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Abstract

With rapid population growth and urban development, traffic congestion has become an inescapable issue, especially

in large cities. Many congestion reduction strategies have been proposed in the past, ranging from roadway extension to

transportation demand management. In particular, congestion pricing schemes have been used as negative reinforcements

for traffic control. In this paper, we study an alternative approach of offering positive incentives to drivers to take

different routes. More specifically, we propose an algorithm to reduce traffic congestion and improve routing efficiency

via offering (personalized) incentives to drivers. We propose to exploit the wide accessibility of smart devices to

communicate with drivers and develop an incentive offering mechanism using individuals’ preferences and aggregate

traffic information. The incentives are offered after solving a large-scale optimization problem in order to minimize the

total travel time (or minimize any cost function of the network such as total carbon emission). Since this massive-size

optimization problem needs to be solved continually in the network, we developed a distributed computational approach.

The proposed distributed algorithm is guaranteed to converge under a mild set of assumptions that are verified with real

data. We evaluated the performance of our algorithm using traffic data from the Los Angeles area. Our experiments

show congestion reduction of up to 5% in arterial roads and highways.
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I. INTRODUCTION

Today, traffic congestion is one of the most prevalent issues in large metropolitan areas, resulting in lower

quality of life for residents, economic losses, worsen air quality, and adversely affecting health conditions [1–6].

In this paper, we study the problem of offering incentives to drivers to affect their behavior and reduce traffic

congestion. Our methodology is closely related to the pricing mechanisms in the literature. Road pricing policies,

such as assigning a fee or tax for driving on a highway/road, have been widely studied in theory and practice [7–

11]. Pricing strategies may depend on different factors such as time of the travel [12], distance [13], or vehicle

characteristics [14]. While pricing is a promising approach from a market point of view, issues such as equity
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barriers complicate the implementation of congestion pricing/taxation schemes [15–20]. In addition, complexities and

uncertainties in designing pricing mechanisms have prevented policymakers from implementing advanced congestion

pricing schemes [21]. Tradable credits (TCs) or tradable mobility permits (TPMs) are other token-based pricing

mechanisms [22–27]. The theoretical advantages of such tradable credits have been shown in [28–31]. While such

cap-and-trade programs have been implemented in some economic sectors, such as airport slot allocation [32], it has

not been implemented for individual-level personal travel and daily commute [33] due to the design complexities of

such token markets [34]. In addition, they do not consider the personalized preference of different drivers.

Lately, researchers have paid more attention to positive incentive policies. Based on the psychological theory

of reactance, rewarding desirable behavior could work better than penalizing undesirable behavior [35]. Moreover,

rewarding is a more popular policy than a taxation approach [36]. While the effectiveness of rewarding in changing

the individual’s behavior has been shown in [37] and [38], there are a limited number of studies on the effectiveness

of rewarding policies in the transportation area. Among these studies, the INSTANT project [39], the CAPRI

project [40], and a series of studies in the Netherlands [41–44] have shown the effectiveness of a rewarding policy

in congestion reduction in limited settings. However, none of these methodologies can consider the personalized

preferences of individual drivers. Another form of reward was recently studied in [34] where tokens were offered

for different travel choices such as route, travel modes, and ride-sharing. The proposed model learns individuals’

decisions and adapts to their preferences based on their travel history. While these policies were successful in

short-term experiments, they did not necessarily result in permanent changes in the travelers’ behavior [45]. More

recently, [46] and [47] provide incentives to (or charge) volunteer truck drivers to improve the overall traffic condition

in a budget balanced mechanism. [48] considers VOT (Value of Time) in the mechanism to make it personalized.

There have been different choices used as the incentive in transportation studies such as free bus tickets [49, 50],

early bird tickets [51], free WiFi and discounted fares [52], money [15], and tokens [34].

The preferences of the drivers in selecting different routes can be considered in the incentive offering platform.

Mohan et al studied different factors impacting drivers’ decision for routing in [53]. They partitioned these factors

into two categories of static factors and dynamic factors. The static factors, which are fixed for different people,

include the number of available transportation options and the distance of nearby transit. On the other hand, the

dynamic factors include weather and travel purpose, which changes from one person to another. They identified these

factors by performing interviews and surveys and concluded that personalizing the incentives can be advantageous.

Also, the driver’s preferences can be learned through interaction with the individual [34, 54]. The goal of offering

personalized incentives is to closely tie the offer to the individual’s preferences, thus maximizing the probability of

changing the drivers’ behaviors [54].

In this paper, we study the problem of offering personalized incentives to minimize a global cost function in the

network. Although previous studies (e.g. [41]) consider static rewards for static options like teleworking, biking,

and walking, our model assigns different rewards for different alternative routes for different drivers based on the

traffic condition and personalization factors. Consequently, we have more freedom in offering incentives, and our

methodology results in an optimization problem with a larger number of decision variables. The implementation of
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our proposed model could be through a smartphone app where the traffic data can be used to offer incentives to

drivers. In addition, smartphones will help the central planner to distribute the computational load for finding the

optimal incentive offering strategy. The rest of this paper is organized as follows: At the beginning of Section II, we

present our model. Then, in subsection II-C, we propose a distributed algorithm to solve our optimization problem

efficiently. Results of our numerical experiments are presented in Section III using data from the Los Angeles area.

Finally, we conclude in section IV. The details of our methodology and experiments are provided in the appendix.

II. INCENTIVE OFFERING MECHANISMS

Let us model the structure of the traffic network with a directed graph G = (V, E). Here V is the collection of all

major intersections and ramps, which form the set of nodes in the graph. We use the set of edges E to capture the

connectivity of the nodes in the graph. Two different nodes are adjacent in the graph if it is possible to directly go

from one to another without passing over any other node. The direction of an edge between two nodes is based on

the direction of the road from which we can go from one point to another. We also use the notation |E| to denote

the total number of road segments/edges in our network (i.e. the cardinality of the set E). A route is a collection of

adjacent edges that starts from one node and ends in another. We use the one-hot encoding scheme to denote the

routes. In other words, a given route is represented by a vector r ∈ {0, 1}|E|. Here, the k-th entry of vector r is one

if the k-th edge is a part of route r and it is zero, otherwise.

Let T = {1, . . . , T} denote the time horizon of interest assuming the system is currently at time t = 1. For

any t ∈ T, we use the random vector vt ∈ R|E| to represent the traffic volume on the different road segments at

time t. The k-th entry of vt shows the total number of vehicles of road segment k at time t. Notice that the offered

incentives can change the drivers’ behavior who are using the platform in the future and thus affecting the vector vt.

We use N to denote the set of drivers that we can influence their behavior through offering incentives. For any

driver n ∈ N , let Rn ⊆ {0, 1}|E| denote the set of possible route options for going from its origin to its destination.

Let In be the set of possible incentives we can offer to driver n ∈ N . We also use the binary variable sr,ni ∈ {0, 1}

to represent the offered incentives. For any driver n ∈ N and incentive i ∈ In, the variable sr,ni = 1 if incentive i

is offered to driver n to take route r; and sr,ni = 0 otherwise. We assume that we incentivize each driver with only

one offer, i.e.,
∑

r∈Rn

∑
i∈In s

r,n
i = 1. Given any incentive offered to the drivers, we model the decision of the

drivers stochastically. In particular, we assume after offering incentives, each driver n chooses route r with a certain

probability which depends on the amount of incentive, the route, and the driver’s preferences, as described below.

The route preferences of the drivers depend on different factors such as route travel time, gender, age, and

particularly the (monetary) incentive provided to the drivers in our context. Such dependence can be learned using

standard machine learning approaches in the presence of data [55]. In this project, we rely on the model developed

in [55] for our preference modeling. We simplify their model by not including the less predictive features and

only considering two major features: the value of incentive and travel time. In particular, we assume that, given
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incentive i ∈ In to driver n, the driver chooses route r with probability

pr,ni = P (T̂r, i), (1)

where T̂r is the estimate of the travel time for route r provided by the incentive offering platform. Notice that when

drivers make their routing decisions, they do not know the exact travel time Tr for route r, but instead, they rely on

the estimate T̂r provided by the system. Here, we make an implicit assumption that the drivers do not consider

their own judgment about the travel time in their decision. However, if such individual biases for drivers exist, the

system can learn them over time using standard preference learning techniques. Modeling the drivers’ behavior in a

probabilistic fashion has its own benefits. The decision of a driver for a given incentive amount depends on many

factors such as age, gender, and income as also studied in [55]. It is even likely that the driver’s decision may depend

on the driver’s “state of mind” at the time that the incentive is offered. Thus, the features that influence the driver’s

decision are not completely known to the central planner. In such a setting, probabilistic models can be a better fit

for modeling the system. For this reason, in the general area of “recommendation systems” in machine learning

and statistics, probabilistic models have been widely used to model the behavior of individual users (drivers in our

setting) [56]. In addition, we do not assume any traffic control by modeling the probability of drivers’ acceptance.

Traffic control might be more effective but it needs an authority with the power of changing traffic which is not

required in our framework. In our model, drivers can disregard the offers at any time but the offers change the

probability of accepting drivers’ routing choices.

In the next subsections, we present our model and formulation in more detail. For the convenience of the reader,

the list of notations defined here and later in the manuscript is presented in Appendix A. We present our framework

under two different scenarios: First, for simplicity of presenting the ideas, we study the case where it is possible to

bring traffic flow below the network capacity. Then, we study the high demand scenario where there is no feasible

strategy to bring the demand below the network capacity.

A. Scenario I: Operating Below Network Capacity

Let us first for simplicity assume that there exists a solution that all road segments operate below capacity. Hence,

for that solution, we can assume that the travel time will be based on the free flow traffic. As this section shows,

this assumption will result in a mixed integer linear programming optimization which can be solved efficiently using

standard solvers.

Given (1), the expected value of the volume vector vt can be computed as:

E [vt] =
∑
n∈N

∑
i∈In

∑
r∈Rn

sr,ni pr,ni βr,t (2)

where the vector βr,t,∈ R|E| shows the probability of being at different links of the network at time t ∈ T,

conditioned on the fact that driver n is on route r. For more details about the vector βr,t, please refer to [57].

In order to minimize the drivers’ total travel time while keeping the volume below the road segment capacity



5

vector v0, we need to solve the following optimization problem

min
{sr,ni }

∑
t∈T

∑
n∈N

∑
r∈Rn

∑
i∈In

sr,ni pr,ni βᵀ
r,tω

s.t.
∑
n∈N

∑
i∈In

∑
r∈Rn

sr,ni pr,ni βr,t ≤ v0, ∀t ∈ T

∑
n∈N

∑
i∈In

∑
r∈Rn

sr,ni ηi ≤ Ω

∑
r∈Rn

∑
i∈In

sr,ni = 1 ∀n ∈ N

sr,ni ∈ {0, 1} ∀n ∈ N , ∀i ∈ In, ∀r ∈ Rn

(3)

where ω ∈ R|E| is the vector of free flow travel time of the links, Ω is the total available budget, and ηi is the

cost of offering incentive i. To keep this optimization problem tractable, we rely on the assumption of a large

number of vehicles in each road segment and approximate the random quantity vt with its average E[vt] provided

in equation (2). Notice that the objective function is equal to

min
{sr,ni }

∑
n∈N

∑
r∈Rn

∑
i∈In

sr,ni pr,ni
∑
t∈T

βᵀ
r,tω

in which
∑
t∈T β

ᵀ
r,tω is the expected travel time of driver n driving on route r.

Problem (3) is a mixed integer linear program that can be solved via standard solvers such as Gurobi, AMPL,

GAMS, and CPLEX. We use Gurobi in our experiments because of its powerful LP solver.

B. Scenario II: Operating Above Network Capacity

In this subsection, we assume that the demand is elevated; thus, there is no incentive offering strategy that can

bring the traffic flow below the network capacity. In such a scenario, we still can “improve” the congestion by

incentivizing individual drivers. Our goal is to optimize a disutility of the system as a criterion to compare the

traffic condition after incentivizing. To make the formulation more specific, we use total travel time as the disutility

function. It is worth noting that while we use this disutility, following our steps, one can use any other disutility

function such as carbon emissions or energy consumption.

To compute the total travel time of the system, we sum the travel time of the drivers of all the links over all time

periods:

Ftt(v̂) =

|E|∑
`=1

|T|∑
t=1

v̂`,tδ`,t(v̂`,t) (4)

where δ`,t is the travel time of link ` at time t (which itself is a function of the volume). Here, v̂ is the vector of

volume of links in which v̂`,t is the (|E| × t+ `)th element of vector v̂ representing the volume of the `th link at

time t.

To understand the impact of our offered incentives, we estimate the drivers’ decision based on the provided

incentives, which in turn results in estimating the volume of the links in the horizon of interest. Given these estimated

volume values, we estimate the travel time in the links as described below.
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Travel time value δ: There are different functions that capture the relation between travel time and volume. For

example, the link congestion function developed by the Bureau of Public Roads (BPR) [58] defines a nonlinear

relation between the volume and travel time of the road segments:

fBPR(v) = t0

(
1 + 0.15

( v
w

)4)
where fBPR(v) is the travel time of the drivers on the link given the assigned traffic volume v; the parameter t0 is

the free flow travel time of the link; v is the assigned traffic volume of the link; and w is the practical capacity

of the link. We learn t0 and w using historical traffic data. Although we use the BPR function in our presented

model, our methodology provides a modular framework in which we can replace the BPR function with any other

appropriate function. In order to estimate the total travel time of the system, we need to estimate the volume vector

v̂, which we discuss next.

Volume vector v̂: To compute the volume vector, we need to know the routing decision of the drivers to be able to

(approximately) estimate their location at different times. Clearly, the drivers’ decision is a function of the offered

incentives. In other words, the location of a driver is dependent on the incentive that we assign to them because the

likelihood of various decisions changes with different incentives. Let us first explain our notations for the offered

incentives: For each driver, we have a one-hot encoded vector describing which route has been incentivized and how

much reward has been assigned to it. Thus, for each driver we have a binary vector sn ∈ {0, 1}|R|·|I| in which only

one element has a value of one and it corresponds to the route and the incentive amount that we offer. As we need

one vector for each driver, we can aggregate all our incentivization strategies in a matrix S ∈ {0, 1}(|R|·|I|)×|N|.

Naturally, routes that are not relevant to that OD pair of a driver will get a value of zero in the corresponding

incentive vector (since we cannot offer those routes to the driver).

To understand the drivers’ responses to our offered incentives, we need to estimate the probability of acceptance

of incentivized routes under different incentives including zero incentive (i.e, no incentive). To model this probability,

we use the utility function developed in [55] and compute the probability of acceptance of each offered incentive (by

using a Softmax function on top of the utility). While the model in [55] takes many parameters (such as gender, age,

and education of the driver) as input, in our model and numerical experiments we only consider static parameters of

the travel time and the reward value to generate the probability of acceptance of a given incentive/reward. However,

our framework is modular and we can use any prediction model that can estimate drivers’ behavior given an incentive

amount. We can use any personalized routing model that can learn drivers’ behavior such as a neural network. Let

P ∈ [0, 1]|R|×(|R|·|I|) be a matrix encoding the information of probability of picking different routes given the

offered (route, incentive) pairs. Thus, the vector PS1 ∈ R|R|×1 shows the expected number of vehicles in each

route.

Given the number of vehicles in each route, the location of each driver for the next time horizon can be modeled

in a probabilistic fashion. For this purpose, we rely on the model developed in [57] where a specific matrix

R ∈ [0, 1](|E|·|T|)×|R| is proposed to estimate the probability of the presence of a driver in a given road segment

at a specific time in the future (assuming that the driver is picking a specific route). We can compute matrix R
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by running a simulation model if we have enough computation power. In our experiments in subsection III-A,

we rely on the historical data in computing matrix R. Similar to other performative prediction problems [59], an

inconsistency may appear between the estimated value and the actual output (as the estimation impacts the outcome).

To resolve this issue, we first used the historical travel time to compute matrix R in our experiments. Then, we used

the estimated R to form the objective function. This approach can be viewed as an “approximation” of the actual

utility function when we want to compute the incentives. This approximation is only used in computing incentives,

and our evaluation of the system’s performance is based on the actual travel times because after the drivers make

their decision, computing the actual travel time is possible, and such an inconsistency no longer exists. Thus, the

vector

v̂ =RPS1 ∈ R(|E|·|T|)×1

represents the expected number of vehicles in all the links at each time slot. Substituting the expression of v̂ in (4),

we get

Ftt(v̂) =

|E|∑
`=1

|T|∑
t=1

(AS1)`,tδ((AS1)`,t)

=

|E|∑
`=1

|T|∑
t=1

(a`,tS1)δ(a`,tS1)

(5)

where a`,t is the row of matrix A = RP which corresponds to link ` at time t. Thus in order to minimize the total

travel time in the system by providing incentives to drivers, we need to solve the following optimization problem:

min
S

|E|∑
`=1

|T|∑
t=1

(a`,tS1)δ(a`,tS1)

s.t. Sᵀ1 = 1, cᵀS1 ≤ Ω

DS1 = q, S ∈ {0, 1}(|R||I|)×|N|

(6)

where c ∈ R|R|·|I|+ is the vector of cost of incentives assigned to each route, D ∈ {0, 1}K×(|R|·|I|) is the matrix of

incentive assignment to the OD pairs, and q ∈ RK×|I| is the vector of the number of drivers for each OD pair.

Here, K is the number of OD pairs. We explain the constraints in more detail below:

Constraint 1 (Sᵀ1 = 1): This constraint simply states that we only assign one incentive to each driver.

Constraint 2 (cᵀS1 ≤ Ω): This is our budget constraint. The vector c ∈ R|R|·|I| represents the cost of the different

rewards assigned to each driver. Ω is the total budget.

Constraint 3 (DS1 = q): This constraint makes sure that we offer the correct number of rewards for the routes

between OD pairs. Recall that S1 represents the (expected) number of drivers that have been offered different routes

given different rewards. We use matrix D to sum the number of drivers that received different reward offers for

routes between the same OD pair. q is the vector of the actual number of drivers that are traveling between OD

pairs and DS1 must be equal to q.
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Constraint 4 (S ∈ {0, 1}(|R||I|)×|N|): This constraint imposes binary structure on our decision parameters. In other

words, 0 is not choosing an incentive and 1 is selecting the incentive.

To illustrate our model and the above constraints, we provide an example in Appendix E.

C. Algorithm for Offering Incentives and A Distributed Implementation

The optimization problem (6) is of large size while it needs to be solved in almost real time (or hourly if the

drivers send their travel information to the central planner every hour before their trip) in the network. However, due

to the existence of binary variable S, solving this problem efficiently is difficult*. In order to develop an efficient

“approximate” solver for (6), we first relax the binary constraint in (6) and replace it with the relaxed convex

constraint S ∈ [0, 1](|R||I|)×|N|, leading to the relaxed formulation

min
S

|E|∑
`=1

|T|∑
t=1

(a`,tS1)δ(a`,tS1)

s.t. Sᵀ1 = 1, cᵀS1 ≤ Ω

DS1 = q, S ∈ [0, 1](|R||I|)×|N|.

(7)

The constraints in the above optimization problem are convex. By substituting a`,tS1 by γ`,t, the objective function

becomes a summation of monomial functions with positive coefficients. Moreover, γ`,t is an affine mapping of the

optimization variable S. Since our domain is the nonnegative orthant and monomials are convex in this domain, the

objective function is convex. This convexity will allow us to explore the use of standard solvers such as CVX [60].

However, these solvers rely on methods such as interior point methods [61] which requires O(n3) number of

iterations with n being the number of variables. This heavy computational complexity prevents us from applying

standard solvers for realistic size problems. In our context, each driver is equipped with a smartphone and; thus, we

can distribute the computational burden of solving (7) among the drivers. In what follows, we propose a simple

reformulation of the problem leading to a distributed algorithm for solving (7). To present our algorithm, let us start

by reformulating (7) as

min
γ,u,S,W,H,z,β

|E|∑
`=1

|T|∑
t=1

γ`,tδ(γ`,t)

− λ̃

2

|R|∑
r=1

|I|∑
i=1

|N|∑
n=1

Hr,i,n(Hr,i,n − 1)

s.t. S1 = u, Wᵀ1 = 1

Du = q, Au = γ

H = S, W = S

cᵀu + β = Ω, β ≥ 0

H ∈ [0, 1](|R|·|I|)×|N|.

(8)

*We conjecture that problem (6) is NP-hard to solve since it is a special instance of polynomial optimization with discrete variables and
there does not appear to be any special structure in function f to reduce its complexity.
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As we discuss in Appendix A, this formulation is amenable to the ADMM method [62–67], which has a natural

distributed implementation. Our ADMM formulation (8) shows that this computation burden can be distributed among

drivers’ cell phones. This distributed optimization/federated learning framework can have other standard advantages

of federated learning/distributed systems [68, 69]. For example, when proper privacy preserving mechanisms (such

as differential privacy [70]) are utilized, we can guarantee the privacy of drivers since they can participate in the

optimization procedure without completely sharing their data and through a private communication mechanism (see,

e.g., [69, 71–73]). The steps of this algorithm are summarized in Algorithm 1 and the details of the derivation of its

steps are provided in Appendix A.

It is worth mentioning that other standard approaches such as projected gradient descent is not easily applicable to

problem (8) due to the complexity of the projection operator to our constraint set. However, ADMM will decompose

this projection across multiple variables with each projection being easy to compute. In addition to projection,

computation of the linear minimization oracle is also expensive, which eliminates the possibility of utilizing other

methods such as the conditional gradient (Frank-Wolfe) method. These are the reasons (in addition to the possibility

of distributed implementation) behind choosing ADMM.

Algorithm 1 Distributed Incentivization via ADMM

1: Input: Initial values: γ0, S0, H0, W0, u0, β0, λ0
1 ∈ R|R|·|I|×1, λ0

2 ∈ R|N |×1, λ0
3 ∈ RK×1, λ0

4 ∈ R|E|·T×1,
Λ0

5 ∈ R|R|·|I|×|N|, λ06 ∈ R, Λ0
7 ∈ R|R|·|I|×|N|, Dual update step: ρ, Number of iterations: T̃ .

2: for t = 0, 1, . . . , T̃ do
3: ut+1 = (ρI+ρDᵀD+ρAᵀA+ρccᵀ)−1(λt1 +ρSt1−Dᵀλt3 +ρDᵀq−Aᵀλt4 +ρAᵀγt−c(λt6 +βt−Ω))

4: Wt+1 = (ρ11ᵀ + ρI)−1(ρ11ᵀ + ρSt −Λt
7 − 1λtᵀ2 )

5: Ht+1 = 1(ρ > λ̃)Π
((

1
ρ−λ̃

)
(ρSt −Λt

5 − λ̃
2 )
)
[0,1]

+ 1(ρ < λ̃)Π
((

1
ρ−λ̃

)
(ρSt −Λt

5 − λ̃
2 )
)
{0,1}

6: St+1 = (ρut+11ᵀ + Λt
5 + ρHt+1 + Λt

7 + ρWt+1 − λt11ᵀ)(ρ11ᵀ + 2ρI)−1

7: for ` = 0, 1, . . . , |E| do
8: for t̂ = 1, . . . , |T| do
9: γt+1

`,t̂
= argmin

γ`,t̂

γ`,t̂δ(γ`,t̂) + λt4,(`,t̂)(a`,t̂u
t − γ`,t̂) + ρ

2 (a`,t̂u
t − γ`,t̂)2

10: end for
11: end for
12: βt+1 = Π

(
Ω− cᵀut+1 − 1

ρλ
t
6

)
R+

13: λt+1
1 = λt1 + ρ(St+11− ut+1)

14: λt+1
2 = λt2 + ρ(Wt+1ᵀ1− 1)

15: λt+1
3 = λt3 + ρ(Dut+1 − q)

16: λt+1
4 = λt4 + ρ(Aut+1 − γt+1)

17: Λt+1
5 = Λt

5 + ρ(Ht+1 − St+1)
18: λt+1

6 = λt6 + ρ(cᵀut+1 + βt+1 − Ω)
19: Λt+1

7 = Λt
7 + ρ(Wt+1 − St+1)

20: end for
21: Return: ST̃

In Algorithm 1, Π(·)[0,1] is the operator that projects each entry of the input matrix to the interval [0, 1] and

Π(·)R+
is the operator that projects each entry of the input matrix on to R+. In Algorithm 1 steps 4, 5, and 6 are

computationally cumbersome due to the size of the matrices W,H, and S. However, each column of the matrices
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W,H, and S corresponds to a single driver and hence the computation corresponding to each column can be

performed in parallel on smartphone devices of the drivers. Moreover, since the steps are not coupled, they can

be solved in parallel on the drivers’ smart devices. Further details about the steps of a distributed computation of

Algorithm 1 are provided in Appendix C. Theorem 1 guarantees the convergence of our ADMM algorithm.

Theorem 1: Algorithm 1 finds an ε-optimal solution of problem (8) in O(1/ε) iterations [74].

Theorem 1 guarantees the convergence of Algorithm 1 that is provided for optimization problem (8). The

optimization problem (8) is a (convex) reformulation of the relaxed problem (7), and is amenable to ADMM.

However, as it was mentioned, the original problem (6) is likely hard to solve since it is a special instance of

polynomial optimization with discrete variables and function f does not seem to have any special structure to reduce

its complexity.
In optimization problem (7) (and consequently (8)), all solutions S∗ with a fixed value of S∗1 = u∗ lead to the

same objective as long as S∗ᵀ1 = 1. Hence, this convex problem can have an infinite number of solutions (with
many of them not even close to binary). Therefore, in order to find (approximately) binary solutions, we add the
following regularizer to the objective function in (8):

<(Hr,i,n) = − λ̃
2

Hr,i,n(Hr,i,n − 1) (9)

where λ̃ ∈ R+ is the regularization parameter and Hr,i,n ∈ [0, 1]. This regularizer forces the elements of matrix H

to be as close as possible to the binary domain {0, 1}.

While Algorithm 1 returns the solution of the optimization problem (8), this problem (8) is a relaxation of the

original problem (6). Hence, the obtained solution in Algorithm 1 must be utilized to obtain a feasible point in (6).

For this step, we solve the following mixed integer (linear) problem

min
S

‖S1− u∗‖1

s.t. Sᵀ1 = 1, cᵀS1 ≤ Ω

DS1 = q, S ∈ {0, 1}(|R||I|)×|N|

(10)

where u∗ is the optimal solution obtained by Algorithm 1. We can use off-the-shelf solvers such as Gurobi to

solve (10).

The BPR function of Algorithm 1 in Section II-A can capture both Scenario I in Section II-A and Scenario II in

Section II-B. However, the computational requirements for the free-flow case in Scenario I in Section II-A are less

expensive compared to that of the congested case in Scenario II in Section II-B. Thus, model (3) in Scenario I in

Section II-A is an alternative when computational resources are limited.

III. NUMERICAL EXPERIMENTS

We evaluate the performance of our algorithms using data from the Los Angeles area. The Los Angeles region is

ideally suited for being the validation area because there are multiple routes connecting most OD pairs. Additionally,

researchers at the University of Southern California have developed the Archived Data Management System (ADMS)
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that collects, archives, and integrates a variety of transportation datasets from Los Angeles, Orange, San Bernardino,

Riverside, and Ventura Counties. ADMS includes access to real-time traffic data from 9500 highway and arterial

loop detectors with measurements every 30 seconds and 1 minute respectively.

Due to the lack of access to the drivers’ routing information, we need to estimate the origin-destination (OD)

matrix from the network flow information. Rows and columns of the OD matrix correspond to the origin and

destination points respectively. For OD matrix A, the element A(i,j) is the number of drivers going from point i to

point j. The OD matrix estimation problem is under-determined [75–77]. There are two categories of OD matrices:

static and dynamic [78]. Due to the high resolution of our data, most of the existing dynamic OD estimation (DODE)

methods become computationally inefficient. In addition, we do not have prior data of the OD matrix which many

studies consider as given data [79–82] and we do not have access to prior observations of the OD matrix. Given

these barriers, we relied on the algorithm proposed by [57]. This algorithm performs without employing any prior

OD matrix information.

A. Simulation Model

In our numerical experiments, we integrate different datasets and models to evaluate the performance of our

algorithms. First, we extract the speed data, volume data, and sensor information including the location of sensors

from the Archived Data Management System (ADMS). Then, we use the distances of sensors, extracted from the

location of sensors using Google Maps API, to create the graph of the network. We created three sets of graph

networks corresponding to the regions depicted in Fig. 1, Fig. 3, and Fig. 4. In the next step, the speed data, volume

data, and the network graph are used for estimating OD pairs by the algorithm provided in [57]. The total number

of estimated incoming drivers for all three experiments is presented in Fig. 5. For each OD pair, we find up to 4

different routing options. In particular, we start by the shortest path for each OD pair. Then, we remove the edges in

this path and go with the second shortest path, and we continue this process until we find 4 different routes between

the origin and destination (or no other routes exist). We use the model in [55] to compute the acceptance probability

for the different offers on the different routes for each individual driver. The parameters used for computing the

probability are static values provided by [55] and we only calibrate some of the parameters because we are only

using historical data and we do not have access to the drivers’ features such as age or gender. In this paper, we do

not learn the route choice model of the drivers so the parameters of the probability model are fixed but it is possible

to adapt our routing model to the drivers’ preferences by observing the drivers’ behavior. We run three different

experiments that model the road network at different scales. In Experiment I, we model an arterial region (Fig. 1)

but includes surface streets. For Experiment II, we model a large network of highways (Fig. 3). For Experiment III,

we model a moderate region (Fig. 4) which is a subset of the region in Experiment II. We use travel time savings as

our metric for performance evaluation in all experiments. Besides travel time savings, we also include the monetary

value of traffic reduction based on the Value of Time (VOT) as an alternative metric. Our base Value of Time (VOT)

is derived from the estimation of [83] which is $2.63 per minute or $157.8 per hour.
To solve model (3), we use the Gurobi solver in all experiments. Also, we solve model (6) in Experiment III

utilizing Gurobi and MOSEK to compare their results with Algorithm 1 [84]. The comparison between ADMM,
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Gurobi, and MOSEK is shown in Experiment III. Gurobi and MOSEK are state-of-the-art off-the-shelf commercial
solvers of linear and mixed integer optimization problems. To better balance accuracy and the required time for
solving the problem, we set the relative mixed integer programming optimality gap at 0.01 for both Gurobi and
MOSEK in the experiments. Given that ADMM is also known to satisfy the constraints “asymptotically”, we need
to evaluate the solution quality after terminating our algorithm in a finite many number of iterations. We have
measured the quality of our ADMM-based algorithm by computing the normalized gap error between the right-hand
side and the left-hand side of our constraints as

fgap(S,u,W,H, β,γ) =
||S1− u||

||S||||1||+ ||u|| +
||Wᵀ1− 1||

||Wᵀ||||1||+ ||1|| +
||Du + q||

||D||||u||+ ||q|| +
||Au− γ||

||A||||u||+ ||γ||

+
||H− S||
||H||+ ||S|| +

||W − S||
||W||+ ||S|| +

||cᵀu + β − Ω||
||cᵀ||||u||+ ||β||+ ||Ω|| .

While we only provide incentives to the drivers that enter the system in the first time interval, our incentive

offering mechanism considers estimations of the traffic flows in the next time intervals. The selected drivers for

incentivization are from the same cohort. We randomly select a group of drivers between 7 AM and 7:15 AM. Then,

we use the selected drivers to compare the performance of the model with different budget values on the total travel

time for 7 AM to 8 AM. While our formulation is static, it can be applied in a dynamic environment if solved

frequently in the network in order to offer incentives to the drivers.

To evaluate the travel time of the network, we use the volume of the network at the User Equilibrium (UE) after

the incentivization. After the incentivization, the user drivers that have accepted the incentive offer cannot change

their incentivized route as part of the assumed incentivization policy. However, the remainder of the drivers (user

drivers that rejected the incentive offer, user drivers that did not receive an incentive offer, and nonuser drivers) can

select their route based on the new traffic volume at the UE resulting from the incentivization. In other words, our

framework does not assume that drivers who are not incentivized will remain on the previous routes. Hence, those

who are not incentivized may also change routes as the traffic conditions change due to the incentives. To compute

the total travel time at the UE, we provide Algorithm 2 in Appendix C. Algorithm 2 returns the total travel time of

the system at UE given the routing assignment of incentivized drivers who accepted the incentive offer and the

OD information of the remaining drivers. The decision of the incentivized driver on accepting/rejecting the offer is

randomly made based on the probability of their acceptance given the incentive offer.

B. Experiment I

In Experiment I, we check the performance of model (3) using the ADMS data for May 5th, 2018 with the

incentive set I = {$0, $2, $10}. The studied region, which is depicted in Fig. 1, includes the data of 301 sensors.

Based on the ADMS data, we created a graph with 41 nodes, 139 links, and 105.5 miles of road. OD points are

located at intersections and close to the ramp of the highways. The number of OD pairs is 1681 and there are

4278 paths between them in total. We assume 7494 drivers enter the system between 7 AM and 8 AM and we

consider 1805 drivers entering the system in the first 15 minutes for incentivization. To evaluate the travel time of

the network, we run Algorithm 2 with step size αUE = 0.05 and T̃ = 20 iterations and report the travel time at UE

after the incentivization.
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Fig. 1. Studied region in Experiment I.

Budget ($)
0 100 1000 10000

Cost ($) 0 100 1000 9996
Value of saved

time ($) 0 729 4320 7471

Total travel
time (hour) 679 674 652 632

TABLE I
EXPERIMENT I: LINEAR MODEL (3).

Notice that model (3) may result in an infeasible optimization problem (particularly in a heavily congested

network). Hence, we included a parameter α in our formulation as the multiplier of the allowed capacity. In other

words, we use α × v0 instead of v0 in model (3). We only consider this multiplier during the computation of

incentives; however, during the computation of total travel time, we use the original capacity. We assumed zero

dollar incentive in our probabilistic model for drivers that are not receiving an incentive.

Results of model (3) at 100% penetration rate (percentage of drivers who are considered in incentivization) are

presented in TABLE I. In this table, “Total travel time” shows the travel time computed via the BPR function after

offering incentives. When the budget is increased from $1000 to $10,000, the percentage of total travel time decrease

is improved from 4.03% to 6.97%. The row “Cost” in the table shows the amount of the budget that was used. In

all cases, almost all of the budget is used. The results show that the value of saved time is much larger than the

amount spent on incentive except in the budget of $10,000. Note that a budget of zero is the case of no incentive.

TABLE II shows that increasing the budget results in higher percentage of drivers to whom we offered the

Number
of drivers
entering

the system

Budget ($)
% of

rewarded
drivers

Average
incentive
amount

Reduction
in total

travel time

7402 1000 6.67% $2.00 4.03%
10000 13.64% $9.78 6.97%

TABLE II
COMPARISON OF $1000 AND $10000 BUDGET IN EXPERIMENT I.



14

Fig. 2. Effect of the penetration rate on the percentage of travel time decrease in Experiment I.

incentive and a higher average amount of offered incentives. In addition, we observe that even offering incentives to

6.67% of the drivers (with an average of $2.00 monetary incentive per driver) can reduce the total travel time by

4.03%. If approximately 13.64% of the drivers are incentivized with an average of $9.78 per driver, the total travel

time can be reduced by almost 6.97%. For more details about the distribution of offered incentives to drivers in

Experiment I, please see TABLE X in the Appendix.

Fig. 2 shows the effect of the penetration rate on travel time decrease. By reducing the penetration rate, we

experience a smaller travel time decrease because the flexibility of the model in selecting drivers decreases. Although

reducing the penetration rate adversely affects the incentivization, the model focuses on available drivers for reducing

travel time. For more details on the numbers provided in Fig. 2, please see TABLE XVIII and TABLE XVII in the

Appendix.

C. Experiment II

In Experiment II, we evaluate the performance of our methods for the region depicted in Fig. 3 with 753 sensors

under two different possible sets of incentives:

• I1 = {$0, $2, $10}

• I2 = {$0, $1, $2, $3, $5, $10}

This region only includes data of highway sensors with 25 OD points and 32 links which includes 707.6 miles of

road. The number of OD pairs is 625, and there are 1331 paths between them in total. We assume 15093 drivers

enter the system between 7 AM and 8 AM. Our incentivization model considers 4126 drivers entering the system in

the first 15 minutes. To evaluate the travel time of the network, we run Algorithm 2 following the same settings as

Experiment I. The results of our experiment at 100% penetration rate are presented in TABLE III for incentive

set I1, and in TABLE IV for incentive set I2. The value of saved time is much larger than the cost of offering

incentives for all budget values for both incentive sets except in the budget of 10, 000. The value of saved time can

go up to 15 times the cost.



15

Fig. 3. Studied region in Experiment II.

Budget ($)
0 100 1000 10000

Cost ($) 0 100 1000 9998
Value of saved

time ($) 0 1430 3955 8519

Total travel
time (hour) 4253 4244 4228 4199

TABLE III
EXPERIMENT II: LINEAR MODEL (3) FOR INCENTIVE SET I1 .

Budget ($)
0 100 1000 10000

Cost ($) 0 100 1000 10000
Value of saved

time ($) 0 1546 3931 9741

Total travel
time (hour) 4253 4243 4228 4191

TABLE IV
EXPERIMENT II: LINEAR MODEL (3) FOR INCENTIVE SET I2 .

Number
of drivers
entering

the system

Budget
($)

% of
rewarded
drivers

Average
incentive
amount

Reduction
in total

travel time

Exp. II-1 15093 1000 2.97% $2.23 0.59%
10000 16.42% $4.03 1.27%

Exp. II-2 15093 1000 3.87% $1.71 0.59%
10000 15.97% $4.15 1.45%

TABLE V
COMPARISON OF $1000 AND $10000 BUDGET IN EXPERIMENT II.
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Fig. 4. Studied region in Experiment III.

In addition to confirming our previous observations in Experiment I, Experiment II shows the diversity gain

related to the incentive set I1 (see the “Reduction in total travel time” column in TABLE V). In other words, more

choices in the incentive set provides more flexibility for the algorithm, resulting in a total travel time reduction.

For more details about the distribution of offered incentives to drivers in Experiment II, please see TABLE XI and

TABLE XII in the Appendix. By examining Experiments I and II, we observe that more alternative routes leads to

more gain in the travel time reduction.

D. Experiment III

In Experiment III, we compare the performance of the linear model (3) and the ADMM model (6) using the

incentive set I = {$0, $2, $10}. The region considered in our analysis is depicted in Fig. 4. This region includes

the data of 293 sensors. Based on the ADMS data, we created a graph with 12 nodes, 32 links, and 288.1 miles of

road. The number of OD pairs is 144 and there are 270 paths between them in total. The estimated total number

of drivers incoming to the system between 5 AM to 9 AM by the OD estimation algorithm is depicted in Fig. 5

(c). In our simulations, we assume 8220 drivers enter the system between 7 AM and 8 AM. Our incentivization

model considers 2248 drivers entering the system in the first 15 minutes. To evaluate the travel time of the network,

we run Algorithm 2 following the same settings as Experiment I. Results of model (3) and model (6) at 100%

penetration rate are presented in TABLE VI and Fig. 6.

As we can observe in TABLE VII and Fig. 6, model (6) has a better performance compared to model (3) for all

the budgets. At 100% penetration rate, model (6) decreased the travel time up to twice model (3). Although the

objective function in model (3) reduces the total free flow travel time, the actual travel time is not reached since the

free flow travel time is a poor estimation of the actual travel time. Model (6) directly minimizes the travel time

based on the BPR function so it captures the nonlinear relation between travel time and volume. When the volume

is greater than the capacity, model (6) which is a more accurate model representing the traffic network produces

better results. These phenomena can be observed in Fig. 6, Fig. 7, Fig. 8, and Fig. 8. Although both Gurobi and

MOSEK find slightly better solutions for model (6), it can take up to 35 hours for Gurobi and up to 80 hours for

MOSEK to solve the problem. However, Algorithm 1 takes at most 14 minutes by utilizing parallel computation.

Also, our computational resources were limited. With a proper use of GPUs and TPUs, matrix computations can be
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Budget ($)
0 100 1000 10000

Model
(3)

(Linear)

Cost ($) 0 100 1000 10000
Value of

saved
time ($)

0 604 6550 9760

Total
travel
time
(hour)

2087 2082 2045 2024

Model
(6)

(ADMM)

Cost ($) 0 100 1000 9578
Value of

saved
time ($)

0 1204 8999 15149

Total
travel
time
(hour)

2087 2079 2029 1990

TABLE VI
EXPERIMENT III: LINEAR MODEL (3) AND MODEL (6).

Fig. 5. Total estimated number of drivers entering the system (in 15-minute intervals). (a) Experiment I, (b) Experiment II, and (c) Experiment III.

Number
of drivers
entering

the system

Budget
($)

% of
rewarded
drivers

Average
incentive
amount

Reduction
in total

travel time

Exp. III
Model (3) 8220 1000 6.08% $2.00 1.99%

10000 15.86% $7.67 2.96%
Exp. III
Alg. 1 8220 1000 6.08% $2.00 2.73%

10000 14.46% $8.06 4.60%

TABLE VII
COMPARISON OF $1000 AND $10000 BUDGET IN EXPERIMENT III.
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even much more efficient. We set the termination rule of MOSEK and Gurobi as 0.01 relative optimality gap. Also,

we have computed the normalized gap error of our ADMM-based Algorithm 1 to measure the quality of its solution.

This error is illustrated in Figure 10 for Experiement III after 50,000 iterations for different penetration rates and

budgets in Figure 10. We can observe that the error after 10,000 iterations converges almost to 0 for most of the

cases and after 20,000 iterations, it converges almost to 0 for all the cases.

Fig. 6. Effect of solving method on the percentage of travel time decrease in Experiment III.

Algorithm 1 by offering incentives to 14.46% of the vehicles at 100% penetration rate in Experiment III (with an

average of $8.06 monetary incentive per driver) can reduce the total travel time by 4.60% using model (6). For a

budget of $10, 000, model (6) has 1.64% larger reduction in the percentage of travel time compared to model (3)

although both offer almost the same amount of incentive on average to the almost same percentage of drivers. The

computation time of model (3) is 2.6 minutes, but model (6) requires up to 1.04 hours to run if we employ serial

computation. Utilizing parallel computation as described in section II-C, we can reduce the computational time to at

most 14 minutes. The value of saved time using Algorithm 1 is much larger than the amount spent on incentive

for all budget values and it can go up to 12 times the cost. For more details about the distribution of the offered

incentives to the drivers in Experiment III, please see TABLE XIII, TABLE XIV, and TABLE XV in the Appendix.

The effect of the penetration rate on travel time decrease in Experiment III for model (6) is depicted in Fig. 7, Fig. 8,

and Fig. 9. The behavior is similar to our observation in Fig. 2 which was for Model (3). For more details of the

numbers provided in Fig. 7, Fig. 8, and Fig. 9, please see TABLE XX, TABLE XIX, TABLE XXII, TABLE XXI,

TABLE XXIV, and TABLE XXIII in the Appendix.
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Fig. 7. Effect of the penetration rate on the percentage of travel time decrease in Experiment III, model (6), Algorithm 1.

Fig. 8. Effect of the penetration rate on the percentage of travel time decrease in Experiment III, model (6), Gurobi solver.

Fig. 9. Effect of the penetration rate on the percentage of travel time decrease in Experiment III, model (6), MOSEK solver.
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Fig. 10. Normalized gap error of Algorithm 1 after 50,000 iterations with different cases of penetration rate and budget.

E. Summary

As we discussed in section II-A, model (3) assumes that there exists a traffic flow solution operating below the

network capacity. When this assumption is not satisfied, our model results in an “approximate” solution. To evaluate

the validity of this approximation in heavily congested networks, we ran model (3) for heavily congested networks

(Experiments I and II) with many alternative routes so that we can reasonably reduce the congestion level. As we

saw in Experiments I and II, this model can provide a reasonable approximation in both arterial (Experiment I)

and highways (Experiment II) and leads to congestion reduction even when the final result is above the system

capacity. In Experiment III, our numerical experiments demonstrate the superiority of model (6) over model (3)

in reducing congestion. This is because of the heavy congestion and the lack of availability of enough alternative

routes to reduce congestion (so that the final solution of model (3) is far away from the free flow traffic and a linear

approximation of travel time is no longer accurate enough). We were not able to run model (6) for Experiments I

and II due to the large number of nodes in the network. However, relying on edge computation, this model could be

solved efficiently in practice as we discussed in subsection II-C.

IV. CONCLUSION

In this paper, we developed mathematical models and proposed algorithms for offering personalized incentives to

drivers to reduce congestion in the network. In this framework, drivers share their origin-destination and routing

information with a central planner. Based on this information, the central planner then offers incentives to drivers

to incentivize/enforce a socially optimal routing strategy. The incentives are offered based on solving large-scale

optimization problems in our framework. In our framework, we bring together prior works to model the behavior of
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drivers in response to the offered incentives as well as the resulting congestion reduction in the network where no

traffic control is required. We paid special attention to minimizing the total travel time of the network. In addition,

we showed that this problem can be solved in a distributed fashion where some of the computations are performed

on individual drivers’ smart devices. Finally, we evaluated the performance of our models and algorithms using

Archived Data Management System (ADMS) data. Our experiments showed that the proposed framework can lead

up to a 5% decrease in the total travel time of the system during rush hour times.

In this work, the incentives are only offered to alter the routing decision of the drivers. In future work, it is

crucial to look at the effect of offering incentives to change the mode or time of the drivers’ trips. These options

will bring additional flexibility to the model, which in turn will result in further congestion reduction. To compute

the drivers’ acceptance probability, we can include more aspects of drivers’ characteristics and features into account

such as gender, age. and salary. In addition, we can utilize preference learning in computing drivers’ acceptance

probability if we have access to the data of preferences of the drivers. Moreover, future research can study the use

of more realistic approaches such as using a dynamic route assignment approach or using a cost flow curve with a

vertical asymptote at capacity.
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APPENDIX A

LIST OF NOTATIONS

The following symbols are used in this paper.

• G: Directed graph of the traffic network

• V: Set of nodes of graph G which correspond to major intersections and ramps

• E : Set of edges of graph G which correspond to the set of road segments

• |E|: Total number of road segments/edges in the network G (i.e. the cardinality of the set E)

• r: Route vector

• T: Time horizon

• |T|: Number of time units (i.e. the cardinality of T)

• v0: Capacity vector of road segments

• vt: Volume vector of road segments at time t

• N : Set of drivers

• |N |: Number of drivers (i.e. the cardinality of the set N )

• Rn: Set of possible route options for driver n

• R: Total set of possible route options for all drivers

• |R|: Number of possible route options (i.e. the cardinality of the set R)
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• In: Set of possible incentives to offer to driver n

• I: Total set of possible incentives to all drivers

• |I|: Number of possible incentives (i.e. the cardinality of the set I)

• sr,ni : Decision parameter indicates whether incentive i is offered to driver n for route r

• pr,ni : The probability of acceptance of route r by driver n given incentive i

• T̂r: The estimate of the travel time for route r provided by the incentive offering platform

• Tr: The exact travel time for route r

• βr,t: The vector of the location of driver that is traveling a route r at time t

• ηi: The cost of incentive i

• Ftt(.): Total travel time function

• δ`,t: Travel time of link ` at time t

• v̂: The vector of the volume of links at different times in the horizon

• v̂`,t: The (|E| × t+ `)th element of vector v̂ representing the volume of `th link at time t

• t0: The free flow travel time of the link

• v: The traffic volume of the link

• w: The practical capacity of the link

• sn: The binary decision vector for one driver in which only one element has the value of one and it corresponds

to the route and the incentive amount that we offer

• fBPR(.): BPR function

• S: Decision matrix

• R: The matrix of the location of a driver

• P: Route choice probability matrix

• D: The matrix of incentive assignment to OD pairs

• q: The vector of the number of drivers for each OD pair

• c: The vector of cost of incentives assigned to each route

• Ω: Budget

• ω: The vector of free flow travel time of links

• a`,t: The row of matrix A = RP which corresponds to link ` at time t

• K: The number of OD pairs

• e: An edge of graph G which corresponds to a road segments in the traffic network

APPENDIX B

DETAILS OF ALTERNATING DIRECTION METHOD OF MULTIPLIERS (ADMM)

Before explaining the steps of our proposed algorithm, let us first explain the Alternating Direction Method of
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Multipliers (ADMM), which is the main building block of our framework.

A. Review of ADMM

ADMM developed in [63] and [64] aims at solving linearly constrained optimization problems of the form

min
w,z

h(w) + g(z) s.t. Aw +Bz = c,

where w ∈ Rd1 , z ∈ Rd2 , c ∈ Rk, A ∈ Rk×d1 , and B ∈ Rk×d2 . By forming the augmented Lagrangian function

L(w, z, λ) , h(w) + g(z) + 〈λ,Aw +Bz − c〉+
ρ

2
‖Aw +Bz − c‖22,

each iteration of ADMM applies alternating minimization to the primal variables and gradient ascent to the dual
variables:

Primal Update: wr+1 = arg min
w
L(w, zr, λr), (11)

zr+1 = arg min
z
L(wr+1, z, λr)

Dual Update: λr+1 = λr + ρ
(
Awr+1 +Bzr+1 − c

)
This algorithm is well studied in the optimization literature (see [62] for a monograph on the use of this algorithm

in convex distributed optimization and [65] for its use in non-convex continuous optimization).

B. ADMM for Solving (7)

To follow the standard form provided at subsection B-A and substitute a`,tS1 with γ`,t, we reformulate the

optimization problem (7) as

min
S,γ,β

Ftt(γ) =

|E|∑
`=1

|T|∑
t=1

(γ`,t)δ(γ`,t)

s.t. Sᵀ1 = 1, cᵀS1 + β = Ω

DS1 = q, AS1 = γ

S ∈ [0, 1](|R|·|I|)×|N|, β ≥ 0

(12)

where β is a slack variable. As we discussed in subsection II-C, in order to find (approximately) binary solutions,

we add a regularizer <(S) = − λ̃2
∑|R|
r=1

∑|I|
i=1

∑|N |
n=1 Sr,i,n(Sr,i,n − 1) to the objective function:

min
S,γ,β

Ftt(γ) =

|E|∑
`=1

|T|∑
t=1

(γ`,t)δ(γ`,t)

− λ̃

2

|R|∑
r=1

|I|∑
i=1

|N|∑
n=1

Sr,i,n(Sr,i,n − 1)

s.t. Sᵀ1 = 1, cᵀS1 + β = Ω

DS1 = q, AS1 = γ

S ∈ [0, 1](|R|·|I|)×|N|, β ≥ 0

(13)
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where λ̃ ∈ R+ is the regularization parameter. This regularizer forces the elements of matrix S to be as close as
possible to the binary domain {0, 1}. The augmented lagrangian of the reformulated optimization problem (13) is

L(S,γ, β)

, Ftt(γ) + I[0,1](|R|·|I|)×|N|(S) + IR+(β)

− λ̃

2

|R|∑
r=1

|I|∑
i=1

|N|∑
n=1

Sr,i,n(Sr,i,n − 1)

+ 〈λ1,S
ᵀ1− 1〉+ λ2(cᵀS1 + β − Ω)

+ 〈λ3,DS1− q〉+ 〈λ4,AS1− γ〉

+
ρ

2
||Sᵀ1− 1||2 +

ρ

2
(cᵀS1 + β − Ω)2

+
ρ

2
||DS1− q||2 +

ρ

2
||AS1− γ||2

(14)

with the set of Lagrange multipliers {λ1, λ2,λ3 λ4} and ρ > 0 be the primal penalty parameter. Then, ADMM
solves (13) by the following iterative scheme

St+1 = argmin
S

I[0,1](|R|·|I|)×|N|(S)

− λ̃

2

|R|∑
r=1

|I|∑
i=1

|N|∑
n=1

Sr,i,n(Sr,i,n − 1)

+ 〈λ1,S
ᵀ1− 1〉+ λ2(cᵀS1 + β − Ω)

+ 〈λ3,DS1− q〉+ 〈λ4,AS1− γ〉

+
ρ

2
||Sᵀ1− 1||2 +

ρ

2
(cᵀS1 + β − Ω)2

+
ρ

2
||DS1− q||2 +

ρ

2
||AS1− γ||2

βt+1 = argmin
β

IR+(β) + λ2(cᵀS1 + β − Ω) +
ρ

2
(cᵀS1 + β − Ω)2

γt+1 = argmin
γ

Ftt(γ) + 〈λ4,AS1− γ〉+
ρ

2
||AS1− γ||2

λt+1
1 =λt1 + ρ

(
St+1ᵀ1− 1

)
λt+1
2 =λt2 + ρ

(
cᵀSt+11 + βt+1 − Ω

)
λt+1

3 =λt3 + ρ
(
DSt+11− q

)
λt+1

4 =λt4 + ρ(ASt+11− γt+1)

We can write the update of the primal variable S as a closed-form expression. To facilitate the derivation of its

updating rule, we substitute S1 in our problem with the new variable u and add the constraint S1 = u to our

formulation. Moreover, we substitute the matrix S by the new variable W in the constraint Sᵀ1 = 1 and replace

the matrix S with the new variable H in the constraint S ∈ [0, 1](|R|·|I|)×|N| and the regularizer <(S). As matrices

W and H are substitutions for S, we include the constraints S = W and S = H in the reformulation. Therefore,
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optimization problem (13) will be reformulated as

min
γ,u,S,W,H,z,β

|E|∑
`=1

|T|∑
t=1

γ`,tδ(γ`,t)

− λ̃

2

|R|∑
r=1

|I|∑
i=1

|N|∑
n=1

Hr,i,n(Hr,i,n − 1)

s.t. S1 = u, Wᵀ1 = 1

Du = q, Au = γ

H = S, W = S

cᵀu + β = Ω, β ≥ 0

H ∈ [0, 1](|R|·|I|)×|N|.

(15)

which is the introduced problem (8) in the subsection II-C. Let

L(γ,S,H,W,u, β)

, Ftt(γ) + I[0,1](|R|·|I|)×|N|(H) + IR+(β)

+ 〈λ1,S1− u〉+ 〈λ2,W
ᵀ1− 1〉+ 〈λ3,Du− q〉

+ 〈λ4,Au− γ〉+ 〈Λ5,H− S〉

+ λ6(cᵀu + β − Ω) + 〈Λ7,W − S〉

+
ρ

2
||S1− u||2 +

ρ

2
||Wᵀ1− 1||2

+
ρ

2
||Du− q||2 +

ρ

2
||Au− γ||2

+
ρ

2
||H− S||2 +

ρ

2
(cᵀu + β − Ω)2

+
ρ

2
||W − S||2 − λ̃

2

|R|∑
r=1

|I|∑
i=1

|N|∑
n=1

Hr,i,n(Hr,i,n − 1)

(16)

be the augmented Lagrangian function of (8) with the set of Lagrange multipliers {λ1,λ2, . . . ,Λ7} and ρ > 0 be
the primal penalty parameter. Then, ADMM solves (8) by the following iterative scheme

ut+1 = argmin
u

〈λt1,St+11− u〉+ 〈λt3,Du− q〉

+ 〈λt4,Au− γ〉+ λ6(cᵀu + β − Ω)

+
ρ

2
||St+11− u||2 +

ρ

2
||Du− q||2

+
ρ

2
||Au− γ||2 +

ρ

2
(cᵀu + β − Ω)2

Wt+1 = argmin
W

〈λt2,Wᵀ1− 1〉+ 〈Λt
7,W − St+1〉

+
ρ

2
||Wᵀ1− 1||2 +

ρ

2
||W − St+1||2

Ht+1 = argmin
H

1(ρ > λ̃)I[0,1](|R|·|I|)×|N|(H)

+ 1(ρ < λ̃)I{0,1}(|R|·|I|)×|N|(H)
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+ 〈Λt
5,H− St+1〉+

ρ

2
||H− St+1||2

− λ̃

2

|R|∑
r=1

|I|∑
i=1

|N|∑
n=1

Hr,i,n(Hr,i,n − 1)

St+1 = argmin
S

〈λt1,S1− ut〉+ 〈Λt
5,H

t − S〉

+ 〈Λt
7,W

t − S〉+
ρ

2
||S1− ut||2

+
ρ

2
||Ht − S||2 +

ρ

2
||Wt − S||2

βt+1 = argmin
β

I+(β) + λt6
(
cᵀut+1 + β − Ω

)
+
ρ

2

(
cᵀut+1 + β − Ω

)2
λt+1

1 =λt1 + ρ
(
St+11− ut+1)

λt+1
2 =λt2 + ρ

(
Wt+1ᵀ1− 1

)
λt+1

3 =λt3 + ρ
(
Dut+1 − q

)
λt+1

4 =λt4 + ρ
(
Aut+1 − γt+1)

Λt+1
5 =Λt

5 + ρ
(
Ht+1 − St+1)

λt+1
6 =λt6 + ρ

(
cᵀut+1 + βt+1 − Ω

)
Λt+1

7 =Λt
7 + ρ

(
Wt+1 − St+1)

The primal update rules can be simplified as

γt+1

`,t̂
= argmin

γ`,t̂

γ`,t̂δ(γ`,t̂) + λt4,(`,t̂)(a`,t̂u
t − γ`,t̂)

+
ρ

2
(a`,t̂u

t − γ`,t̂)
2, ∀`,∀t̂

St+1 =
1

ρ
(−λt11ᵀ + Λt

5 + Λt
7 + ρut1ᵀ + ρHt

+ ρWt)(11ᵀ + 2I)−1

Ht+1 = 1(ρ > λ̃)Π

((
1

ρ− λ̃

)
(ρSt −Λt

5 −
λ̃

2
)

)
[0,1]

+ 1(ρ < λ̃)Π

((
1

ρ− λ̃

)
(ρSt −Λt

5 −
λ̃

2
)

)
{0,1}

Wt+1 =
1

ρ
(I + 11ᵀ)−1(−1λtᵀ2 −Λt

7 + ρ11ᵀ + ρSt+1)

ut+1 =
1

ρ
(I + DᵀD + AᵀA + ccᵀ)−1(λt1 −Dᵀλt3 −Aᵀλt4

+ ρSt+11 + ρDᵀq + ρAᵀγt+1 − λ6c− βρc + Ωρc)

βt+1 = Π

(
1

ρ
(−λt6 − ρctᵀut + ρΩ)

)
R+
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APPENDIX C

DISTRIBUTED COMPUTATION OF ALGORITHM 1

To handle the expensive computation of matrices W, H, and S in Algorithm 1, we can utilize the computational

power of our drivers’ smartphones. Each column of the matrices W, H, and S corresponds to a single driver, and

hence the computation corresponding to each column can be performed in parallel on smartphone devices of the

drivers. The details of this parallel computation are depicted in Figure 11. To update the ith column of matrices W,

H, and S at iteration t of Algorithm 1, driver i’s smartphone computes

Wt+1
(:,i) =(ρ11ᵀ + ρI)−1(ρ1 + ρSt(:,i) −Λt

7,(:,i) − λ
t
2,(:,i))

Ht+1
(:,i) =1(ρ > λ̃)Π

((
1

ρ− λ̃

)
(ρSt(:,i) −Λt

5,(:,i) −
λ̃

2
)

)
[0,1]

+ 1(ρ < λ̃)Π

((
1

ρ− λ̃

)
(ρSt(:,i) −Λt

5,(:,i) −
λ̃

2
)

)
{0,1}

St+1
(:,i) =(ρut+11ᵀ + Λt

5,(:,i) + ρHt+1
(:,i) + Λt

7,(:,i) + ρWt+1
(:,i) − λ

t
11

ᵀ)(ρ11ᵀ + 2ρI)−1

where (:, i) denotes the i’th column of the matrix and corresponds to the driver i.
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Fig. 11. Steps of distributed implementation of Algorithm 1. Step 0: Incentive offering platform shares the constant parameters and matrices

with drivers. Step t-1: The incentive offering platform updates ut+1. Step t-2: Incentive offering platform sends the required information to

drivers. Step t-3: Incentive offering platform receives the updated vectors from drivers. Step t-4: Incentive offering platform updates γt+1,

βt+1, and dual variables.

APPENDIX D

UE ALGORITHM

In our numerical experiments, we use the volume at the UE state of the system after the incentivization to evaluate

the travel time. To compute the volume at User Equilibrium, we present Algorithm 2. Before we present the details

of Algorithm 2, let us explain some notations used in this algorithm. Vector v ∈ R|E|·|T|+ denotes the volume of

links at different time slots. N1 is the set of user drivers that accept the incentive offer and S1 ∈ {0, 1}|R|×|N1| is

the matrix of route assignment of these drivers. N2 is the set of the remaining drivers (user drivers that rejected the

incentive offer, user drivers that did not receive an incentive offer, and nonuser drivers) and S2 ∈ {0, 1}|E|×|N2| is

the matrix of their OD assignment. P̃ ∈ [0, 1]|R|×|E| encodes the information of probability of picking different

routes given the driver’s OD. Thus, the vector P̃S21 ∈ R|R|×1 shows the expected number of non-incentivized

vehicles in each route. δUE ∈ R+ is the total travel time of the system based on the traffic volume at the last iteration.
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Algorithm 2 Computation of Travel Time at UE

1: Input: Step size: αUE, Number of iterations: T̃ .
2: Compute R0 and P̃0 using volume vector v0 (historical data)
3: for t = 1, 2, . . . , T̃ do
4: ṽt = Rt−1S11 + Rt−1Pt−1S21
5: vt = (1− αUE)vt−1 + αUEṽt
6: Compute Rt and Pt based on volume vector vt
7: end for
8: Compute UE travel time δUE utilizing vT̃ and BPR function
9: Return: δUE

In this algorithm, we rely on the method presented by [57] to compute matrix R and P̃ based on the volume vector

v.

APPENDIX E

AN EXAMPLE OF THE MODEL AND NOTATIONS

In this section, we present a small example of a network to illustrate our model and notations. Consider the

network

Fig. 12. Network example G1.

where V = {ν1, ν2, ν3} is the set of nodes and E = {e1, e2, e3} is the set edges (roads). Details of the links and

attributes are represented in TABLE VIII. The (origin, destination) pair is (ν1, ν3). There are two routes going from

origin to destination as illustrated in TABLE IX. The time horizon set is T = {1, 2, 3} and each time is 0.2 hour.

To estimate the location of drivers at each time, we need matrix R ∈ [0, 1]9×6 as follows

R =

t1

= 1

r1

t1

= 1

r2

t1

= 2

r1

t1

= 2

r2

t1

= 3

r1

t1

= 3

r2



t2 = 1, e1 1 1 0 0 0 0

t2 = 1, e2 0 0 0 0 0 0

t2 = 1, e3 0.5 0 0 0 0 0

t2 = 2, e1 0 0 1 1 0 0

t2 = 2, e2 0 1 0 0 0 0

t2 = 2, e3 0.5 0 0.5 0 0 0

t2 = 3, e1 0 0 0 0 1 1

t2 = 3, e2 0 0 0 1 0 0

t2 = 3, e3 0 0 0.5 0 0.5 0
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Length
(Mile)

Speed
(mph)

Travel time
(Hour)

e1 5 50 0.1
e2 10 50 0.2
e3 5 50 0.1

TABLE VIII
SET OF EDGES.

r Graph

Route 1
e1 → e3

r1 =

1
0
1


Route 2
e2 → e3

r2 =

0
1
1


TABLE IX

SET OF ROUTES.

where t1 is the entrance time of the driver and t2 is the driver’s arrival time at the road. In model (3), the column

vector βr,t corresponds to the columns of matrix R.

Assume there are two drivers in the system and N = {d1, d2}. We want to offer rewards from the set I = {$0, $5}

to control the traffic. To estimate the probability of choosing routes given an offered incentive at a time, we use

matrix P ∈ [0, 1]6×12 when incentive i is offered:

Pti =

No incentive $5→ r1 $5→ r2



t = 1, r1 0.50 0.50 0.97 0.03

t = 1, r2 0.50 0.50 0.03 0.97

t = 2, r1 0.50 0.50 0.97 0.03

t = 2, r2 0.50 0.50 0.03 0.97

t = 3, r1 0.50 0.50 0.97 0.03

t = 3, r2 0.50 0.50 0.03 0.97

, ∀i ∈ {1, 2, 3}

P =
[
Pt1 Pt2 Pt3

]
Probability matrices for all three times are equal because the speed is the same in all three times. We compute

the probability of choosing route k given that $i′ is offered for route j′ by

P(r = k, i = ($i′ → route j′))

=
exp (−0.086ttk + 0.7i′Ik=j′)

exp (−0.086ttj′ + 0.7i′) +
∑
j 6=j′ exp (−0.086ttj)

(17)

where ttj is the travel time of route j. We use [55] to extract these coefficients.
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APPENDIX F

DETAILS OF THE NUMERICAL EXPERIMENTS

Budget
Incentive

$0 $2 $10

Pe
ne

tr
at

io
n

R
at

e

25%
$1000 7242 191 61

$10000 7198 14 282

50%
$1000 7063 414 17

$10000 6975 0 519

75%
$1000 6994 500 0

$10000 6717 0 777

100%
$1000 6994 500 0

$10000 6472 28 994

TABLE X

DISTRIBUTION OF THE OFFERED INCENTIVES IN EXPERIMENT I WITH DIFFERENT PENETRATION RATES.

Budget
Incentive

$0 $2 $10

$1000 14645 435 13

$10000 12614 1849 630

TABLE XI

DISTRIBUTION OF THE OFFERED INCENTIVES IN EXPERIMENT II FOR INCENTIVE SET I1 WITH PENETRATION RATE OF 100%.

Budget
Incentive

$0 $1 $2 $3 $5 $10

$1000 14509 351 152 30 51 0

$10000 12682 184 305 832 838 252

TABLE XII

DISTRIBUTION OF THE OFFERED INCENTIVES IN EXPERIMENT II FOR INCENTIVE SET I2 WITH PENETRATION RATE OF 100%.

Budget
Incentive

$0 $2 $10

$1000 7720 500 0

$10000 6916 380 924

TABLE XIII

DISTRIBUTION OF THE OFFERED INCENTIVES IN EXPERIMENT III FOR MODEL (3) WITH PENETRATION RATE OF 100%.
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Budget
Incentive

$0 $2 $10

Pe
ne

tr
at

io
n

R
at

e

25%
$1000 8042 100 78

$10000 7879 104 237

50%
$1000 7892 285 43

$10000 7144 109 967

75%
$1000 7772 435 13

$10000 7057 241 922

100%
$1000 7720 500 0

$10000 7031 289 900

TABLE XIV

DISTRIBUTION OF THE OFFERED INCENTIVES IN EXPERIMENT III WITH DIFFERENT PENETRATION RATES FOR MODEL (6), ALGORITHM 1.

Budget
Incentive

$0 $2 $10

Pe
ne

tr
at

io
n

R
at

e

25%
$1000 8032 110 78

$10000 7891 9 320

50%
$1000 7980 175 65

$10000 7565 0 655

75%
$1000 7972 185 63

$10000 7246 78 896

100%
$1000 7896 280 44

$10000 7022 248 950

TABLE XV

DISTRIBUTION OF THE OFFERED INCENTIVES IN EXPERIMENT III WITH DIFFERENT PENETRATION RATES FOR MODEL (6), GUROBI.

Budget
Incentive

$0 $2 $10

Pe
ne

tr
at

io
n

R
at

e

25%
$1000 8036 105 79

$10000 7658 0 562

50%
$1000 8050 85 85

$10000 7220 0 1000

75%
$1000 7972 185 63

$10000 7240 83 897

100%
$1000 7900 286 34

$10000 7048 260 912

TABLE XVI

DISTRIBUTION OF THE OFFERED INCENTIVES IN EXPERIMENT III WITH DIFFERENT PENETRATION RATES FOR MODEL (6), MOSEK.
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Budget
Penetration Rate

25% 50% 75% 100%

$100 3 4 4 5

$1000 11 21 27 27

$10000 14 27 38 47

TABLE XVII

EFFECT OF THE PENETRATION RATE ON TRAVEL TIME DECREASE (HOUR) IN EXPERIMENT I.

Budget
Penetration Rate

25% 50% 75% 100%

$100 0.49% 0.63% 0.62% 0.68%

$1000 1.68% 3.07% 3.91% 4.03%

$10000 2.03% 3.99% 5.52% 6.97%

TABLE XVIII

EFFECT OF THE PENETRATION RATE ON THE PERCENTAGE OF TRAVEL TIME DECREASE IN EXPERIMENT I.

Budget
Penetration Rate

25% 50% 75% 100%

$100 8 8 4 8

$1000 25 44 50 57

$10000 27 50 72 96

TABLE XIX

EFFECT OF THE PENETRATION RATE ON TRAVEL TIME DECREASE (HOUR) IN EXPERIMENT III, MODEL (6), ALGORITHM 1.

Budget
Penetration Rate

25% 50% 75% 100%

$100 0.38% 0.41% 0.17% 0.37%

$1000 1.21% 2.13% 2.41% 2.71%

$10000 1.28% 2.38% 3.47% 4.60%

TABLE XX

EFFECT OF THE PENETRATION RATE ON THE PERCENTAGE OF TRAVEL TIME DECREASE IN EXPERIMENT III, MODEL (6), ALGORITHM 1.

Budget
Penetration Rate

25% 50% 75% 100%

$100 8 9 7 6

$1000 23 43 49 65

$10000 28 55 74 98

TABLE XXI

EFFECT OF THE PENETRATION RATE ON TRAVEL TIME DECREASE (HOUR) IN EXPERIMENT III, MODEL (6), GUROBI.
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Budget
Penetration Rate

25% 50% 75% 100%

$100 0.38% 0.45% 0.33% 0.30%

$1000 1.10% 2.06% 2.33% 3.09%

$10000 1.32% 2.64% 3.56% 4.69%

TABLE XXII

EFFECT OF THE PENETRATION RATE ON THE PERCENTAGE OF TRAVEL TIME DECREASE IN EXPERIMENT III, MODEL (6), GUROBI.

Budget
Penetration Rate

25% 50% 75% 100%

$100 8 8 5 6

$1000 23 29 48 67

$10000 28 62 70 101

TABLE XXIII

EFFECT OF THE PENETRATION RATE ON TRAVEL TIME DECREASE (HOUR) IN EXPERIMENT III, MODEL (6), MOSEK.

Budget
Penetration Rate

25% 50% 75% 100%

$100 0.38% 0.37% 0.23% 0.27%

$1000 1.11% 1.39% 2.31% 3.19%

$10000 1.33% 2.98% 3.35% 4.86%

TABLE XXIV

EFFECT OF THE PENETRATION RATE ON THE PERCENTAGE OF TRAVEL TIME DECREASE IN EXPERIMENT III, MODEL (6), MOSEK.
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