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Sequence-dependent batch chemical scheduling with earliness and
tardiness penalties

KENNETH E. McGRAWy and MAGED M. DESSOUKYy*

Production volume in the specialized agricultural chemical industry is typically
too small to justify the capital expenditure required for continuous processing. As
such, there is a trend towards building chemical processing plants for this market
segment that are batch plants. Scheduling of this type of chemical plant under
just-in-time operations, where both earliness and lateness penalties are included,
is critical to the e� cient operation of these plants. In this paper, a heuristic
scheduling procedure is developed for the problem of minimizing the total
weighted earliness and tardiness costs as well as the total set-up cost for the
single-stage batch chemical manufacturing environment.

1. Introduction

Continuous processing plants are typically the preferred method of processing

for producing large volumes of chemicals. When a large product variety exists and

small amounts of a chemical are demanded, the batch mode of production is usually

the preferred method because of the large capital costs associated with a continuous

plant. One such example where the production volume does not justify the contin-

uous mode of operations is agricultural chemicals, such as customized fertilizers,

specialized herbicides and pesticides.

The trend in the chemical process industry to operate in batches parallels the shift

to small lot-sizes in discrete-parts manufacturing. However, there are several distin-

guishing features between batch chemical processing and discrete-parts manufactur-

ing. Since the production entity is continuous in nature and the batch size may be

larger than the customer order quantities in order to make e� cient use of the

resources, a batch may be divisible in fractions. This leads to potentially numerous

ways of allocating a batch to diŒerent customer orders. For example, a fraction of a

chemical batch may be used to satisfy a given demand, with the remainder used to

meetÐ or partially meetÐ the needs of one or more other demands. For this reason, a

particular batch may satisfy the demand of more than one customer order (Musier

and Evans 1991). As such, any given batch may be considered as having multiple

due dates, one for each order that the batch satis® es. Another advantage of batch

chemical plants is the ability to process multiple products by sharing the same pro-

cess resources. Both the multiple demands aspect and the ability to share resources to

produce multiple products complicate planning and scheduling of batch plants

operations.
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The batch chemical scheduling problem discussed in this paper is similar to the

single-machine weighted earliness and tardiness scheduling problem where all
batches ( jobs) have identical processing times and each batch may have multiple

due dates (demand time points) with sequence-dependent set-up times. The focus of

this work is to consider the trade-oŒbetween the earliness and tardiness penalties in

a just-in-time manufacturing environment, which dictates that completing jobs ear-

lier than their due dates should be discouraged as should be completing jobs later

than their due dates. The main distinction between problems with tardiness penalties
only and those with both earliness and tardiness penalties, is that in the latter prob-

lem it may be necessary to insert idle time before the start of processing of a job to

avoid earliness costs, while in the former, inserted idle time will only expose the job

to tardiness penalties without any savings in earliness penalties.

Although there has been a signi® cant body of work on batch chemical scheduling
with varying objectives, such as makespan and tardiness (e.g. Pekny et al. 1990,

Tandon et al. 1991, Ku and Karimi 1990, 1991, Birewar and Grossmann 1990,

Patsidou and Kantor 1991, Kondili et al. 1993, Kudva et al. 1994, Dessouky et al.

1996, Dessouky and Kijowski 1997), there has been very little work in batch chemi-

cal scheduling where both earliness and lateness penalties are taken into account. It

should be pointed out that, in the discrete-parts literature, there is some work in
scheduling with both earliness and tardiness penalties. Baker and Scudder (1990)

provide an excellent review of the single-machine scheduling problem with earliness

and tardiness penalties. For non-identical processing times, the single-machine

weighted tardiness scheduling problem is known to be NP-complete (Lenstra et al.

1977).
For identical processing times, the single-machine weighted tardiness scheduling

problem may be formulated as an assignment problem with no inserted idle time

(Lawler 1964). With earliness penalties it may be optimal to insert idle time. Garey et

al. (1988) developed a polynomial-time algorithm that determines the optimal sche-

dule for identical processing times with the weights of the tardiness and earliness of

all jobs being equal. Hall and Posner (1991) developed another polynomial-time
algorithm for the identical processing times case with each job having a diŒerent

weight with symmetric tardiness and earliness penalties. They also assume all jobs

have a common due date. Verma and Dessouky (1998) show that the problem with

each job having a distinct due date is also polynomial solvable.

Although our problem considers the case of ® xed batch sizes, there has also been
some work in the area of variable batch sizes. This work sets the size of the batch to a

maximum size; within this maximum batch size limit, the actual batch size is adjusted

to achieve an improved schedule. Brucker (1995) develops two dynamic program-

ming solution procedures for the variable batch size problem considering only the

job lateness. Crauwels et al. (1997) describe several procedures that partition jobs

into batches in order to minimize the total weighted completion time where set-up

times are sequence independent. Four solution methods are described, including
neighbourhood search, simulated annealing, threshold accepting, and tabu search.

Their problem formulation does not address earliness penalties. Hariri and Potts

(1997) present an algorithm that reduces the problem size by employing a branching

rule that starts with a single batch solution and, at each node, performs a test to
determine if pairs of jobs can be combined into a single batch. The considered

objective function minimizes the maximum lateness. Uzsoy (1994) develops an algor-

ithm for scheduling non-identical size jobs on a single batch machine by grouping
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jobs with similar processing times together. A branch-and-bound procedure is then

used for solving the problem. The algorithm minimizes the makespan and the total
completion time; earliness penalties and sequence-dependent set-up costs are not

considered. Uzsoy (1995) extends his earlier work by showing that by decoupling

batch formation and batch sequencing decisions, the static batch processing machine

scheduling problems can be reduced to equivalent scheduling problems with unit

capacity machines. Chen (1996) develops an algorithm that addresses both earliness

and tardiness penalties, but it is assumed that all earliness penalties are identical, all
tardiness penalties are identical, and that there is a common due date. Finally,

Monma and Potts (1989) present an overview of single and parallel machine sched-

uling problems with batch set-ups. The objectives that were considered are maximum

lateness, total weighted completion time, and number of late jobs. Earliness penalties

are not considered. This paper diŒers from the earlier work by considering ® xed
batches with general earliness and tardiness penalties.

Dessouky et al. (1999) developed an iterative heuristic solution procedure for the

joint earliness and tardiness problem in a multiple due-date environment, but

assumed sequence-independent set-ups. Again, there is little work that considers

both earliness and tardiness costs with sequence-dependent set-up costs

(Allahverdi et al. 1999).
In this paper, we consider the single-machine weighted earliness and tardiness

scheduling problem where all batches (jobs) have identical processing times and each

batch can have multiple due dates with sequence dependent set-ups. No assumption

is made on the structure of the earliness or tardiness weights. The problem is for-

mulated as a mixed integer program that can only be solved optimally for small
problem sizes. In order to solve large instances of the problem, a heuristic is devel-

oped. The heuristic is ® rst developed for the single-product case in order to highlight

the problem structure and then we later expand it for the general multi-product case.

2. Problem statement
In this section, the problem is formulated in its broader context by including

multiple products and sequence dependent set-up costs. Once completed, simplifying

assumptions are described. This simpli® ed form of the problem will then serve as the

foundation upon which the heuristic for solving the problem is based.

Although the problem, as developed in this section, is rather broad, there are still
certain assumptions that are made. These assumptions include scheduling a single

stage process and identical processing time for all batches. In chemical processing,

there is typically a stage that dictates the maximum processing rate of the line and

limits the overall plant’s rate of production. For scheduling purposes, it is common

practice to assume that the model can be reduced to one of scheduling a single

processing unit, which is the bottleneck machine. This single processing unit sched-

uling method has been used for batch plant scheduling that considered multiple
products being produced in the manufacture of latex (Heuts et al. 1992). An argu-

ment for the identical processing time assumption is that, for a given set of par-

ameters such as heat and pressure, chemical reaction rates are relatively constant,

and any set-up or intermediate human operations are repeatable and thus take place
in a quite predictable period of time. In our pesticide application, the identical pro-

cessing time was eight hours. Hence, each shift produced a single batch. Without loss

of generality it is assumed that the identical processing time is unity. The problem is
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formulated as a mixed integer program where the following terminology is used

throughout this paper:

Parameters

kmax maximum number of product types,

mk number of orders of product type k (k ˆ 1; . . . ; kmax†;
¬jk earliness penalty of order j ˆ 1; . . . ; mk for product k (k ˆ 1; . . . ; kmax),

 jk tardiness penalty of order j ˆ 1; . . . ; mk for product k (k ˆ 1; . . . ; kmax†,
ujk demand of order j ˆ 1; . . . ; mk for product k (k ˆ 1; . . . ; kmax†;
djk due date for order j ˆ 1; . . . ; mk of product k (k ˆ 1; . . . ; kmax†,
Sk1;k2

set-up cost of product type k2 when preceded by product k1

(k1 ˆ 1; . . . ; kmax), …k2 ˆ 1; . . . ; kmax†: Note: Sk1;k2
ˆ 0 if k1 ˆ k2.

Without loss of generality, the production batch size is normalized to unity.

Demands, ujk are expressed in units of batch size, thus a demand equal to a batch

size would be 1.0. Demands that are smaller than, or larger than, a batch would then

be less than unity or greater than unity, respectively.
Assuming that all processing occurs in one shift means that any set-up or main-

tenance activities are assumed to take place during overtime. Set-up costs are those

costs associated with preparing the chemical reactor for production of the desired

product and any additional overtime cost due to set-up. This cost is primarily labour

costs in that the cost of the reactants and any cleansing of the reactor once produc-

tion is complete are assumed to be independent of the actual period in which the

product is produced.

Penalty costs are those associated with early and late production of the product.
Penalties associated with late production can take many forms, including such things

as contractual penalties, which compensate the customer for losses due to missing

markets, decreased production from late application of fertilizers or actual crop loss

due to late application of pesticides. Although losses resulting from late fertilizer or

pesticide delivery are actually borne by the farmer, they do represent a real penalty

cost for the chemical plant in the form of loss of customer base. Earliness penalties

can take the form of added costs incurred from spoilage or product shelf life due to

such causes as decomposition of the chemicals, and increased inventory and ware-
house costs caused by the need to store the product until it is actually needed.

The decision variables can be summarized as follows.

xijk ˆ fraction of product k …k ˆ 1; . . . ; kmax batch produced in period

i …i ˆ 1; . . . ; n† used to satisfy order j … j ˆ 1; . . . ; mk†;

yik ˆ
1 if a batch of product k is produced in period i

0 otherwise;

(

Zk1;k2;i ˆ
1 if product type k1 precedes type k2 in period i

0 otherwise:

(

Let cijk be the penalty incurred when allocating the jth order of product k to a

batch produced in period i. Then,

cijk ˆ max…¬jk…i djk†;  jk…djk i††:
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The range of n is easily determined; ® rst de® ne N as the total number of batches

needed to meet demand.

N ˆ
Xkmax

kˆ1

Xmk

jˆ1

ujk

& ’

:

Then it is easy to prove that there exists an optimal schedule that has all batches

completed by time n:

n ˆ max…djk†
jˆ1;...;mk

kˆ1;...;kmax

‡ N :

The studied problem (referred to as Problem P) may be formally stated as follows.

Problem P

min
Xkmax

kˆ1

Xn

iˆ1

Xmk

jˆ1

cijkxijk ‡
Xn

iˆ1

Xkmax

kiˆ1

Xkmax

k2ˆ1

sk1;k2
zk1;k2 ;i

subject to:

Xmk

jˆ1

xijk ˆ yik …i ˆ 1; . . . ; n†; …k ˆ 1; . . . ; kmax† …1†

Xn

iˆ1

xijk ˆ ujk … j ˆ 1; . . . ; m†; …k ˆ 1; . . . ; kmax† …2†

Xkmax

kˆ1

yik µ 1; …i ˆ 1; . . . ; n† …3†

zk1 ;k2 ;i ¶ yi;k2
…1 yi 1;k1

† * M …i ˆ 1; . . . ; n† …4†

k1; . . . ; kmax ; k2 ˆ 1; . . . ; kmax

M ˆ large value

xijk ¶ 0; yik 2 …0; 1†; zk1;k2;i 2 f0; 1g:

Constraint (1) ensures that either an entire batch or no batch is produced in
period i. Constraint (2) ensures that demand is met. Constraint (3) ensures that, at

most, one batch is produced in each period. Constraint (4) de® nes the precedence

variable.

3. Single product case

Problem P addresses the general multi-product scheduling case with sequence-

dependent set-up costs. Now, consider only the single product case. This will allow
us to gain insight into the problem and will lead to a heuristic to solve more easily

not only this simpli® ed problem but also the more general problem. Refer to the

single product case as Problem P1. For problem P there are two decisions that must

be made simultaneously to ensure minimal operational cost. They are (1) the alloca-

tion of orders to batches and (2) the schedule of batches. Note that for the single
product formulation the subscript k can be dropped and constraints (3) and (4) are

no longer necessary.
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With the single-product formulation, it is easy to see: (1) if the batch schedule is

given (i.e. the busy production periods) the problem reduces to a transportation
problem and (2) if the batch allocation is given (i.e. the allocation of production

batches to customer orders), the problem reduces to an assignment problem. These

observations suggest a solution method for problem P1 based on being able to

predetermine the busy production periods and solving a transportation problem.
That is, we determine the production periods in which a batch will be produced

based on a heuristic rule. Then, given this set of busy production periods, the

allocation of the production batches to customer orders is determined by solving a

transportation problem. We note that the above observations also hold for the

multiple product case when there is zero set-up cost.

When trying to ® nd the minimal transportation problem that will solve problem

P1, it is useful to look at the dual form of the problem. Taking the derivative of the
dual objective with respect to the dual variabkles, we get

Xn

iˆ1

yi

Xm

jˆ1

uj ˆ 0;

where yi ˆ 1 if a batch is produced in period i, else 0, and uj is the demand size in

period j.

From this, it is possible to examine how to assign a production batch for any

given customer order demand. The ideal case would be one in which the size of each
customer’s order is equal to the size of a batch. Assume that there is a single demand

equal to a batch size that has a due date at period i. Now recall that cij ˆ 0 when

i ˆ j, and this value of zero would be the best possible value for the objective

function. From this it can be seen that the best time to produce a batch is at

period i. In other words, for the ideal case of a single demand of the size of a
batch, a batch must be produced on the demand’s due date in order to achieve

the minimum penalty cost.

In the real world, the size of the customer’ s orders is almost never exactly equal to

the size of a batch. In addition, multiple orders can occur for any particular demand

period.
Our solution approach for approximating the optimal set of busy periods is to

assign the demand in order of increasing size to as close to the ideal production

period as possible. We now formally present this concept. The ® rst part of the

algorithm determines the set of busy production periods. Step 7 then solves the

resulting transportation problem that determines the best demand to busy period

allocation.

Single product heuristic

Step 1. Determine the required number of batches to produce:

N ˆ
Xm

jˆ1

duie:

Step 2. Sort the demands in order of decreasing size.

Step 3. Select an unassigned order with the largest demand along with its due date.
Step 4. Assign a batch to a production period that results in the smallest penalty

cost.
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. If the production period coinciding with the demand’ s due date is

available, set the period to be busy.
. If the production period coinciding with the demand’s due date is not

available:

(a) determine the latest available production period that is earlier than the

demand’s due date. Calculate its earliness penalty cost;

(b) determine the earliest available production period that is later than the
demand’s due date. Calculate its lateness penalty;

(c) if earliness penalty < lateness penalty, assign a batch to be produced at

the production period determined in step (a). Else assign a batch to be

produced at the production period determined in step (b). Ties are

arbitrarily broken.
Step 5. Decrease the size of the current order by the amount of the batch size (unity

in this case).

Step 6. If the number of batches assigned is < N, go to step 3. Else go to step 7.

Step 7. Given the set of busy periods, solve the transportation problem.

The heuristic is polynomial with computational complexity equal to solving a

transportation problem with 2N nodes.

3.1. Computational experiments

The Single Product Heuristic was tested to determine its performance. This test-

ing consisted of running trials with a total demand of 10, 20, 40 and 80 batches. To

ensure that the testing was generic, but still representative of the real problem,

random numbers were used for the problem’s parameters. Penalties were generated
from a continuous uniform random number from (1,10] where the lower limit of 1

ensures that all orders will have a penalty. Demands, in terms of batch size, were

generated from a continuous uniform random number from (0; Umax], with Umax

being either 1 or 5, while their associated due dates were generated from a discrete

uniform random number from (0, Dmax]. Both tight due dates and scattered due
dates cases were tested by setting Dmax equal to N and 2N respectively. A small Umax

indicates a situation where there are many orders of small size relative to the batch

size. In this case, a production batch satis® es the demand of many orders. Due to the

run time for the larger problems being several hours, the number of runs for each

scenario was set to 12 in order to allow for the testing of more scenarios. Testing was

performed using a commercially available mixed integer program (MIP) optimiza-
tion software package. We used CPLEX as the MIP solver. Performance of the

algorithm was measured by comparing the results found using the commercial

MIP solver to those results found using the algorithm. The stopping criterion for

the commercial MIP solver was when the branching tree became too large for the

available computer memory or when the MIP solver found an optimal solution.
When the MIP solver is able to ® nd an optimal solution, it is an exact optimum,

which is of use in benchmarking the Single Product Heuristic’s accuracy. The per-

formance parameters that were measured are R, N*, R* and T . R is calculated as

R 5 (Best MIP Value)/(Algorithm Value). N* is the number of times, out of each of

the 12 trial runs, that the MIP solver was able to ® nd an exact optimum. R* is
calculated the same as R, but it is for only those cases where the MIP solver was

able to ® nd an exact optimum. R* thus measures the accuracy of the algorithm.
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Using a commercial solver to ® nd a solution to the problem can be viewed as another

heuristic approach when the solver is not able to ® nd the optimal solution.

Therefore, the ratio R can be viewed as the comparison of our heuristic to an

alternative approach to solving the problem. T is calculated as T ˆ …MIP

Solution Time)/(Algorithm Solution Time).

Table 1 shows the initial set of results for the R and T performance measures.

Note that the R values in some cases are greater than one since, in many cases, the

stopping criterion of the MIP solver was met before an optimal solution was found.

As the table shows, it can be seen that the Single Product Heuristic did produce a

solution more quickly, but the quality of the solution was, in many cases, not as

good as that produced by the MIP solver. In attempting to determine the cause of

this poor performance, notice was made of the fact that the Single Product Heuristic

performed better for the case of Umax ˆ 5. For this case, there are more instances

when a given batch supplies an entire demand as opposed to the Umax ˆ 1 case where

almost all the time a batch will supply multiple demands. Hence, for Umax ˆ 1, a

production period may be set to busy where there is little demand resulting in a small

fraction of the batch used to satisfy a zero penalty demand. The large remainder of

the batch is forced to supply demands in other productions periods and will thus

incur larger penalty costs. With this observation, it appears that the smaller size

demands should be excluded from being used as part of the process of determining

the assignment of busy production periods. To test this concept, steps 1± 6 are only

performed on orders with demand greater than a prede® ned level Umin. Note that

step 7 of the algorithm is no longer a transportation problem since a complete set of

busy periods is not found in the previous steps. Hence, step 7 solves a mixed integer

program problem. In addition, the heuristic’s complexity now becomes exponential

whereas with complete assignment it was polynomial. A smaller value of Umin results

in more of a preassignment of busy periods and less integer variables in the mixed

integer program. Conversely, a larger value of Umin results in fewer busy periods

being preassigned and the mixed integer program becomes more di� cult to solve.
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N Dmax Umax R T

10 N 1 0.584 13.132
10 N 5 0.926 11.036
10 2N 1 0.591 90.565
10 2N 5 0.897 91.799
20 N 1 0.600 848.300
20 N 5 0.940 34.593
20 2N 1 0.635 903.230
20 2N 5 0.926 1281.691
40 N 1 0.744 340.235
40 N 5 0.927 974.363
40 2N 1 0.805 257.059
40 2N 5 1.004 1105.226
80 N 1 0.769 72.039
80 N 5 1.002 306.760
80 2N 1 0.788 52.050
80 2N 5 1.082 226.781

Table 1. Initial single product case results.



Table 2 shows the R values as a function of Umin. Note that the results for

Umin ˆ 0 are shown in table 1. As table 2 shows, the best value of Umin is 0.70.

Table 3 shows the complete set of results for Umin ˆ 0:7. The results show that the

mean overall improvement of the Single Product Heuristic over the commercial MIP

solver solution is 12.9% (R ˆ 1:129). The most improvement is for problems that are

large in size and with Umax ˆ 1, as this is the situation where there are many orders

of small size relative to the batch size. Additionally, the Single Product Heuristic

performance was better for Dmax ˆ 2N . This improvement of Dmax ˆ 2N cases over

Dmax ˆ N cases was greatest for large problems. Examining the CPU time measure,

T , shows that the Single Product Heuristic typically solves the problem much faster

than the MIP solver, and for those two cases where the algorithm did take slightly

longer than the MIP solver, the improvement in the solution of more than 35% is

very signi® cant. Note that the reason the T ratio is small for the case of N being large

is because, under this scenario, we ran out of memory faster, which is the stopping

criteria. Measuring R* shows that, for those problems where the MIP solver does

® nd an exact optimum, the algorithm yields results that are within a few percent of

exact optimum. To assess the relative quality of the algorithm, the lower bound was

calculated by relaxing variables Yik. Using the lower bound, the ratios LB and LB*

were calculated where LB ˆ …LP value)/(Algorithm Value), and LB* ˆ …LP value)/

(optimal MIP value), when the MIPL ® nds the optimal solution. The ratio LB gives

an evaluation of the quality of the algorithm while LB* provides a measure of the

quality of LB. The variables LB and LB* are also included in table 3. As can be seen

from the table, the quality of the lower bound is a function of Umax . That is, the

lower bound is close to the optimal solution when Umax ˆ 5. Under these cases, the

heuristic gives results near the lower bound. Overall, the Single Product Heuristic

gives improved solutions while reducing the required computation time.

The inability of the MIP solver to ® nd optimal solutions is related to the fact that

the size of the search becomes too large, and the processor runs out of available

memory. Therefore, the size of the problem must be reduced. If one of the busy

periods is preassigned, then the size of the problem will decrease, and of course

another busy period being assigned further reduces the size of the problem even

more. However, for each busy period that is assigned, another constraint is added.

Thus, there is a trade-oŒbetween pre® xing some of the allocations in terms of

computational speed and solution accuracy. By intelligently preassigning some of

the periods, the size of the problem is decreased and thus the ability to ® nd a better

solution for larger problems is enabled. As has been shown for those cases where the

MIP solver is able to ® nd the optimal solution, the value of the optimal objective

functions is not greatly impacted.

In addition to using the demand size as the order ranking method in step 2 of the

Single Product Heuristic, other ordering rules were considered that included the

earliness and lateness penalties. An example of one such rule tested was as follows

…¬j ‡  j†uj:

No improvements in the algorithm results were found by using these penalties in the

decreasing order of the ranking.
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4. Multiple product case

We now extend the algorithm to the multi-product case, ® rst neglecting set-up

costs. Recall that for the single product problem, P1, two decisions must be made

simultaneously to ensure minimal operational cost. They are: (1) the allocation of
orders to batches and (2) the schedule of batches. However, when multiple products

are produced the schedule is no longer a problem of just deciding when to produce a

batch, but instead becomes the problem of also deciding which product type to

produce in which period. The Single Product Heuristic is modi® ed to include not

only the minimum demand size Umin but also the need to assign a given product type
to a busy period. In this case, when a production period is set to busy, a product type

identi® er is also assigned. For example, if the current demand evaluated in step 3 of

the algorithm is of chemical type 2 and in step 4 of the algorithm the selected busy

period is 4 then the variable y42 is preset to 1 in the integer program formulation.

Multiple product heuristic

Step 1. For each product type, determine the number of batches to produce, and

sum these to determine the total number of batches N .

Step 2. Sort the demands in order of decreasing size.
Step 3. Select an unassigned order with the largest demand along with its due date

and product type.

Step 4. Assign a batch of the current product type to a production period that

results in the smallest penalty cost.

. If the production period coinciding with the demand’s due date is avail-
able, set the period to be busy.

. If the production period coinciding with the demand’s due date is not

available

(a) determine the latest available production period that is earlier than

the demand’s due date. Calculate its earliness penalty cost;
(b) determine the earliest available production period that is later than

the demand’s due date. Calculate its lateness penalty;

3095Batch chemical scheduling

N Dmax Umax R LB R* LB* N* T

10 N 1 0.961 0.505 0.961 0.518 12 1.87
10 N 5 0.986 0.841 0.986 0.853 12 1.98
10 2N 1 0.962 0.298 0.962 0.308 12 3.24
10 2N 5 0.988 0.742 0.988 0.749 12 7.41
20 N 1 0.984 0.392 0.964 0.401 11 13.01
20 N 5 0.988 0.901 0.988 0.912 12 10.90
20 2N 1 1.082 0.268 0.853 0.423 1 4.13
20 2N 5 0.986 0.810 0.988 0.842 11 206.00
40 N 1 1.368 0.357 X X 0 0.738
40 N 5 1.015 0.897 0.996 0.955 5 133.07
40 2N 1 1.514 0.226 X X 0 0.776
40 2N 5 1.120 0.806 1.000 0.922 1 43.68
80 N 1 1.332 0.271 X X 0 0.97
80 N 5 1.089 0.882 X X 0 1.89
80 2N 1 1.490 0.191 X X 0 1.02
80 2N 5 1.202 0.767 X X 0 0.76

Table 3. Algorithm performance for Umin ˆ 0:7.



(c) if earliness penalty < lateness penalty, assign a batch to be produced

at the production period determined in step a. Else assign a batch to
be produced at the production period determined in step b. Ties are

arbitrarily broken.

Step 5. Decrease the size of the current order by the amount of the batch size (unity

in this case).

Step 6. If the number of batches assigned is < N , go to step 3. Else go to step 7.

Step 7. Given the set of busy periods, solve the transportation problem.

The heuristic is polynomial with computational complexity equal to solving a

transportation problem with 2N nodes.

As was done for the Single Product Heuristic, the Multiple Product Heuristic was

tested with all parameters being varied. The one new parameter needed to test the
Multiple Heuristic was Kmax, the maximum number of product types. For each

demand/due date combination, the associated product type was generated from a

discrete uniform random number from (0,Kmax ]. The ranges of Kmax tested were 1, 2,

3, and 5, while for testing the single product case, the best value for Umin was

determined to be 0.7, and it is this value that was used while testing the multiple

product case. For each scenario, 12 runs were performed and the mean value was
recorded. Results of this testing are given in table 4.

When extended to multiple products, the MIP solver was able to ® nd optimal

solutions (i.e. N* > 0) only when the number of batches was small. When examining

those cases for which N* > 0, the algorithm did produce near optimal values while

decreasing the amount of time needed to solve the problem. Note that the reason the
T ratio is small for the case of N being large is because, under this scenario, we ran

out of memory faster, which is the stopping criteria. As was the case for single

product problems, the algorithm gave the most improvement in the objective func-

tion for large problems. In addition to problem size, the performance of the algor-

ithm is in¯ uenced by the values of the parameters Umax , Dmax and Kmax . From table

4, it can be seen that it is the more di� cult problems to solve, where Umax ˆ 1 and
Dmax ˆ 2N , in which the algorithm yielded the most improvement.

Upon ® rst looking at table 4 it would appear that there is very little sensitivity to

the parameter Kmax, which de® nes the maximum number of product types allowed to

be produced. However, what is not evident is that for several cases the MIP solver

was not able to ® nd any feasible solution, and the case of no feasible solution
occurred at large values of N when Kmax was large. The values of R recorded in

table 4 are the means of 12 trials of the ratio of the best feasible solution from the

Multiple Product Heuristic to the best feasible solution from the MIP solver. For

those trials where the MIP solver was unable to ® nd a feasible solution the ratio

would be in® nite. Including this in® nite value when calculating the mean for the 12

trials would cause the mean to be of no value in measuring the performance of the

algorithm. However, not accounting for these cases causes the results in table 4 to
not re¯ ect truly the performance improvement for the Multiple Product Heuristic.

The trials where the MIP solver was not able to ® nd a feasible solution were thus

excluded from the calculation of the mean values reported in table 4. Those cases

where the MIP solver was unable to ® nd a feasible solution were the largest problems
(i.e. N ˆ 80, Dmax ˆ 2N and Umax ˆ 1) with Kmax ˆ 3 and Kmax ˆ 5. For Kmax ˆ 3,

the MIP solver failed to ® nd a feasible solution for four out of the 12 trials while for

Kmax ˆ 5 there were ® ve trials in which the MIP solver did not ® nd a feasible
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solution. From this it can be seen that the Multiple Product Heuristic continues to

oŒer the most improvement for large problems.

Sequence dependent set-up costs

The developed heuristics have been shown to enable improved solutions for the
single product case and the extended case of scheduling multiple products. While

these heuristics performed well for these two classes of problems, we now consider

extending them to the sequence-dependent set-up costs case.

The multiple product problem with earliness and tardiness penalties in itself is a
di� cult problem to solve optimally. When there is the added requirement to include

set-up costs as part of the total costs that are to be minimized, the problem becomes

even more di� cult to solve. The scheduling of production batches based on customer

demands may cause the set-up costs to be high, while scheduling of production

batches based on set-up cost may cause the penalty costs associated with meeting

customer demands to be high. These two competing costs must both be simul-
taneously considered when solving the problem. However, there is the complication

of not knowing what the production sequence is until one has solved the problem of

minimizing the customer penalty costs. Only at this time is one able to even look at

the production sequence and determine if the associated set-up costs are too high.

Likewise, if the set-up costs are considered to be too high and the production

sequence is adjusted, one must again solve the problem to minimize customer penalty
costs in order to assess the cost impacts caused by adjusting the production sequence.

Due to not knowing the consequences of adjustments until after the associated

problem has been solved, the exact solving of multiple products with a sequence

dependent set-up cost is an iterative process and is usually done only in restricted

cases. For the case of a single aggregate due date, an exact algorithm has been
developed (Pekny et al. 1993) that makes use of a modi® ed Travelling Salesman

Problem (TSP) for determination of the required scheduling sequence. The TSP is

computationally intensive. Furthermore, the TSP formulation is not easily extend-

able to the multiple due date case. As such, the problem is often simpli® ed. One

simplifying process (Bowers et al. 1995) uses cluster analysis to arrive at a production
sequence that reduces the product changeover times. Similar to this is the minimizing

of the number of changeovers by producing all batches of a given type, before a

changeover is made to produce the next product type. This causes the number of

changeovers to be equal to the number of product types. After the grouping of

production to the individual product types is completed, the product groups are

then sequenced in a manner to minimize the set-up cost.
We next extend the heuristics to the sequence dependent set-up cost case with the

added restriction that the number of changeovers equals the number of product

types. Although minimizing the number of changeovers and selecting the production

sequence that yields the minimum set-up costs for the grouped production of prod-

uct types simpli® es the problem, it is not the complete solution to the problem. In
particular, there still remains the need to determine when to produce the individual

batches and how to allocate these batches to the customer demands while adhering

to the selected batch grouping and sequence constraints.

There are many ways to accomplish the assignment of product groups to sets of

production periods. Some of these are quite simple and are often referred to as
myopic while others are more extensive in their procedure, with the main diŒerence

being the trading of increased use of computational resources against an improved

3098 K. E. McGraw and M. M. Dessouky



solution. To demonstrate the algorithm’s ability to address sequence-dependent set-

up costs, two heuristics were chosen for the assignment of product groups to sets of

production periods. One heuristic is a simple myopic procedure while the other

involves a more complex extensive search method. The Single Product Heuristic is

applied to each of these methods, and the results are compared in order to demon-

strate the capability of addressing these types of sequence-dependent set-up cost

problems.

The simple myopic heuristic ® rst ® nds the production sequence that yields the

lowest set-up cost and then allocates a number of production periods to each prod-

uct type that is proportional to the number of batches of each product type to be

produced. With the production of each product type now being restricted to a given

set of production periods, the Single Product Heuristic is then used to schedule each

product type within its allocated set of production periods. A detailed description of

the algorithm is given below.

Myopic algorithm

Step 1. Determine the set-up cost for all possible production sequences.

Step 2. Find the production sequence with minimum set-up cost.

Step 3. Determine the number of batches for each product type.

Step 4. Allocate the production periods to each product type in order of the

sequence found in step 2.

Step 5. Select ® rst product type in the sequence.

Step 6. Call `Single Product Heuristic’ .

Step 7. If all product types have been assigned, end. Else select next product type

and go to Step 6.

Steps 1 and 2 of the algorithm are of complexity O…kmax!). The remaining steps

require solving kmax transportation problems.

As an example, if there are three product types with maximum due date in period

10 and the number of batches for each product type are: nA ˆ 2, nB ˆ 5 and nC ˆ 3.

For this example, it is assumed that the sequence-dependent set-up costs are as

follows: sA;B ˆ 3, sA;C ˆ 1, sB;A ˆ 5, sB;C ˆ 4, sC;A ˆ 2, sC;B ˆ 8. Since there are a

total of ten batches that need to be produced, we need to consider only the ® rst 20

production periods since previously we showed that an optimal schedule will be

completed by time 2N when the maximum due date equals N . Product type C

would be allocated production periods 1 through 6, product type A assigned pro-

duction periods 7 through 10, and ® nally product type B assigned production period

11 through 20. Note that there is reserved 2nk periods for each product type, where

nk is the number of batches to produce of type k. A step-by-step description of this

example problem is given below. This grouping is shown in ® gure 1.

Step 1. Enumerate all possible production sequences.

Step 2. Determine the production sequence with the lowest set-up cost.

Results: C, A and the B.

Step 3. Determine the number of batches required for each product type.
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Results: nA ˆ 2 batches

nB ˆ 5 batches

nC ˆ 3 batches

Step 4. Allocate production periods to each product type.

Results: A allocated to periods 7 to 10

B allocated to periods 11 to 20

C allocated to periods 1 to 6

Step 5. Select ® rst product type in the production sequence.

Result: Select product C.

Step 6. Invoke Single Product heuristic.

Result: y1;C ˆ 1; y2;C ˆ 1; y4;C ˆ 1; x1;1;C ˆ 1:0; x2;1;C ˆ 1:0; x4;1;C ˆ 0:5;
x4;2;C ˆ 0:5

Repeat step 6 two more times.

Result: y7;A ˆ 1; y8;A ˆ 1; x7;2;A ˆ 0:7; x7;1;A ˆ 0:3; x8;1;A ˆ 1:0

and,

y11;Bˆ1; y12;Bˆ1; y13;B ˆ 1; y14;B ˆ 1; y15;B ˆ 1; x11;3;B ˆ 0:4;
x11;1;B ˆ 1:0; x12;1;B ˆ 1:0; x13;1;B ˆ 0:9; x13;4;B ˆ 0:1; x14;4;B ˆ 0:5;
x14;2;B ˆ 0:5; x15;2;B ˆ 1:0

Find: Penalty cost ˆ 125:15

Set-up cost ˆ 5.0

Total cost ˆ 130.15

The ine� ciency associated with ® xing the production periods for each product

type can be seen by the previous example. If production of product B is pushed to

start in period 9 instead of period 11, there will be less penalty cost associated with

tardiness. This is the motivation behind the exhaustive search algorithm described

next.

3100 K. E. McGraw and M. M. Dessouky
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The Exhaustive Search Algorithm is similar to the Myopic algorithm in that it

uses the same production sequence and assigns batches of a given type only within
the set of production periods allocated for each given product type. However,

instead of rigidly ® xing the size of the production periods allocated to each product

type, the algorithm performs an exhaustive search to ® nd an appropriate interval

length. The exhaustive search algorithm starts with the same production sequence

yielding the lowest set-up costs as did the myopic algorithm. Starting with the ® rst

two product types in the production sequence, it operates on the product types one
pair at a time. This operation on the sequential pairs of product types is performed

by determining the beginning and end of the set of production periods that are to be

allocated to the given sequential pair of products, but the boundary between the

production periods for each of the two product types currently being scheduled is not

® xed. Instead, it is continuously modi® ed through an exhaustive search to determine
the value of the bound between the two product types that will produce the smallest

penalty cost for this pair of products. Once the exhaustive search has determined the

bound for the ® rst and second product types in the production sequence, the bound

and assignment for the ® rst product type of the production sequence is ® xed, and the

algorithm then performs this same exhaustive search for the second and third prod-

uct in the production sequence. This search continues until all product pairs have
been searched.

When the Exhaustive Search algorithm is operating on a given pair of product

types, the size of the set of production periods is made large enough to ensure that

all possible values of the bound between the two product types of the product pair

are included. Let the variables First and Horz be the beginning and ending periods
allocated to the pair of products, and let DUEmax…k† be the maximum due date for

any order of product type k. Then, Horz ˆ First ‡ DUEmax…k† ‡ DUEmax…k ‡ 1† for

this product pair. At each iteration of the search, production periods (First, Bound)

are allocated to product k and periods (Bound ‡ 1, Horz) are allocated to product

k ‡ 1. The algorithm increments the variable Bound by one for each iteration. It

performs the exhaustive search of all possible values for the variable Bound up to the
value Horz nk‡1, where nk is the number of batches required of type k.

We now illustrate the exhaustive search algorithm using the same data set as in

the previous example. For this example, it will also be assumed that the maximum

due date for A is 12, for B is 18, and for C is 17. First, operate on only the ® rst two

products in the minimum set-up cost sequence: product C and product A. Given that
this is the initial pair of products, the value of the variable First 5 1. The planning

horizon can also be calculated by summing the maximum due dates for the two

products and adding the sum to the variable First. Horz ˆ 1 ‡ 17 ‡ 12 ˆ 30.

The initial and ® nal values of the variable `Bound’ that will just allow the assignment

of the respective product types batches would then be 3 and 28 respectively.

The initial and ® nal values of `Bound’ and the associated production periods avail-

able for the assignment producing batches of product C and Product A are shown in
® gure 2.

Once this initial Bound for the above shown production periods has been made,

the assignment heuristic developed for the multiple products case is used to assign

individual production batches. The resulting transportation problem is solved, the
solution is recorded as the BestSoln, and the value of Bound is stored. The value of

Bound is next incremented to 4, and again the assignment heuristic assigns individual

production batches, and the transportation problem is again solved. If the solution
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to this iteration’s transportation problem is better than the prior BestSoln then the

stored values of BestSoln and its associated Bound are updated with these new

values. This iterative process continues until Bound is at its limit of 28. Once com-

plete, the assignments for product C are ® xed, and the value of Bound associated

with the BestSoln is used to establish the starting point for the algorithm operating

on the next pair of products. For this example it is assumed that the value of this best

Bound is 11.

Given this value for the best Bound from the ® rst pair of products, one may now

calculate First and Horz for the pairing of A and B. One thus arrives at First ˆ 12

and Horz ˆ 41 as shown in ® gure 3. The algorithm then operates on this second pair

of product types.
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Figure 2. Initial and ® nal product grouping for ® rst pair of exhaustive searches.

Figure 3. Initial and ® nal product grouping for second pair of exhaustive searches.



Exhaustive search algorithm

Step 1. Determine the set-up cost for all possible production sequences.

Step 2. Find the production sequence with minimum set-up cost.

Step 3. Determine the number of batches for each product type. Set k ˆ 1.

Step 4. Determine the ® rst production period by using the best bound from the

prior pair of products.

First ˆ BestBound ‡ 1

Note: For the ® rst pair of products; First ˆ 1

Step 5. Determine the horizon for this pair of products by using the maximum due

dates, DUEmax, for each of the product types. Horz ˆ First ‡
DUEmax…k† ‡ DUEmax…k ‡ 1†

Step 6. Determine the initial bound and ® nal bound to be used for the exhaustive

search over the range of the bound between the two product types by using

the number of batches of the ® rst product, nK , and the second product,

nK‡1.

StartBound ˆ First ‡ nK , EndBound ˆ Horz nK‡1, CurrentBound ˆ
StartBound

Step 7. Invoke the single product heuristic for product k using periods (First,

CurrentBound) and for k ‡ 1 using periods (CurrentBound ‡ 1, Horz).

Step 8. Compare the current solution to the best solution so far. If it is better than

the best solution, replace the best solution with this current solution. Also,

update the best bound value (i.e. BestBound ˆ Current Bound).

Step 9. If this is the last value for bound as determined by

CurrentBound < EndBound go to step 10.

Else, increment CurrentBound by one and go to step 7.

Step 10. If this is the last product pair in the production sequence, end. Else,

k ˆ k ‡ 1, go to step 4.

Steps 1 and 2 of the algorithm are of complexity O…kmax!). The remaining steps

require solving 2N transportation problems.

Both the myopic and the exhaustive search algorithms were tested to determine

their individual and relative performance over a range of parameters. Another vari-

able, which is unique to this problem, is the sequence-dependent set-up cost, which is

a Kmax by Kmax array representing all possible combinations of changeovers.

Elements of this array are a continuous uniform random number from (1, Cmax ],
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Product Order Demand Due Early Late
type number size date penalty penalty

A 1 1.3 4 3 4
A 2 0.7 2 2 6
B 1 2.5 7 1 3
B 2 1.5 8 3 2
B 3 0.4 6 4 4
B 4 0.6 10 2 3
C 1 2.5 1 2 4
C 2 0.5 4 3 5

Table 5.



with Cmax being 1000. For each scenario, 12 runs were performed and the mean value

was recorded.

Results of this testing are given in table 6 where Q is the ratio of the myopic

algorithm’s penalty to the penalty from the exhaustive search algorithm, and T is the

ratio of the solution time for the exhaustive search to the solution time for the

myopic algorithm. As can be seen in table 5, the exhaustive search algorithm yielded
solutions that were, overall, better than those of the myopic algorithm.

However, for those cases of there being a larger number of product types,

Kmax ˆ 5, the exhaustive search algorithm typically gave solutions that were only

marginally better than those of the myopic algorithm. In addition, the amount of

computation time required by the exhaustive search algorithm was dramatically
more than that needed by the myopic algorithm. The overall average for Q is

1.093. However, table 5 shows that for Kmax ˆ 5 the relative performance is only

1.015. When looking at the cases for Kmax ˆ 2 and Kmax ˆ 3 one ® nds the exhaustive

search algorithm gives performance improvements of 1.159 and 1.105, respectively.

The performance improvement of the exhaustive search algorithm over that of the

myopic algorithm decreases as the number of batches being produced increases.
However, for Kmax ˆ 2 and Kmax ˆ 3, there is an increase in the performance

improvement when Umax ˆ 5. This case is when there are fewer individual orders

but each may be larger in size. However, for Kmax ˆ 5, the situation is at times

reversed with the most improvement being for Umax ˆ 1.

The exhaustive search algorithm was designed to allow for the search for the best

bound between sequential sets of product types. As such, there was no limit placed

on the range of production periods to which individual batches could be assigned. It
should be noted that the exhaustive search procedure is guaranteed to equal or

outperform the myopic algorithm when Kmax ˆ 2. For a small number of product

types, the exhaustive search algorithm did yield improved results when trying to

minimize earliness and tardiness penalty costs while simultaneously trying to
reduce set-up costs. For Kmax ˆ 5 there are more product pairs that are sequentially

operated on by the exhaustive search algorithm, and each set of product pairs

allocation begins after the best bound found for the prior set of product pairs.
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kmax ˆ 2 kmax ˆ 3 kmax ˆ 5

N Dmax Umax Q T Q T Q T

10 N 1 1.163 76.71 1.056 162.11 0.893 309.47
10 N 5 1.214 52.07 1.125 94.10 0.928 127.04
10 2N 1 1.173 123.53 1.121 256.66 1.007 491.57
10 2N 5 1.235 84.87 1.228 143.69 1.224 197.04
20 N 1 1.061 184.25 1.052 396.78 0.892 919.02
20 N 5 1.344 136.39 1.140 254.64 1.044 451.95
20 2N 1 1.062 309.55 1.096 634.16 1.003 1468.94
20 2N 5 1.415 217.65 1.231 401.43 1.117 723.74
40 N 1 1.017 417.72 1.038 902.45 1.011 2486.40
40 N 5 1.102 344.26 1.017 679.40 0.933 1387.42
40 2N 1 1.022 722.14 1.075 1555.47 1.084 4399.88
40 2N 5 1.095 545.53 1.082 1093.61 1.040 2264.71

Mean 1.159 267.92 1.105 547.88 1.015 1268.93

Table 6. Sequence dependent set-up costs results.



This means that for the last set of product pairs, the earliest possible assignment of

batches to production periods can be so late that an assignment that produces
reasonably small penalty costs will not be possible.

5. Conclusions

In this paper, the scheduling of chemical processing as it relates to the production

of specialized chemicals was examined. This branch of the industry typically pro-

duces in lot sizes that are too small to warrant the capital investment of continuous

processing plants and thus resorts to ® xed batch size production plants. However,

the customer orders are not restricted to be the size of a batch. When an order is
larger than a batch size the excess production from other batches is used to ® ll the

larger orders. For small orders, a single batch is used to ® ll several orders. This

complicates the problem in that each batch can have multiple due dates.

Of particular interest to the agricultural industry is the on-time delivery of the

customer orders. If the customer order is late, there could be reduced crop yields or
excessive crop damage. These consequences result in there being a penalty in the

form of contractual stipulations, or loss of customers for being late in ® lling a

customer’s order. In addition, there are penalties resulting from such items as

increased inventory and warehouse costs. This leads to operating the batch chemical

plant in a manner that is analogous to a just-in-time practice.
Most of the research in the joint earliness and tardiness problem that applies to

the batch chemical manufacturing environment makes simplifying assumptions in

order to more easily solve the problem. For example, the prior research assumes all

jobs have a common due date, or symmetric earliness and tardiness penalties. The

heuristics developed in this paper do not make these simplifying assumptions.

The decision variables of our formulation consist of both integer and continuous
variables. The integer decision variables determine the set of busy production peri-

ods, and the continuous variables determine the allocation of the production batches

to the customer orders. Our solution procedure ® rst applies heuristic rules to deter-

mine the set of busy production periods (i.e. integer variables). Then, a transporta-

tion problem is solved to determine the best allocation of the production batches to
customer orders (i.e. the continuous variables) given the current set of busy produc-

tion periods. An augmenting solution approach would be to use a neighbourhood

search technique such as simulated annealing or tabu search. However, these

methods work best on pure integer formulations. In our context, these techniques

could only be employed to search for the best set of busy production periods. At
each step of the search, our proposed transportation problem will still need to be

solved to determine the allocation of batches to customer orders. Although using a

neighbourhood search technique to identify the set of busy periods may improve the

quality of the solution, it may be computationally prohibitive since a new transpor-

tation problem will have to be solved at each step of the search. The issue of whether

augmenting our heuristic approach with a neighbourhood search will signi® cantly
improve the results and whether it is computationally feasible can be a subject for

further research.
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