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Abstract 

We study a hybrid transportation system referred to as Mobility Allowance Shuttle Transit 
(MAST) where vehicles may deviate from a fixed path consisting of a few mandatory 
checkpoints to serve demand distributed within a proper service area.  In this paper we 
propose a Mixed Integer Programming (MIP) formulation for the static scheduling problem 
of a MAST type system.  Since the problem is NP-Hard, we develop sets of logic cuts, by 
using reasonable assumptions on passengers’ behavior.  The purpose of these constraints is 
to speed up the search for optimality by removing inefficient solutions from the original 
feasible region.  Experiments show the effectiveness of the developed inequalities, 
achieving a reduction up to 90% of the CPU solving time for some of the instances. 
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1 Introduction 

We study a hybrid transportation system referred to as The Mobility Allowance 

Shuttle Transit (MAST) where vehicles may deviate from a fixed path consisting of a few 

mandatory checkpoints to serve demand distributed within a proper service area.  A MAST 

system is described by a set of vehicles driving along a base fixed-route and serving a 

specific geographic area.  The base route can be laid out around a loop or between two 

terminals.  Vehicles must stop at a set of checkpoints along the main path.  The checkpoints 

are conveniently located at major transfer points or high density demand zones, are 

relatively far from each other and have fixed departure times.  Given a proper amount of 

slack time, vehicles are allowed to deviate from the fixed path to serve (pick-up and/or 

drop-off) customers at their desired locations, as long as they are within a service area. 

The idea behind a MAST system is to combine the flexibility of Demand 

Responsive Transit (DRT) systems with the low cost operability of fixed-route systems and 

tries to fulfill the recent goals of transit agencies, which are seeking ways to increase their 

service flexibility in a cost efficient way.  A small scale version of such a system has been 

tested in Los Angeles County for one nighttime bus line servicing mostly night-shift 

employees of local firms.  The vehicle moves back and forth several times between two 

terminals stopping at one additional checkpoint in the middle of the route and it is allowed 

to deviate within half a mile from either side of the main route. 

MAST systems have only recently been approached by researchers.  Quadrifoglio et 

al. (2007) developed a customized insertion heuristic scheduling algorithm to handle a large 

amount of demand dynamically.  Continuing work is presented in Quadrifoglio and 

Dessouky (2006), where the authors evaluated the sensitivity to the shape of the service 

area of the effectiveness of the above mentioned heuristic.  Zhao and Dessouky (2006) 

studied the optimal service capacity of a MAST system through a stochastic approach.  

Quadrifoglio et al. (2006) employed continuous approximations to evaluate the 

performance of MAST systems and help in their design phase. 

Some work approached hybrid systems in which different vehicles perform the 

fixed and variable portions.  Aldaihani et al. (2004) developed a continuous approximation 

model for designing such a service.  Scheduling heuristics based on a hybrid system include 
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the decision support system of Liaw et al. (1996), the insertion heuristic of Hickman and 

Blume (2000) and the tabu heuristic of Aldaihani and Dessouky (2003).  Another work 

studying a combination of fixed and flexible service can be found in Cortés and 

Jayakrishnan (2002). 

Other types of hybrid transportation systems have been studied by a few 

researchers.  The work of Daganzo (1984) describes a checkpoint DRT system that 

combines the characteristics of both fixed route and door-to-door service.  A service request 

is still made but the pick-up and drop-off points are not at the door but at centralized 

locations called checkpoints.  However, the MAST system conceptually differs from it, 

since it allows also for door-to-door requests.  Malucelli et al. (1999) provide a general 

overview of flexible transportation systems.  Crainic et al. (2001) incorporate the hybrid 

fixed and flexible concept in a more general network setting, providing also a mathematical 

formulation. 

MAST systems can be considered as a special case of the Pickup and Delivery 

Problem (PDP) and can be formulated as mixed integer programs (MIP).  There has been a 

significant amount of research on the PDP.  Savelsbergh and Sol (1995), Desaulniers et al. 

(2000) and Cordeau and Laporte (2003) provide comprehensive reviews on PDP systems, 

examining mathematical formulations and solutions approaches presented by different 

authors.  More recently, a branch-and-cut algorithm to solve the single vehicle PDP without 

capacity constraints is described in Lu and Dessouky (2004).  Other optimization 

algorithms for different variants of the PDP include the work of Psaraftis (1980), Psaraftis 

(1983), Kalantari, Hill, and Arora (1985), Desrosiers, Dumas, and Soumis (1986), Fischetti 

and Toth (1989), Dumas, Desrosiers, and Soumis (1991), and Ruland and Rodin (1997).  

While PDP systems focus strictly on point-to-point transport services, the hybrid 

characteristics of the MAST service add significant time and space constraints to the 

problem mainly due to the need of having the vehicles arrive at the checkpoints on or 

before their scheduled departure time. 

In this paper, we propose a MIP formulation of the single-vehicle MAST scheduling 

problem and we develop sets of “logic cuts” based on realistic assumptions on passenger 

behavior.  We test and demonstrate their effectiveness for a variety of demand scenarios by 

solving to optimality some sets of problems using CPLEX 9.0. 
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The reminder of this paper is structured as follows.  In Section 2 we develop the 

basic formulation of a MAST system.  In Section 3 we present the logic constraints.  

Section 4 describes the experimental results.  Finally, we provide the conclusions in Section 

5. 

 

2 Formulation 

The MAST system considered consists of a single vehicle, initially associated with a 

predefined schedule along a fixed-route consisting of C checkpoints identified by c = 1, 

2,…, C; two of them are terminals located at the extremities of the route (c = 1 and c = C) 

and the remaining C-2 intermediate checkpoints are distributed along the route.  The 

vehicle moves back and forth between 1 and C.  A trip r is defined as a portion of the 

schedule beginning at one of the terminals and ending at the other one after visiting all the 

intermediate checkpoints; the vehicle’s schedule consists of R trips.  Since the end-terminal 

of a trip r corresponds to the start-terminal of the following trip r+1, the total number of 

stops at the checkpoints is TC = (C-1)×R+1.  Hence, the initial schedule’s array is 

represented by an ordered sequence of stops s = 1,…, TC and their scheduled departure 

times are assumed to be constraints on the system which can not be violated. 

The service area is represented by a rectangular region defined by L×W, where L 

(on the x axis) is the distance between terminals 1 and C and W/2 (on the y axis) is the 

maximum allowable deviation from the main route in either side (see Figure 1). 

 

Figure 1 – MAST system 
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Each checkpoint c is scheduled to be visited by the vehicle R times.  Note that for terminal 

checkpoints c = 1 and c = C the ending checkpoint of a trip r coincides with the starting 

checkpoint of the following trip r+1. 

The demand is defined by a set of requests.  Each request is defined by 

pick-up/drop-off service stops and a ready time for pick-up.  The MAST service can 

respond to four different types of requests: pick-up (P) and drop-off (D) at the checkpoints; 

non-checkpoint pick-up (NP) and drop-off (ND), representing customers picked up/dropped 

off at any location within the service area.  A certain amount of slack time between any 

consecutive pair of checkpoints is needed in order to allow deviations to serve NP or ND 

requests.  There are consequently four different possible types of customers’ requests: 

 

• PD (“Regular”): pick-up and drop-off at the checkpoints 

• PND (“Hybrid”): pick-up at the checkpoint, drop-off not at the checkpoint 

• NPD (“Hybrid”): pick-up not at the checkpoint, drop-off at the checkpoint 

• NPND (“Random”): pick-up and drop-off not at the checkpoints 

 

All customers but the PD requests need a booking process to use the service.  While 

checkpoints are identified by i = 1,…, TC, non-checkpoint requests (NP or ND) are 

identified by i = TC+1,…, TS, where TS represents the total number of stops. 

In this paper we consider a static scenario in which all the demand is known in 

advance.  We also assume one customer per request, no vehicle capacity constraint and a 

deterministic environment. 

We define the following notation for the system: 

 

• R = number of trips 

• RD = {1,…,R} = set of trips 

• C = number of checkpoints 

• TC = (C-1)×R+1 = total number of stops at the checkpoints in the schedule 

• N0 = {1,…, TC} = set of stops at the checkpoints 

• θi = scheduled departure time of checkpoint stop i, ∀i∈N0 [θ1 = 0] 



 5

• KPD = set of PD requests 

• KPND = set of PND requests 

• KNPD = set of NPD requests 

• KNPND = set of NPND requests 

• KHYB = KPND ∪ KNPD = set of hybrid requests (PND and NPD types) 

• K = KPD ∪ KHYB ∪ KNPND = set of all requests 

• τk = ready time of request k, ∀k∈K 

• TS = TC+|KPND|+|KNPD|+2×|KNPND| = total number of stops 

• Nn = {TC+1,…, TS} = set of non-checkpoint stops 

• N = N0 ∪ Nn = set of all stops 

• δi,j = rectilinear travel time between i and j, ∀i,j∈N 

• bi = service time for boardings and disembarkments at stop i, ∀i∈N/{1} 

• A = set of all arcs in the network 

 

PD requests are guaranteed to be served at their chosen service checkpoints 

identified by their index i∈N0, since we assume no capacity constraint on the vehicle.  

NPND requests have their own stops identified by their index i∈Nn, which will be placed 

somewhere in the schedule.  We therefore identify the following vectors that map pick-up 

and drop-off stops for each request (except the checkpoints of the hybrid ones): 

 

• ps(k)∈N = pick-up stop of each request k, ∀k∈K/KPND. 

• ds(k)∈N = drop-off stop of each request k, ∀k∈K/KNPD. 

 

Hybrid requests (PND and NPD) instead do not have a priori a uniquely identified 

node in N corresponding to their checkpoint service point.  In other words, each pick-up 

and drop-off stop of all requests uniquely corresponds to a node in N, with the exception of 

the pick-up stop of PND requests and the drop-off stop of the NPD requests.  In fact, these 

can be associated to a number of occurrences of their chosen checkpoint (either a P or a D), 

depending on where their non-checkpoint stop (either a ND or a NP) is positioned in the 

schedule.  For example, consider a MAST system with C = 5 and R = 4 and assume that a 
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NPD request would like to be picked up at its NP stop (i*) as soon as possible and dropped 

off at the checkpoint c = 4 in the first trip r = 1.  It could occur that, because of lack of slack 

time due to other requests, the NP stop i* can not be placed in the schedule before c = 4 

during the first trip.  As a result, the customer will have to be dropped off at a successive 

occurrence of c = 4 in the schedule.  A similar example could be developed for PND 

requests.  Thus we have: 

 

• pc(k,r)∈N0 = collection of all the occurrences in the schedule (one for each 

r∈RD) of the pick-up checkpoint of each request k, ∀k∈KPND. 

• dc(k,r)∈N0 = collection of all the occurrences in the schedule (one for each 

r∈RD) of the drop-off checkpoint of each request k, ∀k∈KNPD. 

 

The variables of the system are the following: 

 

• xi,j = {0,1}, ∀(i,j)∈A = binary variables indicating if an arc (i,j) is used (xi,j = 1) 

or not (xi,j = 0). 

• ti = departure time from stop i, ∀i∈N. 

• it  = arrival time at stop i, ∀i∈N/{1}. 

• pk = pick-up time of request k, ∀k∈K. 

• dk = drop-off time of request k, ∀k∈K. 

• zk,r = {0,1} = binary variable indicating whether the checkpoint stop of the 

hybrid request k (a pick-up if k∈KPND or a drop-off if k∈KNPD) is scheduled in 

trip r, ∀r∈RD. 

 

The problem can now be formulated as a mixed integer linear program, where ω1, 

ω2 and ω3 are proper weights: 
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pk ≥ tpc(k,r) – M(1-zk,r) ∀k∈KPND, ∀r∈RD (8) 

pk ≤ tpc(k,r) + M(1-zk,r) ∀k∈KPND, ∀r∈RD (9) 

dk ≥ ( )rkt ,dc  – M(1-zk,r) ∀k∈KNPD, ∀r∈RD (10) 

dk ≤ ( )rkt ,dc  + M(1-zk,r) ∀k∈KNPD, ∀r∈RD (11) 

pk ≥ τk ∀k∈K (12) 

dk > pk ∀k∈K (13) 

jt  ≥ ti + xi,jδi,j – M(1–xi,j) ∀(i,j)∈A (14) 

ti ≥ it  + bi ∀i∈N/{1} (15) 

 

The objective function (1) minimizes the weighted sum of three different factors, 

namely the total miles driven by the vehicle, the total ride time of all customers and the 

total waiting time of all customers, defined as the time interval between the ready time and 

the pick-up time.  This definition allows optimizing in terms of both the vehicle variable 

cost (first term) and the service level (the last two terms); modifying the weights 

accordingly we can emphasize one factor over the others as needed. 

Network constraints (2) and (3) allow each stop (except nodes 1 and TC) to have 

exactly one incoming arc and one outgoing arc equal to 1, so that all the stops will be 

visited once. 
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Constraints (4) force the departure times from each checkpoint to be fixed, since 

they are prescheduled like in a fixed-route line. 

Constraints (5) establish for each request (except the PND) the equality between the 

pick-up time and the departure time of its corresponding node.  Similarly, constraints (6) 

establish for each request (except the NPD) the equality between the drop-off time and the 

arrival time of its corresponding node. 

Constraints (7) allow exactly one z variable to be equal to 1 for each hybrid request, 

assuring that a unique ride will be selected for their pick-up or drop-off checkpoint. 

Constraints (8) and (9) fix the value of the pk variables for each request k∈KPND, 

depending on the variable z chosen.  Constraints (10) and (11) do the same for the dk 

variables for each request k∈KNPD.  We let M represent a number large enough to cause the 

constraints to become irrelevant when zk,r = 0.  An M = θTC-θ1 is big enough to serve this 

purpose. 

Constraints (12) prevent the departure times of each customer from being earlier 

than its ready time.  Constraints (13) are the precedence constraints for each request: 

pick-up must be scheduled before the corresponding drop-off. 

Constraints (14) are the key constraint in the formulation.  They define that for each 

xi,j = 1 the arrival time at j should be no less than the departure time from i plus the time 

needed to travel between i and j.  The last term with the M (also in this case an M = θTC-θ1 

is large enough to be effective) assures that for any xi,j = 0 the constraints become 

irrelevant.  By using time stamps, these constraints guarantee that every feasible solution 

does not contain inner loops, but a single path from node 1 to node TC.  Thus, they serve as 

subtour elimination constraints and they are similar to the Miller-Tucker-Zemlin (MTZ) 

constraints.  Constraints (15) make sure that at each node the departure time is always 

bigger than the arrival time plus the service time. 

The problem is a special case of the Pick-up and Delivery Problem (PDP) that is 

known to be NP-Hard.  The above formulation is sufficient to find the optimal solution (if it 

exists) of a given instance of the MAST problem.  However, the CPU time to reach 

optimality can be greatly reduced by removing unnecessary binary variables and especially 

by adding logic constraints.  The elimination of evidently infeasible arcs to reduce the size 
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of the problem has been performed, but it is not shown here for brevity.  In the next Section 

3 instead we define and describe the logic constraints. 

 

3 Logic constraints 

The above formulation is sufficient to find the optimal solution of the problem, but 

it is ineffective in the sense that it includes many feasible inefficient solutions and thus has 

a weak LP relaxation.  The purpose of this section is to identify inequalities linking together 

some of the variables to reduce the feasible region identified by constraints (2) to (15) and 

possibly speed up the search for optimality.  The challenge is to make sure that these new 

constraints are legitimate and will only remove feasible but not optimal solutions from the 

problem. 

A way to speed up the search for optimality and be able to solve larger instances in 

a reasonable time is to “tighten” the model by adding constraints (“cuts”) to the 

formulation.  Legitimate cuts should never cause the optimal solution to change; their 

purpose is to help solvers to reach optimality faster. 

As noted by Schrijver (1986), a constraint (either equality or inequality) is classified 

as valid if it reduces the dimensions of the relaxed feasible region, but all integer feasible 

solutions of the original model still satisfy it.  The purpose of these constraints is to reduce 

the size of the relaxed feasible region, ideally making it the convex hull of the integer 

feasible solutions which would allow an LP algorithm to solve the problem.  Wosley (1989, 

2003) provide comprehensive surveys about the research on the development of effective 

valid constraints for MIP formulations. 

Another category of constraints are the so called “logic cuts”.  These constraints are 

not valid because their purpose is to reduce the feasible region by eliminating some integer 

feasible solutions that are provably not optimal by some logic considerations.  These “logic 

cuts” can be indeed very effective.  They may significantly shrink the feasible region, even 

by some orders of magnitude, and they allow improving the quality of the LP relaxation 

bound, considerably speeding up the reduction of the optimality gap throughout the 

iterations of the solver.  As a result, they can be extremely beneficial in reducing the CPU 

time in the search for optimality.  However, adding too many of them can also cause the 
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formulation to become cumbersome, forcing solvers to spend too much time while solving 

LP relaxation sub-problems, increasing the total CPU time.  Therefore, their identification 

and addition to the formulation must be careful and wise, since it may not always be 

effective.  Developments of logic constraints can be found, for example, in Andalaft et al. 

(2002) for forest harvesting related optimization problems.  Related research has been 

performed earlier by Kirby et al. (1986) and Guignard et al. (1994, 1998). 

The underlying concept behind all the inequalities developed in this section is that 

hybrid customers will be choosing their P or D checkpoints as close as possible to their 

corresponding ND or NP stop, once these are placed in the schedule.  In order to prove this 

we need to assume ω2 > ω3 in the objective function (1), which implies that customers 

would prefer to wait for pick-up rather than to ride the vehicle.  Note that the waiting time 

is defined as the difference between the pick-up time and the ready time (pk – τk, ∀k∈K).  

This would generally not be true if customers do not know the schedule and face random 

arrivals of buses at their pick-up locations; in fact, they would probably rather spend their 

time onboard instead of waiting at their pick-up stop, especially when facing bad weather 

conditions and/or unsafe areas.  However, in a MAST system, once the schedule is done, 

customers know in advance the expected time for pick-up and drop-off.  Thus, given that 

the drop-off time is fixed, they would reasonably prefer to have their scheduled pick-up 

times as late as possible to make their ride shorter and consequently their wait longer.  This 

is particularly true for NPD and NPND customers that would spend their waiting time at 

their NP stop (home or office or other convenient locations) and not at an outdoor bus stop.  

Also, PND and PD customers would spend their waiting time at the checkpoints, most 

likely large comfortable and equipped stations rather than outdoor possibly unsafe bus 

stops. 

More formally, we can state the following Proposition 1 for NPD requests, which 

will disembark the vehicle as early as possible after being picked up to minimize their ride 

time. 

 

Proposition 1.  A necessary condition for optimality is that NPD customers must 

disembark the vehicle at the first occurrence of their D checkpoint following their 

scheduled NP pick-up stop. 
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Proof.  Consider a request k∈KNPD and assume that the optimal solution, call it (I), 

drops off request k during trip r°, i.e. zk,r° = 1, and has ps(k) scheduled between dc(k,r*-1) 

and dc(k,r*), with r° > r*.  The objective function can be written as Z = ∆ + ω2(dk-pk), 

where ∆ includes all the terms in Z except the ride time term of k; therefore its value would 

be ZI = ∆ + ω2( ( )°rkt ,dc -pk), since dk = ( )°rkt ,dc  (depending on the values of the zk,r, indicating 

at which occurrence of the drop-off checkpoint the customer disembarks the vehicle, dk 

could be equal to ( )*,dc rkt , ( )1*,dc +rkt ,…, ( )R,dc kt , with ( )*,dc rkt  < ( )1*,dc +rkt  <…< ( )R,dc kt ).  

Another feasible solution (II) of the problem can be identified by setting zk,r° = 0 and 

zk,r* = 1, thus dk = ( )*,dc rkt , and leaving everything else unchanged (the customer would 

basically disembark the vehicle at an earlier occurrence of its drop-off checkpoint).  Its 

ZII = ∆ + ω2( ( )*,dc rkt -pk).  Since ( )*,dc rkt  < ( )°rkt ,dc , we have ZII < ZI.  This is a contradiction.  

� 

 

In parallel, we can develop and prove the following Proposition 2 for PND requests, 

which will board the vehicle as late as possible, minimizing their ride time and therefore 

maximizing their waiting time. 

 

Proposition 2.  If ω2 > ω3, a necessary condition for optimality is that PND 

customers must board the vehicle at the last occurrence of their P checkpoint prior to their 

scheduled ND drop-off stop. 

 

Proof.  Consider a request k∈KPND with τk ≤ tpc(k,r°) and assume that the optimal 

solution, call it (I), picks up request k during trip r°, i.e. zk,r° = 1, and has ds(k) scheduled 

between pc(k,r*) and pc(k,r*+1), with r° < r*.  The objective function can be written as 

Z = ∆ + ω2(dk-pk) + ω3(pk-τk), where ∆ includes all the terms in Z except the ride time and 

the waiting time terms of k, and can be rearranged as Z = ∆ + ω2dk - ω3τk + pk(ω3-ω2); 

therefore its value would be ZI = ∆ + ω2dk - ω3τk + tpc(k,r°)(ω3-ω2), since pk = tpc(k,r°) 

(depending on the values of the zk,r, indicating at which occurrence of the pick-up 

checkpoint the customer boards the vehicle, pk could be equal to tpc(k,r°), tpc(k,r°+1),…, tpc(k,r*), 
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with tpc(k,r°) < tpc(k,r°+1) <…< tpc(k,r*)).  Another feasible solution (II) of the problem can be 

identified by setting zk,r° = 0 and zk,r* = 1, thus pk = tpc(k,r*), and leaving everything else 

unchanged (the customer would basically board the vehicle at a later occurrence of its 

pick-up checkpoint).  Its ZII = ∆ + ω2dk - ω3τk + tpc(k,r*)(ω3-ω2).  Since ω3-ω2 < 0 by 

assumption and tpc(k,r°) < tpc(k,r*), we have ZII < ZI.  This is a contradiction.  � 

 

Note that the opposite assumption on the weights (ω2 < ω3) would just reverse the 

above result, having customers getting onboard as soon as possible and we would still be 

able to produce logic cuts similar to the ones developed shortly. 

Although the logic behind the above Propositions may seem obvious to a human 

mind, it is not explicitly stated in the formulation and the solver would still consider several 

feasible but inefficient solutions (violating the above Propositions) as possible candidates 

while searching for optimality.  Therefore, based on the above Propositions, we develop 

three different groups of valid inequalities to add to the formulation. 

To formally develop the constraints we define the following notation: 

 

• An = arcs in Nn, including all arcs (i,j), ∀i,j∈Nn, with i ≠ j. 

• A0,n = arcs from N0 to Nn, including all arcs (i,j), ∀i∈N0/{TC}, ∀j∈Nn. 

• An,0 = arcs from Nn to N0, including all arcs (i,j), ∀i∈Nn, ∀j∈N0/{1}. 

• q(i)∈K = corresponding request of each non-checkpoint stop i, ∀i∈Nn 

 

3.1 Group #1 

The first group of inequalities is developed by directly applying Propositions 1 and 

2.  They include constraints linking the z variables to the t variables (departure times) of 

non-checkpoint stops of hybrid requests and constraints linking the z variables to some of 

the x variables. 

For a PND request a legitimate set of inequalities is represented by 

 

tds(k) < zk,rθj + M(1-zk,r), (16) 
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with j = pc(k,r+1), ∀k∈KPND, ∀r∈RD/{R} 

 

Because of Proposition 2 these constraints force the ND stop of each PND request 

to be scheduled before the next occurrence in the schedule of the checkpoint chosen as the 

pick-up.  If zk,r = 1 the PND customer is picked up at his/her checkpoint pc(k,r) in trip r and 

the constraint imposes that the ds(k) has to be scheduled before pc(k,r+1) by setting an 

upper bound on the departure time tds(k).  If zk,r = 0 the constraint becomes irrelevant 

because of the M. 

Symmetrically for NPD requests a legitimate set of inequalities is represented by 

 

tps(k) > zk,rθi - M(1-zk,r), (17) 

with i = dc(k,r-1), ∀k∈KNPD, ∀r∈RD/{1} 

 

Because of Proposition 1, these constraints force the NP stop of each NPD request 

to be scheduled after the previous occurrence in the schedule of the checkpoint chosen as 

the drop-off.  If zk,r = 1 the NPD customer is dropped off at his/her checkpoint dc(k,r) in 

trip r and the constraint imposes that the ps(k) has to be scheduled after dc(k,r-1) by setting 

a lower bound on the departure time tps(k).  If zk,r = 0 the constraint becomes irrelevant 

because of the M. 

We can also include the following inequalities for PND requests: 

 

xds(k),j ≤ zk,r, (18) 

with pc(k,r) < j ≤ pc(k,r+1), ∀k∈KPND, ∀r∈RD/{R}, ∀(ds(k),j)∈An,0 

 

By Proposition 1, if zk,r = 1, ds(k) must be scheduled between pc(k,r) and pc(k,r+1) 

and all arcs originating from ds(k) and ending at a checkpoint j can not exist whenever j is 

not included in that interval.  These arcs would in fact infeasibly require the vehicle to go 

from ds(k) to a checkpoint scheduled before its pick-up pc(k,r) or to skip pc(k,r+1) going 

directly from ds(k) to a checkpoint scheduled after pc(k,r+1). 

Similarly we have: 
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xi,ds(k) ≤ zk,r, (19) 

with pc(k,r) ≤ i < pc(k,r+1), ∀k∈KPND, ∀r∈RD/{R}, ∀(i,ds(k))∈A0,n 

 

All arcs originating from a checkpoint i and ending at ds(k) are eliminated whenever 

i is not included in the interval [pc(k,r), pc(k,r+1)) identified by zk,r = 1. 

Symmetrically for NPD requests we have that 

 

xi,ps(k) ≤ zk,r, (20) 

with dc(k,r-1) ≤ i < dc(k,r), ∀k∈KNPD, ∀r∈RD/{1}, ∀(i,ps(k))∈A0,n 

 

xps(k),j ≤ zk,r, (21) 

with dc(k,r-1) < j ≤ dc(k,r), ∀k∈KNPD, ∀r∈RD/{1}, ∀(ps(k),j)∈An,0 

 

3.2 Group #2 

A second group of inequalities includes constraints linking z and x variables by 

making use of Propositions 1 and 2 along with the ready times τ of the requests. 

For PND requests we have that 

 

τq(i) + δi,j + bj ≤ zk,rθj + M(2-zk,r-xds(k),i), (22) 

with i = ps(q(i)), j = pc(k,r+1), ∀k∈KPND, ∀r∈RD/{R}, ∀(ds(k),i)∈An 

 

By Proposition 1, if zk,r = 1, ds(k) must be scheduled between pc(k,r) and pc(k,r+1) 

and these constraints impose that any arc originating from the ds(k) of a PND request to any 

non-checkpoint pick-up i is not allowed if the vehicle would not be able to reach 

checkpoint pc(k,r+1) on time by passing through i, because of too high τq(i), even using the 
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quickest way possible.  The M causes these constraints to become irrelevant if either zk,r or 

xds(k),i are not equal to 1. 

Similarly, 

 

τq(i) + (δps(q(i)),ds(k)+δds(k),i+δi,j) + (bds(k)+bi+bj) ≤ zk,rθj + M(2-zk,r-xds(k),i), (23) 

with i = ds(q(i)), j = pc(k,r+1), ∀k∈KPND, ∀r∈RD/{R}, ∀(ds(k),i)∈An 

 

Any arc originating from the ds(k) of a PND request k to any non-checkpoint 

drop-off i is not allowed if the vehicle is not able to go from the pick-up point ps(q(i)) to 

ds(k) to i to checkpoint pc(k,r+1) on time, because of too high τq(i), even using the quickest 

way possible.  The M causes these constraints to become irrelevant if either zk,r or xds(k),i are 

not equal to 1. 

Analogous constraints can be developed for arcs (i,ds(k)) as follows: 

 

τq(i) + (δi,ds(k)+δds(k),j) + (bds(k)+bj) ≤ zk,rθj + M(2-zk,r-xi,ds(k)), (24) 

with i = ps(q(i)), j = pc(k,r+1), ∀k∈KPND, ∀r∈RD/{R}, ∀(i,ds(k))∈An 

 

τq(i) + (δps(q(i)),i+δi,ds(k)+δds(k),j) +(bi+bds(k)+bj) ≤ zk,rθj + M(2-zk,r-xi,ds(k)), (25) 

with i = ds(q(i)), j = pc(k,r+1), ∀k∈KPND, ∀r∈RD/{R}, ∀(i,ds(k))∈An 

 

For NPD requests the four constraints above can be developed likewise: 

 

τq(i) + δi,j + bj ≤ zk,rθj + M(2-zk,r-xps(k),i), (26) 

with i = ps(q(i)), j = dc(k,r), ∀k∈KNPD, ∀r∈RD, ∀(ps(k),i)∈An 

 

τq(i) + (δps(q(i)),ps(k)+δps(k),i+δi,j) + (bps(k)+bi+bj) ≤ zk,rθj + M(2-zk,r-xps(k),i), (27) 

with i = ds(q(i)), j = dc(k,r), ∀k∈KNPD, ∀r∈RD, ∀(ps(k),i)∈An 

 

τq(i) + (δi,ps(k)+δps(k),j) + (bps(k)+bj) ≤ zk,rθj + M(2-zk,r-xi,ps(k)), (28) 
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with i = ps(q(i)), j = dc(k,r), ∀k∈KNPD, ∀r∈RD, ∀(i,ps(k))∈An 

 

τq(i) + (δps(q(i)),i+δi,ps(k)+δps(k),j) + (bi+bps(k)+bj) ≤ zk,rθj + M(2-zk,r-xi,ps(k)), (29) 

with i = ds(q(i)), j = dc(k,r), ∀k∈KPND, ∀r∈RD, ∀(i,ps(k))∈An 

 

3.3 Group #3 

A third group of inequalities links z and x variables by applying the results from the 

Propositions to pairs of hybrid requests.  We indeed know by Proposition 1 (2) that the 

non-checkpoint stop of a PND (NPD) request must be included in the interval between the 

chosen pick-up (drop-off) checkpoint and its next (previous) occurrence in the schedule.  

For any given pair of hybrid requests, the direct path connecting together their 

non-checkpoint stops identified by the appropriate x variable is not allowed if the intervals 

where the non-checkpoint stops are supposed to be included in, identified by the 

corresponding z variables, do not overlap. 

Therefore, the following relationships can be written: 

 

zh,sθi - zk,rθj < M(3-zh,s-zk,r-xds(k),ds(h)), (30) 

with i = pc(h,s), j = pc(k,r+1), ∀k,h∈KPND, ∀r∈RD/{R}, ∀s∈RD 

 

zh,sθi - zk,rθj < M(3-zh,s-zk,r-xds(h),ds(k)), (31) 

with i = pc(h,s), j = pc(k,r+1), ∀k,h∈KPND, ∀r∈RD/{R}, ∀s∈RD 

 

zh,sθi - zk,rθj < M(3-zh,s-zk,r-xps(k),ps(h)), (32) 

with i = dc(h,s-1), j = dc(k,r), ∀k,h∈KNPD, ∀r∈RD, ∀s∈RD/{1} 

 

zh,sθi - zk,rθj < M(3-zh,s-zk,r-xps(h),ps(k)), (33) 

with i = dc(h,s-1), j = dc(k,r), ∀k,h∈KNPD, ∀r∈RD, ∀s∈RD/{1} 
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zh,sθi - zk,rθj < M(3-zh,s-zk,r-xps(k),ds(h)), (34) 

with i = pc(h,s), j = dc(k,r), ∀k∈KNPD, ∀h∈KPND, ∀r∈RD, ∀s∈RD 

 

zh,sθi - zk,rθj < M(3-zh,s-zk,r-xds(h),ps(k)), (35) 

with i = pc(h,s), j = dc(k,r), ∀k∈KNPD, ∀h∈KPND, ∀r∈RD, ∀s∈RD 

 

zh,sθi - zk,rθj < M(3-zh,s-zk,r-xds(k),ps(h)), (36) 

with i = dc(h,s-1), j = pc(k,r+1), ∀k∈KPND, ∀h∈KNPD, ∀r∈RD/{R}, ∀s∈RD/{1} 

 

zh,sθi - zk,rθj < M(3-zh,s-zk,r-xps(h),ds(k)), (37) 

with i = dc(h,s-1), j = pc(k,r+1), ∀k∈KPND, ∀h∈KNPD, ∀r∈RD/{R}, ∀s∈RD/{1} 

 

For example in constraints (30) if zh,s = 1 and zk,r = 1 we know that ds(h) must be 

scheduled between pc(h,s) and pc(h,s+1); similarly ds(k) must be scheduled between 

pc(k,r) and pc(k,r+1).  Therefore, the direct path from ds(k) to ds(h), identified by xds(k),ds(h), 

can not be allowed if checkpoint pc(h,s) is not scheduled earlier than pc(k,r+1) and the 

intervals do not overlap, because the vehicle would have to pass by those checkpoints first, 

not allowing a direct path that would skip them.  The M causes these constraints to become 

irrelevant if either zh,s, zk,r or xds(k),ds(h) are equal to 0. 

 

3.4 Other constraints 

We note that it would be possible to develop several other valid inequalities similar 

to the ones already described.  Equations from (16) to (37) shrink the feasible region by 

rendering infeasible some direct arcs from some stop i to some stop j, identified by xi,j.  

Utilizing the same logic, we could forbid any path beginning at i, passing through one or 

more non-checkpoint stops and ending at j.  However, the number of constraints added to 

the formulation would be exponentially high, most likely slowing down the solution search 

instead of being effective. 
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4 Experimental results 

In this section we evaluate the effectiveness of the groups of inequalities defined 

above by solving different instances of the problem, including none, one or all of them in 

the formulation.  All the runs are performed utilizing CPLEX 9.0 with default settings 

using a 3.2 GHz CPU with 2GB RAM.  We refer to Figure 1 for the geometry of the MAST 

system considered and the following Table 1 summarizes the assumed parameters, common 

to all cases and consistent with the real data of the MTA Line 646 in Los Angeles County. 

 

Table 1 – System parameters, common to all cases 

L 10 miles 
W 1 mile 
C 3 
δs,s+1 (s = 1,…, TC-1) 12 min 
bs (s = 1,…, TS) 18 sec 
ω1 / ω2 / ω3 0.4 / 0.4 / 0.2

 

We run two sets of experiments: in set A we assume a difference between the 

scheduled departure times of two consecutive checkpoints (θs+1-θs, s = 1,…, TC-1) of 17.5 

minutes; in set B we assume 25 minutes instead.  As a result the slack time is 

approximately 25% in set A and 50% in set B, since the direct time among two consecutive 

checkpoint is about 12.5 minutes. 

In each set we consider two different subsets of runs.  In subset A2 (and B2) we 

assume larger number of trips (R) compared to subset A1 (and B1).  In each subset we 

consider four cases (i.e., for subset A1: A1a, A1b, A1c and A1d) so that moving from the 

smallest (A1a) to the largest (A1d) case we have a 5-unit increase in the total number of 

stops in the network (TS).  We assume a different number of requests of each type, as 

shown in the following Table 2.  The NP and ND locations are sampled from a spatial 

uniform distribution over the whole service area (W×L); while the ready times are sampled 

from a uniform distribution starting from half an hour before the beginning of the service to 

the end of it. 
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Table 2 – System parameters specific to each case 

Cases 
Parameters 

A1a
B1a

A1b
B1b

A1c
B1c

A1d
B1d

A2a
B2a

A2b
B2b

A2c 
B2c

A2d 
B2d 

R 2 4 4 4 6 6 6 6 
TC 5 9 9 9 13 13 13 13 
|KPD| 1 1 1 2 1 1 1 1 
|KPND| 2 2 5 6 1 3 5 8 
|KNPD| 1 2 4 6 1 2 5 7 
|KNPND| 1 1 1 2 0 1 1 1 
TS 10 15 20 25 15 20 25 30 

 

As a result we have TS going from 10 to 25 for subsets A1 (and B1) and from 15 to 

30 for subsets A2 (and B2).  As mentioned in the introduction, the MAST scheduling 

problem can be considered as a special case of the PDP.  The traditional single-vehicle PDP 

has been solved optimally for sizes up to about 30 nodes (Kalantari, Hill and Arora, 1985; 

Fischetti and Toth, 1989; Ruland and Rodin, 1997), which is about the same size of the 

MAST problems solved in this paper. 

We tried to maintain the ratio between the different types of requests as close as 

possible to the real demand data of MTA Line 646, which has a distribution described in 

the following Table 3. 

 

Table 3 – Customer type distribution of MTA line 646 

Type PD PND NPD NPND 
% 10% 40% 40% 10% 

 

In each case we solve the problem with five different formulations: without adding 

any groups of inequalities (“none”), adding only one group at a time (“#1”, “#2” or “#3”) or 

adding all the groups together (“all”).  For each run we show the size of the problem solved 
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(after the “presolve” routine in CPLEX): total variables (“var”), divided into binary (“bin”) 

and linear (“lin”) and total number of constraints (“con”).  The following columns show the 

time to reach optimality in seconds (“sec”), the number of nodes visited in the branch and 

bound tree (“n”), the number of simplex iterations performed (“i”), the relaxed optimal 

value (“rel”) and the real optimum (“opt”).  We stopped CPLEX after a maximum solving 

time of 10 hours (36,000 seconds), recording the upper (“ub”) and lower (“lb”) bounds and 

the “gap” reached at that time.  The complete results of one instance of each case for subset 

A1, A2, B1 and B2 are shown in Table 4, Table 5, Table 6 and Table 7 respectively. 
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Table 4 – CPLEX runs, subset A1 

Case: A1a TS=10: R=2; |KPD|=1; |KPND|=2; |KNPD|=1; |KNPND|=1 

cuts var bin lin con sec n i rel opt ub lb gap 
none 52 29 23 64 0.03 35 156 60.8 84.9 / / 0.0% 
#1 52 29 23 67 0.02 21 98 60.9 84.9 / / 0.0% 
#2 52 29 23 66 0.01 24 118 60.8 84.9 / / 0.0% 
#3 52 29 23 66 0.02 24 118 60.8 84.9 / / 0.0% 
all 52 29 23 71 0.03 26 185 60.9 84.9 / / 0.0% 

Case: A1b TS=15: R=4; |KPD|=1; |KPND|=2; |KNPD|=2; |KNPND|=1 

cuts var bin lin con sec n 103 i rel opt ub lb gap 
none 114 79 35 146 0.16 182 1.34 101.0 141.22 / / 0.0% 
#1 109 75 34 146 0.08 23 0.31 101.1 141.22 / / 0.0% 
#2 114 79 35 174 0.16 140 0.92 101.0 141.22 / / 0.0% 
#3 114 79 35 228 0.20 189 1.56 101.0 141.22 / / 0.0% 
all 109 75 34 245 0.09 11 0.30 101.1 141.22 / / 0.0% 

Case: A1c TS=20: R=4; |KPD|=1; |KPND|=5; |KNPD|=4; |KNPND|=1 

cuts var bin lin con sec 103 n 103 i rel opt ub lb gap 
none 226 176 50 273 44.35 59.59 449.6 129.9 191.3 / / 0.0% 
#1 219 171 48 309 6.59 6.93 71.9 129.9 191.3 / / 0.0% 
#2 226 176 50 332 37.95 40.87 408.4 129.9 191.3 / / 0.0% 
#3 226 176 50 451 40.5 38.34 385.8 129.9 191.3 / / 0.0% 
all 219 171 48 493 5.35 4.25 54.8 129.9 191.3 / / 0.0% 

Case: A1d TS=25: R=4; |KPD|=2; |KPND|=6; |KNPD|=6; |KNPND|=2 

cuts var bin lin con sec 103 n 106 i rel opt ub lb gap 
none 279 216 63 343 419 327 3.80 154.1 242.4 / / 0.0% 
#1 273 211 62 390 81 64 0.77 154.1 242.4 / / 0.0% 
#2 279 216 63 416 186 131 1.69 154.1 242.4 / / 0.0% 
#3 279 216 63 503 269 192 2.20 154.1 242.4 / / 0.0% 
all 273 211 62 563 80 53 0.73 154.1 242.4 / / 0.0% 
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Table 5 – CPLEX runs, subset A2 

Case: A2a TS=15: R=6; |KPD|=1; |KPND|=1; |KNPD|=1; |KNPND|=0 

cuts var bin lin con sec n i rel opt ub lb gap 
none 68 35 33 83 0.02 9 106 80 101.1 / / 0.0%
#1 68 35 33 106 0.01 0 59 80 101.1 / / 0.0%
#2 68 35 33 87 0.01 9 119 80 101.1 / / 0.0%
#3 68 35 33 101 0.02 7 103 80 101.1 / / 0.0%
all 68 35 33 128 0.01 0 61 80 101.1 / / 0.0%

Case: A2b TS=20: R=6; |KPD|=1; |KPND|=3; |KNPD|=2; |KNPND|=1 

cuts var bin lin con sec n i rel opt ub lb gap 
none 129 84 45 156 0.12 191 978 126.1 164.5 / / 0.0%
#1 129 84 45 194 0.10 17 366 126.1 164.5 / / 0.0%
#2 129 84 45 184 0.11 142 853 126.1 164.5 / / 0.0%
#3 129 84 45 316 0.17 188 1,164 126.1 164.5 / / 0.0%
all 129 84 45 382 0.09 10 304 126.1 164.5 / / 0.0%

Case: A2c TS=25: R=6; |KPD|=1; |KPND|=5; |KNPD|=5; |KNPND|=1 

cuts var bin lin con sec n 103 i rel opt ub lb gap 
none 287 226 61 353 41.20 27,267 392.8 162 212 / / 0.0%
#1 284 223 61 437 2.03 893 12.0 162 212 / / 0.0%
#2 287 226 61 435 38.72 20,315 374.5 162 212 / / 0.0%
#3 287 226 61 739 73.96 29,313 556.7 162 212 / / 0.0%
all 284 223 61 819 1.83 524 8.5 162 212 / / 0.0%

Case: A2d TS=30: R=6; |KPD|=1; |KPND|=8; |KNPD|=7; |KNPND|=1 

cuts var bin lin con sec 106 n 106 i rel opt ub lb gap 
none 418 342 76 503 36,000 14.3 242 186.7 ? 294.1 274.7 6.6%
#1 409 334 75 604 10,316 3.8 60 186.7 293.9 / / 0.0%
#2 418 342 76 671 36,000 12.1 227 186.7 ? 295.2 267.4 9.4%
#3 418 342 76 1,377 36,000 5.1 138 186.7 ? 295.3 257.8 12.7%
all 409 334 75 1,428 12,273 3.7 65 186.7 293.9 / / 0.0%
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Table 6 – CPLEX runs, subset B1 

Case: B1a TS=10: R=2; |KPD|=1; |KPND|=2; |KNPD|=1; |KNPND|=1 

cuts var bin lin con sec n i rel opt ub lb gap 
none 67 43 24 85 0.04 64 403 81.2 114.7 / / 0.0%
#1 67 43 24 91 0.03 27 221 81.8 114.7 / / 0.0%
#2 67 43 24 87 0.04 50 324 81.2 114.7 / / 0.0%
#3 67 43 24 85 0.04 64 403 81.2 114.7 / / 0.0%
all 67 43 24 93 0.03 25 217 81.8 114.7 / / 0.0%

Case: B1b TS=15: R=4; |KPD|=1; |KPND|=2; |KNPD|=2; |KNPND|=1 

cuts var bin lin con sec n 103 i rel opt ub lb gap 
none 124 89 35 156 0.56 695 7.91 105.8 164.9 / / 0.0%
#1 123 88 35 199 0.19 126 1.39 105.8 164.9 / / 0.0%
#2 124 89 35 188 0.50 643 5.46 105.8 164.9 / / 0.0%
#3 124 89 35 256 0.62 815 7.25 105.8 164.9 / / 0.0%
all 123 88 35 309 0.25 89 1.55 105.8 164.9 / / 0.0%

Case: B1c TS=20: R=4; |KPD|=1; |KPND|=5; |KNPD|=4; |KNPND|=1 

cuts var bin lin con sec 103 n 106 i rel opt ub lb gap 
none 247 197 50 299 619.0 723.3 5.58 132.8 217.8 / / 0.0%
#1 244 195 49 351 49.0 60.7 0.47 132.8 217.8 / / 0.0%
#2 247 197 50 400 355.7 319.9 3.33 132.8 217.8 / / 0.0%
#3 247 197 50 639 508.1 460.2 4.03 132.8 217.8 / / 0.0%
all 244 195 49 742 32.0 27.2 0.31 132.8 217.8 / / 0.0%

Case: B1d TS=25: R=4; |KPD|=2; |KPND|=6; |KNPD|=6; |KNPND|=2 

cuts var bin lin con sec 106 n 106 i rel opt ub lb gap 
none 398 336 62 452 36,000 20.2 249 193.0 ? 312.8 293.0 6.3%
#1 398 336 62 506 36,000 17.5 235 193.0 ? 312.8 304.4 2.7%
#2 398 336 62 552 36,000 17.0 246 193.0 ? 312.8 293.4 6.2%
#3 397 335 62 590 36,000 14.4 215 193.0 ? 312.8 295.6 5.5%
all 397 335 62 744 36,000 15.3 219 193.0 ? 312.8 299.8 4.1%
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Table 7 – CPLEX runs, subset B2 

Case: B2a TS=15: R=6; |KPD|=1; |KPND|=1; |KNPD|=1; |KNPND|=0 

cuts var bin lin con sec n i rel opt ub lb gap 
none 86 53 33 107 0.03 4 144 92.6 103.3 / / 0.0%
#1 86 53 33 146 0.02 0 129 92.7 103.3 / / 0.0%
#2 86 53 33 113 0.03 4 115 92.6 103.3 / / 0.0%
#3 86 53 33 129 0.02 0 156 92.6 103.3 / / 0.0%
all 86 53 33 174 0.01 0 82 92.7 103.3 / / 0.0%

Case: B2b TS=20: R=6; |KPD|=1; |KPND|=3; |KNPD|=2; |KNPND|=1 

cuts var bin lin con sec 103 n 103 i rel opt ub lb gap 
none 172 127 45 205 2.76 5.93 35.04 139.1 190.9 / / 0.0%
#1 172 127 45 261 0.47 0.54 4.46 139.1 190.9 / / 0.0%
#2 172 127 45 243 1.99 3.47 24.98 139.1 190.9 / / 0.0%
#3 172 127 45 365 2.16 2.93 22.86 139.1 190.9 / / 0.0%
all 172 127 45 459 0.96 1.15 9.99 139.1 190.9 / / 0.0%

Case: B2c TS=25: R=6; |KPD|=1; |KPND|=5; |KNPD|=5; |KNPND|=1 

cuts var bin lin con sec 103 n 106 i rel opt ub lb gap 
none 327 266 61 393 589 388 5.49 143.5 222.1 / / 0.0%
#1 327 266 61 518 64 41 0.62 143.5 222.1 / / 0.0%
#2 327 266 61 593 489 314 4.36 143.5 222.1 / / 0.0%
#3 327 266 61 1,004 1,007 501 6.57 143.5 222.1 / / 0.0%
all 327 266 61 1,329 51 27 0.46 143.5 222.1 / / 0.0%

Case: B2d TS=30: R=6; |KPD|=1; |KPND|=8; |KNPD|=7; |KNPND|=1 

cuts var bin lin con sec 106 n 106 i rel opt ub lb gap 
none 567 491 76 654 36,000 12.0 198 196.6 ? 332.8 278.7 16.3%
#1 566 490 76 839 36,000 7.5 168 196.6 ? 332.8 298.3 10.4%
#2 567 491 76 908 36,000 7.4 161 196.6 ? 334.9 283.3 15.4%
#3 567 491 76 1,826 36,000 4.5 136 196.6 ? 333.2 270.8 18.7%
All 566 490 76 2,157 36,000 7.1 150 196.6 ? 332.8 305.6 8.2%
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The results in the tables show that cuts “#1” are the most effective, followed by 

“#2” and then by “#3”, which are efficient in roughly half of the cases (compared to the 

“none” runs).  The synergistic effect of grouping them all the cuts together (“all” runs) is 

beneficial in most cases; however, in some cases, adding cuts “#1” alone to the formulation 

is still the best choice.  The improvement due to the logic cuts can be observed in any 

instance, reaching a reduction of CPU time up to 90% or more in some of them compared 

to the “none” runs (see cases “c”).  The larger problem size cases “d” do not always reach 

optimality but the effect of cuts can be noted by looking at the smaller “gap” values, which 

are tightened because of better lower bounds “lb”.  In case A2d, the optimality gap is still 

6.6% after 10 CPU hours with the original formulation (“none”); cuts “#2” and “#3” are not 

effective; yet optimality is reached after about 3 CPU hours with cuts “#1” or “all”.  We 

also note that the relaxed optimal values (“rel”) are about the same in each run for each 

case; this means that the cuts do not improve the initial value of the lower optimality 

bound, but they are effective in speeding up the rise of it throughout the iterations. 

We note that increasing the slack time from 25% (Set A) to 50% (Set B) expands 

the feasible region, because more stops could be placed between any pair of consecutive 

checkpoints in the schedule.  As a result, the solution run time is consistently larger in all 

instances.  For example in case A1d CPLEX is able to reach the optimal solution in each 

run relatively fast, while in case B1d CPLEX could not find the optimal solution in any run 

after the 10 hours maximum solving time allowed.  Similarly A2d can be solved faster than 

B2d and so forth. 

The significant results show how effective the methodology can be.  The original 

MIP formulation is enough to fully represent the MAST scheduling problem and find an 

optimum for any given instance.  However, “complicating” the model by adding logic 

constraints can be extremely effective to guide solvers in finding optimality faster, which 

could be crucial for NP-Hard problems.  This would suggest applying the methodology for 

more complicated MAST systems (multiple-vehicle and/or MAST networks). 
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5 Conclusions 

In this paper we propose a Mixed Integer Programming (MIP) formulation of the 

static scheduling problem of a Mobility Allowance Shuttle Transit (MAST) system, a 

hybrid transit solution combining fixed and flexible types of services.  Since it is a 

NP-Hard problem, we develop sets of “logic cuts” based on reasonable assumptions on 

passengers’ behavior and whose purpose is to remove inefficient and therefore 

uninteresting solutions from the feasible region to speed up the search for optimality. 

Experimental results on several instances show the effectiveness of the cuts, which 

are able to reduce the CPU solution time by up to more than 90% for some cases.  

Specifically, cuts “#1” provide the best overall results that always effective, followed in 

general by cuts “#2” and cuts “#3”, which are not always effective.  The synergistic effect 

of including all the cuts together further reduces the CPU solution time in many cases. 

Future research may consider developing a solution algorithm which would 

efficiently “add and lift” the logic constraints in the formulation throughout the iterations 

and possibly reduce the CPU solution time even more.  In addition, the same methodology 

could be used to further strengthen the MAST scheduling optimization problem 

formulation by looking for different logic constraints. 
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