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Abstract 

The most natural and popular dispatching rule for double-track segments is to 

dedicate one track for trains traveling in one direction. However, sometimes passenger 

trains have to share some portions of the railway with freight trains and passenger 

trains are traveling faster and faster nowadays. The major drawback of this dedicated 

rule is that a fast train can be caught behind a slow train and experience significant 

knock-on delay. In this paper, we propose a switchable dispatching policy for a 

double-track segment. The new dispatching rule enables the fast train to pass the slow 

train by using the track traveled by trains in the opposite direction if the track is empty. 

We use queueing theory techniques to derive the delay functions of this policy. The 

numerical experiments show that a switchable policy can reduce the fast train 

knock-on delay by as high as 30% compared to a dedicated policy. When there are 

crossovers at the middle of the double-track segment, our proposed switchable policy 

can reduce the delay of the fast trains by as high as 65%.  
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1. Introduction 

Railway operation is an effective mode to transport both people and goods. 

The freight transportation industry uses railway to move goods because it is relatively 

cheap compared to trucks and air; people take trains because it is typically faster and 

safer than cars and yet less expensive than airplanes. Nowadays, passenger trains are 

traveling faster and faster.  However sometimes passenger trains have to share some 

portions of the railway with freight trains, because in some places, it is not possible to 

expand the railway infrastructure. For example, in the downtown area of Los Angeles, 

freight railway companies like BNSF and Union Pacific share rail tracks with 

Metrolink and Amtrak which are passenger train companies. Also in China, the lower 

grade of their high speed lines (usually running at speeds between 120 and 160 mph) 

comprise both passenger and freight trains. Mixed usage of infrastructure is also very 

common in central European countries. Since the passenger trains travel much faster 

than freight trains, if a passenger train is caught behind a freight train, the passenger 

train will experience severe delay. Even if the track is dedicated for passenger trains, 

they might travel at different speeds, with the faster passenger train being blocked by 

a slower passenger train.  

To determine if the current infrastructure can handle certain traffic loads or to 

compare different dispatching rules, it is imperative to have a robust delay estimation 

technique that accurately predicts the travel time delay given different operating 

conditions. It is common to see double-track railway segments between two major 

intersections, the most natural and popular dispatching rule is to dedicate one track for 

trains traveling in one direction. The major drawback of this simple rule is that a fast 

train can be easily caught behind a slow train thus experiencing significant knock-on 

delay. In this paper, we focus on minimizing the knock-on/secondary delay, not the 

existing/primary delay. We propose a “smarter” dispatching policy and estimate the 

knock-on delays of this policy for fast and slow trains on double-track segments.  

There has been some prior work in delay estimation of railway operations. 
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Frank (1966) studies delay on a single track. He considers a single train speed and 

deterministic travel times. Chen et al. (1990) present a technique to estimate the delay 

for different types of trains on a single track. Harker et al. (1990) extend Chen’s 

model to partially double-track sections. Ozekici et al. (1994) use Markov chain 

techniques to study the knock-on delays under different dispatching policies and 

arrival patterns of passengers. They construct a transition matrix to calculate the 

expected delay. Higgins et al. (1998) also present an analytically based model to 

compute the delays for individual trains and track links in urban railway network. 

Yuan et al. (2007) optimize the capacity utilization of stations by using a new 

stochastic model of train delay propagation. The new analytical model estimates the 

train delays caused by route conflicts and late transfers. The delay discussed in Yuan 

et al. (2007) is associated with pre-determined timetables, whereas the delay in this 

paper is referring to simple knock-on delay.       

Queueing theory has also been applied to study the train delays. 

Schwanhäußer (1974) applied queueing theory to develop a smooth model to assess 

expected waiting times of trains on a rail line. His model considers a minimum 

headway requirement, train priorities, and the level of initial delays. Greenberg et al. 

(1988) use queueing models for predicting dispatching delays on single-track, low 

speed rail segments. The arrivals of trains are assumed to be a Poisson Process. In 

their work, the sidings are assumed to have infinite capacity. Huisman et al. (2001) 

study the delay of fast trains being caught behind slower ones. The running times of 

trains are obtained by solving a system of linear differential equations. The queueing 

model belongs to the class of a G|G|  resequencing queue. Huisman et al. (2002) 

propose a solvable queueing network model to estimate the mean delays at the 

network level using closed form expressions.  

Besides queueing theory, simulation models have also been used to determine 

delay time for more realistic rail operations. Dessouky et al. (1995) built a simulation 

model to analyze the delay of trains in a complex rail network. Their model considers 

the track speed limits, headways, train lengths and acceleration and deceleration rates 

of trains. This work is extended by Lu et al. (2004). Hooghiemstra et al. (1998) build 
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a simulation model for planners to study network-wide dynamic properties under 

different timetables. Yalçınkaya and Bayhan (2009) use a simulation modeling and 

response surface methodology approach to determine the optimal settings such as 

headway to minimize passenger waiting times. Medanic and Dorfman (2002) propose 

a discrete event model using a travel-advance strategy (TAS) to schedule trains on a 

single line. This approach is expanded in Dorfman and Medanic (2004) for general 

networks and incorporated in a simulation model of an actual real system. Li et al. 

(2008) present an alternative simulation model that implements an algorithm that 

makes use of global information of the system state to schedule trains. The simulation 

models can be at different scales and closely imitate real situations. However, 

compared to analytical models, simulation models generally lack insight on 

input/output relations. Simulation methods also require more modeling effort and 

higher computation times. 

In this paper, we propose a dispatching policy over double-track railway 

segments that are used by both fast and slow trains. The new dispatching rule enables 

the fast train to pass the slow train by using the track traveled by trains in the opposite 

direction if the track is empty. Thus our dispatching rule is more flexible than the 

existing dedicated policy. Then we use queueing theory techniques to calculate the 

delay functions of this policy. We analytically compare our dispatching policy with a 

dedicated policy. Though there are some research on the topic of automatic 

re-routing/dispatching of trains of different speed-profiles (see Kuckelberg 2011 and 

Weymann 2011), to our best knowledge, no policies similar to ours have been studied 

in the literature nor the delay functions of such a policy.  

The rest of the paper is organized as follows. Section 2 introduces the 

dispatching problem and two dispatching polices. Section 3 presents the delay 

functions of the two dispatching policies. Several numerical experiments are 

discussed in Section 4 and Section 5 expands the findings for double-track segments 

with crossovers. Finally, Section 6 summarizes the findings of this paper. 
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2. Problem statement and dispatching policies 

Without loss of generality, consider a double track east-west segment of a 

railroad line between two major intersections as shown in Figure 1. Trains arrive at 

either end of the track segment according to a Poisson process. There are two types of 

trains: fast trains (e.g., passenger trains) and slow trains (e.g., freight trains). The 

arrival of fast trains and slow trains are independent Poisson processes. The Poisson 

process, instead of fixed timetables, is used to model train arrivals for four reasons: (1) 

There is evidence in the literature showing that in highly congested railway corridors, 

the arrivals and departures at intermediate stations may be approximated by a Poisson 

process (Goverde, 2005 and Yuan, 2006); (2) Before new railway infrastructures 

become fully available, the eventual timetables might be unknown. Thus a timetable 

with Poisson arrivals can be used to represent various possible future timetables; (3) 

Train services that are highly responsive to passenger demand may have Poisson 

arrivals; (4) Poisson-process is particularly valid if there is a significant share of 

freight trains which do not run according to pre-determined timetables. 

We define the following variables: 

,E f :  The arrival rate of eastbound fast trains. 

,E s :  The arrival rate of eastbound slow trains. 

,W f :  The arrival rate of westbound fast trains. 

,W s :  The arrival rate of westbound slow trains. 

E :  The arrival rate of eastbound trains, 
, ,E E f E s    . 

W :  The arrival rate of westbound trains, 
, ,W W f W s    . 

D:  The length of the double track segment. 

fS :  The speed of a fast train. 

sS :  The speed of a slow train. 

fT :  Minimum running time of fast trains on track segment, /f fT D S . 
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sT :  Minimum running time of slow trains on track segment, /s sT D S . 

 

Figure 1. Double-track railroad segment 

 

The upper and lower tracks of the segment are bi-directional. Thus any 

eastbound and westbound trains can travel on either track segment as long as no 

deadlock is caused. In this research, the length of the train and the headway between 

consecutive trains are not considered (e.g. train length and headway are both assumed 

to be zero). The effect of train length and headway on total train delay traveling in the 

segment would be negligible if the length of the track segment is much longer than 

the length of the train. Another main reason for making such assumptions is to keep 

the analytical model tractable and the goal of this paper is to develop an analytical 

model to compare the difference between the existing dedicated policy and the 

proposed new policy. Clearly, ignoring these assumptions underestimates the absolute 

magnitude of the delay (e.g., if minimum headway is considered, a train might be held 

back at the station until the minimum distance to the proceeding train is satisfied, thus 

the knock-on delay of trains will increase), but we are interested in the relative 

comparison of delay for the two policies. Mu and Dessouky (2011) conducted 

simulation studies where train length and headway are considered. The results show 

that, with the consideration of train length and headway, the proposed new policy 

dominates the existing dedicated policy by the same magnitude as we show by the 

analytical model in this paper. We also assume infinite waiting areas at both ends of 

the track segments and the switching of trains from one track to the other takes a 

negligible amount of time.  

The dispatching policy on this double-track segment controls the movement of 

trains for both directions. Different dispatching rules will result in different delays for 

E W

Length of the segment = D 

Station or sidings 
   Station or sidings 
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fast and slow trains. The delay time is calculated as: 

      Delay = Completion time – Arrival time at segment – Minimum running time  

The minimum running time is defined to be the fastest traveling time of the train 

assuming there are no other trains in the network. Delay can occur when either a train 

arrives at the segment and it has to wait for the track to be cleared from being 

occupied by trains traveling in the opposite direction or a fast train catches up with a 

slow train traveling in the same direction so that the fast train has to travel at the 

speed of the slow train. Next we are going to describe two dispatching policies whose 

delay functions are derived in Section 3. 

The easiest dispatching policy for this trackage configuration is to dedicate 

one track to one direction. Without loss of generality, let the upper track be dedicated 

to trains traveling westbound and the lower track be dedicated to trains traveling 

eastbound. Under this dispatching rule, all trains will be able to start traveling on the 

track as soon as they arrive at the beginning of the segment. Thus the slow trains will 

not be delayed and the delays of the fast trains are solely caused by reaching and 

following a slow train in the same direction.  

The major drawback of the dedicated policy is that if the arrival rates are high 

then the fast trains are likely to be blocked by slow trains. This type of delay will 

dominate even further if the speed difference between the fast and slow trains is 

relatively large. Here we propose a more flexible dispatching rule, called switchable 

policy, which is designed to reduce the likelihood of a fast train being blocked by a 

slow train. The switchable policy will allow a track segment to be used by trains 

travelling in two directions. Though similar “flying overtaking” is practiced in 

Switzerland and Germany, in most railway systems, allowing a track to be traveled in 

both directions may be considered risky (though interlocking mechanism assures no 

additional risks arise) and thus is not frequently used. However, as the traffic demand 

increases, some busy railway segments will experience severe congestions and delays. 

For a busy railway corridor where building new infrastructure is almost impossible or 

extremely expensive, incorporating new dispatching rules like the switchable policy 
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may be the best way to increase the throughput capacity. The basic idea of the 

switchable policy is to allow the fast train to use the other track while some slow 

trains in the same direction are occupying the dedicated track. However, occupying 

the dedicated track for the reverse direction would block all trains from travelling in 

the reverse direction. Thus we need a rule to determine when the fast train is allowed 

to switch to the other track. Again, let the upper track be the designated track for 

westbound trains and let the lower track be the designated track for eastbound trains. 

Then the upper (lower) track would be the track with reverse direction for the 

eastbound (westbound) trains. 

Switchable policy 

1. All slow trains travel on their designated track. Upon arrival, if the designated 

track is not occupied by trains travelling in the opposite direction, the slow 

train starts travelling on the designated track immediately. If the designated 

track is occupied by trains travelling in the opposite direction, the slow train 

waits for the opposing moving trains to finish traveling on the segment before 

proceeding. 

2. When a fast train arrives, if no slow train has arrived within ( )s fT T   time 

units from now, the fast train starts travelling on the designated track if there 

are no opposing moving trains on the track segment. If there are opposing 

moving trains travelling on the designated track, the fast train waits for the 

opposing moving trains to finish travelling on the segment before proceeding. 

3. When a fast train arrives, if a slow train has arrived within ( )s fT T   time 

units from now, then the fast train will try to use the track designated for the 

reverse direction. The fast train will use the reverse direction track only if it is 

empty. If the reverse direction track is occupied by trains travelling in either 

direction, the fast train will use the designated track. 
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Figure 2. Switchable policy 

 

The switchable policy (also illustrated by the flowchart in Figure 2) enables 

the fast train to switch to the reverse direction track if two conditions are satisfied: 1. 

the fast train will be blocked by a slow train in the same direction if it travels on the 

designated track; 2. the reverse direction track is empty. When condition 1 is satisfied, 

the fast train will try to switch to the reverse direction track and only when condition 

2 is satisfied, the fast train will finally switch. We use the time interval between the 

arrival of the fast train and the nearest slow train ahead of it as the indicator on 

whether or not the fast train will be blocked by a slow train. If the time interval is 

smaller than 
s fT T , the fast train will catch up with the slow train on the designated 

track before it reaches its destination. Thus, it will be blocked. However, if the fast 

Arrival of a train 

Is it a fast train? 
Travel on its designated track 

No 

Yes 

Have any slow trains arrived 

within  time units  

No 

Is the reverse direction 

track empty? 

Yes 

No 

Yes 

Travel on reverse direction track 



 10 

train catches up with the slow train near the end of the designated track, the delay will 

not be significant and in this case, it is probably better to keep the fast train on the 

designated track. So we define a parameter  , which is between 0 and 1, to be 

multiplied to 
s fT T  to be the threshold interval. When   is set to 1, it means that 

as long as the fast train can catch up with the slow train on the designated track at 

some point, the fast train can switch; when   is set to be 0, it means the fast train 

will not be allowed to switch even if it arrives at the segment just behind a slow train. 

Increasing   from 0 to 1 moves the threshold catching up point from the start point 

to the end point on the designated track.  

We note that a bundling policy of switching consecutive fast trains to the other 

track can further reduce the train delay, but this is not considered in the analytical 

model since it would make it intractable. Mu (2011) extended the switchable policy in 

this paper to a more complicated policy which considers the bundling of trains. 

Simulation results show the effectiveness of the bundling policy in further reducing 

the train delay. 

3. Delay functions  

     Before we show our derivations of the delay functions of the switchable policy, 

we first review the delay functions of the dedicated policy derived by Ren et al. (1996) 

and Huisman et al. (2001). 

 

3.1. Dedicated policy 

     Let ( )sF t  and ( )fF t  be the cumulative density functions (CDF) for the 

minimum running times of the slow and fast trains. In our case, the minimum running 

times are constant thus we have: 

0         
( )

1          

s

s

s

t T
F t

t T


 


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0         
( )

1          

f

f

f

t T
F t

t T


 



 

Let ( )fR t  be the CDF of the running time of the fast train. The travel time on the 

track segment is defined to be: 

Travel time = Completion time from the segment – Arrival time at the segment 

The slow trains have a delay of zero under this dispatching policy (e.g. slow trains run 

at a deterministic running time equal to their minimum running time.). The running 

time of fast trains has a CDF which is derived in Ren et al. (1996) and Huisman et al. 

(2001) as: 

( ) ( )exp( (1 ( ( ) ( ))) )f f f f s s
t

R t F t p F x p F x dx


     

Here E   if the fast train is traveling eastwards; fp  and sp  denote the 

proportions of fast and slow trains, respectively,  

, /f E f Ep    and , /s E s Ep    

The expected delay of fast trains is calculated as: 

0
(1 ( ))f f fDelay R t dt T



    

The derivation of expected delay of fast trains is rather straight forward for the 

dedicated policy. We do not need to look into the busy period to calculate the expected 

delay of the fast trains. 

 

3.2. Switchable policy 

To derive the train delay under the switchable policy, the first step is to assess 

the probabilities that an arriving train sees the various states of the two-track system. 

Then conditioning on the states of the two-track system when the train arrives, the 

delay function is derived for that specific condition. The expected delay of trains is 

finally obtained by considering the delay under all the conditions. 
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3.2.1. Proportions of time of the various states 

Without loss of generality, we assume that the westbound and eastbound 

arrival rates are the same, so are the fast and slow train proportions. That is, 

E W    , , ,f E f W f     and , ,s E s W s     

For the switchable policy, trains traveling eastbound on the lower track (upper track) 

are said to be traveling in the designated (reverse) direction and trains traveling 

westbound on the lower track are said to be traveling in the reverse (designated) 

direction. Let ,l EP  ( ,u EP ), ,l WP  ( ,u WP ), and ,0lP  ( ,0uP ) be the proportion of time that 

the lower (upper) track is occupied by eastbound train, westbound trains and by no 

trains, respectively. Since the eastbound and westbound arrival rates are the same and 

the dispatching policy is symmetrical for the eastbound and westbound trains, in the 

long term equilibrium, we have the following: 

, ,l E u WP P , , ,l W u EP P  and ,0 ,0l uP P  

Let DP  denote the proportion of time that a track is occupied by trains 

traveling in the designated direction, RP  denote the proportion of time that a track is 

occupied by trains traveling in reverse direction, and 0P  denote the proportion of 

time that a track is occupied by no trains. The designated directions for the lower and 

upper track are eastbound and westbound, respectively; the reverse directions for the 

lower and upper track are westbound and eastbound, respectively. Thus we have the 

following: 

, ,D l E u WP P P  , , ,R l W u EP P P   and 0 ,0 ,0l uP P P   

To better illustrate the track status associated with the variables representing 

the various proportions of time, Figure 3 shows the track states associated with ,l EP , 

,l WP  and ,0lP . If the lower track is occupied by trains travelling in a designated track, 

there are three possible states for the upper track: idle, occupied by trains travelling 

eastbound and occupied by trains travelling westbound. If the lower track is occupied 
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by trains in the reverse direction (e.g. a train from upper track switches to the lower 

track), the upper track has to be occupied by trains travelling in the designated 

direction of the upper track. Lastly, if the lower track is idle, the upper track can be 

either idle or occupied by trains travelling in the designated direction of the upper 

track.  

 

Figure 3. Track states associated with ,l EP , ,l WP  and ,0lP .  

Let Prs  denote the proportion of fast trains that finally switch track segment 

(e.g. eastbound trains traveling on the upper track and westbound trains traveling on 

the lower track). Recall that, when a fast train arrives, it attempts to switch if the 

nearest slow train arrives less than ( )s fT T   time units ago. Thus, the probability a 

fast train attempts to switch is equal to the probability that at least one slow train 

arrived during the previous time interval of length ( )s fT T  . Thus the probability a 

fast train attempts to switch is: 

Pr (attempts to switch) = 1 exp( ( ) )s s fT T           (1) 

Then the probability a fast train finally switches is: 

 represents the proportion of time that the tracks are in any of the following 

three states:  

 represents the proportion of time that the tracks are in following state:  

 represents the proportion of time that the tracks are in any of the following 

two states:  
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PrS
 = Pr (attempts to switch) * Pr (the reverse track is empty | attempts to 

switch)                  (2) 

According to the PASTA (Poisson Arrivals See Time Averages) Theorem (Wolff, 

1982), 
DP  is the probability a new arriving train sees its designated track occupied 

by trains traveling in the same direction, 
RP  is the probability a new arriving train 

sees its designated track occupied by trains traveling in reverse direction, and 
0P  is 

the probability a new arriving train sees its designated track empty. Also, 

independently, DP  is the probability a new arriving train sees the reverse direction 

track occupied by trains traveling in the reverse direction, RP  is the probability a 

new arriving train sees the reverse direction track occupied by trains traveling in the 

same direction as itself, and 0P  is the probability a new arriving train sees the 

reverse direction track empty. When a fast train arrives, if given no information on the 

status of the designated track, the fast train sees the reverse direction track empty with 

probability 0P . Since the status of both the upper and lower tracks are not 

independent (e.g., given the upper track is empty, the lower track cannot be occupied 

by a train traveling westbound), given the information that some slow trains arrived 

not long before the fast train, the probability that this fast train sees the reverse 

direction track empty is not exactly 0P . However, in our analysis, we approximate 

this dependent probability by 0P . Later in the numerical experiments, we will see that 

this approximation turns out to be relatively accurate. So we have: 

0Pr (1 exp( ( ) ))S s s fT T P                (3) 

Let DB  be the length of a busy period, starting from the idle state, for a track 

segment occupied by trains in the designated direction and f

DB  and s

DB  be the 

length of this busy period when initiated by a fast and slow train, respectively. Then, 

conditioning on what type of train (fast or slow) first initiated this busy period, the 
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expected length of a busy period of a track segment occupied by train in the 

designated direction is: 

[ ] ( / ( )) [ ] ( / ( )) [ ]s f

D s s f D f s f DE B E B E B               (4) 

To derive the expression for [ ]f

DE B , we condition on when the second train of the 

busy period arrives and its type (fast or slow). If the second train arrives within fT  

time units, the busy period regenerates; else if the second train arrives after fT  time 

units, this busy period will have a length of fT . 

0

0

[ ] ( [ ] ) ( )exp( ( ) )

            ( [ ] ) ( )exp( ( ) )

            exp( ( ) )

f

f

T ff f

D D s f s f

s f

T
s s
D s f s f

s f

f s f f

E B E B t t dt

E B t t dt

T T


   

 


   

 

 

    


    


  



     (5) 

We note in reality fT  may be different since we make several assumptions such as 

no bundling.  Similarly, to get the expressions for [ ]s

DE B , we condition on the 

details of the second train of the busy period. However, since the leading train is a 

slow train, if the second train is a fast train and arrives no later than s fT T  time 

units, it will catch up with the slow train and then travel at the speed of the slow train. 

In this case, the arrival of this fast train does not extend the length of this busy period 

and thus can be ignored. Also note if the second train is a fast train that arrives no 

later than ( )s fT T   time units, it might switch to the reverse direction track and 

thus has no contribution to the busy period on the designated track. Hence, any fast 

train that arrives no later than s fT T  time units after the slow train are excluded in 

the expression of [ ]s

DE B  since they have no impact on the length of the busy period. 

So we have: 
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0

0

0

[ ] ( [ ] ) exp( )

            exp( ( ))[ ( [ ] ) ( )exp( ( ) )

                                         ( [ ] ) ( )exp( (

s f

f

f

T T
s s

D D s s

T
s s

s s f D s f s f s f

s f

T ff

D s f s f s

s f

E B E B t t dt

T T E B t T T t dt

E B t T T

 


    

 


  

 



  

        


     






 ) )                                    

                                         exp( ( ) )]                                                        (6)

f

s s f f

t dt

T T



 



  

 

The busy period of a track segment occupied by a train in the designated 

direction may begin either when a train arrives and finds its designated track idle or 

when the busy period of a track segment occupied by a train not in its designated 

direction finishes and at least one train traveling in the designated direction is waiting 

to use the track. Let ,D if  be the rate that the busy period of a track segment with a 

train in the designated direction begins with the track being idle. And let ,D rf  be the 

rate that the busy period of a track segment with a train in the designated direction 

begins with the ending of reverse direction busy period. We have: 

, 0( )D i s ff P                  (7) 

,D r D Rf g f                 (8) 

Dg  is defined to be the probability that when the reverse direction busy period ends, 

at least one train traveling in the designated direction of the track is waiting at the end 

of the segment. And Rf  denotes the rate a busy period starts with a train in reverse 

direction (not in the direction of the designation of the track): 

0Pr (1 exp( ( ) ))R f S f s s ff T T P                (9) 

According to the switchable dispatching rule, the busy period of a reverse direction is 

a constant which is equal to fT . Thus RP  can be expressed as: 

R R fP f T                 (10) 

Similarly, we can write: 

, ,[ ] [ ]r

D D i D D r DP f E B f E B                   (11) 
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[ ]r

DE B  is defined to denote the expected length of a busy period with trains traveling 

in the designated direction, which begins after a fast train traveling in the reverse 

direction gets off the track. Among the trains waiting to travel on the designated track, 

if there are any slow trains, then the expected length of this busy period is equal to 

[ ]s

DE B . The probability there are slow trains in the queue is 1 exp( )s fT  . If all 

trains in the waiting queue are fast trains, r

DB  has an expected length of [ ]f

DE B . The 

probability all trains waiting in the queue are fast trains is 

(1 exp( ))exp( )f f s fT T    . Now the expression for DP  becomes: 

0( ) [ ]

       (1 exp( )) [ ]

       (exp( ) exp( ( ) )) [ ]

D s f D

s

s f R D

f

s f s f f R D

P P E B

T f E B

T T f E B

 



  

 

  

    

        (12) 

In addition, we have the following fact: 

  0 1D RP P P                            (13) 

Now we have three unknown variables DP , RP  and 0P , together with the three 

equations (9), (12) and (13), we are able to solve for the values of DP , RP  and 0P . 

Next, we are going to express the delays of the trains in terms of these three values. 

 

3.2.2. Delay of slow trains 

The delay for slow trains is easy to calculate. The delay of slow trains will 

only occur when a slow train arrives at the segment and its designated track is 

occupied by a train traveling in the reverse direction. In this case, the delay of the 

slow trains will be the remaining length of the reverse direction busy period (denoted 

by e

RB ). It is well known that the remaining busy period found by Poisson arrivals 

has the following equilibrium distribution (Greenberg at el. 1988): 

0
Pr( )

Pr( )
[ ]

t

Re

R

R

B x dx
B t

E B


 


           (14) 
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RB  is a constant with a value of fT . Thus according to equation (14), e

RB  has a 

value uniformly distributed between 0 and fT . The expected length of the remaining 

busy period is: 

 [ ] / 2e

R fE B T  

Now we condition on whether or not a slow train will be delayed, where 
sU  

represents delay for a slow train: 

[ ] (1 ) 0 [ ]

                / 2

e

s R R R

R f

E U P P E B

P T

    


               (15) 

 

3.2.3. Delay of fast trains 

To obtain the delay for fast trains, we condition on the status of the designed 

track as the fast train arrives. Let fU  be the delay for a fast train: 

0[ ] 0                                                                                                             (16)

              [ | held for reverse train to finish traveling]

           

f

R f

E U P

P E U

 

 

   [ | designated track is occupied by trains in the same direction]D fP E U 

      

Without loss of generality, in the following analysis, we assume 2 f sT T . For the 

case where 2 f sT T , the same logic of deriving the delay function applies (the 

difference will be that the drawing in Figure 6 will change, since the length of sT  

does not comprise two fT ’s anymore). Recall that the threshold value   controls 

how frequently the fast train will switch, setting   to 1 means the switchable policy 

will switch fast trains as long as they will be delayed, for even a small amount of time, 

on their designated track. Without loss of generality, in the following derivations,   

is set to 1. For other values of  , the same derivation logic also applies.  

If the designated track for a fast train is occupied by a train in the reverse 

direction, the fast train cannot switch to the other track, since the reverse direction 
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track has to be occupied by at least one slow train. Thus the fast train has to wait for 

the reverse train to finish traveling and the delay of this fast train may have two 

components. The first component is the remaining length of the reverse direction busy 

period, which has a uniform distribution from 0 to fT  because the fast train arrives 

according to a Poisson process. So when the fast train arrives, the other fast train, 

which is travelling in the opposite direction, will equally likely to be at any position 

on the designated track of the newly arrived train. Thus the remaining length of the 

busy period has a uniform distribution. The second component is present if there are 

slow trains in the queue ahead of the fast train waiting. In this case, the fast train has 

to follow the slow train traveling through the whole segment, resulting in an extra 

delay of s fT T . If the fast train has to wait for t time units, where 0 ft T  , then 

we condition on if any slow train arrives during the time interval of length fT t  

before the fast train’s arrival time. If change-of-sequence is allowed at the waiting 

area, the second component can be removed because fast trains can change sequence 

with slow trains while waiting and fast trains will always stay ahead of slow trains. 

Thus if change-of-sequence is allowed, the expected delay of fast trains under the 

switchable policy will be lowered. However, in this study, the change-of-sequence is 

not considered. We then have: 

0 0

[ | held for reverse train to finish traveling]

1 1
= exp( ( )) (1 exp( ( )))( )

f f

f

T T

s f s f s f

f f

E U

T t tdt T t t T T dt
T T

         
   (17) 

Now the only part missing to derive is the last term in equation (16). That is, 

we need to compute the expected delay for a fast train when it arrives and sees trains 

traveling in the same direction on the designated track. The basic idea for deriving 

this delay is to condition on how many and when the slow trains arrived during a time 

interval before the arrival of the fast train. In order to illustrate the derivations, let’s 

focus on the situation on the lower track which is the designated track for eastbound 

trains (shown in Figure 4). 
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Figure 4. Traveling direction on lower track 

When a new eastbound fast train arrives, if the lower track is occupied only by 

eastbound fast trains, then the newly arrived fast train will not experience any delays 

before its departure from the station. Therefore we only need to consider the position 

of any eastbound slow train on the lower track. Note that if at time t  a fast train 

arrives, we only need to focus on the slow trains that arrived between time t  and 

st T . Slow trains that arrive before time st T  will not have any impact on the delay 

of the newly arrived fast train, even though the slow train might still be on the track 

when the fast train arrives. Hence, we condition on how many slow trains that arrived 

during the sT  time units interval before the arrival of the new fast train. Figure 5 

describes the positions of the slow trains that will impact the newly arriving fast train. 

We start with the case where there is only one slow train that has arrived during this 

interval; this occurs with probability exp( )s s s sT T  . 

 

Figure 5. Positions of slow trains that will impact the arriving fast train.  

Now consider a time axis from right to left as shown in Figure 6. The numbers 

on top of the line in Figure 6 are the readings for the time axis. sT  and fT  were 

introduced as values which equal to the minimum running time of slow and fast trains. 

Lower track of double track segment 

Designated direction    Reverse direction 

Eastbound trains 

Lower track of double track segment 

D 

fast trains slow train 

 

Only slow trains on this part 

of the track will impact the 

arriving fast train  

slow trains 

Slow trains on this part of the 

track will not impact the arriving 

fast train  
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In the following analysis, sT  and fT  will also be used to denote time stamps 0 sT  

and 0 fT . Now suppose a fast train arrives at time instance sT  and if a slow train 

had previously arrived at the time instance 0 and it was not held back, then the 0 

marker on the time axis will be the position on the track of the slow train when the 

fast train arrives. Similarly, if a fast train arrives at time 
sT  and a slow train had 

previously arrived at time fT  and the slow train was not held back, then the fT  

marker will be the slow train’s position on the track when the fast train arrives; and if 

the slow train has to wait for 1 time unit, then the slow train will be at position 1fT  . 

In Figure 6, the train goes from left to right and the time axis goes from right to left. 

This is because of the fact that the earlier the train arrives (closer to the 0 point of time 

axis), the further away it will be on the track (closer to the right end of the track). So 

by combining the plot of the track and the time axis together into one line, a single 

point on the line can both represent the location of the train and the time it starts 

travelling. 

 

 Figure 6. A time axis 

If there is only one slow train in the interval of length sT , the arrival time is 

uniformly distributed along the interval, with a density function of 1/ sT . Without loss 

of generality, we assume that the fast train arrives at time sT , and since we assume 

one slow train is in the network, the slow train must have arrived in the time interval 

(0, sT ). We next consider three different components of the delay by dividing the 

time (0, sT ) into three different cases. Case 1, Case 2 and Case 3 deal with the 

Lower track of double track segment 

A time axis 

0    



 22 

situations where the slow train arrives in the intervals (0, fT ), ( fT , s fT T ) and 

( s fT T , sT ), respectively (see Figure 7). 

 

   Figure 7. Illustration of Case 1, Case 2 and Case 3 

 

Case 1 

Now suppose the slow train arrives in the interval (0, fT ) (see Figure 8). If 

the slow train does not have to wait for the track upon its arrival, this slow train will 

not delay the newly arrived fast train. Upon the arrival of the slow train, with 

probability RP , the slow train will be held back for a certain amount of time. If the 

slow train is delayed long enough, it may delay the new fast train (see Figure 8). Note 

that, if the slow train arrives in the interval (0, fT ) and   is 1, the newly arrived 

fast train will not try to switch tracks. By conditioning on the time the slow train 

arrived and the length of time it was held back, we have the expected delay of the fast 

train for Case 1 as: 

, 1
0 0

0

1 1
[ ] max[0, ]

1 1
                       ( )

f f

f f

f

T T

f c R f

s f

T T

R f
T t

s f

E U P t u T dudt
T T

P t u T dudt
T T

  

  

 

 

                (18) 
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Figure 8. Case 1: slow train arrives in the interval (0, fT ) 

Case 2 

Now suppose that the slow train arrives in the interval ( fT , s fT T ) (see 

Figure 9). For this case, since   is equal to 1 and the length of the time interval 

between the arrivals of the fast train and the slow train is less than s fT T , the fast 

train may switch tracks with probability 0P . If the fast train successfully switches, it 

will experience zero delay. If the fast train does not switch, it will experience a delay 

as shown in Figure 9, depending on whether or not the earlier arriving slow train 

experienced a delay. Again, by conditioning on the arrival time of the slow train and 

the delay of the slow train and multiplying the whole expression by 01 P , we have 

the expected delay for the newly arrived fast train for Case 2: 

, 2 0

0
0

1
[ ] (1 )(1 )( )

1 1
                       (1 ) ( )

s f

f

s f f

f

T T

f c R f
T

s

T T T

R f
T

s f

E U P P t T dt
T

P P t u T dudt
T T





   

   



 
         (19) 
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Figure 9. Case 2: slow train arrives in the interval ( fT , s fT T ) 

Case 3 

If the slow train arrived in the interval ( s fT T , sT ), the delay for the newly 

arrived fast train will be similar to Case 2 (see Figure 10). The only point to note is 

that the possible length of delay for the slow train cannot be as long as fT  anymore. 

If the slow train is delayed for too long, as the fast train arrives, it will see the slow 

train being held back instead of moving along the track. And this delay will be 

captured in equation (17). Thus the maximum length for the delay for the slow train is 

limited by the difference of sT  and the slow train arrival time. We have: 

, 3 0

0
0

1
[ ] (1 )(1 )( )

1 1
                       (1 ) ( )

s

s f

s s

s f

T

f c R f
T T

s

T T t

R f
T T

s f

E U P P t T dt
T

P P t u T dudt
T T







   
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
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          (20) 
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Figure 10. Case 3: slow train arrived in the interval ( s fT T , sT ) 

Cases 1-3 only consider the scenario that has only one slow train arrival in the 

interval (0, sT ). When there is more than one slow train, it is the position of the latest 

arriving slow train that determines the delay of the fast train. However, the probability 

of this latest slow train being delayed is dependent on the positions of the other slow 

trains on the track. Thus the delay probability is no longer RP . To see why this is true, 

suppose the latest arriving slow train is delayed by t time units, then all the other slow 

trains must have arrived at most fT t  time units before the latest arriving slow train. 

If any slow train arrived more than fT t  time units before the latest arriving slow 

train, the latest slow train cannot be delayed by t time units. Thus the amount of time 

that the latest arriving slow train is delayed is not independent with the arrival times 

of the other slow trains. To remove this dependency, instead of conditioning on if the 

latest arriving slow train is delayed, we condition on if the earliest arriving slow train 

is delayed. The earliest arriving slow train in the interval will be delayed with 

probability RP  and the length of the delay will still have a uniform distribution from 

0 to fT . If the time between the arrivals of the earliest and the latest arriving slow 

train is larger than the length of the earliest train’s delay, then the latest arriving slow 

0 

 

D 

Arrival time of slow train 

The maximum length for delay for slow train. If the 

slow train is delayed longer than this, the delay for 

newly arrived fast train is captured in equation (17) 
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train will not be delayed; otherwise, the latest arriving slow train might be delayed 

(see Figure 11).  

 

Figure 11. Condition on the latest and earliest slow train 

With probability ( ) / !exp( )j

s s s sT j T  , 2j  , there are a number of j slow 

trains in the track segment in the sT  interval before the arrival time of the fast train. 

And the PDF for the arrival times of the earliest ( et ) and the latest ( lt ) slow trains, 

given there are j slow trains is: 

2

2

( 1)
( , ) ( ) jl e

e l

s s

t tj j
f t t

T T


  

Similar to the case of one slow train in the interval, we decompose the analysis 

into three cases according to the value of et . Case 1’, Case 2’ and Case 3’ represent 

the situations where the earliest slow train arrives in the intervals (0, fT ), ( fT , 

s fT T ) and ( s fT T , sT ), respectively (see Figure 12). 
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Figure 12. Illustration of Case 1’, Case 2’ and Case 3’ 

Case 1'  

The earliest slow train arrives in the interval (0, fT ). If the slow train is not 

delayed, only if it arrives after time fT  will the newly arriving fast train be delayed. 

If the latest slow train also arrives in the interval (0, fT ), unless the earliest arriving 

train is delayed long enough, the fast train will not be delayed (see Figure 13). 

 

Figure 13. Case 1'  
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We summarize the results for the expected delay for the newly arriving fast 

train for case 1'  below: 
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Case 2'  

If the earliest slow train arrives in the interval ( fT , s fT T ), we have: 
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Case 3'  

If the earliest slow train arrives in the interval ( s fT T , sT ), we have: 
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Now we have all the components to write: 
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, 1 , 2 , 3

, 1' , 2' , 3'
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        (24) 

With Equation (17) and (24), the expected delay of the fast train can be found 

using equation (16). 

4. Numerical experiments 

In order to test the accuracy of the approximated analytical results for the 

train delays, we compare our analytical results with simulation results. The simulation 

results are obtained by running a C++ based Arena simulation model (Kelton et al. 

2009) for 500000 hours with 5 replications. Our base settings are: 

 Length of track segment, 8 miles 

 Speed of a fast train, 140 mph 

 Speed of a slow train, 50 mph 

 Arrival rate of fast trains, 4.8 trains per hour 

 Arrival rate of slow trains, 4.8 trains per hour 

We assume trains arrive in two directions at the rates listed above. The threshold 

constant   is set to 1. The base case results are shown in Table 1. 

Table 1 Comparison between simulation results and analytical results 

Results for switchable policy Simulation results Analytical results 

Value for 
0P  .3248 .3223 

Value for 
DP  .6432 .6432 

Value for 
RP  .3200 .3450 

Mean/expected delay for slow train (minutes) 0.0549 0.0591 

Variance of delay for slow train (minutes) 0.00072 - 

Mean/expected delay for fast train (minutes) 0.977 0.974 

Variance of delay for fast train (minutes) 0.0017 - 
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From Table 1 we can see that our analytical approximation provides accurate 

results for the values of 
DP , 

RP  and 
0P . The analytical results of delays for slow 

and fast trains differ from the simulation results by 7.63% and 0.269% respectively. 

Even though the percentage difference for slow train delays might seem relatively 

large as compared to the percentage difference for fast train delays, the absolute 

values for the slow train delays are very small (e.g., 0.0549 and 0.0591 minute). Our 

analytical model estimates the expected delay for a fast train to be 0.977 minute for a 

switchable policy. Using the model of Huisman et al. (2001), expected delay for a fast 

train is 1.307 for a dedicated track policy. For this scenario, the switchable 

dispatching policy reduces the fast train delays over a dedicated policy by 25.2%. In 

railway control, the fast trains (passenger trains) usually have higher priority than 

slow trains (freight trains), since fast trains are normally under tight schedules 

whereas slow trains have more flexible schedules. Thus the delays of fast trains are 

more important than the delays for slow trains and when we are comparing the two 

policies, the delay for fast trains is the major performance measure. The small extra 

delay for slow trains caused by the switchable policy is not a significant disadvantage. 

Next we keep all the parameters the same and vary the arrival rate of fast trains.  

In Figure 14, we can see that as the arrival rate of the fast train varies, our 

analytical approximation provides values for the mean delays for fast trains that are 

close to the simulation results. The percentage error of fast train delay is calculated as: 

| simulated delay - analytical delay|
Percentage error 100%

simulated delay
   

In Figure 15, as the fast train arrival rate increases, the percentage error of slow train 

delay shows an increasing trend. However, the absolute values of the slow train delays 

are so small that the absolute values of the delay discrepancy are not significant. Thus 

we can conclude that our analytical expressions give accurate and robust 

approximations to the delays of trains under a switchable dispatching policy. 
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Figure 14. Percentage error for fast train delay 

 

  Figure 15. Percentage error for slow train delay 

Figure 16 shows the comparison of the performance measure (fast train delays) 

of the two dispatching policies under various train arrival rates. From the diagram we 

can see that the switchable policy has significant advantage over the dedicated policy 

and this advantage will become more significant as the track becomes less busy (e.g. 

when the arrival rates of slow and fast train are reduced). This is because as the track 

becomes less busy, when a fast train attempts to switch tracks, it will have a higher 

success rate. 
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Figure 16. Varying arrival rates 

 

Now keeping all the other parameters at their base settings, we next vary the 

speed of the slow and fast trains. Figure 17 shows the sensitivity analysis for train 

delays as a function of train speeds. From the graph, we see that the advantage of the 

switchable policy becomes larger as the difference in train speeds becomes larger. 

This is intuitive since the larger the speed gap is, the longer the delay is if a fast train 

catches up with a slow train; and the switchable policy reduces the chance a fast train 

catches up with a slow train. 

The length of the segment is also an important factor for the switchable policy. 

The longer the segment is, the less chance that the track is empty. Thus the switching 

rate becomes smaller as the segment becomes larger. Intuitively, the advantage of the 

switchable policy will become more significant if the length of the segment is smaller. 

Figure 18 shows the relationship between the length of the segment and the advantage 

of the switchable policy. This plot also keeps all the other parameter settings at their 

base case. 
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Figure 17. Varying train speeds 

 

 

Figure 18. Varying segment lengths 

 So far, all the results for the switchable policy were obtained by setting   

to 1. However, the optimal value of   is not necessarily 1. The optimal value of   

changes as the parameter values change. Figures 19, 20 and 21 show the effects of 

varying   under the base case parameter settings. We can see that the optimal value 

of   which produces the largest delay reduction for the fast trains is between 0.8 

and 0.9 for this scenario. The delay of slow train constantly drops as   decreases 

because the smaller   is, the less frequent fast trains will switch. The delay of slow 

train is solely caused by the switched fast trains traveling in reverse direction. Hence 

Delay reduction of fast train from dedicated policy

0.000%

5.000%

10.000%

15.000%

20.000%

25.000%

30.000%

2.1 2.3 2.5 2.7 2.9

fast train speed / slow train speed

slow train speed = 50 m/h

slow train speed = 45 m/h

Delay reduction of fast train from dedicated policy

0.000%

5.000%

10.000%

15.000%

20.000%

25.000%

30.000%

35.000%

40.000%

6 7 8 9 10

length of railway segment (miles)



 34 

if fast trains switch less frequently, slow trains will experience less delay. Also note, 

as   drops to 0, no fast trains will switch which makes the switchable policy the 

same as the dedicated policy, thus the delay reduction is 0. Figure 21 shows the 

switchable policy dominates the dedicated policy in terms of sum of delay times. 

 

 

Figure 19. Effect on fast train delay reduction by varying   

 

Figure 20. Effect on slow train delay by varying   
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Figure 21. Effect on sum of fast and slow train delay by varying   

5. Double-track with crossovers 

For the above switchable policy, once a fast train switches the track, the fast 

train has to travel all the way on the other track to pass the slow trains ahead of it. 

Suppose there is one crossover linking two tracks in the middle of the segment, then 

the efficiency of a switchable policy can be further improved due to better utilization 

of the track. 

Figure 22 shows a double-track railway segment with crossovers at the middle 

of the segment. Without loss of generality, the lower track is the designated track for 

the eastbound traveling trains and the upper track is the designated track for the 

westbound traveling trains. We denote the lower (upper) track segment west of the 

crossover by EB1 (WB1) and the lower track segment east of the crossover by EB2 

(WB2). We extend the switchable policy in Section 2 to address the situation where a 

linking crossover is at the middle of the double-track segment and this new switchable 

policy is described below. The switchable policy in this case is also symmetrical for 

eastbound and westbound trains.  Thus we focus on eastbound trains in the 

description below. 
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Figure 22. Double-track railroad segment 

Switchable policy for double-track segment with crossovers at middle 

1. All eastbound slow trains travel on the lower track. Upon arrival, if EB1 is not 

occupied by trains travelling in the opposite direction, the slow train starts 

travelling on EB1 immediately. If EB1 is occupied by trains travelling in the 

opposite direction, the slow train waits for the opposing moving trains to 

finish traveling on EB1 before proceeding. Upon reaching the end of EB1, if 

EB2 is not occupied by trains travelling in the opposite direction, the slow 

train starts travelling on EB2 immediately. If EB2 is occupied by trains 

travelling in the opposite direction, the slow train waits for the opposing 

moving trains to finish traveling on EB2 and switch to WB1 before 

proceeding.   

2. When an eastbound fast train arrives at EB1, if no slow train has arrived at 

EB1 within ( ) / 2s fT T  time units from now, the fast train starts travelling on 

EB1. If there are opposing moving trains travelling on EB1, the fast train waits 

for the opposing moving trains to finish travelling on EB1 before proceeding. 

When a fast train arrives at EB1, if a slow train has arrived at EB1 within 

( ) / 2s fT T  time units from now, then the fast train will try to use track WB1. 

The fast train will use WB1 only when it is empty and EB2 is not occupied by 

trains traveling westbound (if EB2 is occupied by a train travelling westbound, 

this train will switch to WB1 using the crossing, and thus deadlock might 

occur). If WB1 is occupied by trains travelling in either direction or EB2 is 

occupied by trains traveling westbound, the fast train will use EB1. 
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3. When an eastbound fast train reaches the end of track EB1, if no slow train has 

arrived at EB2 within ( ) / 2s fT T   time units from now, the fast train starts 

travelling on EB2. If there are opposing moving trains travelling on EB2, the 

fast train waits for the opposing moving trains to finish travelling on EB2 and 

switch to WB1 before proceeding. When an eastbound fast train reaches the 

end of track EB1, if a slow train has arrived EB1 within ( ) / 2s fT T   time 

units from now, then the fast train will try to use track WB2. The fast train will 

use WB2 only if it is empty. If WB2 is occupied by trains travelling in either 

direction, the fast train will use EB2. 

4. When an eastbound fast train reaches the end of track WB1, if no slow train 

has arrived at EB2 within ( ) / 2s fT T   time units from now, the fast train 

switches back to its designated track and starts travelling on EB2. When an 

eastbound fast train reaches the end of track WB1, if a slow train has arrived 

EB2 within ( ) / 2s fT T   time units from now, then the fast train will try to 

continue to use track WB2. The fast train will use WB2 only if it is empty. If 

WB2 is occupied by trains travelling in either direction, the fast train will use 

EB2. 

For this new switchable policy (also illustrated in Figure 23), when the fast 

train arrives at the first half of the track segment, this fast train will try to switch as 

long as it can catch up with a slow train on the first half of the track (e.g., one slow 

train has arrived at the first half of the segment within ( ) / 2s fT T  time units). 

However when the fast train arrives at the second half of the track segment, this fast 

train will try to switch if at least one slow train has arrived at the second half of the 

segment within ( ) / 2s fT T   time units. The threshold factor   is only effective 

for the second half of the track segment. 

After adding crossovers at the middle of the track segment, deriving the delays 

for trains analytically becomes intractable. Thus, in order to evaluate the performance 

of the switchable policy against a dedicated policy for the track segment with 
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crossovers, we can only rely on simulations to obtain the train delays for the 

switchable policy. We use the previous base case parameter settings for the following 

numerical experiments. Figure 24 shows the comparison of the performance measure 

(fast train delays) of the switchable policy and the dedicated policy for both the 

networks with and without crossovers. Figure 25 shows the relationship between the 

length of the segment and the advantage of the switchable policy for networks with 

crossovers and without crossovers. Figure 26 explores how the advantage of the 

switchable policy over the dedicated policy changes as we change the speed of slow 

and fast trains when there exists crossovers. We can see that the switchable policy 

reduces the fast train delay further if crossovers are introduced into the network. The 

intuition behind this are: (1) the switching rate of the fast train will increase because 

now fast train can switch as long as half of the reverse direction track is empty; (2) 

The switched fast train does not have to travel all the way on the reverse direction 

track. Adding crossovers at the middle of the track segment not only further reduces 

the fast train delay but also the slow train delay. Figure 27 illustrates the effect of the 

crossovers on the slow train delays.  
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Figure 23. Switchable policy for double-track segment with crossovers 
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Figure 24. Varying arrival rates 

 

Figure 25. Varying track length 

  

Figure 26. Varying train speeds 
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Figure 27. Slow train delays for the switchable policy 

6. Conclusion 

Nowadays, passenger trains are traveling faster and faster. However 

sometimes passenger trains have to share some portions of the railway with freight 

trains. The most natural and popular dispatching rule for double-track segments is to 

dedicate one track for trains traveling in one direction. The major drawback of this 

simple rule is that a fast train can be caught behind a slow train and experience 

significant delay. In this paper, we propose a switchable dispatching policy for a 

double-track segment. The new dispatching rule enables a fast train to pass a slow 

train by using the track traveled by trains in the opposite direction if the track is empty. 

We use queueing theory techniques to derive the delay functions of this policy. Our 

numerical experiments show that our fast train delay functions produce accurate 

results as compared to simulation results. The numerical experiments also show that a 

switchable policy can reduce the fast train delay by as high as 30% compared to a 

dedicated policy. We then extend our switchable policy to work on a double-track 

segment with crossovers at the middle of the track segment. Adding crossovers at the 

middle of the track segment further improves the efficiency of the switchable policy. 

The switchable policy reduces the fast train delay of a dedicated policy by as high as 

65%.  
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When there is multiple train speeds (more than two), just checking the position 

of the slower proceeding train when the faster train arrives is not sufficient to 

determine whether or not to switch since there might still be another slower train 

ahead of it.  Thus, a switching policy needs to take into consideration the total 

potential delay of the fast train.  Mu (2011) developed a switching policy based on if 

the potential delay of the faster train is greater than a threshold value. On a simulation 

study this extended switchable policy was shown to dominate the dedicated policy for 

cases of multiple train speeds. There are cases where different trains have different 

priorities. One possible modification to the current switchable policy to care for 

different priorities is to give different switching threshold values to different train 

priorities (e.g., a high priority train will have a lower switching threshold value which 

makes the high priority train switch more frequently).  Future research can modify 

the developed analytical model to address these extensions.  
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