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Abstract

We develop an exact integer programming formulation to design a loop material
flow system for unit load automated guided vehicles. The model simultaneously
determines both the design of the unidirectional loop flow pattern and the loca-
tion of the pick-up and delivery stations. The objective is to minimize the total
loaded vehicle trip distances. To solve the problem, we concentrate on develop-
ing a better formulation for the LP sub-problem, pre-processing the problem,
identifying the appropriate set of LP/IP routines, analyzing the mathemati-
cal properties of the problem, and developing an intelligent branch and bound
solution procedure.

Keywords and phrases: Facilities Planning, AGVS, Integer Programming, Net-

work Flows.

1 Introduction

Facilities layout is among the oldest activities of industrial engineers. A good layout

always incorporates the design of the material handling system. Estimates of up to a
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half of the total manufacturing costs are attributed to material handling (Tompkins
et al., 1996). Automated guided vehicles (AGVs) are among the modern material
handling equipment in manufacturing plants. They are preferred to conveyors due to
their flexibility, and to robots due to their mobility.

The design of the material flow system and its simplicity is one of the primary
issues in implementing automated guided vehicle systems (AGVS). Blocking is the
most undesirable consequence of complicated networks. It results not only in a larger
fleet size, but also a throughput below the designed capacity. Furthermore, the soft-
ware required for dispatching, vehicle routing, and traffic management of complicated
networks are quite expensive. Therefore, simple flow patterns have received the most
attention in the recent years.

Maxwell and Muckstadt (1982) first introduced the problem of AGV flow system
design. While their main concern is vehicle routing, they also addressed material
flow path and station location design issues. The flow network they used is known
as conventional configuration which is composed of unidirectional arcs. Gaskin and
Tanchoco (1987) developed the first integer programming model for material flow
path design. Given a fixed network of aisles and fixed pick-up (P) and delivery
(D) stations, the model assigns direction to arcs in order to minimize the total trip
distances of loaded vehicles. Goets and Egbelu (1990) develop an alternative model
where the station locations are no longer fixed but are restricted to the nodes on the
boundary of the cells. Sun and Tchernov (1996) provide a comprehensive review on
the models developed for conventional configuration.

Afentakis (1989) states the advantages of the loop layout as simplicity and effi-
ciency, low initial and expansion costs, and product and processing flexibility. Loop
layout has been studied by many researchers including Bartholdi and Platzman
(1989), Sharp and Liu (1990), Kouvelis and Kim (1992), Egbelu (1993), Banerjee
and Zhou (1995), and Chang and Egbelu (1996). Bozer and Srinivasan (1989, 1991,

and 1994) initiate the concept of tandem configuration as a set of non-overlapping
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bi-directional loops each with a single vehicle.

The problem discussed in our paper was first conceptualized and modeled by
Tanchoco and Sinriech (1992), and Sinriech and Tanchoco (1992 and 1993). The
problem is to design a unidirectional loop covering at least one edge of every cell,
and to identify the location of the P and D stations on the nodes on each cell. The
material handling equipment is a unit load AGV and the objective is to minimize
the total loaded vehicle trip distances. Sinriech and Tanchoco ( 1993) propose a 5-
phase serially approach to solve the model. Our goal in this paper is to develop a
new formulation and faster solution procedure for the same problem. Our approach
differs from their procedure in the following aspects.

1. The number of binary variables required to formulate the degree 2 configuration
is reduced by half. Furthermore, the sub-tour elimination approach does not cut any
portion of the feasible region of the LP-relaxation containing a feasible solution to
the IP problem.

2. We develop a global formulation approach for simultaneous design of both the
unidirectional loop flow pattern and the location of the pick-up and delivery stations.

3. To design a solution procedure for the global formulation, we concentrate on
developing a better formulation for the LP sub-problem, pre-processing, identifying
the appropriate set of LP/IP routines, analyzing the mathematical properties of the
problem, and developing an intelligent branch and bound.

We report our results for the prototype example of Sinriech and Tanchoco (1993)
which is shown in figure 1, as well as a set of test problems proposed by Nugent
et al.(1968). The results show that our formulation is computationally more effi-
cient than the earlier formulations. After formulating the problem in section 2, the
theoretical foundations of the LP-relaxation sub-problem are discussed in section 3.
Computational considerations are discussed in section 4, and the conclusion follows

in section b.
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figure=tanch2.eps

Figure 1: The layout and from-to chart of the 11-cell prototype example from Sinriech
and Tanchoco (1993).

2 Model Formulation
2.1 Problem Statement

The flow system design problem is defined using the planar graph G/(V, F) associated
with the block layout. N = {ny,...,nn|} is the set of intersections on the boundaries
of cells. For each pair of adjacent nodes m,n € N where n > m, there is a non-directed
edge mn € E. A feasible loop is a circuit containing at least one edge of each cell
(Tanchoco and Sinriech, 1992). Not all instances of a block layout contain a feasible
loop. Each non-directed edge mn is associated with two directed arcs of mn,nm € A.
A symmetric distance function [ : A — R* assigns [,,,, as the length of arc mn to be
the rectilinear distance between the corresponding nodes on the block layout. Nodes
on the boundaries of each face are candidates for station locations. There is one P
and one D station per cell. Stations are not necessarily combined.

There is a directed graph G'(C, F') representing the material flow relationships.
For each pair of cells ¢,k € C with a strictly positive flow from ¢ to k, there is a
directed arc ck € F. A function f : F' — RT, assigns f.; as the intensity of material
flow to the arc ¢k € F. The problem is to find a uni-directional loop and its station
locations such that the total flow multiplied by the trip distances of the loaded vehicles
is minimized. The objective function is stated as,

Min Z =3 3 lnntemn (1)
c€C mneA
where t.,,, is the decision variable showing the intensity of the total outflow of cell ¢

o1l arc mn.
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2.2 Degree 2 Configuration

Since the distance matrix is symmetric, a degree 2 configuration is formulated by

defining a binary variable for each non-directed edge.
Yin €{0,1} Vmn € FE (2)

Y,.n 1s equal to 1, if the non-directed edge mn is on the loop, and 0 otherwise.
Given Y. as the set of edges on cell ¢, each cell has at least one edge on the loop.
Z Yo > 1 Vee C (3)
mneVe
Given any node n, at most 2 of its edges are on the loop.
D Vo + > Y <2 VneN (4)
m<n n<k
No node has only one edge on the loop. In other words, at each degree k node, the
sum of the decision variables corresponding to each sub-set of & — 1 edges is greater
than or equal to that of the remaining edge.

i<m i#n

m<1
<n

2.3 Loop Pattern

The above formulation implies a degree 2 configuration but does not necessarily imply

a single loop. Miller et al. (1960) derived the following sub-tour elimination constraint

for the Traveling Salesman Problem (TSP).
U — Uy + N[ X <IN —1 VYmn € A (6)

X,un 18 an integer variable which is 1 if there is a travel from node m to node n and

0 otherwise. wu,, is the rank of node n in the sequence of the travel. The advantage
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of this constraint is its small number. However, it is a weak constraint in general,
and in particular it cuts a portion of the integer feasible region of our problem. The

constraint becomes stronger if it is modified to
U, — Uy + [ N|( X + Xom) = 2X0m <IN =1 Vmne A (7)

But it is still unable to find the loop in a single run. The reason is in the difference
between the TSP and the Generalized Traveling Salesman Problem (GTSP). Laporte
et al. (1996) showed that the problem of finding a loop covering at least one edge of
all cells in the block layout is an instance of the GTSP. The above constraint assumes
a node to be the first and the last node of the travel. Therefore it is enforced to be
on the loop. The nodes covered by the optimal solution of the GTSP are not known
in advance. Fixing any node in the solution cuts off a portion of the search space, a
portion which may contain the optimal solution. More than one run is required to
find the optimal solution for the length of the loop.

Dantzig et al. (1954) derived a sub-tour elimination constraint for the T'SP. Their

constraint with a slight modification is adopted to our problem as follows.

DX Vet D> D> V22 Vse S (8)

meR: nZ€R; neER: mg&R,

S is a sub-set of potential adjacent cells. A sub-set of adjacent cells s belongs to S
only if formation of the sub-tour on the boundary of s does not ensure formation of
sub-tour on the boundary s’ : |s'| < |s|. R is the set of nodes on the cells forming a
sub-tour s.

While the constraint directly finds the optimal solution for both TSP and GTSP,
its number grows exponentially in the number of cities. Fortunately, the number of
these constraints in the block layout is substantially less than that of the general
version of GTSP. Furthermore, it requires less integer variables and also creates a
tighter LP-relaxation. By pre-processing, Asef-Vaziri et al (1998) showed that the
average number of required sub-tour elimination constraints for a set of random block

layouts of size 30 is less than 800.
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2.4 Loop Direction

The direction of the loop is also to be determined by the optimal solution for the
total trip distance objective function. A real variable, 0 < X,,,,, <1, is defined for the
directed arc mn. The variable is equal to 1 if the directed arc is on the loop, and 0
otherwise. The following constraints state that only one direction is assigned to each

edge, and the number of incoming and outgoing arcs at each node are equal.

Xown + Xoom = Youn Vmn € E (9)
S Xpw= 3 X, VneN (10)
mn€A nmeA

Both X,,,, and X,,,, are real variables while their corresponding Y, is integer. How-
ever, for a cell with the smallest number of edges, its Y,,,, variables are left real, while
the corresponding X,,, variables become integer. Directed arcs of this cell coupled
with the arc balance constraint play the interface role to direct the loop. In other
words, after branching on edge and arc integer variables, the LP-relaxation of the

problem coincides with the IP solutions with respect to the remaining arc variables.

2.5 Stations

Given N, as the set of nodes on cell ¢, a pair of binary variables are defined for each
node. The binary decision variable P,, is equal to 1 if node n is selected as the pick-up
station of cell ¢ and 0 otherwise. Similarly, D., is equal to 1 if node n is selected as

the delivery station of cell ¢, and 0 otherwise.

P..,De, € {0,1} Vne N, VeceC (11)

Each cell has one pick-up and one delivery station 1.

S P.=1 Vee C (12)
neN.

1Our model can be easily extended to multiple stations per cell. In earlier formulations increasing
the number of stations adds a set of new binary variables to the problem. In our formulation, multiple
station per cell results in the relaxation of a set of binary variables. Therefore, the solution time is
reduced substantially.
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% D=1  YeeC (13)
neN¢

2.6 Material Flow

A multi-commodity flow is transferred through the arcs on the loop. We first assume
the total outflow of each cell, f. = 3" 1cr fer, as a commodity.

Z tomn < MX,,,, Vmn € A (14)

ceC

Flow balance constraints state that the total inflow to a node from all its adjacent
nodes and cells is equal to the total outflow from the node to the adjacent nodes and
cells?.

P ST fr+ D tomn = faDin + > towm Vne N VYee O (15)

ckel” mn€A ckel” nmeA

Constraints (14) and (15) also play the role of sub-tour elimination. To clarify, if
there is a flow between two non-adjacent cells, these constraints ensure that none of
the corresponding cells can form a sub-tour. In general, if there is a flow between two
sub-tours s,s" € S, they do not need an elimination constraint. By pre-processing
it was realized that the total number of required sub-tour elimination constraints
for the 11-cell prototype example is 21. This number reduced to 12 when material
flow was added to the model. For example, in the prototype example, the sub-tour
elimination constraint of a sub-tour corresponding to cell F is required, but the sub-
tour elimination constraint for the composite shape formed by cells A and D is not
required. Formation of this second sub-tour results in the formation of sub-tour F.
Therefore, if sub-tour elimination constraint of F is included in the model, that of
combination of A and D is not required. Furthermore, if there exists material flow
from cell F to cell A or D, the requirements of material flow prevents formation of both
sub-tours F, and combination of A and D. Hence, sub-tour elimination constraints

are not needed for cell F.

2A node can be a supply point, a demand point, both a supply and demand point, or a trans-
shipment point.
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3 The LP-Relaxation

The tightness of the feasible region of the LP-relaxation to the IP solutions plays an
important role in the solution time of an integer programming model. In this section
the theoretical foundations of the LP-Relaxation of our model are discussed. We
prove that many of the integer variables will also be integer in any optimal solution

of the LP-relaxation.

3.1 Pick-up Stations

Regarding the properties of pick-up station location variables, we first show that a

sub-set of these variables will be integer in the optimal solution to the LP sub-problem.

Theorem 1 Given a cell ¢ with continuous boundary on the loop, for all nodes n on

¢ but not on k where f., > 0, the value of P., in the LP-relaxation is either 0 or 1.

Suppose two nodes 7, 7 with the above properties both have been selected as P stations
of cell e. That is, 0 < P; <1 and 0 < P,; <1 in the LP-relaxation and P, + P.; = 1.
Let O be the contribution of cell ¢ in the total outflow x distance when node i
is selected as its P station. The total contribution of cell ¢ in the total (outflow x

distance) in the system is

0. = P,0" + P,0 (16)

Without loss of generality, suppose node j is located after node i on the uni-directional

loop on the boundary of cell ¢, and L;; is the length of the segment from ¢ to j.

O =0 + f.Li;. (17)

C

Therefore,
0. =0 + P.if.Lij. (18)

The above expression is minimized, when P.; = 0. Therefore, assigning any non-zero

value to any node except to node ¢* which is the last node of cell ¢ on the directed
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loop will increase the value of the linear objective function.
P.=1 P,=0 £ (19)

Corollary 1 When there is a flow from cell ¢ to the adjacent cell(s), the P., variables

corresponding to the common nodes are fractional in the LP-relaxation.

Suppose there is a flow from cell ¢ to its adjacent cell k, and node * is the last node
of cell ¢ on the directed loop. By allocating each unit of the outflow of cell ¢ to node ¢
which is in common between ¢ and k, the linear objective function reduces by fo.Lix;,
and P,; = f.u./f. results in f. Ls; reduction. The variable P.; does not pass this
value unless node 7 is on the boundary of more than one destination. Otherwise, any

additional increase in P.; will increase the objective function by f.Li(P — for/f2).

Corollary 2 If cell ¢ has a split boundary on the loop, then two of its P., variables

may be fractional.

Suppose cell ¢ has split boundaries on the unidirectional loop with their last nodes
as ¢ and j with respect to the flow direction and the cells boundaries as part of the
loop. When node 17 is selected as a P station of cell ¢, the total contribution of cell ¢
in the outflow x distance in the system is

Oc= D, > tawmnlwn+Li; D fat D D tokmnlmn  (20)

k€K Leij mneA; REK Loy k€K Leji mn€Ay;

N L;; is the set of nodes on the portion of the directed loop from node 1 to node j. A;;
is the set of arcs on the directed loop from node ¢ to j. K L.;; is the set of destinations
of cell ¢ with their D station on the directed loop from node 7 to j. Now suppose P,;
portion of the outflow of cell ¢ is transferred via node 7, and the remaining, P.;, via

node 7. The total contribution of cell ¢ in the outflow x distance is

O, =

ST takmnlmnt L (fePa— D0 fa)+ DL D tekmulmatLi(fePy— D for)

k€K L;j mn€A; k€K L k€K L.j; mn€Ay, k€K L j;
(21)
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The above expression is minimized when

chci: Z fck:>Pci: Z fck/fc (22)

k€K L., k€K L
chcj: Z fck:>ch: Z fck/fc (23)
k€K L.j; k€K L j;

and the total contribution of the outflow of cell ¢ is

O.= 3 Y tawndont X X tomnlinn (24)

kEK L¢ij mnEA;; k€K Lcj; mnEAy;
3.2 Delivery Stations

We next show that under certain conditions all the decision variables corresponding
to the delivery station locations will be binary in the optimal solution to the LP-

relaxation.

Theorem 2 The LP-relaxation of the problem coincides with the IP solutions with
respect to all the Dy, variables when there is an unique node in cell k with minimum

contribution to the objective function.

Suppose node 1 is selected as a D station of cell k. The total contribution of the
inflow of cell k£ in the objective function is

mn€EA ckeF
If cell £ splits its inflow among its candidate D stations, its contribution in the

objective function is equal to

Iy = > Dyl (26)
=
Let,
I7 = Min {I.}. (27)
Then
L= Du(ly = I; + ), (28)

€N
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which equals,

Iy = I+ 3 Dyl — 7). (29)
iEN,
ii*
The above expression is minimum when

Dw=0  Vii (30)

Therefore, each destination cell in order to minimize its contribution in the objective
function will have only one D station. The only exception is when there is a node

i # 1* where I = I7. As corollary 3 shows, this situation is extremely rare.

Corollary 3 If cell k has two nodes 1,5 on its boundary such that
> fa/Lij= Y fer/(Lij + Lji), (31)
c€CLy, chEF
then there is more than one node satisfying I}, = I;. That is, the LP optimal values
for Dy; and Dy; variables are not necessarily integer.
C'Lyj is the set of cells having a non-zero flow with cell k, and their pick-up station
located on the path 15 on the directed loop.

If node 7 is assigned as the delivery station of cell k, the inflow contribution of this
cell in the objective function is

c€CLg;; mnEA; c€CLg;; mnEAy; c€C Ly mn€Aj;
Similarly, when node 7 is selected as the D station of cell k, its contribution in the
total flow is

c€CLg;; mnEAy; c€CLg;; mnEA; c€C Ly, mnEA;;

The model is indifferent between the nodes i, 5 if I} = ],z = [;. Since the sum of the

two first terms in I} and ],z are equal, their third terms have to be equal

(Y fa) Y L) =( D0 fa)( X Lnn) (34)

c€C Ly mn€Aj; c€C Ly, mnEA;;
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and in a straight forward manipulation

Yo Srel/Lij =Y fa/(Lij + L) (35)

c€C Ly ckeF

The above equation states that the total inflow of cell £ divided by the length of the
loop is equal to its inflow from the cells with their P stations between ¢ and j divided

by the length of the directed loop in this interval.

Corollary 4 Given cell ¢ with only one outflow which is to its adjacent cell k having
more than one inflow, then the P., variables will be integer in the optimal solution of

the LP-relazation.

As stated in theorem 1, cell ¢ may split its outflow among its common nodes with cell
k. However, based on theorem 2 the destination cell will have only one D station.
Therefore, the optimal values for the P variables of the origin cell will be integer.
We remark that using the above theorems and corollaries reduces the number of
P and D station location variables that require branching in the 11-cell prototype

example from 86 to 15.

3.3 Edges

The appropriate value of M in constraint (14) plays an important role in both the
validity of the integer solution and tightness of the LP-relaxation of edges. If M is
very large, even when X,,, is very small, their multiplication could be greater than
S temn- Ina LP/IP solver, depending on the coeflicients of the model and the precision
factor of the software, small values are assumed zero by the software. Therefore, the
optimal integer solution may contain some flows passing both directions of an edge
which is not even on the loop.

The second issue is that the feasible region of the LP-relaxation becomes closer

to integer solutions, and also the branches have a higher chance to go on the right
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direction as M gets smaller. Note that the value of Y,,, in the LP-relaxation is

ceC

If M is unnecessary large, then most probably Y,,, is branched on 0 while a strictly
positive flow is passing it. An upper bound for M is the total flow in the system,
>-cker fer. Furthermore, increasing the number of constraints and replacing them by

the following constraints results in a better LP relaxation for edge variables.

ckel

In the present form of constraints (15) and (36) , the total outflow of each row of
the FT-chart is assumed as a commodity. Fach flow has one origin and one or more
destinations. There are |C| x |N| sets of multi-commodity flow balance constraints.
As stated earlier, except for a sub-set of the P stations, all station variables are integer
in the optimal solution of the LP-relaxation.

In an alternative formulation, each element of the FT-chart is defined as a com-
modity. Therefore, the number of multi-commodity flow balance constraints is in-

creased to |F'| x |N|. The flow balance constraint (15) is replaced by the following

fcchn + Z Lekmn = fckan + Z toknm Vn e N Vek € F (37)

mneA nmeA

where t.x, 1s the decision variable showing the intensity of flow ¢k on arc mn. In
this new formulation, all station variables will be integer in the optimal solution of
the LP-relaxation. Again, in the expense of having more constraints, constraint (36)
is replaced by

tekmn < ferXmn Vmne A Vek e F (38)

which pushes the edge variables closer to 0 or 1 in the LP-relaxation.

3.4 Variable and Value Ordering

The fundamental insight gained in the previous sections is implemented to develop an

intelligent branch and bound solution procedure. The variable ordering for branching
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has a substantial impact on the efficiency of the solution procedure. In the taxonomy
of variables, the highest branching priority is assigned to edges, second to arcs, third
to P stations, and last to D stations. At each node of the branch and bound search,
as long as the value of an edge variable is 0, its corresponding arc variable values
are both set to 0. If the values of all edges incident to a node are 0, then all station
variables corresponding to that node are set to 0. After branching on each layer of
the variables, the LP-relaxation for the next layer either coincides or is very close to
the binary values. When the branch and bound search approaches the next layer of
variables, a sub-set of them are already binary. They do not require branching. The
remaining variables are close to either 0 or 1. The first branch is usually on the right
direction. Such a variable ordering is almost the same as removing some variables
from the set of integers. The perfect instantiation of this situation in our problem are
the station location variables. After branching on edges and a few arcs, a majority of
the P station variables become 0 or 1. After branching on the remaining P stations,
almost all D station variables are already 0 or 1.

Within the layer of edges, they are further classified based on their potential to
be on the loop. Regarding every flow fu. > 0, if ¢ and k are adjacent, f is added
to the weight of the common nodes, otherwise it is added to the weight of all their
nodes. The node priority vector is defined as a permutation of integers 1,---,|N|
denoted by P = P, -, Pnj; where P; is the node with the 7t/ highest weight. The
priority vector of nodes in the prototype example is 3,5,15,11,6,12,16,7.8, 2,18.9,4,
14,13,10,17,1. Out of the first 10 nodes, 8 of them are on the optimal loop.

The priority of nodes is translated into the priority of edges. To explain the
procedure, nodes 3 and 5 have the first and second priorities. Edge 3-5 does not
exist. The third node is 15. However, 3-15 and 5-15 do not also exist. The fourth
node is 11, and edge 3-11 gets the first priority for branching. The edges are grouped
into 5 classes of priority. Fdges with higher priorities are not only branched on first,

but are first branched on the value of 1.
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4 Computational Considerations

In this section we first compare our global approach with the serial approach by
Sinriech and Tanchoco (1993), and then report additional computational results. The
serial approach is composed of 5 phases. Phase-1 employs an integer program or
alternatively a heuristic to find a loop covering at least one edge of each cell. Phase-2
starts from the obtained loop and enumerates all feasible loops. Phase-3 applies three
rules to drop inferior loops and sub-tours. Phase-4 applies a mixed integer program on
each of the remaining loops to find the optimal location of stations on that loop. The
loop with the minimum loaded vehicle trip distance is identified in phase-5. Although
the authors report no computation time, we attempt to find a basis for comparison.

Sinriech and Tanchoco (1992) report the computation times to find the location
of the P and D stations on a fixed loop. The model accounts for both inter-cell and
intra-cell material handling. However, it becomes identical to phase-4 if inter-cell
material handling cost is set to 0. The model is solved for 4 different loops, each
fixed on the layout of the 11-cell prototype example and using the same F'T chart
given in figure 1 (b). It takes 10 seconds to 20 minutes on a GOULD NP 1 using a
modified version of CPLEX to find the optimal location of the stations on each fixed
loop. As stated in Sinriech and Tanchoco (1993), in the 11-cell example, out of the
444 loops enumerated in phase-2, there are 17 loop left after phase-3. The optimal
solution for the 11-cell example using our global approach is shown in figure 2 (a)®.
All computations are using CPLEX 4 on a Sun Enterprise 4000/5000. The solution
time for the case of assuming the total outflow of each cell as a commodity was 7
seconds, plus .5 second for preprocessing for enumeration and screening of sub-tours.
The value of the objective function at the root node was 43 percent of its optimal
integer solution. By assuming each element of the FT chart as a commodity, the LP

objective function was lifted to 80 percent of the IP value. As a result, the solution

3Thickness of edges represent the intensity of trips on the edge.
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figure=fig0555.eps

Figure 2: The optimal solutions for the prototype example.

figure=LP.eps

Figure 3: Efficiency of LP/IP routines applied on the prototype layout example cou-
pled with 25 and 50 percent dense randomly generated FT charts.

time reduced to 1.6 seconds.

The intensity of flow in the prototype example by Tanchoco and Sinriech (1992)
was 15 percent. To further examine the model, flows were generated from the uniform
distribution of 0 to 100. Two sets of FT charts, one set with density of 25 percent
and the other set with 50 percent density were filled with these flows. Figure 3
shows CPU time comparison for different LP/IP routines implemented to solve the
problems. Since the matrix of coefficient is tall and the primal problem is highly
degenerate, the dual simplex outperforms the primal. Indeed, the dual performs
better than both the primal and network simplex in the root node as well as in the
sub-sequent nodes. Therefore, the dual simplex is implemented in the remaining
experiments. The steepest edge pricing performed better than all other dual gradient
pricing rules. Although depth first search immediately identifies a feasible integer
solution and continuously improves it, the quality of the subsequent solutions are
not as well as that of the other backtracking strategies. Indeed, it is dominated by
both best linear lower bound and best estimated integer objective function when
all integer infeasibilities are removed. Sometimes, it may be expected to stop the
program before it finds the optimal solution or prove its optimality. In this case,
the node selection strategy of best linear lower bound and variable selection strategy
of pseudo reduced costs is recommended. There will be a higher chance to have a
better feasible solution after a specific amount of time, or a solution of specific quality

in a shorter amount of time. Finally the variable ordering as well as value ordering
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figure=cpu.eps

Figure 4: Statistics for the problems of coupling the prototype layout example with
25 and 50 percent dense randomly generated F'T charts.

realized the last significant reduction in CPU times. Figures 3 and 4 show the average
of the statistics for the corresponding sets of problems.

To examine the model on larger problems, we expanded the prototype FT chart
of Figure 1 into a 20-cell F'T chart. This expanded problem can be found in Nugent
et al. (1968). The expansion rule was fote)(104k) = fer Vek € F, and any index of
21 is replaced by 1. The new 20-cell FT chart which contains 38 flows was applied
on the six 20-cell test layouts of Nugent et al. (1968). The average number of rows,
columns, and non-zero coefficients were 5130, 3831, and 17000 respectively. The
average number of iterations and nodes required to find the optimal solution were
178608 and 1561, respectively. The CPU time was 851 seconds. The average quality
of the LP objective function at the root node and that of the first integer solution
were around 65 and 150 percent of the optimal solution, respectively. Given a 50, 20,
and 10 percent difference between the integer solution and the linear lower bound, an
integer solution of a quality of 25, 10, and 5 percent deviation from optimal solution

were obtained.

5 Conclusions

We formulated the simultaneous loop flow pattern design and pickup and station
location problems as an integer programming model. One particular advantage of
our formulation is that many of the integer variables are also binary in the optimal
solution of the LP-relaxation, hence greatly improving the solution time of the integer
program. We have also presented search strategies that improve the computational
efficiency of the branch and bound procedure. In an experimental section, we showed

the computational efficiency of our global approach on well-known problem sets in the
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literature. The direction of our future research is to develop a loop based partition
for a tandem AGV system.

From a practitioner point of view, the user simply needs to have access to a
mixed-integer program solver such as CPLEX to implement our solution procedure.
The inputs to our model are a block layout in which each cell is defined by a set
of connected horizontal and vertical lines, and the from-to material flow chart. The
model is given by Equations 1-5, 8-13, and 37-38. Finally, the settings for the CPLEX
solver should be as follows: (1) dual simplex for LP-relaxtion problem, (2) steepest
edge for dual gradient pricing, (3) best integer lower bound for the backtracking

strategy, and (4) implement variable and value ordering as given Section 3.4.
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Appendix

D., : The binary variable corresponding to node n as the delivery station of cell ¢
fex : Intensity of the flow from cell ¢ to cell &
F : Set of strictly positive flows

lmn : Rectilinear distance from node m to node n
N . Set of nodes
P., : The binary variable corresponding to node n as the pick up station of cell ¢
tekmn - The proportion of the flow from cell ¢ to cell k passing arc mn
temn @ The proportion of the total flow of cell ¢ passing arc mn
Xmn © The binary variable corresponding to the directed edge mn

Ymn : The binary variable corresponding to the non-directed edge mn where n > m



