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Abstract 

 

A set of agricultural suppliers with low demands can save on long-haul transportation costs by 

consolidating their product. We consider a system with stochastic demand and a single 

consolidation point near the suppliers. We propose a look-ahead heuristic that takes advantage of 

economies of scale by aiming to ship larger quantities. We experimentally compare the 

heuristic's performance against other simple policies, a rolling horizon algorithm, and a 

stochastic dynamic programming model.  Our numerical results demonstrate that the heuristic 

provides solutions that are near the lower bound provided by the dynamic programming model, 

and that the benefits of consolidating depend on the size of the suppliers' demand.  We also 

propose a proportional cost allocation rule that encourages the supplies to cooperate with each 

other instead of operating independently.  
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1. Introduction 

 

Collaborative strategies in the supply chain can greatly improve a company’s performance. With 

the increase in competition, globalization and demanding customers, many firms believe they 

cannot continue to compete alone (Kumar and Banerjee 2012). Collaboration between firms 

offers opportunities to share risks, increase system efficiency, reduce costs, minimize unsatisfied 

customer demand, and increase their competitive advantage (Cao and Zhang 2010).   However, 

collaboration will only work if criticality is present, where criticality is defined as “the notion of 

high recognized interdependence in which one supply chain member will not act in his own best 

interest to the detriment of the supply chain” (Spekman et al 1998).   

 

In recent years, there is also an increasing interest in the potential savings of cooperation 

between multiple decision makers within or across supply chain levels.  Specifically, joint 

strategies across multiple suppliers can decrease system-wide transportation costs through the 

consolidation of common products.   Cooperating suppliers aim to minimize total joint costs but 

also need to determine an allocation that sustains continuous participation by each supplier. We 

focus primarily on terminal consolidation (defined by Hall 1987), where items from different 

origins are sorted at a single terminal to be shipped to different destinations on the same vehicle.   

The idea of consolidating to decrease costs is not a recent development. Early contributions to 

freight consolidation describing the opportunity for lower transportation costs and large shipment 

loads date back to at least the 1980s (Jackson 1985; Blumenfeld et al 1985; Closs and Cook 

1987; Hall 1987).  The terms shipment consolidation and freight consolidation are more popular 

in the current research literature than terminal consolidation.  

 

In a shipment consolidation problem, we must determine how much to consolidate before 

shipping or how many time periods to consolidate before shipping the aggregate volume. 

Quantity-based polices determine a threshold weight or volume that must be accumulated before 

a shipment is released (Gupta and Bagchi 1987).  Time-based policies dispatch after the first 

order in a consolidated load has waited for a predefined time (Mutlu and Çetinkaya 2010; 

Marklund 2011).  Hybrid time-and-quantity polices release a shipment when either the quantity 

threshold is reached or the maximum waiting time has passed (Mutlu et al 2010).  Çetinkaya and 

Bookbinder (2003) use renewal theory to investigate the quantity and time policy for private 

carriage and when transport is performed by a public, for-hire company. Ülkü (2009) also shows 

that quantity-based policies are the most cost-effective with unit-sized demands and Poisson 

arrivals in a shipment consolidation problem using private carriage. Higginson and Bookbinder 

(1995) use a discrete-time Markov decision process to study a sequential model where the 

shipper is required to reconsider the dispatch decision at the arrival of an order. Ülkü (2012) 

proposes a discrete-time based shipment consolidation policy that allows shipment release only 

at discrete times of the day while maintaining a certain customer service level.  

 



Consolidating shipments allows shippers to take advantage of economies of scale and achieve 

decreased transportation costs.  For example, Bausch et al (1995) showed that consolidation of 

Mobil Oil Corporation’s heavy petroleum products could yield annual transportation savings of 

$1 million.  Brown et al (2001) estimated approximately $35 million savings per year in 

inventory and distribution costs for Kellogg Company with the implementation of a new 

consolidation policy. Local and global third-party logistics companies also benefit from 

consolidation shipment-release policies (Lee et al 2003; Tyan et al 2003; Song et al 2008).    

 

In this paper, we study a freight consolidation problem for perishable products where there is a 

hard time constraint for the product’s stay in inventory at the consolidation center.  This problem 

is motivated by the California cut flower industry, where growers currently do not consolidate 

their shipments (Nguyen et al 2013).  That is, each grower sends shipments individually to its 

customers, primarily using a combination of less-than-truckload (LTL) rates and courier services 

instead of the more advantageous full truckload rates (FTL); high transportation costs are one of 

the major factors behind California’s drop in U.S. cut flower market share from 64% to 20%. 

Growers from South America, who use a consolidation center in Miami, have concurrently seen 

their market share rise to 70%.  Consolidation strategies are important to take advantage of 

economies of scale with perishable products and decrease system-wide transportation costs.  For 

California flower growers, Nguyen et al (2013) showed that consolidation by 20 suppliers for all 

destinations in the United States could yield annual savings of at least $6 million. If 50 additional 

growers of the California Cut Flower Commission participated together, the savings could reach 

$17 million.  

 

This paper is a generalization of the problem studied in Nguyen et al (2013).  Instead of 

deterministic demand, we focus on stochastic demand.  We also consider an environment in 

which the demand distribution changes between periods; in particular, we differentiate between 

peak and nonpeak periods, since some agricultural demand follows peak and nonpeak behavior 

and suppliers must plan accordingly in the weeks before harvesting and shipping. Nguyen et al 

(2013) considered the case where California cut flower growers would use a consolidation center 

in their transportation network.  In order for the growers to maintain the claim that California cut 

flowers are fresher than imported cut flowers, the flowers could stay at the consolidation center 

at most one day.    In this paper, we consider cases where the product can remain longer than a 

single day in inventory, but there is still a hard time constraint due to perishability.  A time 

constraint greater than one day is realistic for other perishable products.  For example, potatoes 

remain dormant 6 to 12 weeks after they are harvested and can be stored up to 2 to 3 months 

before they begin to sprout, depending on the variety and storage temperatures (Yanta and Tong 

2013). 

 

We solve the optimization problem using a stochastic dynamic programming approach, compare 

the performance of various heuristics, and study how changing demand distributions to the 



system affect the benefit of consolidation.  Furthermore, we propose a cost allocation policy and 

empirically show that the suppliers benefit from cooperating.  We finally note that although this 

problem was motivated by the cut flower industry, the focus of this model is in developing 

strategies to lower long-haul transportation costs from a consolidation location to a break-bulk 

destination.  We do not consider inventory costs and the transportation cost from the supplier to 

the consolidation center in this paper since it is assumed that these costs are significantly 

dominated by the long-haul transportation cost.   These assumptions are reasonable when (1) 

products are harvested just before they are sent to the consolidation center, (2) perishability 

limits the amount of time the products can stay in the consolidation center, (3) the unit cost of the 

items is small, at least compared to the shipping cost, making the opportunity cost of capital 

insignificant, and (4) the suppliers are located close to the consolidation center.  For agricultural 

products such as cut flowers where there is perishability and the growing cost is small relative to 

the shipping cost, the above assumptions tend to hold. 

 

The remainder of the paper is organized in the following way.  The next section gives a brief 

literature review.  In Section 3, we present the dynamic programming formulation of the 

problem.  We discuss heuristic approaches to the problem in Section 4. The numerical results are 

in Section 5, and we conclude the paper with possible extensions of the model and future 

considerations in Section 6.  

 

2. Literature Review 

 

The problem we consider has not been addressed to our knowledge in the research literature.  

However, some aspects are related to inventory control models such as the lot-sizing problem 

and joint replenishment problem.  The following section is a brief review of the most recent 

developments. 

 

2.1 Similar Inventory Control Problems 

 

The classical economic lot-sizing problem (ELSP) is heavily studied in the inventory control and 

production planning research areas.  Wagner and Whitin (1958) originally proposed the dynamic 

economic lot-sizing model and developed a dynamic programming algorithm to solve it. Since 

then, it continues to attract interest because it serves as the core problem to many applications.  

The literature is expansive, with many extensions and increasing complexity such as multiple 

suppliers, multiple retailers, multiple items, general cost functions, capacity constraints and 

cooperation.  

 

Quadt and Kuhn (2008) provide a review of the capacitated lot-sizing problem with extensions 

such as backorders, linked lot sizes, sequence-dependent setups, and parallel machines. A review 

of exact and heuristic solution approaches for years 1988 to 2009 can be found in Robinson et al 



(2009).  Some exact algorithms like branch-and-cut (Guan et al 2006) have been applied to the 

stochastic economic lot-sizing problem, but a vast amount of proposed solution approaches are 

dynamic-programming based (Bai and Xu 2011; Kang and Lee 2013; Guan and Liu 2010). 

 

Extensions and applications of the stochastic economic lot-sizing problem continue to increase in 

complexity and become computationally expensive to solve, making heuristics more appealing.  

For example, a fix-and-relax heuristic solves the stochastic lot-sizing problem in a reasonable 

amount of time (Beraldi et al 2006).  The authors partition the original problem by time into a 

sequence of subproblems, where only a small number of variables must be integer.  Alonso-

Ayuso et al (2007) integrate the same heuristic into a fix-and-relax coordination framework that 

selectively explores the nodes of the search tree based on the characteristics of the non-

anticipativity constraints. 

 

Implementing a rolling horizon in the algorithmic framework is a common method used by 

managers to make lot-sizing decisions.  Fisher et al (2001) propose an ending-inventory 

valuation algorithm that includes a valuation term in the objective function to offset end-effects.  

Their approach outperforms the Wagner-Whitin algorithm and the Silver-Meal heuristic (Silver 

1976).  Stadtler (2000) shows how an exact algorithm can perform at least as well as commonly 

used heuristics with an improved rolling horizon schedule.  Zhang et al (2012) combine a 

dynamic programming algorithm with a rolling horizon heuristic to solve the stochastic 

uncapacitated ELSP with incremental quantity discounts.     

 

The joint replenishment problem (JRP) focuses on finding replenishment policies for multiple 

products ordered by the same retailer, or for multiple locations ordering the same product. 

Khouja and Goyal (2008) provide a review of the classical JRP, stochastic JRP and dynamic JRP 

literature from 1989-2005.  It summarizes heuristics and special approaches such as power-of-

two policies and genetic algorithms.  More recent developments include heuristics (Praharsi et al 

2010; Zhang et al 2012), genetic algorithms (Hong and Kim 2009; Moon et al 2008; Cha et al 

2008), and a linear programming-based heuristic framework (Amaya et al 2013).   

 

The one warehouse, multi-retailer (OWMR) problem is a generalization both of the single-item 

lot-sizing problem and the joint replenishment problem.  It focuses on determining the best lot-

sizing policy of a warehouse and a set of retailers. A brief review can be found in Federgruen 

(1993).  Extensions of the OWMR problem in recent years include dynamic allocation and 

retailer-reporting (Zhai et al 2011), and optimization of order-up-to policies (Wang 2013).  

Solution approaches to the problem include particle swarm optimization (Köchel and Thiem 

2011), applying power-of-two policies (Chu and Shen 2010), and heuristics (Abdul-Jalbar et al 

2010; Axsäter et al 2002). 

 

2.2 Cost Allocation 



The operations research literature for supply chain management and inventory decisions includes 

cost allocation strategies.  While consolidation and cooperation can improve system-wide 

performance, the costs must be allocated in such a manner that individual decision makers have 

no incentive to leave the coalition.  

 

Fiestras-Janeiro et al (2011) review the applications of cooperative game theory in centralized 

inventory management systems.  Ben-Daya et al (2008) and Glock (2012) provide an extensive 

review of solution approaches to the joint economic lot-sizing problem.   

 

Cooperation strategies have been applied to certain extensions of the economic lot sizing 

problem.  Van den Heuvel et al (2007) show that economic lot sizing games with multiple 

retailers and deterministic demand are balanced, i.e. their core is non-empty. They also show that 

the ELS game with equal demand for each player and the 2-period ELS game are concave. 

Gopaladesikan et al (2012) use a primal-dual algorithm to find a cost allocation in the core of an 

economic lot sizing game. Xu and Yang (2009) propose a cost-sharing method and show that 

possessing properties such as cross-monotonicity, fairness and competitiveness makes it a viable 

option. Chen and Zhang (2006) use LP duality to show that an optimal dual solution defines an 

allocation in the core of an economic lot-sizing game with general concave ordering cost.  

Toriello and Uhan (2014) show how to calculate a dynamic cost allocation of a cooperative game 

where each player incurs demand in each period and coalitions can pool orders.   

 

The cost allocation problem is of interest in the joint replenishment problem and similar 

inventory control problems as well.  Anily and Haviv (2007) consider the cost allocation of the 

first-order interaction JRP under power-of-two policies. Elomri et al (2012) develop a procedure 

to form efficient coalition structures in a non-superadditive game of the JRP.  Jokar and Sajadieh 

(2009) consider an integrated vendor-buyer production-inventory model.  They demonstrate that 

the vendor and buyer benefit more from cooperating with each other than in competitive 

environments.  Zhang (2009) applies a strong duality theorem to show that the joint 

replenishment game using power-of-two policies has a nonempty core.  He et al (2012) apply 

general results from polymatroid optimization to the joint replenishment problem and show that 

the cooperative game is submodular.  

 

 

3. Model 

 

A set of suppliers ships product to a consolidation center, where products going to the same 

break-bulk destination leave in combined shipments. Transportation occurs from each supplier to 

the consolidation center, then from the consolidation center to the destination.   We assume 

direct shipping methods and do not consider routing strategies.  Since we assume that products 

going to different destinations do not share the same transportation resource, we consider only 



the single destination problem.  The products in this model are assumed to be perishable and can 

only stay at the consolidation center for a maximum amount of time.  We define θ to represent 

the maximum number of days the product can stay at the consolidation center. We also assume 

the consolidation center is close to the suppliers and inventory is held at the consolidation center 

rather than at the suppliers.  That is, the product is harvested immediately before shipment from 

the supplier to the consolidation center. The following list details all problem parameters: 

 

 S Set of suppliers 

 T Time horizon 

 θ Maximum number of days inventory can stay at the consolidation center 

 Dit Demand random variable with discrete distribution at time t for supplier i  

 κF Capacity limit for a full truck 

 κL Capacity limit for an LTL unit, e.g. a cubic foot or cube 

 cF FTL rate, per truck 

 cL LTL rate, per LTL cube 

 cU Courier service rate, per weight 

 α Conversion factor, weight per cubic foot 

 

Note that the demand distribution in each period t can vary for each supplier.  In the cut flower 

application, there are two primary demand distributions: peak and nonpeak.  Peak probability 

distributions occur during periods where demand is generally high.  For example, higher demand 

for cut flowers occurs the week before Valentine’s Day and the week before Mother’s Day.  All 

other days are considered to be nonpeak periods with a nonpeak demand probability distribution.  

 

The product stays at the consolidation center for a relatively small amount of time, and we 

assume that the unit cost of the product is small relative to the shipping cost. We therefore do not 

consider inventory costs, because they are much lower than the transportation cost.  Also, the 

model assumes that the consolidation center is close to the suppliers’ sites, so the transportation 

cost to the consolidation center from the supplier is significantly smaller than the long-haul costs 

to each break-bulk destination.  These assumptions hold for the cut flower industry.  

 

3.1 Cost Function 

 

The transportation cost includes three shipping options: full truckload (FTL), less-than-truckload 

(LTL) and courier services (i.e. UPS or FedEX).  The FTL rate is a per truck rate.  The LTL rate 

is a per volume unit rate (per cubic foot), and the courier services generally use a per weight rate 

such as per pound.  All three rates are destination-dependent, but they follow a similar structure.  

Sending volume through a courier service is least expensive when the volume is extremely small 

but is the most expensive option for very large shipments.  Shipping using FTL rates is more 

advantageous with very large volumes.  



 

  
Figure 1.  The cost of different shipping methods is destination-dependent.  

 

Figure 1 illustrates the general cost structure the suppliers have.  When a shipment is ready to 

leave, it can be shipped using a combination of the three methods.  All shipments that can fit into 

a truckload are sent at the FTL rate, cF.  The remaining volume can be shipped at the FTL rate, 

LTL rate, combination of LTL and courier service or courier service only.  The following 

function calculates the least-cost combination of the LTL and courier service shipping method.  
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Therefore, the cost function  ( ) for nonnegative values of volume x is the cost of shipping full 

truckloads, if x > κF, plus the least expensive shipping method for the remaining volume: 

 

  ( )   ⌊
 

  
⌋        ((   ⌊

 

  
⌋   )        (   ⌊

 

  
⌋   )) (2) 

 

For volume up to a full truck, κF, we define two breakpoints: bF and bL. The breakpoint bF is the 

volume above which the FTL rate is the least-cost shipping method. All volume less than bF can 

be sent using a combination of LTL and courier service; we assume the volume can be separated. 

The breakpoint bL is the volume above which sending using the LTL rate is more advantageous 

than using the courier service.  For example, suppose κF is 2000 ft
3
, κL is 1 ft

3
, bF is 1800 ft

3 
and 

bL is 0.7 ft
3
.  If the volume leaving today is 2800.9 ft

3
, 2000 ft

3
 is sent in a full truck.  Since the 

remaining volume, 800.9 ft
3
, is less than bF, it is less expensive to send using LTL and courier 



services.  800 ft
3
 is best sent using the LTL rate because they are full units. The 0.9 ft

3
 remaining 

is also best sent using a LTL rate because it is greater than bL.  If it were less than bL, it would be 

sent at the courier rate.  
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We next present a stochastic dynamic programming formulation that determines the optimal 

movement of goods from the consolidation center to one destination.   

 

3.2 Dynamic Programming Model 

 

The stochastic dynamic programming model reflects the expected cost for a time horizon of 

length T. At each time t, the state variable,    (   
    

    
    

  ), is a vector of  nonnegative 

values of length θ+1 that represents the amount of demand that must leave by period t + k, for k 

= 0 to θ.  In other words, the state variable is the inventory, subdivided by shipping deadline.   

The decision rule is: for a given state variable,   
  must leave now and the decision maker must 

decide how much of the remaining inventory,   
    

    
 , to add to the outgoing shipment to 

minimize the cost.   

 

We define the optimal value function,   (   ) in equation 5, as the expected cost for periods t to 

T when the current inventory at the consolidation center is   .  The expected cost contains two 

parts.  The first part is the shipping cost of the outgoing shipment, using the cost function  ( ) 

as defined in Section 3.1.  The outgoing shipment includes the demand that must leave today 

because it has been in inventory for θ days.  Some amount ρ from the inventory with later 

deadlines can be added to the outgoing shipment.  The second part is the expected cost-to-go for 

time periods t+1 to T, a subproblem of this problem.  We can write the recursion of the 

stochastic dynamic program as: 
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The stochastic dynamic programming model begins with the calculation of   (   ) .  At time T, 

the state variable    is empty except for the vector element   
 , which represents the demand that 

must leave by time T.  The other values of the state variable vector,   
 , equal zero.  This 

simplifies the boundary condition to equal the shipping cost of   
 .   

 

  (   )    (  
 ) (7) 

 

Equation 6 demonstrates how to determine the expected cost with respect to the demand 

probability distributions.  Let  ̂    be a finite set of all possible demand values for supplier i at 

time t.  The probability of a demand di for supplier i at time t is denoted as     (  ). Let    

 ∑        be a random variable representing the aggregate demand across all suppliers for time 

period t, and let    ∑       be the aggregate arriving demand.     (  
    

    
  ) is a vector 

representing the inventory added to the outgoing shipment.  The transition function 

  (         ) updates the inventory level,   , and determines the state for the subproblem after 

the arrival of demand      ̂    for all suppliers i in S.  The new inventory level is the current 

inventory level minus the outgoing shipment (shifted forward one period), plus the incoming 

demand d  from the suppliers.    
  is the amount taken from the inventory that must leave by t+k 

and added to the outgoing shipment at time t.    ∑   
  

    is chosen such that the overall cost is 

minimized.  

 

   
      

  must be true for k = 1 to θ at time t; i.e. we cannot add more than what is available in 

inventory.    is any value from zero to ∑   
  

   , which means the volume added to the current 

outgoing shipment can include a portion or all of the inventory.     cannot be greater than 

∑   
  

   , because it implies that more product is added to today’s shipment than what is available 

in inventory.  Therefore, feasible values for the amount that can be added to the outgoing 

shipment are limited to what must still leave later, ie.      
      

   The principle of optimality 

with equations 5, 6 and 7 suggests how an optimal policy can be constructed: At any encountered 

state, choose   to minimize the immediate cost plus the expected cost-to-go (Bertsekas 2005). 

 

 

 

3.2.1 Transition Function 

The transition function   (        ) updates the state variable    from period t to t+1. We adjust 

each   
  so that it references the correct time period after a shipment of size      

  leaves. 

When t+1+θ < T, the transition function shifts the demand values by one period and updates the 

demand values according to what was added to today’s shipment (see equation 8).  We generate 

new demand values for each supplier and add it to the end of the demand vector.  When t+1+θ > 



T, the transition function simply shifts and updates the values of the vector and does not generate 

a new demand value because it would be outside the time horizon (see equation 9). 
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3.2.2 State Space 

 

The state variable is a vector of length θ + 1 that represents the demands that must leave today 

and in the next θ days.  Let Dm be the maximum daily demand. The possible states for one day 

are based on the discretization of the demand.  Let ω be the discretization value.  For the θ =1 

case, Y = Dm / ω  + 1 is the number of possible states in one day including zero.  Suppose ω = 1 

and Dm = 10.  The states for one day start at 0 and increase in increments of 1 to 10 so Y = 11.  

As ω decreases, the expected cost for the horizon T increases in accuracy.  ω should be chosen at 

a value that includes all three shipping methods.  If ω is too large, the dynamic programming 

model will not include all shipping methods.  For example, if κL = 1 and ω = 1, then the state 

demand values are in whole LTL units.  The demand will never be less than 1, and then courier 

services will never be used.   

 

For θ days of demand that can stay in inventory, the number of states in one day is Y
θ+1

 because 

the state vector is a length of θ+1. There are a total of TY
θ+1 

possible states across the entire time 

horizon.  As θ increases, the number of states increases exponentially and is the major factor in 

the increasing computational complexity of the dynamic programming model. 

 

Various methods exist to decrease the number of states in the dynamic programming model.  

Here, we use the following pruning algorithm.  For each demand that must leave at time t, the 

dynamic programming model cycles through all possible values of ρ that correspond to state 

variables at time t+1.  However, there are some demand states that ρ does not need to consider.  

If the demand leaving today is greater than bF but less than κF, then the least-cost shipment 

method is the FTL rate.  That means for values of ρ corresponding to a total outgoing shipment 

volume between bF and κF, the cost of outgoing demand does not increase.  In other words, 

inventory is being added to the outgoing shipment at no additional cost. This is easily extended 

for demands that are larger κF..  In Section 5, we show the differences in runtime for the dynamic 

programming model with and without pruning.  Other pruning strategies may also improve the 

speed of the dynamic programming model, but they are outside the scope of this paper. 



 

4.  Heuristics 

 

The stochastic dynamic programming model contains computational limitations as the time 

horizon, T, and the max inventory stay, θ , increase.  The quality of the solution depends on the 

discretization of the demands for the state variables as well.  In this section, we first present a 

computationally efficient, simple look-ahead heuristic that requires knowing only θ days of 

demand in advance and contains no discretization of demand values.  We then discuss some 

alternative heuristic strategies. 

 

4.1 θ-based Consolidation Heuristic 

 

We develop a look-ahead heuristic that makes decisions based on the transportation savings 

through consolidation of up to θ periods.  The cost function in Figure 1 shows that the cost per 

volume is lowest at the FTL rate.  The next lowest cost per volume is the LTL rate, and the most 

expensive cost per volume is using a courier service.  Therefore, it is advantageous to ship large 

quantities at the FTL rate.  Consolidating demand across time can yield enough volume to ship 

economically at the cheaper FTL rate.   

 

t + θ is the deadline to ship product that arrives at the consolidation center at time t.  From time t 

to t + θ, this product can either wait in inventory until its deadline or be shipped earlier with an 

outgoing shipment to take advantage of a less expensive rate; i.e. from LTL rate to FTL rate.  At 

time t + θ, the outgoing shipment must include all the demand that arrived at time t and has not 

been shipped.   

 

We defined the breakpoints, bF and bL, in Section 3.1.  The heuristic uses the breakpoints to 

determine the best shipping option, and the amount necessary to ship at the FTL, LTL or courier 

service rate.  The flowchart in Figure 2 provides an overview of the heuristic for θ = 1.   If there 

is an outgoing shipment in period t, then we determine the number of full trucks.  Any trucks 

filled to capacity are shipped at the FTL rate.  The remaining amount that still needs to be 

shipped is the volume that partially fills a truckload.  If the remaining volume is zero, then the 

heuristic is done for today and updates to the next day.  If the remaining amount plus tomorrow’s 

demand is greater than bF, then we add tomorrow’s demand to fill the excess capacity of the 

partial truck and ship it at the FTL rate.  Otherwise, we must determine if it should be shipped at 

the LTL rate.  The heuristic calculates the number of full LTL units and ships those at the LTL 

rate.  The remaining amount does not fill an LTL unit.  If this remaining amount plus tomorrow’s 

demand is greater than bL, then we add enough of tomorrow’s demand to fill the LTL unit and 

ship at the LTL rate.   Otherwise, we ship the remaining volume at the courier rate and do not 

add tomorrow’s demand.  

 



 
Figure 2. A flowchart of the θ-based Consolidation Heuristic for θ=1.   
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LTL unit 

Yes 

No 



The steps in the heuristic are very similar for greater values of θ.  The only section of the 

heuristic that changes with θ is the product that is added to a partial truck or partial LTL unit.  

For the θ=1 case, we consider only adding tomorrow’s demand to the outgoing shipment.  When 

θ increases, we consider the θ days of demand stored in inventory at the consolidation center 

when we compare with the breakpoints bF and bL to determine the shipping method.  For 

example, if today’s remaining demand plus all θ days of demand in inventory is greater than  bF, 

then we ship at the FTL rate.  If there is excess capacity to ship at the FTL rate, the heuristic adds 

demands up to θ days from today to be added until the truck is filled to κF.  The same occurs if 

the outgoing shipment should be shipped at the LTL rate.  We consider demands that must leave 

up to θ days from today to be added to the partial LTL unit until it is filled to capacity, κL.  We 

next present the detailed steps for the θ-based consolidation heuristic with a general θ value. 

 

As stated in Section 3, T represents the entire time horizon and θ represents the maximum 

number of days demand can stay in inventory at the consolidation center.  We use the 

breakpoints, bF and bL, in our heuristic to determine the least-cost shipping method for a given 

volume.   

 

Step 0.  Set t = 1. Set     (   
    

    
    

  ) 

Step 1.   Set     (  
    

    
  ) to zero. 

 If   
   , then a shipment must leave today, go to Step 2a.   

 Otherwise, go to Step 4. 

 

Step 2a.  ⌊
  
0

  
⌋ is the number of full trucks to ship.  Ship at the FTL rate. 

 Let  ′     
   ⌊

  
0

  
⌋    be the remainder.   

 If  ′    
    , then ship at FTL rate, go to Step 2b.   

 Otherwise, ship using LTL rates, go to Step 3a. 

  

Step 2b. We can fill the remaining FTL space (    ′ ) at no additional cost. 

  Set k = 1.   

 

Step 2c.  Add    
      (    ′   ∑   

    
      

 ) to the truck.  

 

Step 2d.  If     ′   ∑   
    

      
   , then go to Step 2e.   

 Otherwise, go to Step 4. 

 

Step 2e. Update k = k + 1.  

 If k > θ, go to Step 4. Otherwise, go to Step 2c. 

 



Step 3a. ⌊
 ′ 

  
⌋ is the number of full LTL units to be shipped.   

 Update  ′    ′   ⌊
 ′ 

  
⌋     

 If  ′    
    , then go to Step 3b.   

 Otherwise, go to Step 3f. 

 

Step 3b. We can fill the remaining LTL space (    ′ ) at no additional cost. 

  Set k = 1.   

 

Step 3c.  Add    
      (    ′   ∑   

    
      

 ) to the truck.  

 

Step 3d.  If     ′   ∑   
    

      
   , then go to Step 3e.   

 Otherwise, go to Step 4. 

 

Step 3e. Update k = k+1.   

 If k > θ, go to Step 4.  Otherwise, go to Step 3c. 

 

Step 3f.  Send the remaining amount,  ′ , using a courier service. Go to Step 4. 

 

Step 4. If t > T, then end. 

 Otherwise, update the following: 

 Generate demand for each supplier at time t+1+θ:      ̂                

 Update the demand vector for the next time period,         (        ) using 

aggregate demand   ∑       

 Update to the next time period, t = t+1.  

 Go to Step 1. 

 

4.2 Other Algorithms and Heuristics 

 

To determine how well our heuristic performs, we compare it to a set of other algorithms and 

heuristics. 

 

The every (θ + 1) days heuristic consolidates the demand for θ days before shipping. For 

example, if θ = 1, then the heuristic ships every two days; i.e. one day’s demand waits until the 

next day, when it is shipped with the second day’s demand.  

 

The cost-to-go policy creates a cost-to-go table for the entire horizon.  This policy performs a 

deterministic dynamic programming algorithm where the demand for each day is the expected 

demand of the corresponding probability distribution for that period.  The table contains the 



expected cost-to-go for each demand discretization and each day of the year.  The decisions are 

based on the cost-to-go tables.   

 

The rolling horizon algorithm performs the deterministic dynamic programming algorithm for a 

number of predetermined days, R, and the first M days are implemented.  The first M days 

includes the decisions that affect the first M+ θ days.  However, this also assumes that M+ θ is 

less than or equal to the number of days in the run length (M+ θ ≤ R).  The deterministic 

dynamic programming model begins its run after the time horizon shifts forward M days, and it 

assumes the demand for R days is known; that is, this heuristic requires additional knowledge of 

future demand.   

 

5. Results and Discussion 

The data we used was taken from the California cut flower industry for the year 2010.   We 

chose five suppliers shipping to the same destination who had average daily demand under a full 

truckload.  Because of the low volumes, the suppliers would ship their product using a 

combination of courier services and less than truckload rates if working individually.  

 

 
Figure 3. Demand distribution for two suppliers shipping to the same destination. 

 

Figure 3 illustrates the empirical distributions of demand for two different suppliers shipping to 

the same destination.  In Figure 3, the size of the bin was 100 cubic feet of demand.  For each 

supplier, we estimated two empirical distributions - one for the nonpeak days of demand and the 

other for the peak days.  Peak days in the data were days 34 to 43 for Valentine’s Day shipments 

and days 116 to 127 for Mother’s Day shipments.  All other days were nonpeak demand days.  

The demand distributions for all supplier-destination pairs followed a different pattern, so we 

used empirical distributions in our simulation.  

 

5.1 Comparison of Heuristics 

 



We generated 100 sets of demand each with a time horizon T of 365 days from the empirical 

distributions for the five suppliers.   A lower bound was determined by solving the deterministic 

dynamic program of the problem on each realized set of sampled demand.  The θ-based 

consolidation heuristic and every (θ+1) heuristic assume that θ days of demand were known 

ahead of time.   

 

Table 1 below shows the averages of the 100 runs, where each run was one sample of realized 

demand for the year. The stochastic and deterministic dynamic programming formulations were 

based on a demand discretization value of 0.5.  We ran all the dynamic programing simulations 

with pruning, yet it was only computationally possible to find the optimal solution from the 

stochastic dynamic programming formulation for θ=1.  It took approximately 13.1 hours of CPU 

time on a machine with an Intel Core i3 CPU 530 processor @ 2.93 GHz to find this optimal 

solution, whereas the lower bound for 100 samples of annual demand could be computed in 

approximately 12 minutes of CPU time. The last three columns of the table show the ratio of 

each heuristic solution’s cost over the best possible bound.  For θ=1, it is the ratio of the 

corresponding heuristic divided by the stochastic DP optimal cost.  For θ >1, it is the ratio with 

the lower bound value. 

 

Table 1. Comparison of algorithms and heuristics 

θ Stochastic DP  
Lower 

Bound 

θ-based 

consolidation 

heuristic 

Every  

(θ + 1) 
Cost-To-Go 

1 $202,903 $195,303 1.01 1.01 1.24 

2 - $141,594 1.04 1.09 1.62 

3 - $119,408 1.04 1.19 1.75 

4 - $110,475 1.04 1.26 1.80 

5 - $107,309 1.04 1.25 1.79 

 

 

The θ-based consolidation heuristic provided a reasonable schedule that costs only about 4% 

more than the lower bound and in the θ=1 case is within 1% of the optimal solution.  As θ 

increased, the annual cost decreased due to the increased availability of product to be 

consolidated. A larger θ value means demand can be held at the consolidation center for a longer 

period of time, and more periods of demand can be consolidated.  The θ-based consolidation 

heuristic considered the demand that must leave within the next θ days to determine if the FTL 

rate could be achieved.  If there was excess capacity, then it continued to add demand and take 

advantage of adding product at no additional cost, since the suppliers paid for the entire truck 

regardless of whether it was filled or not.  If it was sent at the LTL rate instead, the heuristic 

added inventory to fill an LTL unit since the LTL rate is a per cubic foot rate.  Shipping one full 

truck on two separate days or shipping out two full trucks on one day costs exactly the same in 

this model; therefore, the heuristic took advantage of θ and allowed product to stay in the 



consolidation center as long as possible to increase the opportunity for shipping at the cheaper 

FTL rate. 

 

The every (θ +1) and cost-to-go heuristics do not check for the same consolidation opportunities 

as the θ-based consolidation heuristic.  The performance for both policies decreased as θ 

increased from 1 to 5.  The every (θ +1) policy is a time-based policy that will ship θ days of 

demand even if the most recently arrived demand is better off being shipped later.  This heuristic 

consolidates even at additional cost; as θ increased, more demand was shipped out before its 

deadline.  The cost-to-go heuristic’s table recommended an amount to consolidate with the 

outgoing shipment.  This amount was based on deterministic values equal to the expected value 

of the empirical distributions.  When realized demand was greater than the expected value, the 

amount added to the outgoing shipment exceeded any excess capacity of a truck or LTL unit.  

This increased the total annual cost compared to the heuristic.  When realized demand was less 

than the expected value, the inventory added was less than the recommendation, and the 

outgoing shipment was not shipped at the cheaper rate. The transportation cost was higher since 

that demand could have stayed in inventory to be consolidated with another shipment.  As θ 

increased, the cost-to-go performed poorly since the amount recommended to consolidate was 

based on an increasing number of days of expected demand.  Increasing θ resulted in a higher 

difference in the amount the cost-to-go table recommended to be consolidated and the amount of 

realized demand that was consolidated.  This difference increased, and the transportation costs 

increased.  

 

We also tested the pruning algorithm on data sets generated to find the Lower Bound in Table 1.   

Table 2 shows the difference in runtime before and after the pruning is added. 

 

Table 2. The average runtime for a dynamic programming model with and without pruning. 

 

Average Runtime (seconds) 

Theta Without Pruning With Pruning 

1 37.9 13.0 

2 74.7 17.7 

3 153.0 28.3 

4 158.3 43.5 

5 202.7 57.5 

 

The dynamic programming model with pruning significantly reduces the runtime.  For θ = 5, the 

runtime decreases from approximately 3 minutes to 1 minute. Additional pruning techniques 

may further reduce the runtime. 

 

 



Table 3. The comparison between the θ-based consolidation heuristic and the rolling horizon 

algorithm. 

  Ratio by Run Length 

θ 

θ-based 

consolidation 

heuristic 

5 Days 10 Days 20 Days 30 Days 40 Days 50 Days 

1 $206,160 1.03 1.01 0.95 0.95 0.95 0.95 

2 $146,483 1.11 1.07 0.98 0.97 0.97 0.97 

3 $123,218 1.23 1.16 1.03 1.00 0.98 0.97 

4 $114,676 1.21 1.16 1.08 1.04 1.01 0.99 

5 $111,348 1.25 1.17 1.14 1.11 1.06 1.03 

 

For the rolling horizon algorithm, we chose an implementation period of five days to correspond 

with a typical work week.  We tested the algorithm with 5, 10, 20, 30 40 and 50 days of known 

demand.  In this experiment, we compared the annual cost of the rolling horizon algorithm with 

the θ-based consolidation heuristic.  Table 3 shows the comparison between the θ-based 

consolidation heuristic and the rolling horizon algorithm.   The figures in the second column 

represent the annual cost of the θ-based consolidation heuristic and the other columns show the 

ratio of the rolling horizon algorithm’s cost over the heuristic.   

 

The rolling horizon algorithm performed poorly against the θ-based consolidation heuristic until 

the number of days of known demand was greater than or equal to 20 days, and even then it did 

not beat the heuristic when θ was large. This result was most likely due to end-period effects of 

the rolling horizon algorithm since it forced the schedule to consider an ending inventory of zero.  

The decisions in the last θ days of the run length included more outgoing shipments than the 

consolidation decision because there were no incoming demands.  By defining an ending 

inventory of zero, we restricted the consolidation opportunities for the last θ days.  As the 

number of days of known demand increased, the rolling horizon performed better.  However, it 

is highly unlikely to know demand exactly that far in advance.     

 

5.2 Sensitivity of Consolidation 

 

We next compare the benefits of consolidating versus each supplier operating independently as a 

function of the demand size.   In this analysis, we used the θ-based consolidation heuristic to 

generate the solutions for the consolidation and independent strategies.  Figure 4 illustrates the 

benefits of consolidation as expected demand varies. 



 
Figure 4. Ratio of consolidating using the θ-based consolidation heuristic versus operating 

independently. 

 

We graphed the annual cost of the consolidation strategy divided by the annual cost of shipping 

independently.  In other words, the values graphed are ratio values comparing a consolidation 

scenario versus a scenario with no consolidation. We scaled the actual demand by 0.2, 0.5, 1, 1.5, 

2, 5, 10, 30, 50 and 100.  The pattern illustrated in this graph shows that at very low demand 

distributions, the benefits of consolidating are small compared to not consolidating.  This is a 

result of the cumulative demand being so low that the least-cost shipping option is still LTL.  As 

demand increases, the aggregate demand over all five suppliers is sent at the more advantageous 

FTL rate (ratio values are closer to 0).  However, as demand increases to extremely large values 

(50x and 100x), the benefits disappear because each supplier’s individual demand is large 

enough to ship at the FTL rate without additional demand (ratio values are closer to 1).  

Consolidating at high volumes results in approximately the same number of full truckloads as 

operating independently.   

 

Figure 5 re-emphasizes how consolidating benefits those supplier with lower daily volumes. The 

number of suppliers shipping together decreases as each supplier’s demand increases.  As the 

supplier’s daily demand increases to κF, the need to consolidate decreases because individual 

suppliers can send out full truckloads.  The excess capacity in a partial truckload decreases, and 



fewer suppliers are able to add product to a partially loaded truck.  With small daily demand 

values, more suppliers consolidate to achieve the FTL rate.   

 

 
Figure 5. The average number of suppliers per full truckload decreased as demand increased. 

 

 

5.3 Cost Allocation 

While consolidating across suppliers with low values of demand provides system-wide benefits, 

independent suppliers will not cooperate unless there are individual advantages as well.  The 

question of how to allocate the costs among the suppliers still remains.  In this section, we briefly 

look at a potential cost allocation policy and determine whether it would support the cooperation 

of suppliers at the consolidation center.   

 

We next propose a policy that charges each supplier a proportion of the total cost equal to the 

proportion of demand in the current shipment that belongs to the supplier.  The cost is divided 

every time there is a shipment.   That is, let c be the total cost for the outgoing shipment to a 

destination, and let βi be the proportion of volume that originates from supplier i. Then the 

supplier will pay cβi.  

 

We performed this allocation on 100 samples of annual demand using only nonpeak 

distributions.  Full cooperation, known as the grand coalition, includes all 5 suppliers.  The 

average daily cost for suppliers 1 through 5 when cooperating fully was $147.37, $100.38, 

$150.43, $73.70 and $153.57, respectively (see Table 4).  We compared these costs with 



scenarios where a subset of the 5 suppliers, or coalition, formed.  This cost allocation rule 

encourages participation in the grand coalition only if there is no other coalition with greater 

savings.  To do this, we considered other coalition possibilities of the 5 suppliers.   

 

We considered all possibilities to create a coalition of size 4, 3, 2 and 1 using the original 5 

suppliers.  For example, the coalition of size 2 was all cooperation possibilities between 2 

suppliers, which included the following: {1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2,4}, {2,5}, 

{3,4}, {3,5}, and {4,5}.  We applied the proportional allocation policy for each possible 

coalition and calculated the average daily cost across all the coalitions of the same size.  Table 4 

contains the average daily cost for the grand coalition. Each value in Table 5 is a ratio of the 

average daily cost for the corresponding coalition size divided by the average daily cost of fully 

cooperating (values in Table 4).   

 

Table 4. The average daily cost under the proportional allocation policy. 

Coalition 

size 
Supplier 1 Supplier 2 Supplier 3 Supplier 4 Supplier 5 

5 $147.37 $100.38 $150.43 $73.70 $153.57 

 

Table 5. Ratio comparison against the grand coalition of 5 suppliers 
Coalition 

size 
Supplier 1 Supplier 2 Supplier 3 Supplier 4 Supplier 5 

4 1.17 1.21 1.15 1.21 1.17 

3 1.49 1.62 1.43 1.69 1.47 

2 2.04 2.33 1.92 2.52 1.99 

1 2.77 3.03 2.57 3.00 2.72 

 

 

Because all ratio values are greater than 1, the corresponding supplier would pay more on 

average if he were in a smaller coalition or operating independently versus the grand coalition. 

Every ratio value was greater than 1 for subset sizes 1 through 4, and from subset size 1 to 4 the 

ratio for each supplier decreases.  These results imply that under the proposed cost allocation 

policy, every supplier benefits from a full cooperation versus operating alone or in a smaller 

coalition.  However, the benefit for each supplier is not necessarily the same.  One supplier 

might benefit much more than the other suppliers if his demand is relatively low and therefore 

easily consolidated with the remaining suppliers’ partial LTL units or partial truckloads.  

 

6. Conclusion 

 

We studied a consolidation problem for long-haul shipments with multiple suppliers and one 

consolidation center delivering perishable products to  a single destination.  We formulated a 

stochastic dynamic programming model that solved the optimization problem.  In addition, we 



developed a look-ahead heuristic and compared it with various other heuristics.  The θ-based 

consolidation heuristic yields a good solution compared to the optimal solution and other 

policies.  For example, the θ-based consolidation heuristic requires knowledge of fewer days of 

deterministic demand versus the rolling horizon algorithm; the rolling horizon algorithm 

performs better only if the length of the horizon is long and the demand during this horizon is 

known.  In general, the θ-based consolidation heuristic performs the best of all the heuristics 

tested.  We showed how the benefits of consolidation vary as the demand sizes change.  

Consolidation gives the highest benefit when demand levels are moderate.  At the very low 

demand levels, consolidation does not take advantage of the cheaper full-truckload rates. At the 

very high demand levels, there is no need to consolidate to achieve economies of scale.   

 

There are several limitations to the θ-based consolidation heuristic. The delay at the 

consolidation center influences the shelf life of the product, and this model does not measure the 

quality of the product.  It uses one parameter to determine how long a product stays in inventory.  

This would be effective if the product were allowed to stay in inventory a very short period of 

time, such as a few days.  However, the quality of the product might decrease with each passing 

day, which could influence the decision to ship or not.  

 

Future work in this area includes the development of a quality measure for the perishable 

products. Inventory costs at the consolidation center were not included in this model, and if they 

are, the θ-based consolidation heuristic may not perform as well.  The trade-off between 

inventory costs and transportation costs will need to be considered to develop a new heuristic.  

Vehicle routing strategies offer opportunities for more transportation savings as well.  Multiple 

pick-ups from suppliers would utilize more space in the vehicle and decrease costs compared to 

direct shipping.  Incorporating routing into the existing model would also consider the travel 

time between the suppliers and the consolidation center.  
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