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Incentive Systems for Fleets of New Mobility
Services

Ali Ghafelebashi , Meisam Razaviyayn , and Maged Dessouky

Abstract—Traffic congestion has become an inevitable chal-
lenge in large cities due to population increases and the expansion
of urban areas. Various approaches are introduced to mitigate
traffic issues, encompassing from expanding the road infrastruc-
ture to employing demand management. Congestion pricing and
incentive schemes are extensively studied for traffic control in tra-
ditional networks where each driver/rider is a network “player”.
In this setup, drivers’/riders’ “selfish” behavior hinders the
network from reaching a socially optimal state. In future mobility
services, on the other hand, a large portion of drivers/vehicles
may be controlled by a small number of companies/organizations.
In such a system, offering incentives to organizations can poten-
tially be much more effective in reducing traffic congestion rather
than offering incentives directly to drivers. This paper studies
the problem of offering incentives to organizations to change the
behavior of their individual drivers (or individuals relying on the
organization’s services). We developed a model where incentives
are offered to each organization based on their aggregated travel
time loss across all drivers/riders in that organization. Such
an incentive offering mechanism requires solving a large-scale
optimization problem to minimize the system-level travel time.
We propose an efficient algorithm for solving this optimization
problem. Numerous experiments on Los Angeles County traffic
data reveal the ability of our method to reduce system-level
travel time by up to 7.15%. Moreover, our experiments show
that incentivizing organizations can be up to 7 times more cost-
effective than incentivizing individual drivers when aiming for
maximum travel time reduction.

Index Terms—New Mobility Services, Congestion Reduction,
Incentivizing Organizations, Travel Demand Management.

I. INTRODUCTION

TODAY, traffic congestion is one of the major issues in
metropolitan areas across the globe. Traffic congestion

declines the overall quality of life, leads to significant economic
losses, degrades air quality, and escalates health vulnerabilities
due to emissions [1–4]. This paper devises a novel mechanism
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around incentives. The core objective of this mechanism is
to change the behavioral patterns of individual drivers within
organizations by incentivizing organizations.

Incentive-based congestion reduction methodologies overlap
with pricing methods, including taxes and fees for road
access [5–14]. These strategies encourage individuals to avoid
congested routes, reducing traffic buildup. Various determinants
underpin the design of these pricing frameworks, encompassing
temporal aspects [15], spatial metrics [16], and vehicular
attributes [17, 18]. Although promising, market-oriented pricing
and taxation face challenges due to equity concerns, policy
complexity, and implementation uncertainties [19–25].

Another approach within the area of pricing mechanisms
involves the adoption of tradable credits (TCs) or tradable
mobility permits (TPMs) [26–29]. [30] provides a theoretical
analysis of the benefits of tradable credits. This methodology
has been implemented within some economic sectors, exem-
plified by its use in the airport slot market [31]. Nevertheless,
implementing these cap-and-trade programs in personal travel
and daily commutes is hindered by design challenges [32, 33].

Recently, there has been a heightened focus on incentiviza-
tion strategies. Compared to fee-based methods, reward-based
policies can be more popular [34]. Moreover, the efficacy of
incentivizing positive actions over punishing negative ones is
evidenced in the psychological concept of reactance [34]. While
rewarding policies have proven effective in altering individual
behavior [35, 36], the transportation sector has underexplored
these incentives.

There have been several studies that explored the use
of incentivization to reduce traffic congestion, such as the
INSTANT project [37], the CAPRI project of Stanford [38],
series of studies in the Netherlands [39], and the “Metropia”
platform [40]. In a recent study, [41] showed the effective-
ness of ridesharing incentivization in congestion reduction.
Incentivizing off-peak hour driving is examined via public
and private central planners (policymakers) in [42]. However,
congestion reduction by offering incentives to organizations
has not been studied by any of the previous studies. Although
initial success is shown in reward-based strategies, enduring
behavior change is not always guaranteed [43].

In traditional congestion pricing and incentive offering
mechanisms, incentives are offered directly to individual drivers
to influence their decisions, such as departure time and routing
(Fig. 1 (a)). In mobility services, many of these decisions may
be directly (or indirectly) made by organizations providing
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Fig. 1. (a) Traditional platforms for offering incentives: incentives are offered to individual drivers in the system. (b) Presented platform for offering incentives:
incentives are offered to new mobility services to change their drivers’ behavior.

different transportation services. For example, navigation apps,
which are regularly used by almost 70% of smartphone
users [44, 45], influence the routing decision of millions
of drivers daily. Another example is crowdsourcing delivery
platforms such as Amazon Flex, Instacart, and Doordash.
According to a recent study [46], the revenue of DoorDash
during the fourth quarter (Q4) of 2022 increased by 40% to
$1.8 billion from $1.3 billion in revenue that it recorded during
Q4 2021. Another example of such organizations is ride-hailing
organizations such as Uber and Lyft. According to a report by
Uber for the fourth quarter of 2022 [47], the number of gross
bookings increased from 12% in Q4 2021 to 17.7% in Q4
2022. Today, many routing decisions are made by individual
drivers. With the future emergence of autonomous vehicles, it
is possible that organizations may now own the fleet of vehicles
and control their routing.

Intuitively, since organizations have more flexibility and
more power to change the traffic, incentivizing organizations is
expected to be more efficient than incentivizing individual
drivers. Furthermore, an organization has more options in
balancing the route selection across the large pool of drivers
employed by the organization. Motivated by this idea, this paper
develops an incentive offering mechanism to organizations to
indirectly (or directly) influence the behavior of individual
drivers (Fig. 1 (b)). In a different study, [48] utilizes the
traditional incentive offering framework (Fig. 1 (a)) to provide
an algorithm to offer personalized incentives to drivers to
reduce traffic congestion by changing the routing decision of
the drivers. These incentives could be personalized based on
user preferences. Both individual level and organization level
incentivization mechanisms will not charge participant drivers
who gain (by arriving early) because, in this paper, we only
focus on a reward system instead of a cost-based system.

In contrast to the individual-level incentivization presented
in [37–39, 48], our incentivization framework for organizations
addresses a broader spectrum of challenges and complexities:

1) Numerical experiments in [48] show that the monetary
benefit from reduced travel time based on the Value of
Time (VOT) exceeds the incentivization cost. However,
their model does not depend on VOT. Our model uses
VOT to compute the monetary value of organizations’
time loss and compensate for it through incentivization.

2) Some incentivization studies [37–39] offered static re-

wards based on fixed rules for all the participants.
However, our model utilizes different VOTs to compute
the incentive offer for different organizations. Note that
different organizations can have different VOTs due to the
unique nature of their service. Hence, our model offers
incentives to organizations such that they can compensate
the organizations’ time loss based on their VOT.

3) [48] offers personalized incentives, but they are selected
from a discrete set of incentive choices that are fixed
before solving the problem. However, our model employs
a continuous variable to calculate the value of the required
incentive. This variable depends on VOT and the amount
of time lost by drivers. As we are not limited to a discrete
set of incentives, our incentivization cost can be more
cost-efficient. Note that the variability in incentive values
introduces more complexity to our optimization problem
because of the larger variable size.

4) [48] does not consider fairness and time delivery con-
straints (fair assignment of drivers to slower and faster
routes when they share the same origin and destination
simultaneously). In contrast, our model addresses these
limitations by preventing the diversion of drivers to routes
with significant time disparities, thus ensuring a route
assignment based on fairness and time delivery constraints.

Our framework will follow this three-step procedure:
Step 1) The central planner receives organizations’ demand
estimates for the next time interval (e.g., the next few hours).
Step 2) The central planner incentivizes organizations to change
their routes and travel time.
Step 3) Observe organizations’ response and go back to Step 1
for the next time interval.
The central planner (which is referred to as “Incentive Offering
Platform” in Fig. 1 (b)) continually repeats this three-step
process in the network for every time interval. A detailed
process description is provided in Fig. 2.

Although an incentive system targets the reward to the
organization, the proposed approach can be used by a wide
variety of transportation organizations, including those that
have drivers as employees, use autonomous vehicles, or use gig
workers as drivers. Furthermore, the transport organization can
be a freight delivery company. In delivery organizations, there
are no passengers that need to be incentivized. In autonomous
vehicle organizations, there are no drivers that need to be
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Fig. 2. Detailed description of the incentivization process.

incentivized. In ride-hailing organizations, it encompasses
both drivers and passengers. In the categories where gig
workers or passengers participate, they are not obligated to
accept the ride with a longer travel time. Hence, they can
accept the incentivized longer road or reject it. Participant
drivers/passengers who reject the incentivized longer route can
take the shortest route. As previously mentioned, the platform is
designed to provide payments to organizations. In cases where
the organization employs gig workers or involves passengers,
the organization will have to pass on some of these incentives
to the gig workers and passengers to incentivize them to take
longer routes. Overall, the incentivization platform aims to
improve system efficiency by moving toward System Optimal
(SO) by changing organizations’ routes via incentives.

The rest of this paper is structured as follows. Section II mo-
tivates the advantage of incentivizing organizations compared
to incentivizing individuals. Section III introduces the basic
notations and describes our incentive offering mechanism for
congestion reduction. We formulate an optimization problem to
find the “optimal” incentive offering strategy. We then propose
an algorithm for solving this optimization problem efficiently in
Section IV. Numerical experiment results for the model using
Los Angeles County data are detailed in Section V. Concluding
remarks are discussed in Section VI. The scalability of the
presented platform is discussed in Appendix E

II. WHY OFFERING INCENTIVES TO ORGANIZATIONS
RATHER THAN INDIVIDUALS?

Our methodology is incentivizing organizations (rather than
individual drivers). Let us first motivate the benefit of this
strategy via a simple example. Consider the subnetwork G̃
at Fig. 3 as a subset of a larger network. Links a and b are
routes between Origin-Destination (OD) nodes v1 (origin) and
v2 (destination). The travel times of a and b are 25 and 30
minutes at User Equilibrium (UE), respectively. Assume 20

Fig. 3. Subnetwork G̃ (selected in blue dashed rectangle).

drivers start traveling from v1 to v2 at the same time. If travel
time is the most important factor in their utility, they will select
v1 because it is the fastest route at UE. Assume we have found
the System Optimal (SO) strategy for the entire network, and
we need 15 out of the 20 drivers to select b instead of a to
achieve SO. At SO, the travel time of route a decreases to 20
minutes (5-minute decrease), and the travel time of route b
increases to 35 minutes (5-minute increase). Drivers that use
route a save 5 minutes due to a decrease in travel time of route
a. Deviated drivers to route b expect to lose 5 minutes because
they expect route b to have travel time of 30 minutes. Hence,
since we want to deviate 15 drivers to a route with longer
travel time (route b in this example), we should compensate
for their increased travel time. Assume VOT is $1/min. Let
us compare two scenarios:

(I) All 20 drivers are individual drivers. Since we need to
deviate/incentivize 15 drivers and compensate each of
them for 5 minutes of their time, we need to spend $75 =
(5 min× 15)× $1/min.

(II) All 20 drivers work in the same organization. In this
scenario, the organization needs to spend $75 to alter
the decision of the 15 drivers. However, after offering
incentives, the travel time of the 5 remaining drivers
on route a decreases. Therefore, the organization gains
25 = 5×5 minutes of time from the drivers who stayed in
route a. Overall, the increase and decrease in the drivers’
travel times cancel each other out (canceling-out effect).
This change only costs the organization 50 minutes of total
time. Hence, the compensation cost is $50 = 50 min ×
$1/min for the organization.

Therefore, we spend 33% less in incentivizing the organization
(i.e., scenario (II)) compared to incentivizing the individ-
ual drivers (i.e., scenario (I)). This example illustrates that
incentivizing organizations can be more cost-effective than
incentivizing individual drivers. Note that this observation does
not necessarily hold in general games; grouping users in a game
does not necessarily lead to a lower-cost Nash equilibrium.

III. INCENTIVE OFFERING MECHANISM AND PROBLEM
FORMULATION

Given the origin-destination information of drivers in various
organizations, the goal is to find the “optimal” strategy for
offering organization-level incentives to them to reduce the
traffic congestion of the system. To mathematically state the
problem, we begin by defining our notations. A complete list
of notations used in this paper can be found in Appendix A.
For further details of the notation, an example is provided in
Appendix B in the complete version of the work [49].
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The traffic network is represented by a directed graph G =
(V, E). Vertices V of the graph are major ramps and inter-
sections in the network. Vertices are connected by a set of
edges E . In our directed graph, the edge direction is determined
by the allowable direction of travel on the corresponding road
segment, indicating the permissible movement from one node
to another for a driver. The adjacency of two nodes is based
on the possibility of driving directly from one node to another
without visiting any other node. The network comprises a total
number of road segments, denoted as |E|, which reflects the
cardinality of the set E . A route in the network is a path in the
graph and is denoted by a one-hot encoding. In other words, a
given route is represented by a vector r ∈ {0, 1}|E| in which
the k-th entry is one if route r includes the k-th edge and it is
zero, otherwise. Let T = {1, . . . , T} denote the defined time
horizon such that t = 1 marks the starting time of the system.
Traffic volume of road segments at time t is represented by the
vector vt ∈ R|E| in which the k-th entry is the total number
of vehicles of road segment k at time t.

Let N = N1 ∪ · · · ∪Nn denote the set of all drivers and Ni
denote the set of drivers of organization i. If a driver works for
multiple organizations, he or she will be counted as a different
driver at each organization. Hence, N1 ∩ · · · ∩ Nn = ∅. For
any driver j ∈ N , let Rj ⊆ {0, 1}|E| denote the set of driver’s
possible route choices between her/his origin and destination.
The binary variable sr,ji ∈ {0, 1} represents the assigned route
to the j-th driver of organization i. For this driver and given
route r ∈ Rj , the variable sr,ji = 1 if route r is assigned to
the j-th driver of organization i; and sr,ji = 0, otherwise. Each
driver can only be assigned to one route, i.e.,

∑
r∈Rj

sr,ji = 1.
Given any routing strategy assigned to drivers, we model the
drivers’ decision deterministically due to the power of the
organizations in enforcing their drivers’ routes.

In this paper, we change the routing decision of organizations’
drivers by incentivizing their organizations. The incentivization
budget can be provided through resources similar to previous
studies [37–42] (e.g., government). We assume that organi-
zations will accept our route assignments if the incentive
offer can compensate for the change in their total travel
time. Notice that when the organizations decide to accept
the offer, they have no access to the offered route assignments
to the other organizations. Hence, they can only estimate
the travel time based on historical data, and they will be
compensated based on their loss/gain compared to the historic
setting. This compensation is computed by utilizing the VOT
at the organization-level. For example, in the case of ride-
hailing services like Uber and Lyft, the incentivization platform
can provide incentives to the organization based on the VOT
of drivers and passengers (combined). Next, the organization
utilizes the received budget to incentivize passengers (e.g., by
reducing the price) and the drivers who accept longer routes
(by paying them). Those who reject the incentivized longer
route can take the shortest route. Note that an organization’s
VOT is not necessarily dependent on passengers or drivers
because the set of organizations extends beyond the ride-
hailing sector. For instance, the VOT for delivery services
would be associated with the delivery partners’ VOT. Moreover,

the VOT of autonomous vehicle organizations like Waymo
pertains only to passengers due to the absence of drivers. Our
platform includes the flexibility to differentiate VOTs for each
organization due to the varied nature of their operations.

In this work, we adopt total travel time as the utility function,
while alternative metrics like energy consumption or total
carbon emissions can also be considered. We compute the
system total travel time by summing the drivers’ travel time
of all road segments over all time periods in the horizon of
interest:

F (v̂) =

|E|∑
`=1

|T|∑
t=1

v̂`,tθ`,t(v̂`,t) (1)

where θ`,t is the travel time of link ` at time t (which itself
is a function of the link’s traffic volume at that specific time).
Here, v̂ is the vector of volume of links in which v̂`,t is the
(|E| × (t− 1) + `)th element of vector v̂ corresponding to the
volume on the `th link at time t. Using the volume vector, we
can then calculate the travel time for the links at various times,
as outlined below.

Multiple approaches have been proposed to illustrate the
relationship between traffic volume and travel time. For
instance, the Bureau of Public Roads (BPR) [50] presents
a congestion function for road links. This function describes a
non-linear connection between the travel time on a road and
its traffic volume:

θ(v) = fBPR(v) = θ0

(
1 + 0.15

( v
w

)4)
(2)

where fBPR(v) denotes the travel time for drivers on a road
segment based on its traffic volume v; θ0 represents the
segment’s free flow travel time; and w is the road segment’s
practical capacity. In our experiments, to learn the parameters
w and θ0 of the road segments in the Los Angeles area at
different times of the day, we utilize the historical traffic data of
the road segments. Given the function θ(·) in (2), to compute
the total travel time of the system, one needs to compute the
volume at each link. Subsequently, we elucidate the process
by which the volume vector is computed within our model.

Volume vector v̂: The computation of the volume vector v̂
requires (approximately) estimating the location of the drivers
at different times based on their route. By assigning a different
route to a driver, the driver’s impact on the values of the
vector v̂ will be different because the driver’s location will
change by following a different route. We will begin by
introducing our notation for route assignment: Each driver’s
assigned route is represented by a one-hot encoded vector. Thus,
for each driver, we have a binary vector sji ∈ {0, 1}|R| in which
only one element has a value of one, and it corresponds to
the assigned route to the j-th driver of organization i. As
we need one vector for each driver, we can aggregate all our
assignments in a matrix S ∈ {0, 1}|R|×|N| = [S1S2 . . .Sn]
where Si ∈ {0, 1}|R|×|Ni|, which is the assignment matrix
of organization i with n being the number of organizations.
Elements in a driver’s assignment vector that correspond to
routes unrelated to their specific origin-destination pair are
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set to zero since travel on these routes is not possible for the
drivers. Thus, the S matrix can be rather sparse.

Given the driver’s route entering the system at a specific time,
we need to model the location of the individual in the upcoming
times. To model the drivers’ location in the system, we use
the model developed by [51] in which the drivers’ location
is computed in a probabilistic fashion. This model can be
presented by a matrix R ∈ [0, 1](|E|·|T|)×|R| which estimates
the probability of a driver being on a certain link at a given
future time, under the assumption that they choose a specific
route. Multiple ways to estimate matrix R are suggested in
[51], including an approach based on the use of historical data.
In our experiments in subsection V-A, matrix R is computed
based on the volume at the UE state of the system. Given
matrix R, it is easy to see that the vector

v̂ =RS1 ∈ R|E|·|T| (3)

contains the expected number of vehicles in all the links at
each time. Plugging the expression of v̂ in (1), we get the total
travel time of the system as

F (v̂) =

|E|∑
`=1

|T|∑
t=1

(RS1)`,tθ((RS1)`,t)

=

|E|∑
`=1

|T|∑
t=1

(r`,tS1)θ(r`,tS1)

(4)

where r`,t is the row of matrix R which corresponds to link `
at time t.

To reduce the total travel time of the system, some drivers
can be deviated to alternative routes to lower the traffic flow
of the congested links. To change the routing assignment of
drivers, we need to offer incentives to their organizations such
that it can compensate the organizations’ financial loss caused
by accepting our assignment. For simplicity, we use the total
travel time increase of the organization as a measure of financial
loss. Although we have estimated the travel time of the system
from equation (4), we need to compute the “route travel times”
to be able to compare the amount of change in travel time
of each driver after offering incentives. Given the route travel
times, we compute the incentives using a model that depends
on VOT and the amount of increase in the travel time for each
organization. In particular, we assume that, given the route
assignment to organization i, the incentive value is

ci = αi max

0,
∑
j∈Ni

δ>sji − γi

 , (5)

where ci is the incentive offered to organization i, αi ∈ R+

is VOT for organization i, δ ∈ R|R|·|T|+ is the travel time of
the route for each driver, and γi is the sum of the minimum
travel time route of each driver of organization i in the absence
of incentivization. The variable αi is designed based on the
VOT specific to organization i. This approach allows the model
to adjust the VOT for each organization, accommodating the
diverse nature of their operations. δ and γi are computed based
on the absence of incentivization. When

∑
j∈Ni

δ>sji−γi > 0,
the organization’s total travel time has increased compared to

the baseline of having no incentive, and hence the system
will compensate the organization’s loss. On the other hand,
when

∑
j∈Ni

δ>sji − γi < 0, the organization’s travel time is
improved after incentivization, and hence no incentivization
is required for this particular organization to participate. The
details of our method for computing route travel time vector δ
are described next.

Route travel time vector δ: Estimation of the vector δ requires
the volume on each link, which is derived based on the route
assignment of the drivers. Let S denote the routing decision
of the drivers. Given S, we can estimate the volume vector v
using (3). By utilizing the BPR function (2) and the estimated
volume vector v̂, we can compute the speed of the links. Given
the speed of each link, we can determine the vector δ that
contains the travel time of the routes for different time slots
and the vector η ∈ RK·|T|+ that contains the travel time of
the fastest route for different OD pairs for different times (K
represents the total number of OD pairs). To do so, we rely
on the method provided by [51] and the routing decision of
drivers S at the UE state of the system. Given the minimum
travel time between OD pairs in vector η, we can compute
the minimum travel time of organization i as γi = (Biη)>1
where Bi ∈ {0, 1}|Ni|×(K·|T|) is the matrix of shortest travel
time assignment of drivers of organization i. Biη is the vector
of the shortest travel time between the OD pair for each driver,
and by summing the elements of this vector, we get γi.

Proposed formulation: For minimizing the total travel time of
the system via providing incentives to organizations, we need
to solve the following optimization problem:

min
{Si,ci}ni=1

|E|∑
`=1

|T|∑
t=1

v̂`,tθ`,t(v̂`,t)

s.t. v̂ =

n∑
i=1

RSi1

DSi1 = qi, ∀i = 1, 2, . . . , n

S>i 1 = 1, ∀i = 1, 2, . . . , n

Si ∈ {0, 1}(|R|·|T|)×|Ni|, ∀i = 1, 2, . . . , n

S>i δ ≤ bi �Biη, ∀i = 1, 2, . . . , n

ci ≥ αi(δ>Si1− γi), ∀i = 1, 2, . . . , n

ci ≥ 0, ∀i = 1, 2, . . . , n

c1 + c2 + · · ·+ cn ≤ Ω

(6)

where v̂`,t is an element of vector v̂ that corresponds to the
volume of link ` at time t, ci ∈ R+ is the cost of incentive
assigned to organization i, D ∈ {0, 1}(K·|T|)×(|R|·|T|) is the
matrix of route assignment of the OD pairs, bi ∈ R|Ni|

+

denotes the factor by which the travel time of an assigned
route can be larger than shortest travel time of the OD pair,
Bi ∈ {0, 1}|Ni|×(K·|T|) is the matrix of shortest travel time
assignment of drivers of organization i, and qi ∈ RK·|T| is the
vector of the number of drivers of organization i for each OD
pair at different times. If there are drivers in the system that
do not work for any organization, we can consider them as
a single organization whose decision matrix is initialized and
has fixed values such that they are assigned to the fastest route
(assuming they always select the shortest route). The same
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idea can be employed for organizations that are not joining
the incentivization platform. The following section provides a
detailed explanation of the constraints:

Constraint 1 (v̂ =
∑n
i=1 RSi1): This constraint is the

computation of the volume on each link at different times
based on the routing assignments for the organizations.

Constraint 2 (DSi1 = qi): This constraint ensures that the
correct number of drivers are assigned to the routes between
OD pairs. Si1 represents the number of drivers assigned to
the different routes. The matrix D is utilized to aggregate the
count of drivers assigned to various routes within the same
OD pair. The vector qi represents the actual number of drivers
from organization i traveling between these OD pairs, and the
product DSi1 is required to equal qi.

Constraint 3 (S>i 1 = 1): This constraint simply states that
we can only assign one route to each driver of organization i.

Constraint 4 (Si ∈ {0, 1}(|R|·|T|)×|Ni|): This constraint
enforces a binary framework on our decision variables, where 0
indicates not assigning a route and 1 signifies route assignment.

Constraint 5 (S>i δ ≤ bi�Biη): This is our fairness and time
delivery constraint. Due to different reasons, such as urgent
deliveries by some of the organizations’ drivers, they may not
accept alternative routes that deviate significantly from the
fastest route. Moreover, the platform should consider fairness
between different drivers in terms of the amount of deviation
from the shortest travel time. The fairness and time delivery
constraint bounds the deviation of travel time of the assigned
routes from the minimum travel time. S>i δ represents the
travel time of the assigned routes to drivers of organization i.
bi ∈ R|Ni|

+ denotes the factor by which deviation is allowed
for each driver of organization i.

Constraints 6 and 7 (ci ≥ αi(δ>Si1−γi) and ci ≥ 0): These
two constraints guarantee (5).

Constraint 8 (c1 + c2 + · · · + cn ≤ Ω): This represents our
budget constraint. The scalar ci denotes the incentive amount
allocated to organization i. Ω signifies the total budget available.

For further elaboration on model 6 and its constraints, an
illustrative example is presented in Appendix B in the complete
version of the work [49].

IV. INCENTIVIZATION ALGORITHM AND A DISTRIBUTED
IMPLEMENTATION

Optimization problem (6) is of large size and includes
binary variables (Si,∀i = 1, . . . , n). Thus, solving it efficiently
is a challenging task. In this subsection, we propose an
efficient algorithm for solving it. First, we relax the binary
constraint Si ∈ {0, 1}(|R|·|T|)×|Ni| to convex constraint Si ∈
[0, 1](|R|·|T|)×|Ni| and we refer to this as the relaxed version
of problem (6). The objective function is a summation of
monomial functions with positive coefficients. Furthermore,
θ`,t is an affine mapping of the optimization variable Si. Since
our domain is the nonnegative orthant and monomials are
convex in this domain, the objective function is convex. As

the constraints of this problem are convex, the relaxed version
of problem (6) becomes a convex optimization problem. Thus,
standard solvers such as CVX [52] can be used to solve this
problem. However, these solvers have large computational
complexity because of utilizing methods such as interior point
methods [53] with O(n3) iteration complexity where n is
the number of variables. This computational complexity is
not practical for our problem. In what follows, we rely on
first-order methods with linear computational complexity in
n, which is affordable in our problem. The reformulation
is provided in Appendix B. This reformulation is amenable
to the Alternating Direction Method of Multiplier (ADMM)
method [54–58], which is a first-order method and scalable.
Appendix C provides an overview of ADMM, the fundamental
component of our framework. The steps of the resulting
algorithm are provided in Algorithm 1 in Appendix D. The
details of the derivation of this algorithm are provided in
Appendix E in the complete version of the work [49]. Due
to the distributed setting of Algorithm 1 using the ADMM
method, it also provides the potential benefits associated with
federated learning and distributed systems [59, 60].

In the relaxed version of problem (6), different solutions
S∗i with a fixed S∗i 1 = u∗i yield the same objective value
if S∗i satisfies all the constraints. Thus, potentially infinitely
many solutions to our convex problem exist, and many are not
binary. To promote a binary solution for the final decision, we
introduce the following regularizer into the objective function
of the relaxed version of problem (6):

<(S) = − λ̃
2

n∑
i=1

|Ni|∑
j=1

|R|∑
r=1

|T|∑
t=1

(Si)j,r,t((Si)j,r,t − 1) (7)

where λ̃ ∈ R+ is the regularization parameter and (Si)(j,r,t) ∈
[0, 1]. This regularizer has the effect of driving the elements
of matrix S towards the binary domain {0, 1}. The regularizer
penalizes any deviations from this domain in the objective
function. While convexity is sacrificed due to regularization,
ADMM can still be convergent in nonconvex problems [57].

Algorithm 1 solves the relaxed version of problem (6). Since
the solution to the relaxed version of problem (6) may not be
binary (due to relaxation), we need to project it back to the
feasible region. For computational purposes, we suggest using
`1 projection by solving the following mixed integer (linear)
problem (MILP)

min
{Si,ci}ni=1

n∑
i=1

‖Si1− u∗i ‖1

s.t. DSi1 = qi, ∀i = 1, 2, . . . , n

S>i 1 = 1, ∀i = 1, 2, . . . , n

Si ∈ {0, 1}(|R|·|T|)×|Ni|, ∀i = 1, 2, . . . , n

S>i δ ≤ bi �Biη, ∀i = 1, 2, . . . , n

ci ≥ αi(δ>Si1− γi), ∀i = 1, 2, . . . , n

ci ≥ 0, ∀i = 1, 2, . . . , n

c1 + c2 + · · ·+ cn ≤ Ω

(8)

where u∗i ,∀i = 1, 2, . . . , n is the optimal solution obtained
by Algorithm 1. Clearly, this problem can be reformulated as
a MILP problem and solved using off-the-shelf solvers like
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Gurobi. Solving problem (8) can be easier than problem (6).
Problems (6) and (8) have the same variable size and similar
constraints, but the objective functions are different. While
the objective function in problem (8) can be restructured as a
linear programming problem, we have a polynomial objective
function in problem (6) that introduces more complexity.

V. EXPERIMENTS

We evaluate our incentive scheme’s effectiveness using
Los Angeles area data. The presence of multiple routes between
most OD pairs makes the Los Angeles area particularly
suitable for our assessment. We use the data collected by the
Archived Data Management System (ADMS), a comprehensive
transportation dataset compilation by University of Southern
California researchers [61]. This system aggregates data from
Los Angeles, Orange, San Bernardino, Riverside, and Ventura
Counties, offering a robust data source for analysis.

For our evaluations, we need to estimate the OD matrix.
The (i, j)-th entry of the OD matrix represents the count of
drivers traveling between origin i and destination j. We need
to estimate the OD matrix using the available network flow
information due to drivers’ routing data unavailability. The
OD matrix estimation problem is challenging due to its under-
determined nature [62–64]. OD matrices are categorized as
static or dynamic [65]. However, many dynamic OD estimation
(DODE) methods are computationally impractical for our high-
resolution data. Additionally, some studies rely on existing OD
matrix data [66–69], which we lack. Given these constraints,
we adopt the OD estimation algorithm proposed by [51]. Note
that OD estimations in our study serve as an input to our
incentivization model rather than being the focus of our analysis,
as we do not propose a new OD estimation algorithm.

The base VOT of our experiments is derived from the
estimation by [70], which is $2.63 per minute or $157.8 per
hour. In our experiments, we apply a uniform VOT across all
organizations. We note that, in practice, we do not initially
know the exact VOT of passengers and drivers. Moreover, the
perceived VOT by organizations can change over time because
the incentive policy would necessitate algorithmic adjustments
within the organizations. Specifically, they would need to mod-
ify their payment algorithms to allocate the received incentives
between passengers and drivers that accept longer routes. Such
algorithmic updates would allow the organizations to optimize
their operations and services in response to the incentive policy.
The incentivization platform can learn the VOT of passengers
and drivers by continuously observing their acceptance/rejection
behavior through techniques in online/reinforcement learning.
Learning the VOT is beyond the scope of our work, and we
assume the VOT is known. All the codes are publicly available
at: https://github.com/ghafeleb/Incentive_Systems_for_New-
_Mobility_Services.

A. Simulation Model

First, we extract sensor details, including their locations. We
extract the speed and volume data of selected sensors. Nodes
for the network graph are chosen from on-ramps and highway

Fig. 4. Data preparation workflow. First, traffic data and sensors’ location data
are received from the ADMS Server. Next, sensors’ location data is processed
to compute sensor distances. Finally, sensor distances and traffic data are
combined to create the graph network data.

intersections. Connecting link data is derived from in-between
sensors. Node distances are determined via Google Maps API.
Data preparation workflow is shown in Fig. 4. The network
under consideration includes highways surrounding Downtown
Los Angeles, as depicted in Fig. 5, and consists of 12 nodes, 32
links, and a total road length of 288.1 miles. We have 144 OD
pairs, and we employ the algorithm from [51] on the network’s
speed and volume data for OD estimation. Fig. 6 shows the
total estimated incoming drivers per time interval. We explore
3 routing options for each OD pair. Initially, the shortest path
is determined. Subsequently, links in the first path are removed
to uncover the second shortest path if available. This process
is repeated for the third route. Based on this process, we find
270 paths between OD pairs.

In practice, the prediction of travel time and OD estimations
are handled by organizations using their sophisticated software
and data-collecting tools. By incorporating these prediction
tools, the framework can consider external factors such as
weather conditions in traffic predictions or road closures in
finding possible routes because our approach focuses on short-
term planning (only a few hours ahead).

We focus on incentivizing the organizations to change their
behavior for the 7 AM to 8 AM interval (which is the rush
hour based on the estimated number of incoming drivers
in Fig. 6). Although we have selected 7 AM to 8 AM as
the incentivization time period, we also include 8 AM to
8:30 AM in our experiments because some of the drivers
entering between 7 AM and 8 AM may not finish their route
before 8 AM. To track the effect of these drivers on the total
travel time of the system, we include traffic flow from 8 AM to
8:30 AM in our analysis as well. The OD estimation algorithm’s
projected total count of drivers entering the system from 6 AM
to 9 AM is illustrated in Fig. 6. From 7 AM to 8:30 AM, a
total of 11985 drivers enter the system.

We consider the traffic volume of the network at UE in our

https://github.com/ghafeleb/Incentive_Systems_for_New_Mobility_Services
https://github.com/ghafeleb/Incentive_Systems_for_New_Mobility_Services
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Fig. 5. Studied region and the highway sensors inside the region. This region
encompasses several areas notorious for high traffic congestion, particularly
Downtown Los Angeles.

Fig. 6. Total estimated number of drivers entering the system over time (in
5-minute intervals). The plot shows that traffic peak happens between 7 AM
and 8 AM.

baseline. To compute the volume of the network at UE, we use
the UE algorithm in [48]. The algorithm receives the volume
(historical data) and OD estimation as inputs and returns the
matrix RUE and route travel time vector δUE at UE. To compute
the cost of organizations’ incentivization, we need to know
the route travel times when drivers have made decisions based
on the UE route travel time δUE. Hence, we compute the new
volume vector vnew = RUESUE1 where SUE is the assignment
of drivers to the fastest route based on the UE route travel
time vector δUE. Using the BPR function, volume vector vnew,
and δUE, we compute δ that denotes the travel time of the
routes if drivers make decision based on δUE and η denotes
the minimum travel time between the different OD pairs.

B. Results

In this subsection, using our model and algorithm, we study
the impact of organization incentivization for different budget
values, the number of organizations, VOTs, and the percentage
of drivers who are employed by the organizations in the
incentivization program. The remaining drivers are assumed to
be background drivers who follow the δUE. We consider four
scenarios for the percentage of drivers that enter the system
between 7 AM and 8 AM and belong to organizations that we
can incentivize (penetration rate): I. 5% (407 drivers) II. 10%
(812 drivers) III. 15% (1221 drivers) IV. 20% (1626 drivers).
Selected drivers in each scenario are included in scenarios with
larger user percentages to have a standard comparison between
scenarios. Drivers in each organization are selected uniformly
at random.
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Fig. 7. Percentage of travel time decrease with different budgets at VOT=$157.8
per hour using Algorithm 1. The amount of travel time reduction shows
a positive correlation with the amount of incentivization budget and the
penetration rate
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Fig. 8. Percentage of travel time decrease with different budgets at VOT=$78.9
per hour using Algorithm 1. The amount of travel time decrease is similar
or larger compared to Fig. 7 with VOT=$157.8 due to the smaller cost of
incentivization.

The percentage of travel time decrease with incentivization
as compared to a system with no incentivization scheme with
VOT of $157.8 is presented in Fig. 7 for different penetration
rates. In our plots, the budget of $0 shows the case of a no-
incentivization platform. We observe that by increasing the
budget, the amount of decrease in travel time increases (as
expected). This decrease is more for the same budgets at larger
penetration rates because the model has access to more drivers
to select and has more flexibility to recommend alternative
routes. For the purpose of sensitivity analysis, we also provide
travel time decrease for all penetration rates with a different
VOT of $157.8

2 = $78.9 per hour in Fig. 8. The comparison of
results for different VOTs in Fig. 7 and Fig. 8 shows that for a
very large budget, the decrease in travel time is almost similar.
This is because none of the models utilize the entire budget
at a $10000 budget. However, when budgets are limited, the
performance disparity can increase up to 1.41% due to lower
incentivization costs associated with the smaller VOT.

For the next analyses of our numerical results, we only
report the results for our base VOT ($2.63 per minute or
$157.8 per hour) because the results follow similar patterns with
VOT of $78.9. In Fig. 9, we present the total incentivization
cost for different budgets and penetration rates when there is
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Fig. 9. Total cost of incentivization of one organization with different budgets
and different penetration rates at VOT=$157.8 per hour using Algorithm 1.
Incentivization cost increases with the amount of budget as the model
incentivizes more drivers to reduce traffic. The cost is larger at larger penetration
rates at $10000 budget because the model incentivizes more drivers. At smaller
budgets, the incentivization cost is smaller at larger penetration rates because
of more flexibility in selecting drivers at limited budgets.
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Fig. 10. Cost of incentivization per deviated drivers of one organization with
different budgets and different penetration rates at VOT=$157.8 per hour using
Algorithm 1. At larger penetration rates, the platform can incentivize drivers
more efficiently due to access to a larger pool. The platform spends smaller
incentivization amount per deviated driver at larger penetration rates.

one organization in the system. This cost increases when the
available budget is more. This pattern shows that the platform
can utilize the resources when it has access to more money. We
observe that more involvement of drivers at $800 and $2000
budget leads to a slightly smaller cost at larger penetration rates
because of more flexibility in selecting drivers. At a $10000
budget, the platform does not exhaust the whole budget at any
penetration rate. Hence, it spends more on incentivization at
larger penetration rates by incentivizing a greater number of
participants. Fig. 10 shows the cost per deviated driver. The
cost per driver is significantly smaller in larger penetration rates
because the model has more flexibility in choosing the drivers
efficiently. Moreover, the cost per driver increases with the
budget. This shows that our model utilizes our budget efficiently
by providing more affordable incentives first when the budget
is low. As TABLE I shows, the number of incentivized drivers
in larger penetration rates is larger because there are more
drivers for selection.

The number of organizations in the system can alter the
total travel time and cost. Fig. 11 illustrates the percentage

Penetration Rate Budget
$200 $800 $2000 $10000

5% 20 34 48 48
10% 31 51 74 94
15% 42 72 101 151
20% 49 90 123 195

TABLE I
DISTRIBUTION OF THE NUMBER OF DRIVERS THAT WERE ASSIGNED TO AN

ALTERNATIVE ROUTE USING ALGORITHM 1.
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Fig. 11. Travel time decrease vs. incentivization cost for different number
of organizations at a 5% penetration rate and VOT=$157.8 per hour using
Algorithm 1. The incentivization cost for the same travel time reduction is
smaller when the number of organizations is smaller. This phenomenon is due
to the cancel-out effect between the gain and loss of drivers of the organizations.

decrease of travel time and total cost when there are different
number of organizations in the system at a 5% penetration
rate. As an extreme case, we also include the case that each
organization contains one driver (i.e., we incentivize individuals
rather than organizations). In Fig. 11, we observe a larger cost
for reducing the same amount of travel time decrease when
there are more organizations in the system. The intuitive reason
behind this observation is as follows. For each organization,
after incentivization, some drivers lose time, and some gain
travel time. At the organizational level, the time changes of
drivers can cancel each other out, and hence we may not
need to compensate the organization significantly. When the
number of drivers per organization decreases, the canceling
effect becomes weaker, and the incentivization costs more.
This is in line with our discussion in Section II. This also
explains why incentivizing organizations is much more cost-
efficient than incentivizing individual drivers. This observation
remains consistent across other penetration rates; therefore,
corresponding plots for other rates are not provided.

Our experiments use Algorithm 1 to solve the relaxed
version of problem (6) and utilizes the Gurobi solver to solve
the MILP problem (8). We compare our approach against
solving the MIP problem (6), utilizing Gurobi and MOSEK.
These solvers are recognized as state-of-the-art, off-the-shelf
commercial tools for linear and mixed integer optimization
problems. We configure the relative mixed integer programming
optimality gap at 0.01 for both solvers to ensure an optimal
trade-off between computational speed and accuracy. Fig. 12
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Fig. 12. Comparison of travel time reduction percentage using different solvers
with different penetration rates and budgets at VOT=$157.8 per hour. Gurobi
exhibits a slight performance advantage over Algorithm 1 at higher penetration
rates and budgets.

shows that the Gurobi solver has a slightly better travel time
reduction compared to our method. MOSEK is not included
in this plot because its performance closely mirrors that
of Gurobi. Although the solvers show a slight advantage
in reducing travel time, our presented method significantly
outpaces these solvers when parallel computation techniques
are applied. As Fig. 13 shows, our method achieves speeds
up to 12 times faster than Gurobi and 120 times faster
than MOSEK, demonstrating a considerable advantage in
computational efficiency. This enhanced speed does not only
translate to quicker solutions but also suggests potential for
real-time application in dynamic traffic management scenarios
where rapid decision-making is critical. Moreover, Fig. 14
illustrates that, at $10000 budget, the Gurobi solver spends
significantly more (up to $5000) on incentivization compared
to Algorithm 1. This discrepancy highlights the cost-efficiency
of our algorithm, particularly in managing budget allocations
effectively while achieving comparable traffic management
outcomes. The potential reason is that Gurobi employs branch-
and-bound and linear programming solvers to find the solution
in a finite number of steps, relying on extreme points. In
contrast, Algorithm 1 is based on a first-order method and
asymptotically converges to the solution, stopping upon finding
an ε-optimal solution. Due to the similar incentivization cost
of MOSEK and Gurobi, a comparative analysis for MOSEK
is not included.

VI. CONCLUSION

In this paper, we study the problem of incentivizing organi-
zations to reduce traffic congestion. To this end, we developed
a mathematical model and provided an algorithm for offering
organization-level incentives. In our framework, a central
planner collects the origin-destination and routing information
of the organizations. Then, the central planner utilizes this
information to offer incentive packages to organizations to
incentivize a system-level optimal routing strategy. In particular,
we focused on minimizing the total travel time of the network.
However, other utilities can be used in our framework. Finally,
we employed data from the Archived Data Management System
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Fig. 13. Comparison of the relative execution time of Algorithm 1 vs. different
solvers at different penetration rates at VOT=$157.8 per hour. Algorithm 1
execution time consistently outperforms Gurobi and MOSEK up to 12 and
120 times, respectively.
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Fig. 14. Comparison of the relative incentivization cost using Algorithm 1
vs. Gurobi at different penetration rates, VOT=$157.8 per hour, and one
organization. Both methods utilize similar incentivization amount for smaller
budgets but at $10000 budget, Gurobi spends up to $5000 more.

(ADMS) to evaluate the performance of our model and algo-
rithm in a representative traffic scenario in the Los Angeles area.
A 6.90% reduction in the total travel time of the network was
reached by our framework in the experiments. More importantly,
we observed that incentivizing companies/organizations is more
cost-efficient than incentivizing individual drivers. As future
work, it is important to study the effect of incentivization to
change the start time of the trip. This is particularly relevant in
future mobility services because many of them, such as delivery
services, are flexible in terms of trip time to a certain degree.
In addition, we can consider the stochastic nature of making
decisions in routing by individual drivers. Moreover, we can
extend the incentivization framework to the case that not all
organizations accept their received offer. Our platform also has
the limitation of assuming VOT is given and fixed. Furthermore,
as a potential legal, ethical, and practical constraints, we
should consider the privacy of individuals’ data. We can adopt
approaches similar to those used in previous incentivization
projects with real-world implementations [37–40] to address
this issue. Further discussions on limitations and scalability of
the platform are provided in Appendix E.
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APPENDIX A
LIST OF NOTATIONS

Traffic network spatiotemporal parameters:

• G: Directed graph of the traffic network
• V: Set of nodes of graph G which correspond to major

intersections and ramps
• E : Set of edges of graph G which correspond to the set

of road segments
• |E|: Total number of road segments/edges in the network
G (i.e. the cardinality of the set E)

• `: An edge of graph G which corresponds to a link/road
segment in the traffic network

• Rj : Set of possible route options for driver j
• R: Total set of possible route options for all OD pairs
• |R|: Total number of possible route options (i.e. the

cardinality of the set R)
• r: Route vector
• T: Set of time of periods
• |T|: Number of time units (i.e. the cardinality of T)
• θ`,t: Travel time of link ` at time t
• F (.): Total travel time function
• Tr: The travel time for route r

BPR function and its parameters:

• fBPR(.): BPR function
• v: The traffic volume of the link
• w: The practical capacity of the link
• θ0: The free flow travel time of the link

Optimization model parameters:

• Ni: Set of drivers of organization i
• |Ni|: Total number of drivers of organization i (i.e. the

cardinality of set Ni)
• N : Set of all drivers
• |N |: Total number of drivers (i.e., the cardinality of set
N )

• vt: Volume vector of road segments at time t
• v̂: The vector of the estimated volume of links at different

times in the horizon
• v̂`,t: The (|E| × t+ `)th element of vector v̂ representing

the volume of the `th link at time t
• R: The matrix of the probability of a driver being at each

link given their route
• r`,t: The row of matrix R that corresponds to link ` at

time t
• D: The matrix of route assignments of the OD pairs
• qi: The vector of number of drivers of organization i for

each OD pair
• δ: The vector of travel time of routes at different times
• η: The vector of shortest travel time between different

OD pairs at different times
• bi: This vector contains the factors by which the travel

time of assigned routes can be larger than the shortest
travel time of the drivers of organization i

• Bi: The matrix of shortest travel time assignment of
drivers of organization i

• αi: VOT for organization i

• α: The vector of VOT values for the different organiza-
tions

• γi: Total travel time of organization i in the absence of
incentivization platform

• Ω: Budget for incentivization
• K: The number of OD pairs

Decision variables:
• sr,ji : Decision parameter indicates whether route r is

assigned to driver j from organization i
• sji : The binary route assignment vector of driver j from

organization i
• Si: Decision matrix of drivers of organization i
• S: Decision matrix of all drivers
• ci: The cost of incentive offered to organization i

APPENDIX B
REFORMULATED OPTIMIZATION MODEL FOR THE ADMM

ALGORITHM

To solve the relaxed version of problem (6) efficiently, we
present a distributed algorithm based on this reformulation

min
S,H,W,Z,u,β,

ω,µi,β̃,c

|E|∑
`=1

|T|∑
t=1

v̂`,tθ`,t(v̂`, t)

− λ̃

2

R∑
r=1

|T|∑
t=1

n∑
i=1

(Zi)r,t((Zi)r,t − 1)

s.t. Si1 = ui, ∀i = 1, 2, . . . , n

ω = R̃u

D̃u = q, ∀i = 1, 2, . . . , n

W>
i 1 = 1, ∀i = 1, 2, . . . , n

Si = Wi, ∀i = 1, 2, . . . , n

H>i δ + βi = bi �Biη, ∀i = 1, 2, . . . , n

Si = Hi, ∀i = 1, 2, . . . , n

βi ≥ 0, ∀i = 1, 2, . . . , n

Zi ∈ [0, 1](|R|·|T|)×(|Ni|), ∀i = 1, 2, . . . , n

Ĩc̃ = α� (∆u− γ)

c̃ ≥ 0, c̃>1̃ + β̃ = Ω, β̃ ≥ 0

Si = Zi, ∀i = 1, 2, . . . , n,

(9)

where S = {Si}ni=1, H = {Hi}ni=1, W = {Wi}ni=1, Z =
{Zi}ni=1, u = {ui}ni=1, and β = {βi}ni=1.

APPENDIX C
REVIEW OF ALTERNATING DIRECTION METHOD OF

MULTIPLIERS (ADMM)
In this section, we review the Alternating Direction Method

of Multipliers (ADMM), which is the main building block of
our framework. ADMM developed in [55] and [56] aims at
solving linearly constrained optimization problems of the form

min
w,z

h(w) + g(z) s.t. Aw +Bz = c,

where w ∈ Rd1 , z ∈ Rd2 , c ∈ Rk, A ∈ Rk×d1 , and B ∈ Rk×d2 .
By forming the augmented Lagrangian function

L(w, z, λ) , h(w)+g(z)+〈λ,Aw+Bz−c〉+ρ

2
‖Aw+Bz−c‖22,
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each iteration of ADMM applies alternating minimization to
the primal variables and gradient ascent to the dual variables:

Primal Update: wr+1 = arg min
w
L(w, zr, λr), (10)

zr+1 = arg min
z
L(wr+1, z, λr)

Dual Update: λr+1 = λr + ρ
(
Awr+1 +Bzr+1 − c

)
This algorithm is extensively explored in the optimization
literature (see [54] for a monograph on the use of this algorithm
in convex distributed optimization and [57] for its use in non-
convex continuous optimization). If we apply ADMM to (9),
we get Algorithm 1. See the details of the derivation of our
proposed algorithm in Appendix E in the complete version of
the work [49].

APPENDIX D
DISTRIBUTED INCENTIVIZATION ALGORITHM

Algorithm 1 solves the relaxed version of problem (6). In
this algorithm, we use the projection operator Π(·)[0,1] that
projects elements of a matrix to the interval [0, 1]. Π(·)R+

is
also a projection operator but projects elements of a matrix
to R+. Notice that in Algorithm 1, the computation load of
steps 9, 15, 16, and 17 is extensive because matrices S,W,H
and Z have large sizes. However, each column in these matrices
corresponds to one driver and these steps are not coupled so
we can perform the computation of each column in parallel
by leveraging parallel computation. The notations used in
Algorithm 1 are defined below.

γ =

γ1...
γn

 q =

q1

...
qn

 λi =

λi,1...
λi,n

 , i = 1, 3

R̃ =
[
R . . . R

]
Ĩ =

[
I −I

]

α̃ =

α1

. . .
αn

 α =

α1

...
αn

 ũt =

St11
...

Stn1



D̃ =

D
. . .

D

 ∆ =

δ . . .
δ

 1̃ =

[
1
0

]
c̃ =

[
c
µ

]

APPENDIX E
LIMITATIONS AND FURTHER DISCUSSIONS

While our platform demonstrates significant potential, several
limitations and considerations warrant further discussion:
First, our simulations assume that VOT is given and fixed.
Although these values can be learned by observing drivers’
and passengers’ behavior, learning VOT is beyond the scope
of our work and we assumed it is known. Moreover, the
BPR function used in our simulations to compute travel time
can sometimes be inaccurate. However, our modular design
allows for any non-linear travel time computation function,
offering flexibility in practice. A potential practical limitation

Algorithm 1 Distributed Organization-Level Incentivization
via ADMM

1: Input: Initial values: ω0, S0
i , H0

i , W0
i , Z0

i , u0, β0
i , β̃0,

c̃0, λ0
1,i ∈ R|R|·|T|, λ0

2 ∈ R|E|·|T|, λ0
3,i ∈ RK·|T|, λ0

4,i ∈
R|R|·|T|, Λ0

5,i ∈ R(|R|·|T|)×|Ni|, λ0
6,i ∈ R|Ni|, λ0

7 ∈ Rn,
Λ0

8,i ∈ R(|R|·|T|)×|Ni|, λ09 ∈ R, Λ0
10,i ∈ R(|R|·|T|)×|Ni|,

Dual update step: ρ, Number of iterations: T̃ .
2: for t = 0, 1, . . . , T̃ do
3: for ` = 0, 1, . . . , |E| do
4: for t̂ = 1, . . . , |T| do
5: ωt+1

`,t̂
= argmin

ω`,t̂

ω`,t̂θ`,t(ω`,t̂) + λt2,(`,t̂)(ω`,t̂ −

r`,t̂ (
∑n
i=1 uti)) + ρ

2 (ω`,t̂ −R`,t̂ (
∑n
i=1 uti))

2

6: end for
7: end for
8: for i = 1, . . . , n do
9: St+1

i = (−λt1,i1>−Λt
5,i−Λt

8,i−Λt
10,i+ρu

t
i1
t>+

ρWt
i + ρHt

i + ρZti)(ρ11> + 3ρI)−1

10: βt+1
i = Π

(
1
ρ (−λt6,i − ρHt>

i δ + ρbi � (Biη))
)
R+

11: end for
12: c̃t+1 = Π( 1

ρ (Ĩ>Ĩ+ 1̃1̃>)−1(Ĩ>λt7−λt91̃−ρĨ>(α�γ)

+ρĨ>(α� (∆>ut))− ρβ̃1̃ + ρΩ1̃)R+

13: ut+1 = 1
ρ (I + R̃>R̃ + D̃>D̃ + (∆α̃)(∆α̃)>)−1(λt1 +

R̃>λt2−D̃>λt3−(∆α̃)λt7+ρũt+1−ρR̃>ωt+1+ρD̃>q+
ρ(∆α̃)(α� γ) + ρ(∆α̃)(Ĩc̃t+1))

14: for i = 1, . . . , n do
15: Wt+1

i = 1
ρ (11> + I)−1(ρ11> + ρSt+1

i − 1λt>4,i +

Λt
5,i)

16: Ht+1
i = 1

ρ (δδ>+I)−1(−δλt>6,i+Λt
8,i−ρδβt+1>

i +

ρδ(bi �Biη)> + ρSt+1
i )

17: Zt+1
i = 1(ρ > λ̃)Π

((
1

ρ−λ̃

)
(ρSt+1

i + Λt
10 − λ̃

2 )
)
[0,1]

+

1(ρ < λ̃)Π
((

1
ρ−λ̃

)
(ρSt+1

i + Λt
10 − λ̃

2 )
)
{0,1}

18: end for
19: for i = 1, . . . , n do
20: λt+1

1,i = λt1,i + ρ(St+1
i 1− ut+1

i )

21: λt+1
3,i = λt3,i + ρ(Dut+1

i − qi)

22: λt+1
4,i = λt4,i + ρ(Wt+1>

i 1− 1)

23: Λt+1
5,i = Λt

5,i + ρ(St+1
i −Wt+1

i )

24: λt+1
6,i = λt6,i + ρ(Ht+1>

i δ + βt+1
i − bi �Biη)

25: Λt+1
8,i = Λt

8,i + ρ(St+1
i −Wt+1

i )

26: Λt+1
10,i = Λt

10,i + ρ(St+1
i − Zt+1

i )
27: end for
28: λt+1

2 = λt2 + ρ(ωt+1 −R(
∑n
i=1 ut+1

i ))
29: λt+1

7 = λt7 + ρ(α� (∆>ut+1 − δ)− Ĩc̃t+1)

30: λt+1
9 = λt9 + ρ(c̃t+1>1̃ + β̃

t+1
− Ω)

31: end for
32: Return: ST̃i ,∀i = 1, . . . , n
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of the platform is that we assume the assigned routes will
be followed. With autonomous vehicles, it will be easier to
enforce the assigned routes. Moreover, delivery companies
can enforce their drivers to follow specific routes. The ride-
hailing companies can ensure compliance by incentivizing
passengers/drivers who accept routes (by paying them). Another
concern is protecting the privacy of individuals’ data because of
legal, ethical, and practical constraints. To address this concern,
we can adopt approaches similar to those used in previous
incentivization projects with real-world implementations [37–
40]. We can also examine the scalability of our incentivization
platform from various angles. Our modular design allows for
the use of various prediction models, such as traffic prediction
and OD estimation, tailored to different scenarios. Moreover,
organizations with access to scalable real-time traffic prediction
software can provide ETA predictions. The platform also offers
flexibility in utilizing different VOTs for organizations with
diverse operational natures.
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