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Intro/Overview — What Will We Cover?

Definitions - What is Al?

Functions — What Can Al Do?

Applications — How is It/Can It be Used for HSD?
Perils & Pitfalls — What are the Limitations/Issues?
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Who Am 1?

* Physician/Former Clinical Professor

* Data Scientist/Current Research Professor
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Audience Warning: This should be a marathon, but
instead we will sprint!

See the slides for fuller details...
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Definitions - What is Al?

“Al” is NOT JUST ONE THING!
* Machine Learning

* Al

* LLM

* Generative Al

* Al Agents
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What Al is NOT (yet)...

STILL SCIENCE FICTION:

HAL-9000
WOPR

SkyNet

Cylons

Lore

Agent Smith
Ultron
Cybertruck FSD
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Machine Learning

* Complex, non-linear algorithms for associating features (independent
variables) with outcomes (dependent variables)

* Examples: Neural Net, Random Forest, Boosted Trees, etc.

* “Supervised” Learning

* Often accurate, but usually not interpretable
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AI'tIfICIal Intelligence - Al

General Definition: Computer systems capable of performlng complex tasks
that historically only a human could do, such as reasoning, making decisions, or
solving problems

* Usually not just a better algorithm — performs multi-step, multi-function tasks

* Al often applies Deep Learning

* Often “Unsupervised” Learning

* May (or may not) provide interpretability
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Large Language Model - LLM

Can process and understand language
What most people mean when they think of Al

Can handle unstructured data — “free text”
Still depends on its training dataset

Still depends on its algorithm sets
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Generative Al

* Creates an output (NEW content) based on a set of instructions

* Output may be written text, reports, pictures, music, computer code, efc.

* Usually linked to an LLM, both to understand the instructions and (for
language-based outputs) generate the output

* Examples
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Al Agent

* Software program that uses Al to perform tasks on its own
* Potential tasks include

* Latest Al Agents can control other computers, including via keyboard &
mouse inputs...
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Hope or Hype?

® From a recent article on the future of Al by Dario Amodei, previously Vice President of Research
at OpenAl (ChatGPT designer), now CEO of Anthropic, a public benefit Al corporation:

® Fox’s Rule: Any time someone tells you that “No, this time it will be different!” (i.e., that the rules
have changed), they are almost certainly wrong.

® Facts change, methods change, winners and losers change, but people’s behavior and
fundamental system rules rarely do.
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Amara’s Law Applies

“We tend to overestimate the effect of a technology in the short run and
underestimate the effect in the long run.”
- Roy Amara
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Functions — What Can Al Do?

® FUNDAMENTAL UTILITY: HANDLING MESSY, LARGE, OR UNSTRUCTURED
DATASETS...

® Functions - Examples
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Where is Al Currently BEING Used?

* Image Interpretation

* Disease Screening

* Transcribing Patient Encounters/Generating Summaries (e.g., HPI)
* Summarizing/Monitoring Treatments & Prescription Adherence
* Suggesting Diagnoses & Treatment Protocols

* Predicting Disease Risk/Onset

* Post Surgery Treatment Coaching/Monitoring
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But Does Al Really Work?

“Despite the plethora of claims for the benefits of Al in enhancing clinical
outcomes, there is a paucity of robust evidence. In this systematic review, we
identified only a handful of RCTs comparing Al-assisted tools with standard-of-

care management in various medical conditions.”
- Lam, et al,. 2022
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What About Health Services Specific Al
Applications?

® Surprisingly little published work on HSD-specific Al
® Mostly Routine Tasks

® Significant logistical issues, especially for medically underserved patients
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TECHNOLOGY

Researchers say an Al-powered
transcription tool used in hospitals
invents things no one ever said
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10f 6| Assistant professor of information science Allison Koenecke, an author of a recent study that found hallucinations in a speech-to-text transcription tool, works in her office at
Cornell University in Ithaca, N.Y,, Friday, Feb. 2, 2024. The text preceded by "#Ground truth” shows what was actually said while the sentences preceded Read More




Perils & Pitfalls —

What are the Limitations/Issues?
* GIGO - You are only as good as your data

Hallucinations — Making S--t Up

Biases - Al Mirrors and Magnifies Our Biases

Transparency/Interpretability

Provider Trust — What If It's Wrong?
USCMann



Data Privacy is a Huge Stumbling Block

" Accessing data

" Getting it inside the firewall

" Aggregating, linking, & harmonizing data from multiple sources
" Anonymization/Deidentification

" Keeping it inside the firewall

" Keeping it up to date
" NOTE that these are all tasks that Al Agents may eventually assist with...
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Bottom Lines -

1) Image processing is the big success story, so
far.

2) Al is now automating many other healthcare
tasks, but issues remain before we can trust
specific applications’ security, reliability & utility.

3) The most useful and acceptable Al will not be
a replacement for healthcare providers, but an
augment that makes their tasks easier...
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Questions?

* Anyone?
* Buhler? Buhler?

* Email: steven.fox@med.usc.edu
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