100000 // 10000 drone number for the system

GainType Penalty_1_PDTSP()

{

Node *N, *NextN, *instantneN, *trueneN, *prevN, *prevN2, *prevN3;

GainType P = 0;

GainType CurrentTime = 0;

int Forward = SUCC(Depot)->Id != Depot->Id + DimensionSaved;

int Load = Capacity;

int ColorVisitsCount[COLOR_COUNT] = { 0 };

// an array: How many times each color has been visited

GainType ColorVisitTimes[COLOR_COUNT] = { 0 };

// an array: The times associated with visiting nodes of each color

int ReallyArrival[COLOR_COUNT] = { 0 };

int ColorsVisitedTwice = 0;

// a counter: How many colors have been visited twice

N = Depot;

do {

if (N->Id <= Dim && N != Depot) { // Current node is a customer node

int colorIndex = N->Color - 1;
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NextN = Forward ? SUCC(N) : PREDD(N);

NextN = Forward ? SUCC(NextN) : PREDD(NextN);

if (N->DraftLimit == 0 && ColorVisitsCount[colorIndex] == 1

&& ColorsVisitedTwice < COLOR_COUNT-1

&& NextN->DepotId == 0){

// P += Pen1; // no "revisit"

}

int physiIndex = N->DraftLimit - 1;

//N->Color = 1 2,..., COLOR_COUNT = #cus

if (N->ServiceTime == 0 && ColorVisitsCount[colorIndex] < 2){

ColorVisitsCount[colorIndex] = 2;

ColorsVisitedTwice ++;

}

if (N->ServiceTime != 0 && ColorVisitsCount[colorIndex] == 1){

ReallyArrival[physiIndex] ++ ;

ReallyArrival[colorIndex] ++ ;

ColorVisitsCount[colorIndex] = 2; // Mark the color as visited twice

ColorsVisitedTwice++; // Increment the count of colors visited twice.

Load++; // retrieve a drone

ColorVisitTimes[colorIndex] += N->ServiceTime;

// Add current node’s service time to the total visit time for that color.

if (ColorVisitTimes[colorIndex] > CurrentTime)

// the updated visit time for the color > the current time

CurrentTime = ColorVisitTimes[colorIndex];

}

if (N->ServiceTime != 0 && ColorVisitsCount[colorIndex] == 0){

ReallyArrival[physiIndex] ++ ;

ReallyArrival[colorIndex] ++ ;

ColorVisitsCount[colorIndex] = 1; // Mark the color as visited once.

Load--; // launch a drone

ColorVisitTimes[colorIndex] = CurrentTime + N->ServiceTime;

// Set the visit time for the color

}

if (Load > Capacity)

P += Pen2 * (Load - Capacity);

if (Load < 0)

P -= Pen2 * Load;
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if (P > CurrentPenalty ||

(P == CurrentPenalty && CurrentGain <= 0)){

// StartRoute = CurrentRoute;

return CurrentPenalty + (CurrentGain > 0);

}

}

NextN = Forward ? SUCC(N) : PREDD(N);

CurrentTime += (C(N, NextN) - N->Pi - NextN->Pi) / Precision;

N = Forward ? SUCC(NextN) : PREDD(NextN);

} while (ColorsVisitedTwice < COLOR_COUNT);

// Go back to the depot

prevN = Forward ? PREDD(N) : SUCC(N); // current NextN

prevN2 = Forward ? PREDD(prevN) : SUCC(prevN);

prevN3 = Forward ? PREDD(prevN2) : SUCC(prevN2); // new

CurrentTime += (C(Depot, prevN3) - Depot->Pi - prevN3->Pi) / Precision;

P += CurrentTime;

P += abs(Load-Capacity)*Pen3;

for (int i = 0; i < COLOR_COUNT; i++) {

if (ReallyArrival[i]>2) {

// P += (ReallyArrival[i]-2)*Pen1; // no "revisit"

}

}

return P;

}
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